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1 Introduction and Statement of Main Theorem

Everyone knows that the familiar binomial coefficients are integers. But it is not so obvious that
quotients of binomial coefficients whose parameters are linear in n by factors linear in n also
sometimes yield sequences of integers. For example, {n%H (2:) oo =1{1,1,2,5,14,42,132,... } is
the well known sequence of Catalan numbers. In the same vein, {% (n2_"3) tn>s = {1,6,27,110,429, ...
is sequence M4177 in Sloane and Plouffe’s Encyclopedia of Integer Sequences [3], {ni+2 (n2f1)} is
sequence M2809, { gy (7 7)) is M1660, {735(,”,)} is M3904. There are at least an-
other dozen such sequences listed in the Encyclopedia, including M1782, M2243, M2926, M2946,
M2997, M3483, M3542, M3587, M4198, M4214, M4529, M4721. Incidentally, the smallest-
parameter such sequence of integers not listed seems to be {%(n3f1)} = {2(>"1) - (3:;11)} =
{3,10,42,198,1001,... }.

Why are these sequences integral while similar sequences such as %(2:) and 2n’11 (2:) are
not, no matter what the integer k is? Here we attempt to shed some light on this question.
1 (an+b
P(n) (cn+d)
where P(n) is a product of one or more factors linear in n with integral coefficients and a, b, ¢, d

Each of the above sequences is an integer multiple of a sequence of the form w =

are integers with a > ¢ > 0 . Let us call such a sequence w linear binomsial. In this paper, we
establish a simple and intuitively appealing criterion for a linear binomial sequence w to have
bounded denominators, equivalently, for the existence of an integer k such that kw is a sequence
of integers. Furthermore, when the criterion is met, the proof consists of verification of an
algorithm that produces not ounly a suitable multiplier k, but also a “Certificate of Integrality”
for kw in the form of an identity expressing it as an integral linear combination of binomial

coefficients. For example, the algorithm yields that the Catalan number %H(Z:) is equal to



(27‘) - (ffl). For %(n2f3) the algorithm returns the identity %( 2n ) = (Zn_l) - (2"_1). A small

n n—3 n—3 n—4
Mathematica package, DecomposeBinomial, implementing this algorithm, is available from the

author’s home page at http://www.stat.wisc.edu/ callan/.

The criterion for bounded denominators revolves around cancellation of the factors in P(n)

an+b
cn+d

to proportional polynomials or, equivalently, division in the polynomial ring Q[n]. Set e =a — ¢

with factors in what might be called the symbolic numerator of ( ) Here cancellation refers

and f = b — d. Thus for any particular n,

<an+b> (an+b)(an+b—1)...(en+ f +1)

en+d) (cn + d)! ' (1)

Now define the numerator set N of this binomial coefficient (considered symbolically) to be
N =UUV where U = {an+b—i};>0 and V = {en+ f +j};>1. Thus N contains both “ends”
of the range of factors in the numerator in (1) but not the “middle”. For example, for (SZ), the
numerator set consists of {6n,6n—1,6n—2,... }U{4n+1,4n+2,...} (but not any term of the
form 5n £ 4). Similarly, define the denominator set D = {cn + d —i};>0. The desired criterion
can now be expressed as follows. Each linear factor in P(n) must divide a factor in N and if
a factor in D is proportional to one in P(n), it too must divide a factor in N (always taking

multiplicity into account).

1
) 2n+1

in N ={2n2n-1,...} U{n+1,n+2,...}. And %(2:) also fails to meet the criterion
because D = {n,n — 1,...} includes n, giving two n’s that need to divide factors in N =
{2n,2n—1,... }U{n+1,n+2,... } but only one term in N is divisible by n. On the other hand,
1(5

n (2n7—|L—1
to n, namely 2n, the numerator set N = {5n,5n —1,... }U{3n,3n+1,...} contains two terms

For example (2:) fails to meet this criterion because 2n + 1 does not divide any term

) does meet the criterion because, although here again D includes a factor proportional

proportional to n, and so both offending factors can be cancelled. Clearly, no two factors in
U (resp.V, resp. D) can be proportional. It follows that the criterion cannot be met if P(n)
has two proportional (or repeated) factors. This is because the only way N can contain two
proportional factors is if one of them is in U (say in the ith position) and the other in V' (say in
the jth position). But then a simple calculation shows that the (i + j)th term in D would also
be proportional to both, and “three into two won’t go”.

To state the criterion (and our main result) succinctly, we make two definitions. Say a linear

factor appears in a set if it is proportional to a term in the set. Thus 2n + 1 appears in the

4nn+3) (an+b

o d) is normalized if each

. . . 1
. Also, say a linear binomial sequence )

linear factor gn + h in P(n) has relatively prime coefficients g, h.

numerator set of (

Using this terminology, our main result can be formulated as follows.

Theorem 1 Suppose w = P(ln) (ZZIZ

bounded denominators if and only if P(n)’s linear factors are distinct and each such factor

) s a normalized linear binomial sequence. Then w has



appears in the numerator set N of the binomial coefficient (as defined above), and appears there
twice if it also appears in the denominator set D.

Furthermore, if a linear binomial sequence w has bounded denominators, then there is a
positive integer k such that kw is an integral linear combination of a fized number (independent

of n) of binomial coefficients with parameters linear in n.

Remark Bearing in mind that a factor can appear at most twice in N, an equivalent but
more pithy formulation of the criterion for bounded denominators is: if and only if P(n)’s linear

factors are distinct, and each appears more often in /N than in D.

The “only if” part is proved in §2. It relies on Dirichlet’s classic theorem on primes in
arithmetic progressions [1, Chap. 7], and Kummer’s pretty rule for finding the exact power of
a prime p that divides a binomial coefficient: the number of carries when its parameters are
subtracted in base p. See [2, Ex. 5.36, p. 245] for a proof of Kummer’s rule (in an equivalent
formulation in terms of addition in base p). The “if” part is proved in §4. It relies on a neat
determinant expansion, of interest in its own right, that is presented in §3. Finally, §5 contains

a mild extension of the main theorem, some further remarks, and a conjecture.

2 Main Theorem: Proof of “Only If”

We will show that infinitely many primes occur among the denominators in ﬁ (‘CLZIS) when the
criterion of Theorem 1 is not met. Let gn + h be a factor in P(n). Suppose p = gn + h is prime
(as it will be for infinitely many n by Dirichlet’s theorem, since g and h are relatively prime).
Write a = q1g + 11 with 0 < 7 < g and ¢ = ¢o9 + r9 with 0 < r9 < ¢ (division algorithm).

Expressed in base p, the two parameters of the binomial coefficient are then (for sufficiently

large n)
p 1
q |rint+b—qh| ifr #0,
an+b= q b—qih if 1 =0and b > qih,
G1—1|p—(quh—0) ifry =0and b < ¢ h.

and similarly,

P 1
Q2 ron +d — q2h if ro #£ 0,
cn+d= Q2 d — qoh if ro =0 and d > g9h,
g — 1| p—(g2h—d) if ro =0 and d < gqh.

In particular, since an+0b has only two digits in base p, at most one carry can occur in subtracting

cn+d from an+b in base p. Thus p? { (a"+b

Cn+d) and if gn+h is a repeated factor in P(n), then p will



occur among the denominators in w (for infinitely many primes p) and w will have unbounded

an+b
cn—+d

(an +b) mod p > (cn + d) mod p. It is straightforward to verify that gn 4+ h appears (i) in U
iff 1 =0and b > qh, (ii) in V iff r; = ry and (¢1 — g2)h > b —d, (iii) in D iff 7, = 0 and

nid)

unless gn + h = p appears in the numerator set IV at least once, and twice if it appears in the

denominators. Also, no carries occur in the subtraction—and hence p { (¢F%)—if and only if

d > qah. Except for one wrinkle, it is now simply a matter of checking cases to verify p { (

denominator set D. This will show that infinitely many primes occur among the denominators

in w, as desired. The one wrinkle is that when 0 < r; < 72 (a subcase where gn + h does not

ZZIZ) and we proceed as follows. Set n = (g — 1)m — h with

1 (an+b) _ 1 1 (a(gfl)mfathb
gn+h \cn+d/ = g—1 gm—h \c(9—1)m—ch+d

and 75 := (¢(g — 1)) mod g = g — ro. Since 7| > ), the case 1 > ry applies with m in place of

appear in N at all), p does divide (

m variable; thus ). Here 7} := (a(g — 1)) modg=g—m
n, a(g — 1) in place of a, and the role of p played by gm — h. This completes the proof of the
“only if” part.

3 A Determinant Expansion

The following result is crucial for the “if” part of the main theorem in the next section. Let coeff
denote the function that produces the row vector of coefficients of a polynomial or the matrix of
coefficients of a list of polynomials. Thus coeff(}"1" ; ¢;z*) = (¢;)™,. Let x denote convolution of
sequences; thus coeff(p(x)g(x)) = coeff(p(x)) * coeff(q(z)). Also, for a matrix N, let N° denote
the column vector obtained by taking the Hadamard (entrywise) product of the columns in N.
For example, for N = (é i), N° = (122).

Theorem 2 Let m be a positive integer and let a; (1 <j<m), bj; (1 <i<j<m),c, e xbe
indeterminates. Let N be the m + 1 by m matriz with rows indexed [0, m] and columns indexed
[1,m], and (i,j) entry

cx+aj if0<i<j<m,

er +b; if 1 <j<i<m.

Let M be the m + 1 by m + 1 matriz coeff(N°). For example, when m = 2,

cxr+a, cx+ar aiaz (a1 +az)ec 2
N=| ex+b1 cx+a and M = | bjjas biic+agse ce
exr + b21 exr + b22 b21b22 (b21 + b22)€ 62

Then det M = HISZS]Sm(ea] - Cb]Z)

Proof We first show for 1 <i < j < m that ea; — cbj; divides det M in the polynomial ring

Q(e, ¢)[a’s,b’s]. To do so, suppose ea; = cbj; for some 4,j. Let N; denote the submatrix of



N consisting of rows 0 through j. Then p; := [[;<;<,(cz + @;) is a factor in each entry of
N7; we may write N7 = (r;)o<i<; pj with degr; = j —1 (0 <4 < j). Now rows 0 through j
of M constitute the submatrix M; = coeff(N;}) = (coeff(r;))
each coeff(r;) with coeff(p;)). Since R; := (Coeﬂ(ri))ogigj
linearly dependent (over Q(e,c,a’s,b’s)) and there exists a nonzero vector u = (u;)o<i<; such
that uR; = 0. Hence uM; = u(R; * coeff(p;)) = (uR;) * coeff(p;) = 0 x coeff(p;) = 0 and

M is singular. Thus ea; — cbj; is a factor of det M. Since each ea; — cbj; is obviously prime

o<i<i * coeff(p;) (convolution of

is a 7 + 1 by 7 matrix, its rows are

in Q(e,c)[a’s,b’s], their product also divides det M and Theorem 2 follows by confirming the

degrees agree and the coefficients of any one term agree.

Corollary 3 Let N be an m + 1 by m matriz with linear polynomials in one indeterminate as
entries. Partition N into offset row and column segments as indicated. (FEach vertical column

segment sits atop the last position in the corresponding row segment.)

1 2
%D

w N O

H

m+1

Suppose for 1 < 57 < m that all entries in column segment j are equal and this common entry
does not divide any of the entries in row segment j.
Then the m + 1 by m + 1 matriz M = coeff(N°) is invertible.

Proof The matrix N is of the form in Theorem 2. Clearly, a factor ea; —cbj; (1 <i < j <m)
in det M is 0 if and only if cx + a; is proportional to ex + bj;, that is, divides ex + bj;. But these
polynomials lie in corresponding row and column segments and thus the hypothesis ensures that
one does not divide the other. Hence det M # 0 and M is invertible.

4 Main Theorem: Proof of “If”

We seek an expression for P(ln) (gﬁig) as a rational-coefficient linear combination of binomial
coefficients. Due to the basic identity (") = (";Ll) + (:1:11), we can always reduce an upper



parameter at the expense of increasing the number of terms in the linear combination. Thus we
look for a combination in which all the upper parameters are the same. It will turn out that
a suitable upper parameter is determined by the factors in P(n) that appear in U (the upper
range in the numerator set). Specifically, it is an + b — u where u is the location of the last term
in U that appears in P(n) (and u = 0 if there is no such term).

By hypothesis, each (linear) factor of P(n) appears in U or V or possibly both. Let (an +
b+1—1)ierU(en+ f+j)jes be a complete listing of these appearances where I and J are finite
subsets (one of them may be empty) of the positive integers. Set u = max I and v = max J
(with max ) :=0). Let , =an+b+1—4i, s;=en+ f+v+1l—dandt;=cn+d—u—v+i
so that

<an—|—b> Ty Ty 5152...50 H?eril_[;:lsj< an+b—u >
cn+d (2 SIS Y A IR [T ¢ en+d— (u+v)

We claim that all appearances of P(n)’s factors in N U D occur within the three groupings
displayed in the middle expression. This is true for the numerator N by definition of u and v.
And if a P(n) factor gn 4+ h appears in D, then by hypothesis it appears in both U and V', say
in the ith position in U and the jth position in V. As noted earlier, a simple calculation then
shows that the position in D at which gn + h appears is ¢ + j. Since ¢ < u and j < v, it follows
that i + j < u+ v and so the (i + j) term in D is one of the displayed t’s. Hence the claim.
Next we have to determine appropriate lower parameters for the binomial coefficients in the
desired linear combination. This turns out to be a little tricky; rather than being consecutive
as one might expect, they turn out to form an interval with a hole in it. To this end, define
L = {i € [1,u+v] : t;|s; in the ring Q[n] for some j with 1 < j <4}. Since the j here is necessarily
unique, we get a map ¢ : L — [1,u+v] satisfying ¢; | s4(;) and ¢(i) <4, 7 € L. Also, it is easy to
check that L is either empty or an interval of integers. (The reader might like to look ahead to
the illustrative example at the end of this section.) Suitable lower parameters are determined
by removing L from the set [1,u + v] and adjoining 0. Thus we set K := [1,u + v]\L and the

rest of the proof is devoted to showing that there exist (unique) rational numbers (¢;)ic k{0

such that
Z o an+b—u 1 an—+b @)
‘“\en+d—(u+v)+i)  Pn)\ecn+d)

ie KU{0}
Factoring out (cn‘fgjtb@iv)) /1l ek tj from each side, (2) is equivalent to
u v
S1...8itig1 - Lyt Hi:1 T Hj:l S5
Co t; + C = . (3)
]g( ZEZK HjeL t P(n) HjeL t

We will show that (i) both sides of (3) are polynomials in n, and (ii) equating coefficients of like
powers of n in these polynomials yields a system of linear equations for the ¢;’s with a coefficient

matrix to which the Corollary to Theorem 2 applies (and which is therefore invertible).



Consider the right side of (3). All the factors in P(n) appear in its numerator by definition
of u and v. For j € L, we have t; | s4(;). If #(j) < v, then s4(;) is present in the numerator. If on
the other hand ¢(j) > v, we claim: ¢; also divides some r; with 1 <4 < w. In fact, i = u+¢(j) —j
works. First, ¢ > 1 since i > u+v —j > 0 and i < u since ¢(j) < j. Second, t; | s4(;) implies
tilti+ sy = (en+d—(utv)+j)+(en+f+o+1—-9() =an+b+1—u+j—¢(j) =
an +b+1—1 = r;. Hence the claim. Thus every factor in the denominator divides a factor
in the numerator. And if a factor in P(n) also appears among {¢;};cr, then by hypothesis it
appears twice in N and hence appears twice in the numerator. So the right side of (3) is indeed
a polynomial Pyps(n) and its degree is u + v — deg P — |L| = | K| — deg P.

As for the left side of (3), it is clearly a polynomial if L = ). Otherwise, since K = [1,u+v]\L
and L consists of consecutive integers in [1,u + v], K may be written as a disjoint union of
intervals Ky U Kj, (K for the smaller numbers, here one of K, Kj may be empty). For i € K,
summand 7 is Ci(H;:l $j)(I1kex k>ite)- Now suppose i € Kj. Since tj | sg(;) for j € L and
#(j) < j <max L < i, each t in the denominator of summand ¢ divides some s in the numerator,
leaving a quotient ¢ := e/c (e and ¢ being the coefficients of n in the s’s and t’s respectively)
Hence the left side of (3) is the polynomial Pps(n) =

%
Co H t; + Z & Hsj H te | + Z Ciq|L| H 85 X g1 - tyto (4)

jEK icK, j=1  keKk>i i€K, j€[L,i],j¢rng ¢

and its degree is | K]|.
Equating coefficients of powers of n in these polynomials gives a linear system of equations
for the linear combination coefficients ¢;. To apply Corollary 3 to the coefficient matrix of this

system, arrange the factors in the products occurring in Pjhs(n) into a (block) matrix N =

Ks Kb
K,U{0}y [ M N
K, N3 N,

with rows and columns indexed as indicated. For blocks Ni and Ny, the ij entry is ¢; if 1 < j
and s; if i > j. For Ny, the ij entry is t; for all i. For N3, each row is (sj)jer,ur, jes(L)
(order immaterial). Thus, in matrix terms, Pjps(n) = ¢N°® where ¢ = (co, (¢;)ick., (¢¢:)ick,)
incorporates the ¢/“l factors.

Now equate coefficients of powers of n in Pjs(n) = Pyg(n), that is, in ¢N° = Pys(n), by
applying the coeff operator of §3, to obtain

c coeff(IN°) = coeff(Prps(n)).

This is a linear system of |K| + 1 equations in the |K| + 1 unknowns c. The coefficient matrix

M = coeff(IN°) is invertible because Corollary 3 applies to N. The hypothesis of the Corollary



is met because, for all j € K = K, U Kj, all entries of NV directly above position (7, j) are equal

to t;, and all entries at or to its left are of the form s; with ¢ < j. And t; does not divide any
such s; or else j would lie in L whereas by definition of K, 7 does not lie in L.

. 1 6n+15

To lllustrate, for W ( 27;7,4—8

dn + 14 — 4, t; = 2n + 4. Since t3 | ss, ta | Se, t5 | sS4 and tg | s2, we have L = {5,6} with

#(5) = 4, ¢(6) = 2. This makes Ky = [1,4] and K, = [7,8]. The common factor in (2) is

(*"F %) /((2n+1)(2n+2)(2n+3)(2n+4) (2n+7)(2n+8)). After dividing this out, the polynomial

remaining on the right side is 22(6n + 15)(4n + 8)(4n + 9)(4n + 11) while that on the left is

(Co,61,02,63,64,467,468)N0 where N =

), we have u = 2, v = 6,7, = 6n + 16 — 1, s; =

1 2 3 4 7 8

2n+1 2n+2 2n+3 2n+4 2n4+7 2n+8
in+13 2n+2 2n+3 2n+4 2n+7 2n+8
dn+13 4n+12 2n+3 2n+4 2n+7 2n+8
dn+13 4dn+12 4dn+11 2n+4 2n4+7 2n+8
In+13 dn+12 4n+11 4n+10 2n+4+7 2n+8
n+13 4n+8 4n+11 4dn+9 4n+4+7 2n+8
dn+13 4n+8 4n+11 4n+9 4n+7 4n+6

O~ b=~ W NN = O

5 Concluding Remarks

Theorem 1 enables one to tell by inspection if a linear binomial sequence % (zgj:z) has bounded

denominators. The theorem readily extends to sequences of the form ggz; (ggig) where both P

and @ have linear factors. Indeed, if gn + h is a factor in P(n) with g, h relatively prime, and
g'n+h' is a factor in @Q(n), then the prime values of gn + h can divide g'n + k' for ouly finitely

many values of n unless gn + h divides ¢'n + h' (as polynomials in n over @), in which case they

B (et

The algorithm of Theorem 1 often yields the “smallest” sequence of integers among all

can be cancelled. Thus the criterion of Theorem 1 also applies to

multiples of the original sequence that are integral. But it does not always do so. It does
not necessarily even yield the smallest sequence expressible as an integral linear combination
32) will be returned unchanged whereas %(32) = (52:) - (SZ:})
Here is another phenomenon: (2;1:) is also returned unchanged while

(aum1) =7 () = o) —tan - an -9 (5 75)

is clearly a sequence of integers. We conjecture that every such rational multiple of a linear

of binomials. For example, (

binomial that yields a sequence of integers is similarly expressible as a linear combination of

binomial coefficients with polynomial coefficients in Z[n]. It would be interesting to characterize



those cases where the coefficients can be taken to be constants, to extend the algorithm of

Pi(n) (ain+bi
Qi (n) cin+d;

Theorem 1 to sums ), ), and to sharpen it to yield “smallest” sequences.
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