OBJECT ORIENTED LINEAR
ALGEBRA

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF MASTER OF PHILOSOPHY
IN THE FACULTY OF SCIENCE AND ENGINEERING

December 1999

By
Miguel Angel Lujdn Moreno (Mikel Lujan)

Department of Computer Science

Contents

Abstract 11
Declaration 13
Copyright 14
Acknowledgements 16
1 Introduction 17
L1 Overview o . L 17

1.2 Traditional Linear Algebra Libraries 18

1.3 Object Oriented Linear Algebra Libraries 20
1.4 Limitations of a Library Approach 22

1.5 Thesis Outline o 23

2 Numerical Linear Algebra 25
2.1 Basic Background o000 26
2.1.1 Matrix 26

2.1.2 Matrix Calculations 27

2.2 Matrix Properties and their Storage Formats 29
2.2.1 Matrix Properties L. 29

2.2.2 Storage Formats. oL 35

2.3 Exploiting Matrix Properties 38
2.3.1 Matrix Matrix Multiplication 39

2.3.2 Systems of Linear Equations 41

2.3.3 Storage Format Abstraction Level 45

2.4 Developing Numerical Linear Algebra Programs 46
2.4.1 Using BLAS and LAPACK 48

24.2 Using Matlab oo
2.4.3 Using the Sparse Compiler
2.4.4 Advantages and Disadvantages

2.5 SUMMATY v

Object Oriented Linear Algebra

3.1 Object Oriented Software Construction
3.1.1 Basic Concepts,
3.1.2 Implementation Related Concepts
3.1.3 The Software Development Process
3.1.4 Some Tips

3.2 Analysis and Design of OOLALA
3.2.1 Initial Analysis oo
3.2.2 Different Views of Matrices
3.2.3 Including Iterators
3.2.4 Including Matrix Calculations

3.3 Summary

Implementation of OoLALA

4.1 Adapting OoLALA to Java

4.2 Declare and Access Matrices

4.3 Create Views

4.4 Management of Storage Formats

4.5 Matrix Calculations oo
4.5.1 Implementing at Different Abstraction Levels
4.5.2 Selecting an Implementation

4.6 Summary

Limits of the Library Approach

5.1 The Best Order Problem
5.2 The Best Association Problem
5.3 The Maximum Common Factor Problem
5.4 The Matrix Property Propagation Problem
5.5 The Best Storage Format Problem

5.6 Overview of a Linear Algebra Problem Solving Environment

59
60
61
67
69
72
78
79
94
97
101
117

121
122
125
128
133
142
142
143
149

151
152
154
155
157
158
159

6 Conclusions 162

6.1 Summary 163
6.2 Critique 164
6.3 Future Work 165
Bibliography 167

List of Tables

2.1
2.2

2.3

2.4

2.5

2.6

3.1
3.2
3.3
3.4

3.5

3.6

4.1
4.2
4.3

Definition of some basic matrix operations.
Examples of dense and sparse matrices — O’s represent nonzero
elements and blanks represent 0.
Examples of banded matrices — O’s represent nonzero elements and
blanks represent 0. Lo
Examples of block matrices — O’s represent nonzero elements and
blanks represent 0. L
Recommended factorisations for systems of linear equations with
dense and banded matrices. L.
BLAS subroutines for matrix-matrix multiplication — op(A) repre-
sents A or A" and, unless indicated, matrices are stored in dense

format.

Object oriented linear algebra libraries.
Class structure of various object oriented libraries.
Support of views of matrices in various object oriented libraries.

Representation of basic matrix operations in various object ori-
ented libraries.
Representation of matrix equations and the operation of solving
them in various object oriented libraries.
Solvers of matrix equations provided by various object oriented

libraries.

Storage format selected for each matrix property.
Consistency between storage formats and matrix properties.

Rules for determining the properties of the result matrix C' for the
addition of matrices C'<— A+ B.

4.4

4.5

5.1

Rules for determining the properties of the resultant matrix C' for
the matrix-matrix multiplication C' < AB. 140

Storage formats transitions triggered by a new matrix property. . 141

Number of instructions for programs implementing A+ B + C' and
C' + A+ B, where A and B are m x m diagonal matrices (\) and

C'isam x m dense matrix (W). 153

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10
2.11

2.12

2.13

2.14

2.15

Hierarchical view of nonzero elements structures.
Row versus column-wise memory layout for arrays.
Examples of matrices stored in dense format.
Examples of matrices stored in band format.
Examples of matrices stored in packed format.
Algorithm for matrix-matrix multiplication C' <— AB with A and
B dense matrices.
Algorithm for matrix-matrix multiplication C' < AB with A upper
triangular and B dense matrices.
Algorithm for matrix-matrix multiplication C' < AB with A upper
triangular and B lower triangular matrices.
Algorithm for matrix-matrix multiplication C' <— AB with A and
B upper triangular matrices. L.
Algorithm for a system of linear equations with A diagonal
Forward-substitution algorithm for a system of linear equations
with A lower triangular.
Implementation of matrix-matrix multiplication C' <+~ AB with A
upper triangular and B dense, both stored in dense format.
Implementation of matrix-matrix multiplication C' <— AB with A
upper triangular stored in packed format and B dense stored in
dense format.
Programs using BLAS and LAPACK to solve the system of equa-
tions ABx = ¢ where A and B are n X n dense matrices.
Programs using BLAS and LAPACK to solve the system of equa-
tions ABx = ¢ where A and B are n x n upper triangular matrices

stored in dense format.

2.16 Programs using BLAS and LAPACK to solve the system of equa-
tions ABx = ¢ where A and B are n x n upper triangular matrices
stored in packed format, whenever possible.

2.17 Matlab Programs to solve the system of equations ABx = ¢ where
A and B are n X n dense matrices.

2.18 Matlab Programs to solve the system of equations ABx = ¢ where
A and B are n X n upper triangular matrices.

2.19 Sparse Compiler commented dense program to solve the system of
equations ABr = ¢ where A and B are n x n upper triangular

MAtTICES. . . . v v v o e e e

3.1 UML class diagram and object diagram for a naive version of ma-

TLICES.

3.2 UML class diagram with a naive inheritance hierarchy of matrices.

3.3 UML class and object diagrams with an association or client rela-
tion between two classes. oL
3.4 UML class diagram of a naive generic class GenericMatrix.
3.5 UML class diagram of a naive abstract class Matrix.
3.6 Class diagram of the bridge pattern.
3.7 Class diagram of an application of the bridge pattern.
3.8 Class diagram of the iterator pattern.
3.9 Class diagram emulating generic classes by hand code.
3.10 Class diagram of generic classes simulated by inheritance and client
relation. Lo
3.11 A simple Matrixclass.
3.12 Generalised class diagram of Matrix version 1.
3.13 Concrete class diagram of Matrix version 1.
3.14 Generalised class diagram of Matrix version 2.
3.15 Concrete class diagram of Matrix version 2.
3.16 Generalised class diagram of Matrix version 3.
3.17 Concrete class diagram of Matrix version 3.
3.18 Implementation of the method element in DenseMatrixInDense-
Format, BandedMatrixInBandFormat and BandedMatrixInDense-

Format classes — Matrix version 1.

80

3.19

3.20

3.21

3.22
3.23

3.24
3.25

3.26
3.27
3.28
3.29
3.30
3.31

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8

4.9
4.10
4.11

4.12

Naive implementation of the method element in DenseMatrix,
BandedMatrix, DenseFormat and BandFormat classes — Matrix
VETSION 2 Lo e 90
Class diagram of Matrix version 3 — first attempt to include dif-
ferent views of matrices. L. 96
Class diagram of Matrix version 3 — second attempt to include
different views of matrices. 97
Class diagram of MatrixIterator. 99
Class diagram of classes Matrix and Property including the meth-
ods of MatrixIterator. 100
Different representations of matrix addition. 103

Class diagram of class Matrix including matrix operations as meth-

ods. . .. 105
Class diagram of general Solver of matrix equations. 108
Class diagram of class LinearSystemSolver for direct solvers. . . 113
Class diagram of class KindOfPhase for direct solvers. 114

Class diagram of class GeneralFactorisation for direct solvers. . 115
Class diagram of class Ordering for direct solvers. 116

Class diagram of class LinearSystemSolver for iterative solvers. . 118

Class diagram of class Property and its sub-classes adapted to Java.123

Example program of how to declare and access matrices using

OOoLALA. o . 126
UML sequence diagram notation. 127
Sequence diagram for declaring a dense matrix using OoLALA. . 127

Object diagram after declaring and setting properties of matrices. 128
Sequence diagram for access methods.o 129
Example program of how to create sections of matrices using O0LALA.129
Graphical representation of the sections of matrices and matrices
created in Figure 4.7. 130
Sequence diagram for the sections created in Figure 4.7.. 131
Object diagram after the sections have been created in Figure 4.7. 132
Example program of how to create a matrix by merging matrices

using OOLALA.o . o 133
Object diagram after a matrix has been created by merging ma-

trices from example program in Figure 4.11. 134

4.13
4.14

4.15

4.16

4.17

4.18

4.19

5.1

Graphical representation of the matrices created in Figure 4.11.

Object diagram after a section of matrix, which has been created

by merging matrices, is created — example program in Figure 4.11.

Implementation of matrix-matrix multiplication C' < AB at stor-
age format abstraction level where A and B are dense matrices
stored in dense format.o
Implementations of matrix-matrix multiplication C' < AB at stor-
age format abstraction level where A is an upper triangular matrix
stored in packed format (right) or dense format (left) and B is a
dense matrix stored in dense format.
Implementations of matrix-matrix multiplication C' < AB at ma-
trix abstraction level where A is dense matrix (left) or upper tri-
angular matrix (right) and B is a dense matrix.
Implementation of matrix-matrix multiplication C' < AB at iter-
ator abstraction level. o000
Sequence diagram of dynamic binding as a selection of norm1 im-

plementations.

Example of applying standard compiler optimisations in order to

solve the maximum common factor problem.

10

135

136

Abstract

The weak point of traditional Linear Algebra libraries is their intellectual dis-
tance from Linear Algebra. For one matrix calculation, such as multiplication of
matrices, the library provides a large number of subroutines. Each of these sub-
routines is an optimal implementation for a specific situation (matrix properties
and storage formats). Users are forced to analyse their problems in terms of the
storage formats and matrix properties supported by the library in order to get
good performance (or to use the library correctly).

At present, almost all Object Oriented Linear Algebra Libraries (OOLALS)
offer a simpler interface. These OOLALSs are equipped with a rule based reason-
ing system for certain matrix calculations. Thus, when a method is invoked the
reasoning system decides which of the different implementations (with the same
functionality) is appropriate for execution. The decision is based on those situa-
tions for which the library provides efficient subroutines. The matrix calculations,
for which there is no reasoning system, are offered in different ways depending
on the OOLAL.

An exception is the Matrix Template Library (MTL), which combines object
oriented and generic programming to reduce the number of specialised implemen-
tations for each matrix calculations. It is based on the idea of iterators, which
support transparent access to data structures without explicitly indications.

This thesis describes an object oriented analysis and design of linear algebra
that establishes a context in which various OOLALs are evaluated. The Object
Oriented Linear Algebra LibrAry (OoLALA) is a new OOLAL which arises out
of this analysis and design. OOLALA specifies an interface suitable for both ex-
pert and non-expert users. This interface covers basic matrix operations (e.g.
matrix addition), and the solution of matrix equations (e.g. system of linear
equations, eigenproblem) with iterative and direct algorithms. None of the re-

viewed OOLALSs addresses such a range of numerical linear algebra functionality.

11

In addition, OOLALA’s design enables libraries to change the storage format of a
matrix in response to changes in its matrix properties. This is a novel functional-
ity for linear algebra libraries. OOLALA also illustrates how matrix calculations
can be implemented at storage format (traditional libraries), at iterator level
(MTL approach) and at matrix abstraction level (regardless of storage format,
but explicitly indicating the position to be accessed) solely using object oriented
programming.

Finally, linear algebra expressions are analysed. Some of these expressions
are semantically equivalent but result in different programs delivering different
execution times. These expressions constitute limitations that current linear al-
gebra libraries cannot solve efficiently. Consequently, a Linear Algebra Problem
Solving Environment is proposed in which compiler techniques and OOLALA are

integrated.

12

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.

13

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instruc-
tions given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made in
accordance with such instructions may not be made without the permission (in
writing) of the Author.

The ownership of any intellectual property rights which may be described
in this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third parties
without the written permission of the University, which will prescribe the terms
and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita-

tion may take place is available from the head of Department of Computer Science.

14

15

To Agurtzane
and to my parents

Domingo and Juli

Acknowledgements

I would like to thank Professor John Gurd and Dr. Len Freeman for their support
and guidance during this year. Dr. Len Freeman soon left its role of adviser to
become a supervisor. This joint supervision has probed to be very helpful in
this multidisciplinary thesis (mathematics and computer science). I am looking
forward to continuing working towards the PhD with both of you.

During this year, I have enjoyed the company of the members of the Center
for Novel Computing, specially in the tea breaks and in Rhodes. At different
points, every one has provided his expertise and I want to thank you for this.
In particular, Nicolas Fournier and Boby Cheng offered useful comments and
discussions during the writing-up of this thesis.

This work has been supported by a research scholarship from the Department

of Education, Universities and Research of the Basque Government.

16

Chapter 1

Introduction

1.1 Overview

Scientists and engineers describe physical phenomena in terms of mathematical
models. These models are usually continuous and too complex to be solved
analytically. In such cases, they are approximated with discrete mathematical
models and solutions are obtained by applying numerical methods. A computer
simulation of physical phenomena that follow a discrete mathematical model is
called a scientific application. From a user point of view, a scientific application is
a tool that enables scientists to experiment with physical phenomena and, in that
way, increase their understanding. The advantage of scientific applications is that
they have a limited cost and no risk. Real experiments consume products in each
experiment and thus the cost is accumulative. In addition, real experiments,
such as chemical reactions, can have high risk (e.g. explosions, environmental
pollution) which do not exist in computer simulations. By contrast, a scientific
application has a fixed cost, the software development cost, and enables scientists
to experiment an unlimited number of times (assuming that the cost of running a
scientific application on a computer is negligible compared with the development
cost).

This thesis takes numerical linear algebra as an example family of scientific
applications. Numerical linear algebra is a field lying between linear algebra and
computer science, which generates computer programs to solve linear algebra
problems.

This thesis analyses the software development process for sequential linear

algebra applications in order to improve this process. The accepted development

17

CHAPTER 1. INTRODUCTION 18

process is based on using a library. This thesis follows the library approach, but
instead of using traditional libraries, it focuses on object oriented libraries. The

contributions can be summarised as follows:

1. a survey and classification of object oriented linear algebra libraries is pre-

sented;

2. a new design, for the Object Oriented Linear Algebra LibrAry (OoLALA)
is developed, which spans the functionality of both traditional and object

oriented libraries; and finally

3. problems, or limitations, are identified which a library approach to the

development of linear algebra programs cannot solve.

Metaphorically speaking, this thesis is an intellectual journey that begins
with an unsatisfactory development process for linear algebra applications based
on a library approach (Section 1.2). From this departure point, the journey
builds on the valid library approach and mixes it with object oriented software
construction techniques (Section 1.3). A new object oriented design increases the
functionality of the existing object oriented linear algebra libraries. The journey
arrives at the final station where a library approach can be dispensed with, and
problems that any library cannot overcome are identified (Section 1.4). The
journey returns to the original departure point, and concludes that a problem
solving environment approach is needed to overcome these problems. In this
problem solving environment the new object oriented design will be integrated

with techniques developed in other areas of computer science.

1.2 Traditional Linear Algebra Libraries

Over the last 40 years the numerical linear algebra community has developed a
large number of subroutines. These subroutines have been grouped into different
libraries, each library targeting a set of linear algebra calculations. A major
benefit of numerical libraries is that they are a means of reusing expert knowledge
in the form of code. Ideally, a numerical linear algebra program would be the
declaration of data structures used by the library and a succession of calls to
library subroutines. However, sometimes users’ requirements (e.g. multiplication
of two banded matrices) go beyond the scope of traditional libraries; and the

users then have to write code themselves.

CHAPTER 1. INTRODUCTION 19

A second benefit is portability. Libraries pass a standardisation process in
which the functionality to be included, realised in the form of subroutine declara-
tions and data structures (storage formats) in a specific programming language, is
determined. The implementations are not standardised, although reference ones
are distributed. This enables vendors to supply an implementation optimised to
a specific architecture. In this way, not only is the library portable, since the
programming language itself is portable, but also the performance can be ported
from architecture to architecture.

The term traditional libraries is applied to the libraries developed by this re-
search community using a top-down methodology and implemented in imperative
languages. The predominant language in this field is Fortran 77 and examples of
these libraries are LINPACK [DBMS79], EISPACK ([SBD*76],[GBDMT77]) and
more recently BLAS ([BLA99]' [LHKK79], [DCHH88b], [DCHD90]) and LA-
PACK ([ABD*95]).

Given these traditional libraries, the development process of numerical linear

algebra applications can be summarised as follows:
1. describe in terms of linear algebra calculations the problem to be solved;
2. select the numerical library (or libraries) which solves the problem;

3. translate the linear algebra problem so that it is defined in terms of the spe-
cific situations (storage formats and subroutines) supported by the library

(or libraries).

The third step of this development process is non-trivial. A common char-
acteristic of traditional libraries is that they provide many implementations for
one mathematical operation. Knowing information about the matrices (matrix
properties) involved in a matrix calculation has enabled the numerical linear al-
gebra community to develop optimised implementations. This means that the
number of combinations of different matrix properties supported by a library is
the number of different implementations of each matrix calculation. Moreover,
some traditional libraries provide the facility of storing matrices in different stor-
age formats. Hence, the number of implementations of each matrix calculation is
the number of combinations of the different matrix properties together with the

possible storage formats supported by a library.

!Draft document under community revision that will substitute the other references of BLAS.

CHAPTER 1. INTRODUCTION 20

Certain matrix calculations can be implemented using different algorithms
(not developed by exploiting matrix properties) and the numerical linear algebra
community is not always able to identify the situations for which each algorithm
is most appropriate. This is the case for iterative and direct algorithms applied
to sparse systems of linear equations (see [BBC*94], [BDD"95], [DERSG6]).

Traditional libraries do not encapsulate or hide information; subroutine names
and parameters reveal implementation details. Each subroutine name describes
the basic type of the matrices, the properties of matrices, the storage format
and the operation. The subroutine parameters are arrays that store matrices or
vectors, integer values that declare the dimensions of matrices or vectors, and
string values that declare more precisely the properties of matrices.

To sum up, the program development process requires:

e analysis of the properties of matrices,

e choice of the storage formats, and

e selection of the subroutines that will deliver the best performance.

To improve the process of developing linear algebra programs, the intellectual
distance from a description of the problem in terms of linear algebra to a descrip-
tion in terms of traditional libraries must be reduced. Following the trend in other
areas of computer science, object oriented linear algebra libraries (OOLALs) are
a possible way of improving the software development process for linear algebra
programs. OOLALs provide abstractions closer to linear algebra and, therefore,

a reduced intellectual jump.

1.3 Object Oriented Linear Algebra Libraries

In contrast with traditional libraries, there is no consensus in the community
about OOLALSs, possibly due to their immature state. The first paper about
object oriented linear algebra [McD89] only appeared in 1989 and the first inter-
national conference dedicated to object oriented numerical applications [Rog93]
was not until 1993. Several OOLALs with different designs have been developed
encapsulating matrices and vectors in classes. They differ in the sets of matrix
properties for which they implement optimised versions and the storage formats

for each matrix property. When there is only one storage format provided, “by

CHAPTER 1. INTRODUCTION 21

pure luck” users are relieved of managing the store format, but as result there is
a loss of flexibility that might result in an excessive memory requirement. When
there are many storage formats, users have to explicitly select the storage format.

The visible benefit for the user of OOLALs is a simpler interface than the
interface of traditional libraries. The OOLALSs provide for one matrix calcula-
tion one visible method. The different implementations are hidden behind the
visible method. Each of these visible methods incorporates a set of rules that are
able to decide the appropriated implementation. Obviously, in the cases where
the numerical linear algebra community has not been able to identify which im-
plementation is appropriate, the OOLALs have to give access to the different
implementations.

The hidden implementations of matrix calculations access the representation
of storage formats, as traditional libraries. This level of abstraction is referred to
in this thesis as the storage format abstraction level.

A significantly different level of abstraction, called iterator abstraction level in
this thesis, is used to implement the mathematical operations in the Matrix Tem-
plate Library (MTL) ([SL98a], [SLI8b], [SL98c|, [SLI9] [SLLI9]). MTL combines
object oriented and generic programming to reduce the number of implementa-
tions. The key for this change comes from the concept of an iterator. An iterator
is a generic abstraction layer that provides a set of methods to traverse data
structures. Each data structure implements the traversal methods in a different
way, nevertheless these methods provide the same functionality. When applying
iterators to linear algebra, the data structures are matrix properties with storage
formats. The classes of MTL implement the iterator methods taking advantage
of a given matrix property. The implementation of a matrix calculation changes
from being written in terms of loop bounds to being an implementation written
in terms of iterators.

Alternatively, a storage format can be considered as a mapping of element
positions to memory positions. Given that every class representing a matrix
implements (differently) the same methods to access (read and write) the matrix,
an implementation of a matrix calculation can use these access methods and be
independent of the storage formats. This level of abstraction is referred to in this
thesis as the matriz abstraction level.

This thesis proposes a new design basis for the Object Oriented Linear Algebra
LibrAry (OOLALA). The novel characteristics of the design are the management

CHAPTER 1. INTRODUCTION 22

of storage formats and the propagation of matrix properties through matrix cal-
culations.

The library is only active when one of its subroutines (or methods) is called
(or invoked). OOLALA checks the consistency between the storage formats and
the matrix properties, which are the parameters of the method invoked. If nec-
essary, OOLALA will change the storage formats and properties to re-establish
the consistency. It might not be obvious, but when OOLALA checks the consis-
tency of parameters, these include both input and output parameters. Therefore
OoLALA is able to propagate matrix properties to the output parameters from
the input parameters. The idea of propagation of properties in not new ([Bik96],

[Mar97]), but it is a novel functionality for a linear algebra library.

1.4 Limitations of a Library Approach

At this point, it is convenient to reconsider the intellectual distance between linear
algebra and OOLALA. The distance has been reduced, but the following tasks

still remain:

1. analysis of the mathematical properties of the matrices that are the inputs

of a linear algebra problem,

2. parsing of linear algebra expressions to the language defined by the visible
methods of OoLALA, and

3. selection of the appropriate method.

Bik and Wijshoff ([Bik96], [BW99]) have developed efficient algorithms to
automatically analyse certain matrix properties. This analysis, when included in
OoLALA, could simplify the first task.

The limitations of the library approach are a consequence of its passive role.
A library is only active when a subroutine (or method) is called (or invoked). At
that moment, a library is not able to look ahead to subsequent computations,
and therefore the library can only offer a correct solution at that point of the
program.

The second remaining task can be seen as a compilation problem. The source
language is defined by expressions accepted in linear algebra and the target lan-
guage is the one defined by the visible methods of OOLALA. The parser tech-

niques need to have access to the whole program in order to generate efficient

CHAPTER 1. INTRODUCTION 23

code, but access to the whole program is incompatible with a library approach.
The third task remains an open problem. Rice and Boisvert [Ric96], among
other ideas, propose expert systems or knowledge-based systems as a possible
solution for this kind of problem [RB96]. They also remark that “the current
state-of-the-art of knowledge-based frameworks is low-level and far from adequate
for building Problem Solving Environments”. A problem solving environment is
a software system that integrates any computer science discipline in order to
enable users to develop programs using the notation or language of their specific
problem domain [GHR94]. The different tasks described for developing a linear
algebra program constitute the description of a linear algebra problem solving

environment.

1.5 Thesis Outline

The remainder of the thesis is organised as follows:

Chapter 2 introduces concepts of linear algebra and numerical linear algebra,
and describes the BLAS and LAPACK designs. It is shown that the top-
down design results in a complex interface. Matlab and a Sparse Compiler

are introduced as alternative approaches.

Chapter 3 reviews object oriented software construction, and describes an ob-
ject oriented analysis and design of linear algebra. This design is the basis
of OOLALA. Various object oriented models are proposed and used to clas-
sify several OOLALs. The design is balanced between the requirements of
expert and non-experts users, and enables OOLALA to manage the storage
formats and to propagate matrix properties through matrix calculations;
a novel functionality for a library. Iterator and matrix implementation
abstraction levels are described as a way of reducing the number of imple-

mentations of matrix calculations.

Chapter 4 provides a high level description of the implementation issues of
OoLALA. The design of OoLALA is adapted to the restrictions of the
programming language Java. This chapter compares matrix calculations
implemented at storage format, at iterator level and at matrix abstraction

level.

CHAPTER 1. INTRODUCTION 24

Chapter 5 identifies limitations of a library approach in the context of linear
algebra. Some of these limitations are due to in the difficulty for users
to parse a linear algebra expression to an optimum set of calls to library

subroutines.

Chapter 6 reviews the contributions of this thesis to the software development
process of sequential linear algebra programs, and proposes future research

directions.

Chapter 2
Numerical Linear Algebra

Since the mid 1950s, the numerical linear algebra community has been investi-
gating the problem of how to write programs for matrix calculations so that the
solutions are accurate and the execution times minimised. In this still open re-
search area, numerical analysis and linear algebra are combined. The importance
of numerical linear algebra resides in its applicability to important problems such
as computational fluid dynamics, circuit simulations, data fitting, graph theory,
etc. [AR94].

During the ensuing 40 years, important knowledge has been created in the
form of algorithms and these have been made reusable as software libraries. To
understand what functionality is provided, and why, as well as how the libraries
are organised is the main objective of this chapter. The other important aspect
is to analyse the influence on the user of the organisation and functionality of
these libraries. Since the next chapter includes an object oriented analysis and
design of linear algebra, this chapter can also be interpreted as a “requirements
document” that summarises the domain.

The process of understanding begins with a review of the basic concepts of
matrices and matrix calculations (Section 2.1). Then matrices are classified ac-
cording to two criteria and the way a given matrix can be represented in different
storage formats is examined (Section 2.2). The defined categories, or matrix
properties, allow the creation of specialised algorithms which take advantage of
certain specific matrix properties (Section 2.3). The algorithms and storage for-
mats are combined to implement matrix calculations. Storage format abstraction
level is the term used in this thesis to describe how libraries are traditionally im-

plemented. This aspect is criticised in the next chapter by introducing another

25

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 26

two abstraction levels. Given this knowledge, the final step is to examine how
BLAS and LAPACK are organised; two examples of libraries developed by com-
munity consensus (Section 2.4). These libraries are compared with two software
environments; Matlab and the Sparse Compiler. Matlab and the Sparse Com-
piler represent alternatives to the libraries approach of linear algebra program
construction, and permit examination of the difficulties, or steps to follow, in

developing linear algebra programs.

2.1 Basic Background

Numerical linear algebra is primarily concerned with matrix calculations. These
calculations can be subdivided into two groups. The first group consists of basic
matrix operations (e.g. transpose, addition, ...), and the second group involves
more complex matrix calculations. Systems of linear equations, eigenvalue and
eigenvector problems, and least squares problems are the matrix calculations of
this second group. It is out of the scope of this thesis to introduce and describe all
the work and state-of-the-art of this research area. Nevertheless, it is the aim of

this section to familiarise the reader with the necessary notation and definitions.

2.1.1 DMatrix

A matrix is defined as a rectangular array of numbers.

a1 a2 ... Q15 ... QO1p

921 Qo2 ... Q25 ... Q2
A=

;1 Q2 ... G ... Qp

Am1 Gm2 .. Gpy ... Gmp

The size of a matrix is described in terms of the number of rows m and the
number of columns n. When m = n, the matrix is called a square matriz of order
n. When m =1 or n = 1, the matrix is called a row vector or a column vector,
respectively. The general case is called a rectangular matriz of dimension m X n
(an m x n matrix). The numbers a;; that constitute the matrix are called its

elements.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 27

Note that this is a mathematical definition and, therefore, “array” must not
be taken in its computer science sense. For computer scientists, a suggested
alternative is to substitute rectangular array with two-dimensional container.

The notation (followed throughout the thesis) is

e matrices are represented by upper case letters (A, B, C, ..., Z),
e column vectors are represented by lower case letters (a, b, ..., 2),
e scalars are represented by lower case Greek letters (a, [, ..., w).

The same letter that is used to represent the matrix, but in lower case and
with two suffices represents the elements of a matrix. For example, a;; represents
the element which is situated in the i row and the j"* column of matrix A. The
elements of a vector are represented with the same letter that is used to represent

the vector with one suffix (e.g., z; represents the i" element of the x vector).

2.1.2 Matrix Calculations
Basic Matrix Operations

The basic matrix operations can be divided into two groups. There are operations
that need only one matrix — (monadic) unary, while the others need two matrices
— (dyadic) binary. This division is important when implementing the operations.

Some definitions of basic matrix operations are presented in Table 2.1.

System of Linear Equations

A system of linear equations is a finite set of linear equations in the variables xy,

To, ..., T, and can be expressed as:
a11T1 + apxe+ Ce +a1jl‘j+ co. tTaipr, = b1
a21T1 + A92To+ C +agj$j+ e tagpxT, = b2
)
;171 + aprot+ ... tarit+ ... FCpT, = b;

Am1T1 + AaTot .. F0miTi+ .. FO0paT, = by

CHAPTER 2. NUMERICAL LINEAR ALGEBRA

where ai, 12, ..

L1, T2, -

Name Notation Definition

Vector Norms l|2]|, < (O, |z])tP
||| « < max; |z

Matrix Norms [|Al]1 « < max; » . |a;|
[[A]]oo o 4= max;) |ag;|
Al @ (3 lay ")

Vector Transpose T

Matrix Transpose AT

Matrix Inverse AL

Dot Product a+— 2ty Q=Y Ty

Vector Scale Y — ax Yi ¢ ax;

Vector Addition 2 rT+Yy 24— T+ Y

Matrix Vector Multiplication | y + Ax TR j Qi

Matrix Scale C+ aA Cij <

Matrix Addition C < A+ B | ¢y« a;j+ b

Matrix Matrix Multiplication | C' <+— AB Cij < Y p Qikbyj

Table 2.1: Definition of some basic matrix operations.

-y Omn, b17 b27 N

28

.,bi, are given constant numbers. The unknowns

.., Tp, occur linearly and do not appear as arguments for trigonometric,

logarithmic or exponential functions.

The system of linear equations can be written more concisely in terms of the

matrix A and the vectors x and b, as follows:

a1l a2 ... Qi ... Qip
21 Q2o ... Q25 ... Q2p
;1 Q2 ... Qi ... Oy
am1 (m2 Amyj Amn

X

)

Ty

Ax

I
S

Eigenvalues and Eigenvectors

Given an n X n matrix A, a vector x is called an eigenvector of A if Ax is a

multiple of x and = has at least one nonzero element, i.e.

Azx = \z

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 29

for some scalar A\. The scalar \ is an eigenvalue of A, and z is said to be the

eigenvector of A corresponding to A.

Least Square Problem

Given a linear system Ax = b of m equations in n variables n < m, find a vector
x that minimises

2.2 Matrix Properties and their Storage For-

mats

2.2.1 Matrix Properties

Different criteria can be used to classify matrices. These criteria have been pro-
posed because of the execution time benefit that results and because of their
occurrence in real and important applications. Knowing the classification of a
matrix, the implementation of a matrix calculation might take advantage and
thereby reduce the execution time of the calculation. A second benefit might be
a reduction in memory requirements for the computation. A third benefit might
be that the accuracy of the results can be increased.

Two different criteria, and thereby two different classifications, are presented:
nonzero elements structure and mathematical relations. The zero elements of
matrices act in a particular way when added or multiplied (a;; + 0 = a;; and
a;; X 0 =0). These properties enable implementations to avoid computations for
which the result is already known.

The mathematical relations are relations independent of the zero elements
and are expressed as operations of the matrix elements. For example, a matrix
is symmetric if and only if A = A”.

In general, the categories defined by these two criteria are not mutually exclu-
sive, so that a matrix can have more than one category. For example, a matrix
can be symmetric, positive definite and banded. The remainder of this section is
dedicated to the definition of the categories.

From here on, the term matriz properties is used to refer to any category of

mathematical relation or nonzero elements structure or combinations of these.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 30

Nonzero Elements Structure Criteria

The nonzero elements structure criteria classifies matrices into dense, banded,
block and sparse. Dense matrices are those matrices which have a majority of
nonzero elements. At the other end of the spectrum, sparse matrices are those
matrices which have a minority of nonzero elements (see Table 2.2 for dense and
sparse matrix examples). A special sparse matrix is the zero matrix, Oy, x,, which
has only zero elements. In the middle of the spectrum, banded and block matrices
are matrices in which the nonzero elements have some structure. Both, banded
and block matrices, have subcategories. Figure 2.1 presents an hierarchical view

of different matrix properties derived from the nonzero elements structures.

Dense Sparse
O o o o o d (| (I
O d O o d O d
O 0o oooaa O O d
O 0o oooaa O O d
O o o o o d (I
O o o o o d (| (|
6x6 6 X6
O 0o oooaa O O
O d O o d O d
N N R I O O
3 %6 3 x6

Table 2.2: Examples of dense and sparse matrices — O’s represent nonzero ele-
ments and blanks represent 0.

A banded matrix is a matrix which has the nonzero elements grouped around
the main diagonal. Formally, a m x n matrix A is banded if a lower bandwidth
by < m and upper bandwidth b, < n can be defined so that a;; # 0 implies that
—b, < i —j < b. Different combinations of values for b, and b; yield different
subcategories of banded matrices. For example, when b, = b; = 0 the matrix is
diagonal. A special case of a diagonal matrix is the identity matriz, I, in which
all the nonzero elements are 1. Table 2.3 presents graphical examples of banded
matrices and some associated subcategories.

A matrix can be partitioned into sub-matrices A;;. Since it is a partition,

every element of A is in exactly one sub-matrix. Two sub-matrices which are in

CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Matrix 8 x 8 Matrix 8 x 8
O O o d O
O O o o O
O 0o oo o g O
0o o o o o d O
O o o odd d |
O O o o ad O
O O o d O
O o o O
banded b, = 3, b = 2 diagonal b, =0, b; =0
O d o d
0 o ad o d
O o od O od
O o od o Od
O O d O O
0 o ad o d
0o o d O d
O d O

tridiagonal b, =1, b, =1

upper bidiagonal b, =1, b, =0

o o
|

O oo
Oo0Oo0do
Ooo0oO0dao
oooooano
I I O
OooooooOooao

upper triangular b, =7, by =0

O O
O Il
| O O
o d O
O d O
O od O
o Od Il
o d O
multi-diagonal b, = 5, by = 3

31

Table 2.3: Examples of banded matrices — O’s represent nonzero elements and

blanks represent 0.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 32

the same row (A;; and A;(;41)) have the same number of rows. Two sub-matrices
which are in the same column (A;; and A(;1);) have the same number of columns.
Each sub-matrix can be classified as a zero matrix or a sparse matrix or a dense

matrix or a banded matrix (and its subcategories).

11 Q12 | Q13 Q14 Q15 | Q16 | Q17 Q18 | A19

A A Q22 Q22 | A23 (A24 A5 | Qg6 | Q27 Q28 | A29
11 .- 1q

31 @32 | 33 A34 QA35 | A36 | A37 (A38 | A39

Q41 Q42 | Q43 Qg4 Qg5 | Q46 | Q47 Q48 | Q49

51 Q52 | Q53 (A54 Qs | 56 | 57 A58 | As9

Qg1 Qg2 | Ae3 Asa Qes | Aee | Ae7 Apg | Ae9

Having classified the sub-matrices for a given partition, a block banded matrix
is defined as a partitioned, or block, matrix that has the nonzero sub-matrices
grouped around the diagonal block (i.e. set of sub-matrices A;;). Formally, a
matrix A of dimension m X n and its partition in sub-matrices A1, Ao, ..., Ay,
are block banded if a lower bandwidth B; < p and upper bandwidth B, < ¢ can
be defined so that A;; # 0 implies that —B,, <1i—j < B;. Different combinations
of values for B, and B; yield different subcategories of block banded matrices.
For example, when B, = B; = 0 the matrix is called block diagonal. Table 2.4
presents examples of block banded matrices and associated subcategories.

Comparing the subcategories of banded matrices with block banded matrices,
a new subcategory is found, bordered block banded matrices (see Figure 2.1 and
Table 2.4). Given a partition Ay, Aja,..., Ay, of a matrix A, the set of sub-
matrices A;, are called the upper border sub-matrix and the set A, of sub-
matrices are called the lower border sub-matrix. A bordered block banded matrix
is a matrix whose off-border sub-matrices (i.e. A;; with i # p and j # p) form
a block banded matrix, and the upper and the lower border sub-matrices are
nonzero matrices.

Efficient algorithms for automatic detection of nonzero elements structures
have been proposed by Bik and Wijshoff [BW99]. Other algorithms for reordering
matrices (i.e. interchange columns or rows of a matrix) in order to create matrices

that fall into some category are described in [DERSG6].

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 33

Matrix 10 x 10 Matrix 10 x 10
0 O o O 0
(D oDjojo oo e O 50)
O oo O oo O 0 OOoDO O
O 0O0O|Ooo o ojg o o 0O O O o 0o
OO0 o oo o oa OO oo 0o
[O o oo O O
O o olo OO O O
O ojoo oo O
O 0Oo|jo oo m|
\ oDojloooaol|\ T/
block banded B, =2, B =1 block diagonal B, =0, B; =0
— O O
= TN [flo o o)
oo o i
olo o -
O o O oo O
Ojo0 oo o o o oo
o|lo o O oo O O
O oo o ofo O O
O|lo o|lo oo o|o mi O OO
O O oo 0 0
=) oboojojoolf |\ o O o |/
single bordered block lower doubly bordered block diagonal
triangular B, =0 B; =4 B,=0B,=0

Table 2.4: Examples of block matrices — O’s represent nonzero elements and
blanks represent 0.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Dense
Banded
Nonzero Elements
Structures
Block
Sparse

Diagonal

Upper
Bidiagonal <

Lower
Tridiagonal

Upper

Triangular <
Lower
Upper
Block Bidiagonal <
Lower

Block Diagonal

Banded Block
Upper

Block Triangular <
Lower

Doubly Bordered Block Diagonal
Upper

Single Bordered Block Triangular <
Lower

Figure 2.1: Hierarchical view of nonzero elements structures.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 35

Mathematical Relation Criteria

The mathematical criteria, in contrast with nonzero elements structure, are not
structural criteria. Loosely speaking, this means that the mathematical classifi-
cation cannot be found simply by looking at the elements of the matrix. In order
to verify if a matrix falls into a certain category, matrix calculations may be re-
quired. First, restrict consideration to square matrices; the following categories

are used:
e symmetric — the matrix is equal to its transpose A = AT,

e orthogonal — the inverse of the matrix is equal to its transpose A=! = AT
and therefore AAT =1,

e positive definite — for all nonzero vectors x, 2’ Az is positive, and

e indefinite - for some nonzero vectors x, 7 Az is positive, while for other

nonzero vectors x it is negative or zero.

2.2.2 Storage Formats

Thus far, the matrices have not been represented by data structures; only math-
ematical notation has been used. The remainder of the section is dedicated to
describing the most common data structures. The importance of this section is
not simply to understand different storage formats (i.e. data structures to store
matrices), but also to appreciate that a certain matrix with certain properties
can be represented in a number of different storage formats.

At present, programming languages provide static and dynamic data struc-
tures. Static data structures have a predefined (compilation time) size and cannot
be modified at run-time (e.g. arrays). On the other hand, a dynamic data struc-
ture can increase or decrease its size at run-time (e.g. lists, trees). Since Fortran
77 has been the dominant language for mathematicians and does not support dy-
namic data structures, the most commonly used storage formats are array-based.
Dense, band and packed formats are presented in this section. Other storage
formats for matrices can be found in [BBC*94] Section 4.3 and [DER86] Chapter
2.

Note that different memory layouts to store an array have been defined and

are used. For example, a two-dimensional array in C is stored by rows, whereas

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 36

in Fortran it is stored by columns (see Figure 2.2). The storage formats presented

in this section are organised by columns.

(a0 [ac,» [a6,0 [a@,2 [... [aG,2) [a1,3) [42,3) [43,3)]
Memory for row-wise array A(1..3,1..3)

LA,y (a2 [a@,3 [a@ |0 [a@,3 [AG,D 46,2 |AG,3) |
Memory for column-wise array A(1..3,1..3)

Figure 2.2: Row versus column-wise memory layout for arrays.

Dense Format

The most intuitive data structure to represent a matrix is a two-dimensional
array. This is called dense format, or conventional format. The element a;; of the
matrix A is stored in A(i,j). Figure 2.3 presents how different matrix properties
can be stored in dense format. In fact, every matrix can be stored using this

format.

Band Format

The band format uses a two-dimensional array to store the elements of a n x n
banded matrix A. Given b, and b, as the upper and lower bandwidth of the
matrix, the array BAND has b, + b; + 1 rows and n columns. The element a;; is
stored in BAND(b, +1+i—j,7) if —b, <1 —7 < b;. Figure 2.4 presents examples
of banded matrices represented in band format. Note that the first matrix is
upper triangular and its array has the same size as its array when stored in dense
format (see Figure 2.3). The drawback is that the cost for accessing an element
is bigger (i.e. more operations need to be done in order to calculate the memory
address). Band format reduces memory requirements when b, and b; are less
than the matrix dimensions. Dense and triangular matrices should not use this

format.

Packed Format

The packed format uses a one-dimensional array to store symmetric and triangular

matrices. Given an n X n upper triangular matrix A, the array PACK is of size

CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Matrix Data Structure
ajix G2 13 0414 Q15 a1l | Q12 | Q13 | Q14 | Q15
Qg1 Q22 Ag23 A24 (25 Q21 | Qo2 | Q23 | G24 | A25
az1 (32 a3z 0az4 A35 a3y | 32 | 433 | @34 | 435
41 Q42 (43 Q44 Q45 Q41 | Q42 | @43 | Q44 | Q45
51 G52 (As53 0as4 (55 51 | G52 | G53 | G54 | G55
ap; Q12 G13 A4 Aais a1l | Q12 | Q13 | Q14 | 415
Qg2 (23 (24 A25 Qg2 | Q23 | Q24 | (25
gz (34 035 az3 | @34 | 435
Q44 Q45 Q44 | Q45
ass ass
app Q12 a1 | Q12
g1 Q22 dAg3 Q21 | G22 | G23
az2 (33 (34 az2 | 33 | 434
43 Q44 Q45 43 | Q44 | Q45
As4 Qs as4 | G55

Figure 2.3: Examples of matrices stored in dense format.

Matrix Data Structure
ajp a2 a3 aig 0ais Q15
Q22 Q23 A24 (25 14 | G25
g3 (34 (35 ai3 | (24 | 435
Q44 Q45 Qi2 | Q23 | G34 | Q45
Q55 ay1 | G2 | 33 | (44 | G55
by =4,b,=0 BAND(1..4+0+1,1..n)
11 Aa12
g1 Q22 dAg3 Q12 | Q23 | (34 | Q45
az2 (33 (34 a11 | G2 | 433 | (44 | A55
Q43 Q44 Q45 (21 | A32 | Q43 | As4
Q54 G55
b,=1,=1 BAND(1..1+1+1,1..n)

Figure 2.4: Examples of matrices stored in band format.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 38

$(n? + n) and element a;; is stored in PACK(i + 5j(j — 1)) when i < j; upper
packed format. In the case where the matrix A is lower triangular, the array size
is the same but element a;; is stored in PACK(i + 5(2n — 7)(j — 1)) when j < i;
lower packed format. In both cases the zero elements are not stored. A symmetric
matrix has the possibility to choose if the upper triangular or the lower triangular

elements are stored. Figure 2.5 presents examples of matrices in this format.

Matrix Data Structure

i1 G2 a13
Q2 Q23 ‘ a1l ‘ a2 ‘ a2z ‘ a13 ‘ Q23 ‘ ass ‘
ass

Q21 Q22 ‘ a1l ‘ az1 ‘ asi ‘ 22 ‘ a3z ‘ ass ‘
@31 G32 033

Figure 2.5: Examples of matrices stored in packed format.

The final remark concerning matrices and storage formats comes in the form
of an example. Given a matrix A which is symmetric banded, the matrix can be
stored in 4 different ways. First, every matrix A can be stored in dense format.
Second, a banded matrix A can be stored in band format. Third and fourth, as
a symmetric matrix, A can be stored in packed format, either storing the upper

triangular elements or the lower triangular elements.

2.3 Exploiting Matrix Properties

Two matrix calculations are used to illustrate their implementation in traditional
libraries. The first calculation, matrix-matrix multiplication, is a basic binary
matrix operation. However, this operation is enough to show that for one matrix
operation many algorithms can be derived. Each algorithm is specialised for cer-
tain matrix properties, taking advantage of knowledge implied by the properties.

The second example is the solution of a system of linear equations. Two
families of methods can be applied to solve systems of linear equations: direct

methods and iterative methods. A direct method is an algorithm that calculates

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 39

for 1=1 tom
for =1 ton
for k=1 to p
Cij < Cij + aikbkj
end for
end for
end for

Figure 2.6: Algorithm for matrix-matrix multiplication C' <~ AB with A and B
dense matrices.

the solution in a known finite number of instructions. On the other hand, an
iterative method is an algorithm that is executed repeatedly; each execution of
the algorithm produces an approximate solution of the problem, and execution is
stopped when the approximate solution is sufficiently accurate. The distinctive
nature of the two families makes it clear that, in contrast with basic matrix
operations algorithms, the different algorithms for systems of linear equations
are not simple adaptations derived from the matrix properties.

The final subsection defines the storage format abstraction level; the abstrac-
tion level at which traditionally the matrix calculations are implemented. It is
shown that, for each specialised algorithm when combined with storage formats
for the matrix operands, different implementations are generated.

The terms algorithm, storage format and implementation are used in the com-
puter science sense; i.e. that an implementation (program) is an algorithm plus

storage format (data structure).

2.3.1 Matrix Matrix Multiplication

The product of a matrix A of dimension m X p with a matrix B of dimension

p X n is another matrix C' of dimension m X n with elements defined as

p
Cij% E aikbkj.
k=1

When describing the algorithm, given by the above definition, three nested
loops are necessary (see Figure 2.6). This algorithm assumes that both A and B
are dense matrices.

The next algorithm is an example of matrix-matrix multiplication where one

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 40

for 1=1 tom
for =1 ton
for k=1 to p
Cij < Cij + aikbkj
end for
end for
end for

Figure 2.7: Algorithm for matrix-matrix multiplication C' < AB with A upper
triangular and B dense matrices.

for =1 ton
for =1 ton
for k=max(i,j) to n
Cij < Cij + aikbkj
end for
end for
end for

Figure 2.8: Algorithm for matrix-matrix multiplication C' < AB with A upper
triangular and B lower triangular matrices.

of the matrices is not dense (see Figure 2.7). When A is upper triangular with
dimension m X p and B is dense with dimensions p x n the algorithm can be
modified (to shorten the & loop) so that the elements a;; with ¢ > j are not used

since they are known to be zero:

p
= Cij < E aikbkj.
k=i

ai # 0, iﬁk}

aik:0, 1>k

Two more examples are given in which neither of the matrix operands is dense.
For the first example, A is upper triangular and B is lower triangular, both of
dimension n x n. Having as a starting point the algorithm of Figure 2.7, the
algorithm of Figure 2.8 is obtained. The k loop is further shortened exploiting

the zeros in matrix B:

n
= ¢ij Z ik Dkj-

k=max(i,j)

bej #0, k=
bkj:()a k<j

The final example multiplies two upper triangular matrices of dimension n xn.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 41

As with the previous example, the algorithm of Figure 2.7 is used as a starting

point. Since B is upper triangular the elements b;; with ¢ < j are zero:

J
= Cij < E aikbkj.
k=i

by 70, k<j
bkj:()a k>j

Note that for ¢ > j the elements ¢;; are zero, i.e. C' is also upper triangular.

In this case it is possible to shorten the j loop (see Figure 2.9).

for 1=1 ton
for =1 ton
for k=1 to j
Cij < Cij + aikbkj
end for
end for
end for

Figure 2.9: Algorithm for matrix-matrix multiplication C' <~ AB with A and B
upper triangular matrices.

Generalising from these examples to all the basic matrix operations, it can be
observed that for each basic matrix operation many algorithms can be derived.
Each algorithm is derived by exploring the knowledge implied by the matrix prop-
erties. The number of algorithms that can be derived for a unary operation has a
linear relation with the number of matrix properties. The number of algorithms
that can be derived for a binary operation has a square relation with the number
of matrix properties. Finally, as each specialised algorithm responds to certain
matrix properties, a complete decision tree can be defined for each matrix op-
eration. This takes as inputs the properties of the matrices and determines the

specialised algorithm to be used and the properties of the solution matrix.

2.3.2 Systems of Linear Equations
Direct Methods

In the case of matrix-matrix multiplication the algorithms have been presented
by refining the general algorithm for each special case. In the case of a system of
linear equations Az = b, the specialised algorithms are described first.

The first and simplest example is a diagonal matrix A. Remembering the

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 42

for 1=1 to n

(223

end for

Figure 2.10: Algorithm for a system of linear equations with A diagonal

definition of diagonal matrix, when ¢ # j the elements a;; are zero. Therefore,

the solution is obtained as follows:

(b
ai T b1 Ty < i
Qg4 €T - i T ai;
b
Ann T bn . Tn asn

which is the basis of the algorithm of Figure 2.10.
In the second example, the n x n matrix A is lower triangular. This means

that the elements a;; with ¢ < j are zero. The solution is obtained as follows:

;

1 Z by Ty a%

Q21 A22 T by To bzfat;zlwl

a3zl a3z 433 T3 by T3 ”3*(%;;0321‘2)
= =

bn—>"""taniz;
Gn1 Op2 Gp3 -v. Gpi ... GOpp Ty by, xn%%
\ nn

which is the basis of the algorithm called forward-substitution and presented in
Figure 2.11. In a similar way, the back-substitution algorithm to solve an upper
triangular system of linear equations can be derived.

A direct method for the solution of a general system of linear is based on the
factorisation of the matrix A. Since systems of linear equations with diagonal
and triangular matrices have straightforward algorithms, the interesting factori-
sations are those which efficiently factorise matrices into the product of matrices
with these properties. Taking LU-factorisation as an example, the matrix A is

factorised as A = LU, where L is unit-diagonal ({;; = 1) lower triangular, and

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 43

for i=1 ton
for j=1to -1

xi%xi—aijx]’
end for

Figure 2.11: Forward-substitution algorithm for a system of linear equations with
A lower triangular.

U is upper triangular. Given this factorisation, the system of linear equations
Ax = b can be rewritten as LUz = b. Thus the system Ax = b can be solved,
by forward-substitution for Ly = b and back-substitution for Ux = y. Table
2.5 presents some other factorisations developed for systems of linear equations
where matrix A has particular properties. Each of these factorisation algorithms
can be specialised for nonzero structures.

Pivoting is a technique that is used within factorisations to keep the error of
the solutions as low as possible. It is out of the scope of this thesis to present
floating point arithmetic [Gol91], demonstrate the error bounds of solutions ob-
tained by different factorisations with and without pivoting [Hig96] and therefore
the need of pivoting.

When the coefficient matrix is sparse, a factorisation creates new nonzero el-
ements in the factor matrices where zero elements were in the coefficient matrix.
Each of these new nonzero element is called a fill-in element. Reordering the
equations and the variables can reduce the number of fill-in elements. A reorder-
ing transforms the coefficient matrix by interchanging rows and columns. The
execution time is reduced by reducing the number of fill-in elements since this
preserves the sparsity of the coefficient matrix and so can be exploited.

The solution of sparse systems of linear equations is divided into reorder-
ing the coefficient matrix, factorisation and solve. An ordering implementation
can take in account the numerical values or simply consider the position of the
nonzero elements; sparsity pattern. A numerical ordering, first kind of ordering
implementations, produces a reordering which includes the pivoting and performs
a factorisation. The posterior factorisation may be only used by other systems
of linear equations which have a similar sparsity pattern. A symbolic ordering,

second kind of ordering implementations, produces a reordering which does not

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 44

When A dense or banded — LU-factorisation defined as A = LU
where L unit-diagonal lower triangular and U upper triangular
When A symmetric positive definite — Cholesky factorisation de-
fined as A = UTU or A = LL" where L lower triangular and U
upper triangular

When A symmetric positive definite tridiagonal — LDL”-
factorisation defined as A = LDLT or A = UDU? where L is
unit-diagonal lower bidiagonal, U is unit-diagonal upper bidiagonal
and D is diagonal

When A symmetric indefinite — Symmetric indefinite factorisation
defined as A = LDLT or A = UDU? where L is unit-diagonal
lower triangular, U is unit-diagonal upper triangular and D is block
diagonal with blocks of order 1 or 2

Table 2.5: Recommended factorisations for systems of linear equations with dense
and banded matrices.

include pivoting and is used by posterior factorisations. A numerical ordering
uses dynamic data structures to store the coefficient matrix since the number of
fill-in elements is not known until it is actually performed. Consequently, pos-
terior factorisations can use a static storage format. A symbolic ordering also
uses dynamic data structures, but its posterior factorisation uses dynamic data
structures to account for the fill-in elements which are produced as a consequence
of the pivoting.

An ordering implementation communicates the reordering to a factorisation.
Some reorderings are represented as matrices known as permutation matrices.
Other reorderings are represented as trees such as elimination trees [Liu90].

The numerical linear algebra community has not yet been able to determine
the matrix properties for which each ordering algorithm is adequate.

For a more detailed approach to direct methods for linear systems of equations
see [Ste73], [DER86], [GvLI6], and [TI97].

Iterative Methods

The algorithms classified as iterative methods are mainly used with sparse matri-
ces. The number of iterations necessary to achieve a sufficiently accurate solution
defines the cost of these algorithms. This number depends on the characteristics
of matrix A. For this reason, iterative algorithms usually involve the calculation

of an extra matrix, a preconditioner, that transforms matrix A into one with more

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 45

favourable characteristics. The favourable characteristics can be seen as matrix
properties but the cost of the algorithm to test these properties is comparable to
the cost of solving the sparse system of equations. Thus, in practice, the choice
of preconditioner and iterative algorithm cannot be determined as a function of
matrix properties; it is a process determined by experimentation and testing of
different combinations. For a more technical approach to iterative methods for
linear systems of equations see [BBC194], [Axe94] or [Saa96].

2.3.3 Storage Format Abstraction Level

The storage format abstraction level is defined as the level of abstraction of
an implemented matrix operation that knows the representations of the matrix
operands and accesses these directly.

As an example, take the matrix-matrix multiplication algorithm with A upper
triangular and B dense (see Figure 2.7). An implementation of this algorithm
using dense format for both A and B is presented in Figure 2.12. NumType is the
data type of the matrix elements (real, complex, ...). Reading the code of this
implementation, it can be seen that each matrix is stored in a two-dimensional
array (i.e. dense format). This means that, if A instead is stored in packed
format then the implementation is no longer valid. Figure 2.13 presents an im-
plementation of the same algorithm, but with A stored in packed format (i.e. as

a one-dimensional array).

NumType A(m,m)
NumType B(m,n)
NumType C(m,n)

do j=1,n
do i=1,m
temp = 0
do k=i,m
temp = temp + A(i,k)*B(k,j)
end do
C(i,j) = temp
end do
end do

Figure 2.12: Implementation of matrix-matrix multiplication C' <~ AB with A
upper triangular and B dense, both stored in dense format.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 46

NumType APACK(m*(m-1)/2+m)
NumType B(m,n)
NumType C(m,n)

do j=1,n
do i=1,m
temp = 0
do k=i,m
temp = temp + APACK(i+kx(k-1)/2)*B(k,j)
end do
C(i,j) = temp
end do
end do

Figure 2.13: Implementation of matrix-matrix multiplication C' < AB with A
upper triangular stored in packed format and B dense stored in dense format.

Note that an implementation is at storage format abstraction level if chang-
ing the storage format implies changing the implementation. Traditional library
implementations of the matrix calculations are implemented at this abstraction
level.

To summarise the contents of this section, a given matrix calculation has many
specialised algorithms. For each of these algorithms there can be many implemen-
tations corresponding to different storage formats for the matrix operands. Thus
there is an explosion in the number of possible implementations. The developers
of these libraries have to balance the number of implementations (i.e. algorithms

and storage formats) that are supported with the effort of developing the code.

2.4 Developing Numerical Linear Algebra Pro-
grams

To review the contents of preceding sections:

e matrices can be classified by different criteria and each classification is

known as a matrix property;
e a given matrix can have different storage formats;

e for each matrix calculation many algorithms that take particular advantage

of the matrix properties can be derived;

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 47

e for each algorithm many implementations are necessary due to the different

storage formats;

e for block banded, banded and dense matrices, the implementation to use
for matrix calculation can be decided as a function of the matrix properties

and their storage formats;

e for sparse systems of equations, either direct or iterative methods, it is not
possible automatically to select the implementation (i.e ordering implemen-

tation or combination preconditioner iterative method).

The objective of this section is to understand how these concepts are organised
in traditional linear algebra libraries. The term “traditional libraries” refers to
the libraries developed, in this case by the numerical linear algebra community,
using top-down methodology and implemented in imperative languages, predomi-
nantly Fortran, with no programmer-defined data types. BLAS [BLA99] and LA-
PACK [ABD795] are chosen as examples of traditional libraries to be described.
An important characteristic is the community consensus or de facto standard-
isation process which is behind their design. Other examples of libraries are
LINPACK [DBMST79], EISPACK ([SBD*76], [GBDM77]), LAPACK [ABD*95],
NAG!, IMSL?, SPARSPAK ([GL79], [GL81]), YSMP [EGSS82|, MA28 [Duf77].

BLAS and LAPACK are compared with two alternative linear algebra en-
vironments: Matlab [Mat] and the Sparse Compiler ([Bik96], [BW96], [BW99],
[BBKW98]). Rather than a theoretical discussion about the three possibilities,
the matrix calculations introduced in Section 2.3 are used to illustrate the differ-
ences, advantages and disadvantages.

Matlab is a computing environment and programming language for numeri-
cal computations. Its main characteristic is that the programming language is
matrix-based. Thus, a Matlab program for linear algebra resembles its mathe-
matical form.

The Sparse Compiler parses a given dense Fortran 77 program into an equiv-
alent sparse Fortran 77 program. A dense program means a linear algebra pro-
gram that stores its matrices in dense format even if some of matrices have some

nonzero elements structure. An equivalent sparse program means a linear algebra

LA commercial product of Numerical Algorithms Group Inc. http://www.nag.com
ZInternational Mathematical and Statistical Libraries (IMSL) a commercial product of Visual
Numerics Inc. http://www.vni.com

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 48

program that implements the same calculations but those matrices with nonzero
elements structures are stored in advisable storage formats. The Sparse Compiler
analyses the nonzero elements structure of matrices and transforms the parts of
the dense program that define the matrices so detected to have certain nonzero
elements structure, and the parts of the dense program that operate on these
matrices. The dense program is transformed so that it uses the new storage for-
mats selected by the compiler and exploits the nonzero elements structure of the

matrices.

2.4.1 Using BLAS and LAPACK

BLAS (Basic Linear Algebra Subprograms) offers subroutines for basic matrix
operation while LAPACK (Linear Algebra Package) offers subroutines for sys-
tems of linear equations, least square problems, and eigenvector and eigenvalue
problems. Both libraries are implemented in Fortran 77 and are designed to pro-
vide high performance [DW95], i.e. to achieve maximum performance from a
given computer.

The routines provided by the BLAS are divided into three groups:

e Level 1 BLAS — routines that require O(n) floating point operations and
involve O(n) data items [LHKKT79], e.g. dot product z7y or a vector norm

Iz,

e Level 2 BLAS - routines that require O(n?) floating point operations and
involve O(n?) data items ([DCHH88b], [DCHH88a]), e.g. matrix vector

multiplication Az, and

e Level 3 BLAS - routines that require O(n?) floating point operations and
involve O(n?) data items ([DCHD90],[DCHD90]), e.g. matrix-matrix mul-
tiplication AB.

BLAS subroutines have been specified for dense, banded, sparse, symmetric,
symmetric banded, upper and lower triangular, and upper and lower triangular
banded matrices. Dense matrices are stored in dense format (GE). Banded matri-
ces are stored in band format (GB). Symmetric matrices are stored in dense (SY)
or packed format (SP). Triangular matrices are stored in dense (TR) or packed
format (TP). Triangular band matrices are stored in band format (TB) and also

symmetric banded (SB). Finally, sparse matrices (US) are stored in coordinate or

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 49

compressed sparse column or compressed sparse row or sparse diagonal or block
coordinate or block compressed sparse column or block compressed sparse row or
block sparse diagonal or variable block compressed sparse row format.

Based on the case of matrix-matrix multiplication (Section 2.3), the process
of developing a linear algebra program with the BLAS is described below. Given
the problem description C' <~ AB where A and B are known to be dense, the
first task is to find the correct BLAS subroutine. The subroutine names follow
a strict naming scheme: the first letter of the name indicates the numerical data
type (REAL, DOUBLE PRECISION, COMPLEX and DOUBLE COMPLEX) of
the operands; the next two letters specify the matrix properties and the storage
format (in the preceding paragraph, the pairs of letters between parenthesis show
the different combinations and their meanings); the final three letters indicate the
matrix operation. Table 2.6 includes the specification of the different subroutines
for matrix-matrix multiplication. Apart from the number of subroutines, the long
lists of parameters make for an unfriendly interface.

Following the naming scheme, the xGEMM subroutine is selected. The pa-
rameters pass information about the sizes of matrix operands, the representation
of the three matrix storage formats, and flags to indicate if any of the matri-
ces have to be transposed. The functionality of xGEMM implements four ma-
trix operations: two matrix scalings, one matrix-matrix multiplication and one
matrix-matrix addition (C' <= a«AB+ 3C). The reason for these extensions to the
basic matrix-matrix multiplication is that all the operations can be implemented
within the three nested loops of matrix-matrix multiplication and it is, thus, more
efficient than separating the operations.

For the case where A is upper triangular, the appropriate subroutines are
xXTRMM and xTPMM. The first subroutine implements the operation using dense
format, while the second uses packed format. If the first subroutine is selected,
memory space might be wasted, whereas if xXTPMM is selected, the user must
understand and create the representation (packed format) required by the sub-
routine.

For the case where A and B are both upper triangular, the appropriate sub-
routines are again XTRMM and xXTPMM. BLAS subroutines have been developed
in such a way that only one of the input matrices (for binary operations) is con-
sidered to have properties others than dense. Hence, the BLAS are not complete

in the sense that not all of the possible implementations are included. In this

CHAPTER 2. NUMERICAL LINEAR ALGEBRA

50

Subroutine Specification

Functionality

xGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)

C + aop(A)op(B) + C

xGBMM(SIDE, TRANSA, TRANSB, M, N, K,
KL, KU, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

C < aop(A)op(B) + BC or C «
aop(B)op(A) + BC where A is
banded stored in band format

xSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA,
B, LDB, BETA, C, LDC)

C <+ aAB+ pC or C < aBA +
BC where A is symmetric

xSBMM(SIDE, UPLO, M, N, K, ALPHA, A,
LDA, B, LDB, BETA, C, LDC)

C <+ aAB+ pC or C < aBA +
BC where A is symmetric banded
stored in band format

xSPMM(SIDE, UPLO, M, N, ALPHA, AP, LDA,
B, LDB, BETA, C, LDC)

C <+ aAB+ pC or C < aBA +
BC where A is symmetric stored
in packed format

<*TRMM(SIDE, UPLO, TRANSA, DIAG, M, N,
ALPHA, A, LDA, B, LDB)

B < aop(A)B or B < aBop(A)
where A is unit-diagonal or not
and upper or lower triangular

<xTBMM(SIDE, UPLO, TRANSA, DIAG, M, N,
K, ALPHA, A, LDA, B, LDB)

B < aop(A)B or B < aBop(A)
where A is unit-diagonal or not
and upper or lower triangular
banded stored in band format

xTPMM(SIDE, UPLO, TRANSA, DIAG, M, N,
ALPHA, AP, LDA, B, LDB)

B + aop(A)B + C or B +
aBop(A) + SC where A is unit-
diagonal or not and upper or
lower triangular stored in packed
format

xUSMM(TRANSA, K, ALPHA, A, B, LDB,

BETA, C, LDC)

B « aop(A)B + BC where A is
sparse stored in a sparse format

Table 2.6: BLAS subroutines for matrix-matrix multiplication — op(A) represents
A or AT and, unless indicated, matrices are stored in dense format.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 51

case, the waste of memory space is larger since the three matrices involved are
all upper triangular, and only one matrix can be stored in packed format.

LAPACK subroutines are divided into those that solve standard problems,
called driver subroutines, and presented in Section 2.1, and those which compute
factorisations and other calculations used by the driver subroutines. Another
long list of matrix properties and storage formats is supported and is organised
following the naming scheme described with BLAS.

Figures 2.14, 2.15 and 2.16 present pseudo-Fortran programs to solve the
system of linear equations ABx = ¢ where A and B are n x n matrices. The
programs on the left hand side of these figures follow an algorithm which first
performs the matrix-matrix multiplication and then solves the system of equa-
tions. Alternatively, the programs on the right hand side of these figures follow an
algorithm which first solves the system of linear equations Ay = ¢ and then the
system Bx = y. Both algorithms are semantically equivalent, i.e. they calculate
the same result assuming perfect floating point arithmetic. Figure 2.14 presents
programs to solve the system of linear equations ABx = ¢ where A and B are
n X n dense matrices. Figures 2.15 and 2.16 presents programs to solve the same
problem, but here A and B are upper triangular matrices. The first figure uses

dense format while the second figure uses packed format, whenever possible.

NumType A(n,n) NumType A(n,n)

NumType B(n,n) NumType B(n,n)

NumType D(n,n)

NumType xc(n,1) NumType xc(n,1)

INTEGER IPIV(n), INFO INTEGER IPIV(n), INFO

call initialise(A,B,xc) call initialise(A,B,xc)

C D=Ax*B C solve system Ay=xc and leave y
in xc

call XGEMM(’N’, ’N’, n, n, n, call XGESV(n, 1, A, n, IPIV, xc,

1.0, A, n, B, n, 0.0, D, n) n, INFO)

C solve system Dx=xc and leave x | C solve system Bx=xc and leave x

in xc in xc

call XGESV(n, 1, D, n, IPIV, xc, |call XGESV(n, 1, B, n, IPIV, xc,

1, INFO) 1, INFO)

Figure 2.14: Programs using BLAS and LAPACK to solve the system of equations
ABxz = c where A and B are n X n dense matrices.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 52

NumType A(n,n)
NumType B(n,n)
NumType xc(n)

call initialise_tr(A,B,xc)
C B=AxB

call XTRMM(’L’, ’U’, °N’,
n, n, 1.0, A, n, B, n)

C solve system Bx=xc and leave x
in xc

call XTRSV(’U’, °N’,
1.0, B, n, xc, 1)

)N) s

7N7 s n,

NumType A(n,n)
NumType B(n,n)
NumType xc(n)

call initialise_tr(A,B,xc)

C solve system Ay=xc and leave y
in x

call XTRSV(’U’, °N’,
1.0, A, n, xc, 1)

C solve system Bx=xc
in xc

call XTRSV(’U’, ’N’,
1.0, B, n, xc, 1)

)N), n,

and leave x

7N7, n,

Figure 2.15: Programs using BLAS and LAPACK to solve the system of equations
ABx = ¢ where A and B are n X n upper triangular matrices stored in dense

format.

NumType APACK(n,n)
NumType B(n,n)
NumType xc(n)

call initialise_tr (APACK,B,xc)
C B=APACKx*B

call XTpPMM(’L’, ’U’, ’N’,
n, n, 1.0, APACK, n, B, n)
C solve Bx=xc and leave x in xcC

7N7 s

call XTRSV(’U’, ’N’,
1.0, B, n, xc, 1)

7N7 s n,

NumType APACK(n*(n-1)/2+n)
NumType BPACK(n,n)
NumType xc(n)

call initialise_tr(APACK,BPACK,xc
C solve APACKy=xc and leave y in
xC

call XTPSV(’U’, ’N’,
1.0, APACK, xc, 1)

C solve BPACKx=xc and leave x in
XC

call XTPSV(’U’, ’N’,
1.0, BPACK, xc, 1)

7N7, n,

7N7, n,

Figure 2.16: Programs using BLAS and LAPACK to solve the system of equations
ABx = ¢ where A and B are n x n upper triangular matrices stored in packed

format, whenever possible.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 53

To summarise, this process can be generalised to describe the development of

linear algebra programs with traditional libraries as:
e describe the problem in terms of matrix calculations,
e analyse the matrices to determine their properties,
e select the library or libraries which support the operations and properties,
e select the subroutines which best fit the matrix properties, and

e declare the variables conforming to the storage format that is supported by

the selected subroutines.

2.4.2 Using Matlab

Matlab is not only an environment for numerical linear algebra; regressions, in-
terpolation, numerical integration, graphs, visualisation of results, etc. are in-
tegrated. Its major characteristic is that the programming language is matrix
based, i.e. every variable is a matrix. For example, the multiplication of two ma-
trices C' < AB is written as C=A*B and the solution of a system of linear equations
Ax = b can be written as x=A\ b or x=inv (A)*b where inv(A) performs A~!.

Matlab does not always exploit the matrix properties that are supported in
LAPACK and BLAS, and uses only dense and compressed sparse column format
for sparse matrices [GMS92].

Matlab provides LU, Cholesky, QR, Eigenvalue and Singular value factorisa-
tions. Thus, for example, the solution of a system Az = b using LU-factorisation
is written as [L,U]= 1u(A); y=L\ b; x=U\ y;. The “\” operator follows the

algorithm:
e if the matrix is not square then solve least squares problem,
e otherwise, if the matrix is triangular then use back or forward substitution,

e otherwise, if it is symmetric and the diagonal elements are positive real?

then attempt to solve with Cholesky factorisation,

e otherwise (i.e. Cholesky factorisation fails or is not symmetric with positive

diagonal elements), solve with LU-factorisation.

3Heuristic used by Matlab to test if a matrix could be positive definite.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 54

Figure 2.17 presents Matlab programs to compute the system of linear equa-
tions ABx = ¢ where A and B are dense matrices. Figure 2.18 presents Matlab
programs to compute the same problem except that A and B are upper trian-
gular matrices. Note that both figures present identical programs, but for the
initialisation. Although transparent for users, the “\“ operator solves the sys-
tem using LU factorisation for the first figure while for the second figure it uses

back-substitution.

initialise(A,B,c) | initialise(A,B,c)
D=Ax%B; y=A\c;
x=D\c; x=B\y;

Figure 2.17: Matlab Programs to solve the system of equations ABx = ¢ where
A and B are n x n dense matrices.

initialisetr(A,B,c) | initialisetr(A,B,c)
D=A*B; y=A\c;
x=D\c; x=B\y;

Figure 2.18: Matlab Programs to solve the system of equations ABx = ¢ where
A and B are n X n upper triangular matrices.

The task of developing a linear algebra program with Matlab follows the steps:
e describe the problem in terms of matrix calculations,
e analyse the matrices to identify matrix properties, and

e map the problem into Matlab operators.

2.4.3 Using the Sparse Compiler

The Sparse Compiler is a source-to-source compiler that has as input dense For-
tran 77 programs and as output sparse Fortran 77 programs. A dense program
is a program which stores all the matrices in dense format (in Fortran 77 case
NumType A(n,m)) and the matrix calculations are implemented using all the el-
ements. A sparse program is a program that stores and implements the matrix
calculations taking advantage of matrix properties. The compiler is divided into

two phases: dense program analysis and sparse code generation.

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 55

The program analysis automatically detects the nonzero elements structure
of matrices [BW99] and identifies the parts of the code that access zero elements.
The user of the compiler can also provide information about the nonzero elements
structure of the matrices through comments. Figure 2.19 presents the notation
used in the comments to declare an upper triangular matrix.

The code generation phase takes into account the nonzero elements structure
and how the matrices are accessed in order to select the storage format and
automatically generate the sparse code ([BW96], [BBKW98]). In other words, the
compiler changes the dense format declaration of some matrices by the declaration
of the selected new storage format. It also eliminates the redundant instructions
because of the nonzero elements structure found. Finally, it transforms those
parts of the program that accessed matrices so that they align with the new
storage formats.

The limitation of this work is that in some cases, specially hand optimised
programs, the compiler fails to fully exploit the sparsity. Its second limitation
is that reordering algorithms cannot be used, thus the fill-in effect, creation of
nonzero elements where there were zero elements, cannot be avoided and usually
the resultant sparse code could be significantly improved.

Figure 2.19 presents the Fortran 77 dense program commented for the sparse
compiler to compute ABx = ¢ where A and B are upper triangular. Note that

no support is provided by the compiler to develop the dense programs so usually
the dense sub-set of BLAS or LAPACK would be used.

NumType A(n,n)
C_SPARSE(ARRAY(A), ZERO (I>J))
C_SPARSE (ARRAY(A), DENSE(I<=J)
NumType B(n,n)
C_SPARSE(ARRAY(B), ZERO (I>J))
C_SPARSE(ARRAY(B), DENSE(I<=J)

Figure 2.19: Sparse Compiler commented dense program to solve the system of
equations ABx = ¢ where A and B are n X n upper triangular matrices.

The task of developing a linear algebra program with the sparse compiler

follows the steps:

e describe the problem with matrix calculations,

e generate Fortran 77 dense program for the matrix calculations, and

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 56

e indicate the nonzero elements structure, or let the compiler give feedback

on this.

2.4.4 Advantages and Disadvantages

From the user’s point of view, Matlab provides the easiest way to generate a linear
algebra program. The users do not need to know how the matrices are stored
or how the operators are implemented. The mapping of the matrix calculation
is straightforward, although it has been shown that a given matrix calculation
can have different semantically equivalent programs. The main drawback is the
execution time of the programs since the user does not provide information about
matrix properties, and except in specific situations, the programs cannot take
advantage of them.

The Sparse Compiler represents the next level of difficulty. The user has to
write Fortran linear algebra programs and thereby has to know how the matrix
calculations are implemented using dense format. However, the sparse compiler
offers support to decide the nonzero elements structure and exploits any such
structure that is found. Neither Matlab nor BLAS and LAPACK libraries provide
such functionality.

BLAS and LAPACK represent the maximum level of difficulty. Matrices can
be represented in different storage formats and the user has to know how to
declare them. The selection of a subroutine is not a trivial process. The list
of parameters is complicated and too long to remember, therefore difficult to
use. The users have to know how to declare the different storage formats. The
functionality is not complete, not all the possibilities of matrix properties and
storage format operands are observed. On the other hand, BLAS and LAPACK
subroutines deliver the minimum execution time as they utilise state-of-the-art
implementations.

The user perceives the difficulty of developing a linear algebra program as
the distance to jump from the problem defined in terms of matrix operations to
the specific software environment expression (subroutines in traditional libraries,
operators in Matlab and comments and dense program in the Sparse Compiler).
This distance is represented by the tasks that need to be completed in order to

develop the program. These tasks are:

e matrix properties analysis,

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 57

e selection of storage formats,

e and selection of specific environment expressions that align with the prop-

erties and storage formats.

2.5 Summary

Matrix calculations are the core of this chapter; beginning with their definitions,
continuing with characterisation examples of how matrix calculations are imple-
mented, and ending with how they are organised in libraries.

Matrix calculations have been divided into basic matrix operations and matrix
equations. Due to certain matrix properties, the definition of a basic matrix
operation can be specialised and thus different algorithms that exploit the matrix
properties are created. Due to the different storage formats of a matrix, the set
of algorithms are further extended into a set of implementations.

Matrix equations can be solved either with direct or iterative methods. Direct
methods perform a factorisation and then solve the systems for the factored
matrices. When the matrix equations are sparse, the matrix can be reordered to
preserve the sparsity of the factored matrices. However, it is not possible to decide
efficiently which of the different ordering algorithms is the adequate one. Iterative
methods are usually combined with preconditioners. Some iterative algorithms
are known to fail to converge to a solution for specific matrix properties. In
practice, the appropriate combination of iterative method and preconditioner for
a system of linear equations cannot be decided automatically.

Traditional libraries are organised by strict naming schemes. For each subrou-
tine the naming scheme describes the matrix calculation, the matrix properties
of the input matrices and their storage formats. The parameters describe how
the storage formats are represented.

The comparison of the BLAS and LAPACK with Matlab and with the Sparse
Compiler shows that when developing a linear algebra program the BLAS and
LAPACK based programs constitute the maximum level of difficulty. The diffi-

culty is summarised by the tasks to be completed:
e describe the problem in terms of matrix calculations,

e analyse matrices to determine their properties,

CHAPTER 2. NUMERICAL LINEAR ALGEBRA 58

e select the library or libraries that support the matrix calculations and prop-

erties,
e select the subroutines which best fit the matrix properties, and

e declare the variables conforming to the storage format that is supported by

the selected subroutines.

The information of this chapter is reused mainly to the next chapter, which
reports an object oriented analysis and design of linear algebra.

Readers are referred to [Gan59a] and [Gan59b] for a more detailed, analytical,
approach to Numerical Linear Algebra. Descriptions and analysis of algorithms
for matrix calculations can be found in [Ste73], [GvL96] and [TI97]. Detailed
study of accuracy and stability of these algorithms can be found in [Hig96].

Chapter 3

Object Oriented Linear Algebra

Traditional libraries of linear algebra present two weaknesses: complex interfaces
and an explosion of implementations of matrix calculations. The first weakness
affects users since they find it hard to develop linear algebra programs using these
libraries. The second weakness affects library developers since they have to code
the many different implementations.

This chapter focuses on the analysis and design of an object oriented linear
algebra library in order to overcome or reduce the two weaknesses. Object ori-
ented software construction offers the possibility to define and use abstractions
from a problem domain, in this case linear algebra. The objective is to create an
object oriented model of linear algebra that hides the implementation details.

Object oriented software construction is reviewed in order to be able to create
object oriented models of linear algebra (Section 3.1). The object oriented models
are displayed graphically using a subset of UML notation. This notation is also
introduced in Section 3.1.

Different models are proposed and used to classify several existent object
oriented linear algebra libraries (Section 3.2). The object oriented model created
identifies that current models do not model fully Linear Algebra. The new model
constitutes the design of the Object Oriented Linear Algebra LibrAry (OOLALA).
This model enables OOLALA to automatically manage the storage formats of
matrices and propagate the matrix properties through matrix calculations. In
addition, two implementation abstraction levels are described and both reduce

the explosion of implementations of matrix calculations.

29

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 60

3.1 Object Oriented Software Construction

The process of developing software, applications or libraries, is inherently a human
activity. A group of human software developers analyses certain problem, creates
a model of it, and develops an implementation of that model in a programming
language. As with many other problems faced by humans, the model to solve a
given problem is created by dividing the problem into sub-problems repeatedly
so that they eventually become trivial to solve. The model for the problem is

then created as the composition of the sub-models.

“The technique of mastering complexity has been known since ancient

times: divide et impera (divide and rule).” Dijkstra [Dij79]

Top-down methodology, or structured programming, used by traditional lin-
ear algebra libraries, divides problems using an algorithmic decomposition, i.e.
expressing what has to be done in terms of basic control structures (loops, if-then,
etc.) or basic algorithms (sort, search, etc.). The basic decomposition unit is the
subroutine or procedure, and thus the model is a composition of subroutine calls.

On the other hand, bottom-up methodology searches for abstractions of the
problem domain, and divides the problem into an appropriate set of these abstrac-
tions. An abstraction is a key concept of the problem domain with the operations
or services provided within that domain. A model of the problem is the inter-
action of abstractions through their defined operations, or interfaces. Special
importance is given to hiding details of how the operations of the abstractions
are implemented; thereby emphasis is simply placed on using the operations. In
the literature, the abstractions are known as abstract data types.

The main advantage for software developers is that abstractions are a normal
human approach to decomposing problems whereas algorithmic decomposition
is an influence of what is provided by the first programming languages, such
as Fortran 66, Fortran 77 or C. Using an example, it is not attractive to pass
as parameters the representation of an abstraction, instead of the abstraction
itself. Nowadays, few software developers would operate on an array when they
want to use a stack. They would use an abstraction of the stack, often provided
by modern programming languages, and use the interface (push, pop, etc.) to
operate on the stack, even if it is ultimately represented as an array. Traditional
linear algebra libraries are implemented accessing directly (not using an interface)

the representation of the matrix, and the explosion in the number of subroutines

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 61

that this provokes has been demonstrated in Chapter 2.

The objective of object oriented methodology is to propose an even more sim-
ilar human approach to modelling complex problems. Object oriented method-
ology follows the bottom-up methodology and its basic concepts are explained
in the next section. The motivation for object oriented methodology is to over-
come the lack of abstraction which forces developers to always think about the
problems in too much detail, thereby becoming error prone.

The remaining of the section is organised as follows. First, basic concepts (ob-
jects, classes, inheritance, client relation, etc.) of object oriented methodology
(Section 3.1.1). These basic concepts are illustrated using examples from linear
algebra. Some object oriented programming languages offer abstract classes and
generic classes (Section 3.1.2). These are explained so as they are used in the
posterior analysis and design. The next issue is to understand how the software
development process is modified because of object orientation (Section 3.1.3).
Finally, two design patterns and a short discussion about generic classes vs. in-

heritance (or how they can be simulated) are the suggested “tips” (Section 3.1.4).

3.1.1 Basic Concepts

Object oriented methodology is based on abstractions and information hiding,
but includes another characteristic common of the human approach to decompo-
sition of problems; classification. This new possibility enables software developers
to create abstractions that are families of abstractions. Using object oriented ter-
minology, the abstractions are now called classes and a specific member of an
abstraction is called an object. Every object is said to be an instance of a class.
For example, matrices might be an abstraction from the linear algebra prob-
lem domain and hence a class. A specific matrix would be an object of the class.
Classes define common operations, such as “assign an element in certain position”
or “access an element in certain position”, and common characteristics that every
object would have, such as the number of rows or number of columns. Classes
have a static role since they are just definitions. Every object of a class conforms
to the definitions described by the class and gives values to those definitions, also
known as the state of an object. An object is dynamic since it is a run-time entity
whose state can be modified.

Figure 3.1 presents a UML class diagram and object diagram of matrices.
UML stands for Unified Modelling Language ([Rat97al, [Rat97b], [Mul97], [BRJ99]),

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 62

which is an industrial standard notation, used to document object oriented soft-
ware development. Other object oriented and structured programming notations
can be found in [Wie98|. Class diagrams are used to represent classes graphi-
cally using a rectangle divided into three sub-rectangles. The first sub-rectangle
contains the class name, the second contains the characteristics called attributes
and the third contains the operations called methods, or operations. An object
diagram is used to represent objects and is similar to the class diagram. The first
sub-rectangle contains the name of the object and its class, separated by a colon
and underlined. The second sub-rectangle contains the attributes that define the
state of the object, and the third one contains the methods. As can be seem in
the class diagram (Figure 3.1), there is a method create which creates objects
of class Matrix. This method is a class method and hence appears underlined.
A class method is a method that cannot be invoked in an object; it is invoked
in the class. For the sake of clarity objects and classes are often represented in
class diagrams and object diagrams only by their first sub-rectangle, thus not
repeating known information. UML specifies how attributes and methods have
to be declared in the diagrams. This thesis does not follow this specification and
uses a pseudo-code based on Java syntaxes.

Once some basic UML notation has been introduced, attention is directed
again to the possibility of classifying classes. Humans create hierarchies of ab-
stractions using criteria by which each classification adds new characteristics or
re-adapts existing ones. In object oriented methodology, the classes can be or-
ganised into inheritance hierarchies. Each class is a classification, and traversing
upwards in the class hierarchy means a more general class, whereas traversing
down the class hierarchy means a more specialised class. Using the example of
matrices, vectors can be considered a special class of matrices, since they are ma-
trices with either only one column or one row. In a similar way, square matrices
can be considered a special class of matrices since they are matrices whose number
of columns and rows has to be equal. These examples should be taken as naive
examples to illustrate the concepts. A more complete object oriented analysis
and design is described in Section 3.2. Figure 3.2 presents a UML class dia-
gram showing the inheritance relation between the class Matrix and the classes
ColumnVector, SquareMatrix and RectangularMatrix. The inheritance rela-
tion is represented by an arrow which begins in the specialised class and ends

in a more general class. The class Matrix defines the attributes, the methods

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

ClassName Matrix

attributes numColumns
numRows

methods storage{][]
create(nc,nr)
element(i,j)

assign(i,j,elem)

(a) UML Class Diagram

ObjectName : ClassName

matrixA : Matrix

attributes

methods

numColumns = 2
numRows = 3

storage[3][2] .

-
-

/]
-
-

.

element(i,j)
assign(i,j,elem)

(b) UML Object Diagram

Figure 3.1:

63

UML class diagram and object diagram for a naive version of matrices.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 64

and the implementations of the methods. All this is automatically inherited by
the sub-classes ColumnVector, SquareMatrix and RectangularMatrix. A sub-
class can add new methods or attributes, and also can adapt (re-implement) the
methods inherited. In the class diagram, the method norm1 has been added to
the class Matrix presented in Figure 3.1. The norml method is implemented in
this class following the definition for matrices (max; >, |a;;|). However, in the
class ColumnVector this method norm1 is re-implemented efficiently for vectors
(>, |zi]). The class SquareMatrix adds a new method create, which only needs
one parameter for the number of rows and columns, and re-implements the inher-

ited method create so that the parameters for the number of rows and columns

are tested to be equal before an object is constructed.

-

-

Matrix
ColumnV ector SquareMatrix RectangularMatrix
Matrix ColumnV ector SquareM atrix
numColumns numColumns numColumns
numRows numRows numRows
storage storage storage
create(nc,nr) © -1~ create(nc,nr) create(nc,nr) e
element(ij) l element(i,j) element(i,]) |
assign(i,j,elem) | assign(i,j,elem) assign(i,j,elem) |
|
norm1() ! norm1() - norm1() :
|
L |- create(n) | create(n) !
- | | |
] i | | ‘
| .
; if (nc=1) then ... | | If (nc=rr) then ...
| |
l else error ! ! else error
| | |
1 1

numColumns =1
numRows=n ...

reimplemented for
avector

i

numColumns=n
numRows=n ...

J

Figure 3.2: UML class diagram with a naive inheritance hierarchy of matrices.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 65

Classes can be seen as the data types defined by developers. The inheritance
of a class B from a class A means that every object instance of class B is also an
object of class A. In the case of matrices, every object of class Vector is always an
object of class Matrix. A method that has as input parameter an object of class
A accepts as valid all the objects of that class A. Apart from this and provided
that class B inherits from A, every object instance of B is also an object of A.
Hence, the method also accepts as valid the objects of B. In general, any object of
a class that inherits directly or indirectly (i.e. inheritance through more than one
class) from a class is a valid parameter. On the other hand, a second method that
takes as input parameters of class B does not accept objects that are instances of
class A. The feature that different objects of different classes are valid for a part
of code is called polymorphism.

From the above paragraph and using the hierarchy introduced, every object
of the classes ColumnVector, SquareMatrix, RectangularMatrix and Matrix is
a valid parameter for methods that have as parameter an object of class Matrix.
Suppose that one of these methods calls, or invokes, the method norm1 in the pa-
rameter object of class Matrix. Note that the method norm1 in the class Column-
Vector is re-implemented while the classes SquareMatrix and Rectangular-
Matrix inherit the implementation from the class Matrix. Dynamic binding is
the mechanism which ensures that whatever valid object is passed as a parameter
to the method, the correct norm1 implementation would be executed. Dynamic
binding identifies the exact class of the object and then checks if an implemen-
tation is provided in that class. Otherwise this mechanism traverses upwards
through the class inheritance hierarchy, checking at each level whether or not an
implementation of the method is provided. For example, when an object of class
ColumnVector is passed as a parameter, the implementation provided in this class
of norm1 is executed. On the other hand, when an object of class SquareMatrix
is passed as a parameter, the dynamic binding mechanism detects that its class
SquareMatrix does not provide an implementation of norml. Hence, it steps up
one level to the class Matrix where the implementation is found and executed.

Apart from classifying, the inheritance relation between classes is a way of
re-using code. Only the methods which need to be adapted to the characteristics
of a more specialised class, and those methods specific to that class have to be
implemented; the other implementations are simply inherited.

Multiple inheritance is a relation between one class which inherits from more

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 66

than one different classes. All the explanations for inheritance are applicable
to multiple inheritance, although certain problems that are caused by multiple
inheritance, and omitted in this thesis, can arise during the development of object
oriented software ([Mey97] Chapter 15

An association between classes represents links between objects of these classes.

~—

Different variants of associations are defined in UML, but since only the general
case (notation defined in Figure 3.3) is necessary in this thesis, the other pos-
sibilities are not discussed. The number of objects linked by an association is
determined by the cardinality of that association. The cardinality is represented

@k

by numbers and in the class diagram.

[Cowe] s G
objectA: ClassA objectB : ClassB
e T —

objectA: ClassA
objectA: ClassA objectB : ClassB
shean: Gash T —

". | objectBn: ClassB

objectB : ClassB

objectB : ClassB

‘.| objectAm: ClassA

Came]

(a) UML class diagram with association (b) UML object diagrams with link notation
or client notation

Figure 3.3: UML class and object diagrams with an association or client relation
between two classes.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 67

The association between classes represents a path through which methods are
invoked by the objects so linked. This metaphoric path symbolises that a method
is always invoked by an object in other object (although the other object might be
itself). Meyer proposes the term client relation instead of association [Mey97].
The term comes from the fact that an object is using the interface of another
object (the services provided by the other object) and thus they become client
and supplier. The term client relation is used throughout this thesis, rather than
association.

Compared with top-down decomposition, object oriented decomposition pro-
poses a method closer to how humans approach problems. The decomposition
is based on abstractions from the problem domain. These abstractions can be
further abstracted creating hierarchical classifications of abstractions. The pro-
cess of abstraction hides the details and enables developers to concentrate on
how they interact together. The abstractions are called classes and individual
members of a class are called objects. An object oriented model of a problem
is a set of objects that, over a period of time, are created, destroyed and linked
by client relations invoking operations (methods) from other objects. Each class
knows the details of how it is implemented but does not know the details of the
other’s classes, just uses their services.

Object oriented concepts have been presented as an evolution towards a
human-like approach to decomposition and composition of complex problems.
From this perspective, it offers benefits to the developers of software. From a
user perspective, the benefit depends mainly on whether the user is a user of
software applications or a user of software libraries. Taking users of libraries, in
particular the users of numerical linear algebra libraries, the interfaces would pass
from being a list of subroutines with parameters showing the exact representation
of the matrices, to operations (methods) between objects representing matrices

where the representation and algorithm details are hidden from the user.

3.1.2 Implementation Related Concepts

Generic programming and abstract classes are two advanced concepts, which are
sometimes supported by object oriented programming languages. These con-
cepts are related to implementation aspects whereas those already explained are
methodological.

In general, generic programming enables developers to write parts of programs

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 68

that have as a parameter the data type of some variables. Generic programming
was proposed from the observation that some algorithms could be written in-
dependently of the data types. A typical example is a sorting algorithm. The
implementation of a sorting algorithm could be the same as long as the data
type of the elements to be sorted has defined the comparison functions “<”, “>”
and “=". An early version of the Z specification language ([Abr80], [ASM80]),
CLU [LABT81], and Ada [ANS83] are the first languages that supported generic
programming.

In object oriented programming languages, a class can also be generic and,
thus a generic class is a class that has as parameters the data types or classes of
some of its attributes or parameters of its methods. Generic classes are also known
as template classes in the context of C++. Generic classes cannot instantiate any
object since they are not complete classes. In this context, the typical examples
for generic classes are the containers of elements. Lists, stacks, trees, etc. are
well documented container classes that benefit from generic programming (see
the Standard Template Library [LS95], [MS95], [Aus98]). Using generic classes,
the containers can be defined independently from the class of the elements they
will hold at run-time. In the particular case of linear algebra, the Matrix class
might be considered a generic class whose parameter is a numerical data type.
Figure 3.4 introduces the UML class diagram notation for generic classes and
presents the example of class GenericMatrix.

Abstract classes are classes which declare methods and attributes but do not
implement all the methods. The implemented methods are allowed to invoke
the non-implemented methods, called also abstract methods. Hence, an abstract
class is a completely declared but partially implemented class. No object can be
instantiated from an abstract class, and only those classes that inherit from an
abstract class and provide implementation for all the inherited abstract methods
are not abstract classes. Figure 3.5 presents the UML notation for abstract classes
and describes a class diagram for the naive class hierarchy described in Figure
3.2. In this case, class Matrix does not have any attributes since some attributes

become redundant for some sub-classes.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 69

e B
CoT T |
—
GenericClass
A
l
DerivedClass < type >

GenericMatrix

MatrixOfIntegers <Integer > .. MatrixOf Complex <Complex >

- J/

Figure 3.4: UML class diagram of a naive generic class GenericMatrix.

3.1.3 The Software Development Process

Traditionally, the software development process has been divided into analysis,
design, implementation, testing and maintenance phases using top-down decom-
position. Each phase begins when the preceding phase has finished, and so the
process can be seen as a linear execution. This life cycle is known as the linear
sequential model, or waterfall model [Pre97].

Object oriented methodology does not change the abstract definition of the
different phases. However, how they are carried out, and the products of each
phase are different. The object oriented life-cycle is characterised by being iter-
ative and incremental. At each iteration, object oriented analysis (OOA), object
oriented design (OOD), object oriented implementation or programming (OOP)
and object oriented testing are carried out increasing the part of the problem
that is covered.

Of special interest for this thesis are OOA, OOD and OOP. OOA proposes
classes, relations between classes, and the attributes and methods. The objective
is to discover and understand the problem domain by modelling with objects and
classes. OOD refines the classes by giving declarations to the classes and specifi-
cation to the functionality of each method. At the same time, the model created

by OOA is refined, adapting it to the restrictions of the application. The objective

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

storageli][j] = elem

numColumns = nc
numRows=nr. ..

ClassName Matrix
attributes
abstractMethods element(i j)
methods assign(i j.elem) implemented for matrices
norml() __l________| using element(i,j)
SquareMatrix RectangularMatrix ColumnV ector
size numColumns size
storage(][] numRows storage]]
storage{][]
create(n) create(n)
_ _ element(i,j) create(nc,nr) - _ |- element(i,j)
—_— I
| _ assign(i j,elem) - | - element(i) 1 L_|- assign(i]elem)
" normi() -] assign(ij elem) | | onomig ooy
1 norm1() i | 1
l ! : l
| : - !
I ‘ return (storage[f(i,j)]) :
return (storagelil[j]) ‘ |
I

T storagelf(i,j)] = elem

reimplemented for
avector

Figure 3.5: UML class diagram of a naive

abstract class Matrix.

70

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 71

is to plan how the model is going to be implemented. Finally, OOP is the imple-
mentation of the object oriented design in a given programming language. Ideally,
the implementation should be made in an object oriented language; otherwise,
the developers are forced to emulate the object oriented concepts. Guidelines for
implementing object oriented models in non object oriented languages, such as
Fortran 77 or C, are described by Meyer ([Mey97] Chapters 33 and 34) or by
Decyk et al. ([DNS97a], [DNS97b], [DNS98]).

The division between OOA and OOD phases is fuzzy, although the focus and
the products of both phases are clear. The analysis phase focuses on modelling the
problem by proposing candidate classes and relations between the classes, evalu-
ating them and rejecting the unsuitable proposals. Heuristics to find candidate
classes are collected by Booch ([Boo94] Chapter 4) and Meyer ([Mey97] Chapter
22). Both authors identify as a source of candidate classes tangible things, roles,
events, records of interactions, etc., from the problem domain ([SM88], [Ara89]).
Also, both authors present a method based on studying a requirements docu-
ment. The nouns and verbs expressing actions over them that are repeatedly
used in this document become candidate classes and candidate methods [Abb83].
However, due to the complexity of natural language this approach has a limited
success.

Booch and Meyer strongly disagree about the use case analysis formalised
by Jacobson [JCJO92]. Use case analysis describes different scenarios, which
are user-initiated transactions with the software. The scenarios represent the
functions of the software. The analysis then takes each scenario, one-by-one,
identifying possible classes and relations. In Booch’s opinion, use case analysis
provides an organised framework to discover the functionality required by an
application and, from that, a good guide to follow. In Meyer’s opinion, use
case analysis is influenced by the users’ vision about what the application has
to do. This might lead non-expert object oriented developers to an algorithmic
decomposition instead of an object oriented decomposition.

The OOD phase brings different requirements to the development process.
Concurrency and synchronisation, mapping of the software onto the hardware
(networks, modems, processors, etc.), and division of the object oriented model
into packages, grouping related classes, are aspects that might be included during
this phase [Kru95].

Following the above process, the OOA and part of the OOD for numerical

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 72

linear algebra is carried out in Section 3.2. The different proposed classes and
relations are used to classify current object oriented numerical libraries. Section
4.1 refines the object oriented model proposed in this chapter to accommodate the

restrictions associated with the implementation programming language (Java).

3.1.4 Some Tips

The “rules” given in the literature for deciding what are the relations between
classes, can be considered more as heuristics; they always end with examples of
“exceptions”. Design patterns are class structures which model problems that
repeatedly appear in almost every development of software. The definition of de-
sign patterns, and a collection of them is described by Gamma et al. [GHIJV95].
Design patterns can be considered as the heuristics extracted from the experience
of expert object oriented developers. Each design pattern describes the charac-
teristics of a repeatedly faced problem for which an “elegant” and tested solution
is known. Obviously, the description of the problem and solution are in abstract
terms, but real examples of the successful application are presented.

Two design patterns, the bridge ([GHJV95] pages 151-162) and the iterator
([GHJV95] pages 257-272) patterns, and a comparison between generic classes
and inheritance are the “tips” suggested. These are used in the object oriented

analysis and design described in the next section.

Bridge Pattern

Normally, when deciding what is the relation between classes, the client relation
does not offer problems. However, it is not trivial to decide when the inheritance
relation should be applied. The client relation can be semantically interpreted as
a “has-a”; class A is client of B means that A has-a B. Similarly, the inheritance
can be semantically interpreted as an “is-a”; class B inherits from class A means
that B is-a A. For example, the problem defined by the phrase — “a person has a
car” — does not offer any doubt about a client relation between a class Car and a
class Person. The models Car is-a Person or Person is-a Car do not make sense.
However, when adding a new phrase — “a black car is a car” — it is suggested that
there are two classes: a class Car and a class BlackCar that inherits from Car.
It is also possible to model the phrase as an object class Car has-an object of

class Color and its state indicates is black. The decision depends on the problem

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 73

domain and, without extra information, both models are valid.

In the case of linear algebra, the situation described in the last paragraph is
repeated. The phrase to model is — “a matrix with some properties is a matrix”.
This phrase describing the problem suggests that class MatrixWithProperties is-
a Matrix. It is also possible to model the phrase as class Matrix has-a Property.
The decision and the arguments are presented in Section 3.2.1, although the
bridge pattern, used to make the decision, is presented in the following paragraph.

The bridge pattern represents a problem where an abstraction can have dif-
ferent possibilities, only one possibility at each time, and during execution the
possibility can change. The possibilities provide the same set of methods, but
each possibility implements them differently. Figure 3.6 presents the class di-
agram of the proposed solution. A new abstract class named Possibility has
been created where the common attributes and methods among the different pos-
sibilities is declared, but not implemented. Each possibility (Possibilityl, ...,
PossibilityK) is a class which inherits from the new abstract class Possibility
and provides implementation for the inherited abstract methods. The abstraction
becomes a class called Abstraction that is defined to be a client of the abstract
class Possibility. This enables the client relation to be polymorphic. Figure
3.7 presents an example where the abstraction is a figure and the possibilities are

circles and triangles.

Iterator Pattern

The iterator pattern presents a solution to traverse different kinds of containers
with a unique interface. The iterator described by Gamma et al. [GHIV95] tra-
verses and accesses the elements in sequential order and is presented in Figure
3.8. The methods next and currentElement advance one position in the con-
tainer and return the current element, respectively. The method begin sets the
iterator to the first position of the container, and the method isFinished tests
if there are any more elements to be accessed in the container.

The Standard Template Library classifies the iterators, among others, into
sequential and random access [LS95]. A random access iterator adds to class
Iterator a new method getElement that returns the element in the position
passed as a parameter.

The iterator pattern is used as a way to access the elements of matrices, thus

enables linear algebra developers to adopt a different approach to the way that

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

-
Abstraction Possibility
attributes commonAttributes
methods _ _ commonMethods
|
| ‘f
invokes
commonM ethods
Possibilityl PossibilityK
commonAdttributes commonAttributes
attributes attributes
commonM ethods commonM ethods
otherMethods otherMethods
N\

Figure 3.6: Class diagram of the bridge pattern.

74

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

p
Figure Form
draw() drawform()
|
| ‘f
invokes
drawform
Circle Triangle
radius base
height
drawform() angle
drawform()
N

Figure 3.7: Class diagram of an application of the bridge pattern.

75

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Iterator

Container

Concretelterator

ConcreteContainer

Iterator

begin

next
currentElement
isFinished

Figure 3.8: Class diagram of the iterator pattern.

76

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 77

matrix calculations can be implemented.

Simulation of Generic Classes

Generic classes are not supported by every object oriented language. In their
absence, the developers may have to code, by hand, each of the different possible
derived classes from the generic class. The number of classes that have to be
written is linearly proportional to the number of different valid parameters of the
generic class. Figure 3.9 presents a class diagram for a generic class Generic-

Matrix whose parameter is the class of the elements.

4 N

MatrixOfIntegers <Integer > ... MatrixOf Complex <Complex >

Matrix

f
l |

MatrixOfIntegers . MatrixOf Complex

Figure 3.9: Class diagram emulating generic classes by hand code.

Alternatively, developers can simulate a generic class using a class with a
polymorphic client relation. Each of the different valid parameters of generic class
is made to inherit from a new abstract class. The class that simulates the generic
class is a client of the new abstract class. Figure 3.10 presents the pertinent class
diagram using the generic class GenericMatrix. Class SimulatedGenericMatrix
simulates the class GenericMatrix by being a client of the abstract class Number.

GenericMatrix and SimulatedGenericMatrix class structures represent poly

morphism. In the case of class GenericMatrix, the polymorphism is resolved at
compile-time since its sub-classes resolve the polymorphism when choosing one
class for the elements. In the other case, the polymorphism is resolved at run-

time since every object of class Number or sub-classes might be assigned at any

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 78

time. The generic class creates an object matrix that only can store one class of
objects. However, the class Matrix creates an object matrix that can store any
object of the hierarchy Number (bridge pattern). Nevertheless, it is also possible

that only objects of one class are stored and thus simulate the generic class.

4 N

MatrixOfIntegers <Integer >

SimulatedGenericMatrix

MatrixOf Complex <Complex >

Number

Integer

Complex

- J

Figure 3.10: Class diagram of generic classes simulated by inheritance and client
relation.

Developers simulating generic classes with polymorphism find, unless the com-
piler implements an aggressive algorithm, that generic classes are faster. In the
case of generic classes, the dynamic binding mechanism is not necessary because
the polymorphism has been resolved at compile-time. However, the emulation of
generic classes needs the dynamic binding mechanism. In this case, an aggressive
compiler would be able to resolve the polymorphism only if it can prove that only

one class of objects is assigned.

3.2 Analysis and Design of OOLALA

Object oriented analysis and design is the part of the software development pro-
cess where an object oriented model of the problem to be solved is created. Key
abstractions (classes) from the problem domain are identified and relations (client
or inheritance) between these classes are proposed. The nature of this process

is iterative and incremental; different models are created and evaluated against

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 79

parts of the problem domain until the parts are properly described, and then a
new iteration begins, including new parts of the problem domain.

This section is dedicated to a review of different designs of object oriented
linear algebra libraries. In order to present clear diagrams and discussions, the
following aspects have been omitted: the class of the elements of matrices; meth-
ods that create objects, and methods that query the state (attributes).

An initial step is carried out modelling matrices, matrix properties and stor-
age formats simply including the access methods of matrices (Section 3.2.1). This
initial step provides the basic design which is extended, firstly, to allow sections of
matrices to be matrices and matrices formed by merging other matrices (Section
3.2.2). Secondly, the iterator pattern is modified for the purpose of traversing lin-
ear algebra matrices (Section 3.2.3). Finally, basic matrix operations and matrix
equations solved with direct or iterative algorithms are given a representation
(Section 3.2.4). At each stage, different solutions are proposed. These are used
to classify some object oriented linear algebra libraries (see Table 3.1). When
selecting a solution, two user groups are kept in mind: numerical linear algebra
experts and non-experts. The obvious differences between these two groups force
the library to be as simple as possible for non-expert users, but also to provide as
many tuning details as possible for expert users. However, these tuning details

do not reveal how they are implemented.

3.2.1 Initial Analysis

A matriz is a two-dimensional container of numbers. The dimensions of a matrix
are the number of rows (numRows) and number of columns (numColumns). The
basic operations are to obtain an element of the matrix, a;;, and to assign a
value to an element of the matrix, e.g. a;; <= 32. An element is determined
by its (unique) position; number of row i and column j. Given two integers i
and j, they determine an element if both are greater or equal than 1 and if they
are less or equal than numRows and numColumns, respectively. In other words,
every matrix has two methods to access the elements: assign and element. The
element method needs two integers, 7 and j, and returns the element in the 7%
row and j% column, whereas assign needs the same two integers and a number
to assign to the element in the i** row and j* column. Figure 3.11 presents a

Matrix class according to the above description.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

80

Library References

LAPACK++ [DPW93a], [DPWO3h], [DPW96], [LAP]

SparseLib++ and | [DLN*94], [PRL96], [DLPR96], [Spa], [IML]

IML++

Paladin [GJ95], [GIPY6]

JLAPACK [BCOS], [BC99), [JLA]

OwlPack [BKP98], [BK99b], [BK99a], [Owl]

MTL and ITL [SLOSb], [SL98c], [SLL99], [SL98a], [SL99], [MTL],
[ITL]

PMLP [BBV+99], [BPB+99], [PML]

Diffpack [BLO7], [Dif]

ISIS++ [ACMW99], [1S1]

Sparspak-++ or | [GL99]

Sparspak90

Oblio and Spindle [DKP99], [DKP98], [KP9S§]

JAMA [JAMD]

Jampack [Ste99], [Jama]

BPKIT [CHO6], [CHO8], [BPK]

Table 3.1: Object oriented linear algebra libraries.

.

Matrix

numColumns
numRows

element(i,j)
assign(i,j,elem)

J

Figure 3.11: A simple Matrix class.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 81

With this description of a matrix as a starting point, the discussion is organ-
ised around a set of different proposals. Each proposal differs in the organisation
or relations between matrix, matrix properties and storage formats. For each
proposal two class diagrams are presented. The first class diagram presents the
general structure (generalised class diagram) without using real properties or stor-
age formats. The second class diagram applies the generalised structure to dense,
banded, symmetric, symmetric banded and symmetric positive definite matrix

properties, and to dense and band storage formats (concrete class diagram).

Proposals

The first proposal, Matrix version 1 (see Figures 3.12 and 3.13), is based on the
inheritance relation. The combinations of matrix properties and storage formats
are considered to be sub-classes of Matrix. The class Matrix is on the first level
of the inheritance hierarchy. On the second level, the Matrix class has been
specialised by the matrix properties; a band matrix is always a matrix. The
third level specialises the matrix properties by combining the properties of the
second level and thus creating properties such as symmetric banded. The fourth
level specialises the matrix properties by giving them a storage format. Only the
fourth level classes are not abstract classes.

The second organisation, Matrix version 2 (see Figures 3.14 and 3.15), intro-
duces the client relation between classes. A new abstract class called Storage-
Format is created and every storage format inherits from it. The same two meth-
ods, element and assign, are included for the StorageFormat class, thereby
creating a unified interface for all the storage formats. The class Matrix has
a client relation with the class StorageFormat. The matrix properties classes
inherit from the class Matrix, as in Matrix version 1, but they are not abstract
classes any more.

The third organisation, Matrix version 3 (see Figures 3.16 and 3.17), intro-
duces a new abstract class called Property. The matrix properties that can be
represented in different storage formats inherit from Property while the other
properties are attributes of Property. The class Matrix has a client relation

with Property, which also has a client relation with StorageFormat.

82

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Zew.o4pbeloisu xue N NAuedoid

Trewlogebeloisu|x e NcAuedold 1Auedold

drewlo4ebeloisu|xLe NNALedold

Hrewlodefeloisu X Lr NCARdold | Alledold

V
X1re\NABdod

v

XurenrAredoid - 1A1edold

|

v

x1rencAedoid

L 1

X |A1edoid

~4Tew.lo-4ebelolsu X e NTALRdold

viewlo4afeloisu X ur T Auedoid

v

XLeNTALRdoId

!

(Wep'l'ubsse
(I'Nwewsp

SMOYHWINU

suwnjoownu

XL

Figure 3.12: Generalised class diagram of Matrix version 1.

83

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

TELIO-PEYIEdU [X LI NBYIU 1B JBAIN SO0 LIBWIWAS 7 7 TeLWLIO=ESUB U X LTR NS 1D (RA NSO IIBLIWIAS 7
7 TEWLIOSpUBGU X LI NPepUe o LIBWIWAS 7 7 TeWIOSesUB U [X LITE NPapUB gD LIIBWUIWAS
7 XLITe\RHU B JSA NS00 LIBULWIAS 7 7 XLITeNpapUegD LIBULIWAS 7
7 JeWIo-EsUS U X LIT2 NBHU LB JBANSOd 7 7 TEWLIOSPMTE4U [X LI ND LIIBLUWIAS 7 7 TeWLIO8sUB U X LT D IIBWIWAS 7

|

7 X1JeNeHU R eANSOd 7 XIS LIBWWAS

7 Tewio4pepuegu XL Npspueg 7 7 TWIOesUBqu X LI NpapUeg 7 7 TeWIOSesUBu X LI NesUeQ 7
v v
7 X1ITe |\ U D JAIS04D 1 IIBWWAS 7 7 X1ITe|Apapuego LIsWWAS 7
(wep'[M)ubsse 7 7
(Muewep % Aﬁ Aﬁ Aﬁ
7 XLUFeARYUBGRANSOd 7 7 X1ITRNO IIBWWAS 7 7 XlyeNpapueg 7 7 XLyenesued 7
SMmoywnu 7 7 7 7
suwnjopwnu
XN XN

Figure 3.13: Concrete class diagram of Matrix version 1.

84

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Mlewlo4ebelols

TewWlIo4ebelols

xureNrAuedold 1Auedod

Aﬁ

P

xurNNALsdod

xueNrAusdod

(wep'l')ubsse
(Mewep

xurNTALedod

SMoHwINu
suwinjopwnu

Tew lo4ebe o

XU\ [A1sdold

(Wep'[)ubsse
(wewsp

XL

Figure 3.14: Generalised class diagram of Matrix version 2.

85

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

fewo4peaXded

euLo-pUeg

Jewlo—4esuag

i

(wep'l')ubsse
(I'Nwewsp

SMoHwINU

suwnjopwnu

XU NSHU 1S JOAR S0 IIBWIWAS

X1 Npapuego LIIBWWAS

|
Aﬁ

| Aﬁ

XU ABHUl RSO XUE WO LIIBWWAS XU Npspued

XL NssUed

|

(Wep'l'ubsse
(Mhuswe

Tew Io4abe 105

XL

Figure 3.15: Concrete class diagram of Matrix version 2.

86

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Mewlo4ebelols

Tewlo-4ebelols

i

(wep'[')ubsse
(Mewsp

SMOHWINU
suwnjoownu

Tew jo4ebelos

NAuadoid

rAvedoid1Auedod

@N

rAuedoid

!

1Aedoid

TAuedold

%

(Wep'[)ubsse
(F'wewsp

1Auedouds!

dAuedoids!

(wep'ubsse
(Muewep

Aedoid

XU N

Figure 3.16: Generalised class diagram of Matrix version 3.

87

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Tewo4paxded

euLopUeg

Tewlo—ssuag

AvedoidpepuegoLipwiwis

—

(wep'l')ubsse
(I'wewep

SMoHWwINU
suwinjopwnu

Auadoidoupwwis Auadoidpapueg

Auedoidesueq

|

(Wep'l'ubsse

(I'wewsp

alIU1CPANSOS!

(wep'[')ubisse
(Mewep

Tew Io4abe 105

Aedoid

XU

Figure 3.17: Concrete class diagram of Matrix version 3.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 88

Discussion

In Matrix version 1, the classes at the bottom of the hierarchy can be seen as
a possible combination of matrix properties and a storage format. Comparing
these classes with the BLAS naming scheme, described in Section 2.4.1, for each
two letters that represent matrix properties and a storage format (e.g. GE dense
matrix in dense format or TP triangular matrix in pack format), a class is created.
LAPACK++, SparseLib++, Paladin, OwlPack, Diffpack, ISIS++, Spindle
and Oblio, Jampack libraries (Table 3.1) are examples of Matrix version 1.
Since an object of any of the sub-classes of Matrix encapsulates the storage
format, the number of rows and columns and the properties, a method multiply,
with parameters of class Matrix can substitute for the BLAS subroutines XGEMM,
XGBMM, etc. An implementation strategy for the method is to test the properties of
the matrices and storage format and then decide which of the BLAS subroutines
to call. The benefit for the user is that only one method, whenever possible, is
offered for a matrix calculation. Section 3.2.4 returns to this point in more detail.
The benefit for the developer of the library is that a second implementation
strategy is to use the unified access interface to every class in order to implement
the methods. Hence, the number of implementations is reduced since the interface
offers a way of accessing matrices that is independent of storage format. Figure
3.18 presents a naive implementation of the method element for DenseMatrixIn-
DenseFormat, BandedMatrixInDenseFormat, and BandedMatrixInBandFormat.
Each implementation is adapted to the specific properties and storage format so
that the correct element is returned. In a similar way, the method assign can
be implemented and thus the unified access interface of every class is completed.
Matrix version 1 has a problem related to the number of classes that have to
be implemented. For each matrix property, a matrix can be represented in many
storage formats; therefore the number of required classes is of the order of the
number of matrix properties multiplied by the number of storage formats.
Matrix version 2 uses the client relationship, or more precisely the bridge
pattern, in order to reduce the number of classes of Matrix version 1. The class
diagram can be read as “a matrix, with whatever properties, has a storage for-
mat”. The storage format can be any of those in the hierarchy and can vary at
run-time. The effect is that all the classes on the fourth level of the hierarchy
of Matrix version 1 (Figure 3.12) are eliminated, and new ones encapsulating

the storage format appear. The abstract class StorageFormat has the same two

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

DenseMatrixInDenseFormat

denseStorage[][]

dement(i,j) _______|

BandedM atrixInDenseFormat

upperBandwidth
lowerBandwidth
denseStorage[][]

dement(i,j) - ______|

BandedM atrixInBandFormat

upperBandwidth
lowerBandwidth
bandStorage(][]

dement(i,j) - ______|

return (denseStoragefi][j]) %

if (-upperBandwidth<=i-j<=lowerBandwidth) then
return (denseStoragelil[j])
elsereturn 0

if (-upperBandwidth<=i-j<=lowerBandwidth) then
return (bandStorage] upperBandwidth+i-j+1][j1)
elsereturn 0

89

Figure 3.18: Implementation of the method element in DenseMatrixInDense-
Format, BandedMatrixInBandFormat and BandedMatrixInDenseFormat classes

— Matrix version 1.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 90

methods as Matrix; element and assign. This creates a unified access interface
and, thus, the sub-classes of Matrix do not need to know in which storage format
they are represented in order to access the storage format. Figure 3.19 presents
naive implementations of the method element for the DenseFormat, BandFormat,
DenseMatrix and BandedMatrix classes. These implementation only access to
the storage format when the element cannot be implied from the matrix property.
Since storage formats are created omitting those elements that can be implied
from the matrix properties, these implementations of element are independent

of the storage format.

DenseMatrix DensefFormat
storagef][]
dement(i,j) _ _|____ return element(i,j) from
a StorageFormat edement(i,j) __1___ return (storaggfi][j]) %
sub-class
BandedMatrix BandStorage
upperBandwidth upperBandwidth
lowerBandwidth lowerBandwidth
storagef][]
dement(i,j) ___1__
|
| eement(i,j) ___|__
|
! |
! |
! |
|
| |
if (-upperbandwidth<=i-j<=lowerbandwith) then return (storage[bu+i-j+1][j]) %
return element(i,j) from
a StorageFormat sub-class
elsereturn 0

Figure 3.19: Naive implementation of the method element in DenseMatrix,
BandedMatrix, DenseFormat and BandFormat classes — Matrix version 2

Using generic programming, class Matrix can become a generic class with
as its parameter a subclass of StorageFormat, and a similar model is obtained.
PMLP and MTL (including other options as parameters, such as column-wise or

row-wise arrays) libraries propose this variation to Matrix version 2.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 91

PMLP and MTL face a common problem. Users do not need to know how
a storage format is represented because it is encapsulated in the sub-classes of
StorageFormat. The problem now is that users can create inadvisable combina-
tions, such as a dense matrix stored in any sparse storage formats, or impossible
combinations, such as a dense matrix stored in packed format.

Having identified this problem, and without a solution provided by any of the
aforementioned libraries, an option is to hide the list of possible storage formats
from users and rely on the library to decide which storage format to use. A
second option is to allow users to define the storage format when an object of
class Matrix is created and leave to the library to check the coherency between
the matrix properties and the storage format specified.

The first option addresses the requirements of non-expert users of the library,
who are relieved from having to know that a matrix can be represented in different
storage formats and which one is advisable for their cases. However, this option
is not satisfactory for expert users who wish to test different storage formats in
order to determine the best for their needs (execution time, memory size, etc).
The second option will satisfy the expert user as long as most storage formats
are supported in the library. However, it has the disadvantage that adding a new
storage format implies changes to the code that controls the coherence between
storage format and matrix properties.

In the author’s opinion, a combination of the two proposed options addresses
the necessities of both user groups. The class organisation of Matrix version 2
does not need to be changed; the effect of accepting the two proposed options is
reflected in the implementation of each subclass of Matrix.

The main change that the reader needs to understand is that the storage for-
mat, with any of the options for Matrix version 2, is a possible way to reduce
execution time or memory requirements and not a restriction because the library
does not support a combination of storage format for a determined matrix op-
eration. This can be achieved because the implementations are able to use the
unified access interface of Matrix inheritance hierarchy. Matrix calculations im-
plemented using this interface are said to be implemented at matriz abstraction
level. Nevertheless matrix operation can still be implemented at storage format
abstraction level.

Matrix version 3 introduces the possibility that some matrix properties are

not represented by classes. The positive definite property is a property that does

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 92

not give chances to represent a matrix in different storage formats; it is just a
factor that influences the implementation of a matrix calculation. Furthermore,
it can be combined with any other property, but the combinations do not change
the advisable storage formats of the original properties. The positive definite
property is represented as an attribute of Property, and is thus inherited by
every sub-class producing all the combinations. The rule to apply in general
to determine if a matrix property is represented as a class or as an attribute
is whether or not the property enables a matrix to be represented in different
storage formats.

The second modification introduced in version 3 is that class Matrix becomes
a client of Property from which the different matrix properties inherit. The class
Property follows the same unified access interface of Matrix and no changes are
needed for the sub-classes representing matrix properties. The interface of class
Matrix includes methods, setProperty, so that the properties of a matrix can be
declared. The following example of a linear algebra calculation presents a situa-
tion that Matrix version 2 and version 1 both fail to model, and which motivates
version 3. Suppose that B < AB is the desired linear algebra calculation, where
A is a dense matrix and B is a banded matrix. Mathematically speaking, this
calculation is correct as long as both A and B are square matrices of order n. In
other words, a matrix calculation is correct as long as it conforms to its defini-
tion and the properties of the matrices do not interfere. However, using Matrix
version 1 or version 2 this matrix calculation is not accepted or is performed in-
correctly. A sensible program which uses version 2 creates an object a of class
DenseMatrix and an object b of class BandedMatrix. After executing a method
that assigns to b the product, two different problems may arise. The first problem
is that, if the object b had-an object of class BandFormat, an exception should be
raised informing that a dense matrix cannot be stored efficiently in band format;
the solution to this problem is to allow the library to change the storage format.
The second problem arises from the change of properties of b; although the library
can change the storage format it is impossible for it to change b to be an object
of class DenseMatrix, because DenseMatrix is not a sub-class of BandedMatrix.
Consequently, b is an object of the class BandedMatrix that should be an object
of class DenseMatrix. Access to elements outside the bandwidths would return
zero, although the result is known to be different.

The characteristic of this example is that, during run-time, an object that

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 93

represents a matrix can vary its properties when it is operated upon. Using
again the bridge pattern, the class Matrix has a client relation with Property
under which the matrix property classes can be found. The class diagram of
Matrix version 3 can be read as — “a given matrix can have different matrix
properties and, in function of these properties, can be represented in different
storage formats”. The properties and storage formats are not fixed, this means
that, when operated on, the properties and storage format of an object of class
Matrix can be changed. The properties and storage format have to change in
a way that the combination of both is advisable. The model created by Matrix
version 3 allows to control these changes.

Through the different proposals, the functionality that the library provides
has been increased. The interface has been adapted so that non-expert users
can rely on the library to manage the properties and the storage formats for the
matrices. The interface also offers expert users the possibility to create a matrix
with a specific storage format supported. The library checks the coherency of the
combinations determined by users and through calculations. The StorageFormat
inheritance hierarchy unifies access to the different storage formats represented as
its sub-classes. The Property inheritance hierarchy determines which elements
are known owing to the properties. Otherwise, the storage format is accessed. The
Matrix class is the user interface that encapsulates how properties and storage
formats are implemented and enables the library to change them transparently
for users.

None of the object oriented libraries reviewed in this section can be classified
as Matrix version 3 (see Table 3.2); nor do they provide support for checking
the coherency of matrix properties and storage formats. In order to provide this
functionality, the library has to be able to propagate the properties of matrices
from the operands to the results. A simple version of how to implement this new
functionality is presented in Section 4.4. The Matrix version 3 and the function-
ality discussed above are the basis of a new library known as Object Oriented
Linear Algebra LibrAry (OOLALA). This design is refined in the next sections
so as to enable users to use sections of matrices (rows, columns, sub-matrices)
as if they were matrices, and to merge a set of matrices into one (Section 3.2.2).
The second refinement includes the abstraction of iterators in order to traverse
matrices and allowing a different abstraction level of implementation (Section

3.2.3). Finally, matrix calculations are included in the library (Section 3.2.4).

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 94

Library Class Structure
LAPACK++ version 1
SparseLib++ and IML++ | version 1
Paladin version 1
JLAPACK -

JAMA -

Jampack version 1
OwlPack version 1

MTL and ITL generic version 2
PMLP generic version 2
Diffpack version 1
ISIS++ version 1
Sparspak-++ or Sparspak90 | —

Oblio and Spindle version 1
BPKIT version 1

JLAPACK, JAMA and Sparspak++ or Sparspak90 do not offer
enough information to be classified and “~” has been used to rep-
resent it.

Table 3.2: Class structure of various object oriented libraries.

3.2.2 Different Views of Matrices

Sometimes, applications need to work on sections of matrices as if they were
matrices. For example, subroutines of LAPACK partition the matrices into blocks
and work on these blocks independently. The transpose of a matrix can be treated
as a section that is accessed by interchanging the indexes. An LU factorisation
can store the L and U matrices in the matrix A, assuming that A is stored in dense
format. This implementation of LU factorisation is called in place factorisation.
The subsequent phase of solving the triangular systems with coefficient matrices
U and L accesses only the upper triangular section or the lower triangular section.
On other occasions, applications need to merge matrices to create a new matrix;
for example, a block matrix can be created by merging its blocks.

Examples of matrix sections are a row or a column of an m x n matrix, which
can be viewed as a row vector of size n or a column vector of size m, or three
consecutive rows, which can be viewed as a 3 x n matrix. A block lower triangular
can be formed by merging its blocks and zero matrices. View is the term used to

refer to either sections or merged matrices.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 95

A simple solution for sections of matrices is to provide methods that create
a new object of class Matrix with a corresponding new object of class Property
and an advisable new object of class StorageFormat. The elements of the original
matrix are copied into this new object of class StorageFormat. This solution does
not modify the class structure of Matrix version 3. This is valid for applications
that do not need to reflect in the original matrix the modifications made to the
new section matrix. However, other applications need both matrices to reflect the
modifications made to any of them. Hence, this solution becomes inefficient since
applications need to copy back the elements in the original matrix (or section
matrix) at the same time the section matrix is modified (or original matrix). A
similar argument can be made for a matrix formed by merging other matrices.

In cases where the new section matrix and the original matrix need to keep a
consistency (i.e. objects of class Matrix need to share an object of class Storage-
Format) new classes have to be included. Among other solutions which share a
common problem, Figure 3.20 presents a class diagram with one of these solutions.
New abstract classes, called Section and Merged, are introduced. Their sub-
classes replicate those of the Property inheritance hierarchy and, thus, a view
can also have properties. Since the position of an element of a view is based on
the viewed matrices, this is reflected with Section and Merged being clients of
Matrix and having as attributes information such as the row and column base
or the list of merged matrices. The numbers in these client relations indicate
that an object of class Merged merges at least two matrices. They also indicate
that an object Section is a section of only one matrix. Their final indication is
that an object of class Matrix can have as many sections, or be part of as many
merged matrices, as wanted. The three hierarchies inherit from a new abstract
class called ViewOrProperty. This solution is part of a family of solutions that
has the major drawback that the Property inheritance hierarchy is triplicated.

Reviewing the role of the Property inheritance hierarchy, it is defined to de-
termine whether an element is known independently of the way it is stored. In
other words, the Property inheritance hierarchy is independent of elements being
stored in sections of matrices or in sections of different matrices or in a storage for-
mat; its function is just to determine if an element is known. For example, when
A is an upper triangular matrix the elements a;; with ¢ > j are known to be zero
elements independently of their storage format. Figure 3.21 presents a class dia-

gram following this criterion. The classes Section, StorageFormat and Merged

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

96

Property StorageFormat

Matrix ViewOrProperty
2. 1
element(i,j)
assign(i,j,elem)
* Section * Merged
Section Property
Property1Section Propertyl
PropertyNSection PropertyN

Merged

f

PropertylMerged

PropertyNMerged

Figure 3.20: Class diagram of Matrix version 3 — first attempt to include different

views of matrices.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 97

are sub-classes of ViewOrStorageFormat. The class Property changes to have
a client relation with ViewOrStorageFormat rather than with class Storage-

Format. The classes Section and Merged keep their client relations with Matrix.

Matrix Property ViewOr Stor ageFor mat
2. 1
element(i,j)
assign(i,j,elem)
* Section r* Merged SorageFormat

Figure 3.21: Class diagram of Matrix version 3 — second attempt to include
different views of matrices.

Some current object oriented libraries provide views of matrices without repli-
cating the elements. However, these libraries only allow the views to be dense
matrices. Table 3.3 presents various object oriented libraries and how they sup-

port views of matrices.

3.2.3 Including Iterators

The iterator pattern, introduced in Section 3.1.4, is now extended to cover two-
dimensional containers and, more specifically, linear algebra matrices. The itera-
tor is redefined to traverse the elements of the matrices skipping those known to
be zero.

Figure 3.22 presents the class MatrixIterator. The methods setColumnWise
and setRowWise indicate how an object of class MatrixIterator traverses a
matrix; column-wise or row-wise. The method begin places the object in the
first column and first row. The method beginAt places the object in the position
passed as a parameter. The class MatrixIterator considers a vector either as
a column or as a row of the matrix and, thus, a matrix is traversed by passing
through each vector of the matrix. The method nextVector increases an index

of the current position and modifies the other index so that it points to the

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Library Sections | Merged Matrices
LAPACK++ (nce) -
SparseLib++ and IML++ - -
Paladin (nce) -
JLAPACK (nce) -
JAMA (ce) -
Jampack (ce) (ce)
OwlPack - -
MTL and ITL (nce) -
PMLP - -
Diffpack - -
ISIS++ - -
Sparspak-++ or Sparspak90 - -
Oblio and Spindle - -
BPKIT - (nce)

The libraries that support views only allow them to be dense matrices
or vectors. Only, BPKIT offers merged matrices whose blocks can be
any kind of matrix. However, BPKIT’s merged matrices are dense
matrices. When a library does not support views it is represented as
“~”_ When a library supports views copying elements it is represented
as “(ce)”. When a library supports views without copying elements
it is represented as ”(nce)”.

Table 3.3: Support of views of matrices in various object oriented libraries.

98

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 99

first position. Which index is increased or modified depends on how the matrix
is traversed. The method isMatrixFinished tests if there are more vectors
to traverse in the matrix. A vector is traversed using the methods nextElement
and isVectorFinished. The method nextElement searches for the next nonzero
element within the vector while isVectorFinished tests if there are more nonzero
elements in the vector. An element is accessed by the method currentElement

that returns the current element and the row and column indexes.

Matrixlterator MatrixIterator

currentl [ﬁ

currentJ

Property1MatrixIterator o PropertyNMatrix|terator

setRowWise()
setColumnWise()

begin()

beginAt(i,j)

nextVector (x)

Boolean isMatrixFinished()
nextElement()
currentElement(y,elem)
Boolean isVectorFinished()

Figure 3.22: Class diagram of MatrixIterator.

Once the iterator pattern has been adapted to the requirements of linear
algebra matrices, the next step is to integrate it with the class structure of
OoLALA. The MatrixIterator can be seen as an iterator for sequential ac-
cess whereas Matrix and Property can be seen as iterators for direct access.
The MatrixIterator interface can be integrated with the interface of Matrix
and Property (see Figure 3.23) and, thus, the inheritance hierarchy of Property
would not be replicated for MatrixIterator, if this class was included. The class
structure is not modified with this integration.

Since an iterator traverses matrices skipping the zero elements, iterators con-
stitute a new abstraction level at which matrix calculations can be implemented.
Until now, an implementation of a matrix calculation was a set of nested loops de-

fined in terms of explicit bounds which vary depending on the matrix properties.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

-

Matrix

currentl

currentJ

Property

setRowWise()
setColumnWise()

begin()

beginAt(i,j)

nextV ector(x)

Boolean isMatrixFinished()
nextElement()
currentElement(y,elem)
Boolean isV ectorFinished()
element(i,j)

assign(i,j,elem)

setRowWise()
setColumnWise()

begin()

beginAt(i j)

nextVector (X)

Boolean isMatrixFinished ()
nextElement ()
currentElement(y,elem)
Boolean isVector Finished()
element(i j)

assign(i,j,elem)

J

100

Figure 3.23: Class diagram of classes Matrix and Property including the methods
of MatrixIterator.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 101

In other words, an implementation of a matrix calculation traversed matrices by
indicating explicitly which elements to access and by avoiding explicitly those
elements that are known to be zero. On the other hand, an iterator expresses
implicitly the elements to be accessed. An implementation of a matrix calcula-
tion using the interface of MatrixIterator implicitly changes the elements to be
accessed when properties of the matrices are changed. This reduces the number
of implementations of a matrix calculation.

MTL and PMLP use iterators, but with contradictory results. MTL has re-
ported performance results on a Sun UltraSPARC for dense matrix-matrix mul-
tiplication and sparse matrix-vector multiplication, which are comparable to the
highly optimised libraries ATLAS [WD98] and Sun Performance Library. On the
other hand, PMLP declares [BBV*+99]:

“Iterators in PMLP provide a convenient means for users to iter-
ate over elements in vectors and matrices, regardless of their internal
data storage format. They also provide a storage format independent
means for writing functions that access elements in objects using dis-
parate storage formats. Since iterators are not an efficient mechanism
for accessing elements in sparse matrices, much of the core function-
ality in PMLP is written using data access mechanisms specific to

particular storage formats.”

Note that no reference is given to justify their affirmation about the ineffi-
ciency of iterators or even a criterion to decide which functionality is written
using what. The paper also does not reference MTL.

This thesis has introduced three implementation abstraction levels; storage
format, matrix and iterator abstraction levels. The reader can either jump to
Section 4.5 which compares the code of matrix calculations at the different ab-
straction levels for different matrix properties, or move to the next section that

gives representations of matrix calculations in OOLALA.

3.2.4 Including Matrix Calculations

The analysis has focused on modelling matrices, matrix properties and storage
formats with respect to the access operations and matrix calculations. Access op-
erations have been represented as methods (assign and element) of class Matrix

while matrix calculations have been left without representations. The focus is now

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 102

directed towards the representation of matrix calculations in OOLALA. From the
design of other object oriented libraries, matrix calculations can be represented

as follows:

(a) as methods of class Matrix, or an equivalent name in each library,

(b) as classes, sometimes grouped into inheritance hierarchies, with the param-
eters transformed into attributes and the operation performed through a

method execute, or

(c) as methods of a utility class, where related operations are grouped together.

The following description makes the above representations concrete using the
addition of matrices as an example. The first representation includes a method
called add in class Matrix. This method takes as a parameter an object of class
Matrix and returns a new object of class Matrix. This new object is the addition
of the parameter object and the object in which the method add has been invoked.

The second representation creates a class Add. This class has three attributes
of class Matrix, and, when the method execute is invoked, two of these attributes
are added to form the third one. By using classes, related operations can be
grouped into inheritance hierarchies, such as MatrixOperation; every matrix
operation inherits from MatrixOperation.

Finally, the third representation includes a method called add in a utility class.
A utility class is a class that, despite being fully defined and implemented, cannot
be instantiated. A utility class is a similar concept to a library of subroutines. In
this case, the utility class could be named MatrixOperation. The method add
is declared to have three parameters of class Matrix; two inputs and one output.
Figure 3.24 presents graphically each of the described representations.

The implementations of matrix calculations have different features. These
features divide the calculations into basic matrix operations and solvers of matrix
equations (direct and iterative). The remainder of this section examines the
features of the calculations in order to decide which representation should be
used. The objective is to provide a simple and consistent interface. At the same
time, the interface has to satisfy the requirements of both user groups; experts

and non-experts.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Matrix

Matrix add (Matrix b)

(a) represented as a method
in class Matrix

MatrixOperation

execute()

Add

<<utility>> MatrixOperation

Matrix a
Matrix b
Matrix ¢

add (Matrix a, Matrix b, Matrix c)

(b) represented as a method in
autility class

execute()
Matrix getC()

(c) represented as aclass

Figure 3.24: Different representations of matrix addition.

103

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 104

Basic Matrix Operations

The main feature of basic matrix operations is that, given the storage format
and the matrix properties the implementation has already been decided. In other
words, a set of “if-then” rules can be defined. These rules test the matrix prop-
erties and storage format of the operands and decide the corresponding imple-
mentation. The set of rules define a rule based reasoning system, or a complete
decision tree.

Since an object of class Matrix encapsulates its matrix properties and its
storage format, the reasoning system can be hidden behind the representation of
each basic matrix operation. In this way, users have the impression that there
is only one implementation of each basic matrix operation, although internally
there may be multiple implementations. The interface is simplified in comparison
with the BLAS because the number of visible subroutines for a matrix operation
is reduced to only one visible representation. Moreover, the parameters of a basic
matrix operation representation are no longer each detail of how the operands
are stored, they are simply objects of class Matrix.

Due to the close relation between basic matrix operations and matrices, it is
logical to represent them as methods of class Matrix. For example, the addi-
tion of matrices is an operation with domain and range matrices; it takes two
matrices and produces a third matrix. On the other hand, to represent a basic
matrix operation as a class is artificial, since such an operation is not an obvi-
ous abstraction from numerical linear algebra. Finally, a matrix operation can
be represented as a method of a utility class. This utility class would resemble
the BLAS and thereby users familiar with the BLAS would benefit. This benefit
might be seen as an advantage over the first representation, but it is actually a
signal expressing that this is not an object oriented form.

OoLALA represents basic matrix operations as methods of class Matrix. In
order to reduce execution time and memory requirements two syntaxes (or two
methods) are discussed for a given basic matrix operation. For example, the ma-
trix addition C' <— A+ B can be represented by c=a.add(b) or ¢c.addInto(a,b),
where a, b and ¢ are objects of class Matrix. The method Matrix add(Matrix
b) (c=a.add (b)) takes an object b as a parameter and performs the addition
with the object in which add is invoked. This method returns a new object of
class Matrix, i.e. also a new object Property and a new object StorageFormat.
On the other hand, the method void addInto(Matrix a, Matrix b) performs

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 105

the same operation, but does not return anything. This method performs the
addition in the object in which the method has been invoked. This enables the
method to create new objects only if it is “strictly necessary”. More details about
how the storage formats and properties are managed in OOLALA are described
in Section 4.4.

Figure 3.25 presents the interface of class Matrix including a unary oper-
ation norml (||All;) and two binary operations; addInto (C' < A + B) and
multiplyInto (C' < AB). Table 3.4 offers a list of how matrix operations are

represented in different object oriented linear algebra libraries.

~

Matrix

Number norm1 ()
addInto(Matrix a, Matrix b)
multiplylnto(Matrix a, Matrix b)

Figure 3.25: Class diagram of class Matrix including matrix operations as meth-
ods.

Solvers of Matrix Equations

In contrast with matrix operations, object oriented libraries disagree about how
the operation of solving matrix equations should be represented. Some libraries
represent these operations as methods (solveLinearSystem, solveLeastSquares,
and solveEigenproblem) of class Matrix or as methods of a utility class. These
methods have a parameter representing the solver as an object of class Linear-
SystemSolver, LeastSquareSolver, or EigenProblemSolver. Other libraries
represent the matrix equation itself as a class (LinearSystemEquation, Least-
SquareEquation or EigenProblemEquation) with attributes that are the matri-
ces defining an equation, and the solver as another class (LinearSystemSolver,
LeastSquareSolver, or EigenProblemSolver) with a client relation of class

LinearSystemEquation, LeastSquareEquation or EigenProblemEquation. The

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Library Representation
LAPACK++ (a) and (b)
SparseLib++ (a) and (b)
IML++ (a)
Paladin (a)
JLAPACK (b)

JAMA (a)
Jampack (b) or (c)
OwlPack (a)

MTL and ITL (b)

PMLP (a)
Diffpack (a)
ISIS++ a)
Sparspak-++ or Sparspak90 | —

Oblio and Spindle -

BPKIT (a)

Basic matrix operations represented as methods of a class Matrix are
denoted with “(a)”. Basic matrix operations represented as methods
of a utility class are denoted with “(b)”. Basic matrix operations rep-
resented as classes are denoted with “(¢c)”. Basic matrix operations
not supported by the library are denoted with “~”. Note 1 — IML++
does not provide matrix operations, however it needs a library that
provides them represented as (a). Note 2 — Jampack represents each
matrix operation as a unique utility class and a method similar to
execute. This method instead of using the attributes uses its param-
eters. Depends on the personal interpretation to decide between (b)
or (c).

106

Table 3.4: Representation of basic matrix operations in various object oriented
libraries.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 107

operation of solving a matrix equation is represented by a method solve in the
class representing the solvers. Finally, some other libraries have the same classes
representing solvers but they do not have the classes representing the matrix
equations.

Among these descriptions, the common point is that a solver is presented as
a class. Each solver has different phases and for each phase different algorithms
have been proposed by the numerical linear algebra community. The bridge
pattern ' can be applied again given the structure shown in Figure 3.26.

From an object oriented point of view, there is no argument against repre-
senting matrix equations as classes and the operation of solving a matrix equa-
tion as a method of these classes. Linear algebra defines matrix equations in
terms of basic matrix operations. Hence, it is reasonable to represent them in
a different way, as long as the model remains correct. However, from a con-
sistency point of view, it can be argued that the operation of solving matrix
equations should also be a method (solveLinearSystem, solveLeastSquares,
and solveEigenproblem) of class Matrix. In order to keep the interface simple
for non-expert users, these methods would have a solver as a parameter only
if it is necessary. The solvers would be represented as a class inheriting from
MatrixEquationSolver. OOLALA represents the operation of solving a matrix
equation in this way. Table 3.5 presents the representation of matrix equations
and the operation of solving them in various object oriented libraries. Table 3.6
presents the matrix equations supported by these object oriented libraries.

Once it has been decided how the operation of solving a matrix equation is
represented, the next requirement is to clarify when it is necessary to include
a solver as a parameter, and to model the different kind of solvers: direct and

iterative.

Direct Solvers of Matrix Equations

Direct solvers have different phases and characteristics depending on the prop-
erties of the coefficient matrix. In this discussion, structured matrices (dense,
banded, block banded, block triangular) are distinct from sparse matrices.

A direct solver of a matrix equation with a structured coefficient matrix is

composed of two phases. The first phase performs a factorisation of the coefficient

! The bridge pattern when applied to classes representing algorithms is known as the strategy
pattern([GHIV95] pages 315-324).

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 108

PhaseY AlgorithmP

PhaseY
execute

PhaseY Algorithm1

Solver
solve

PhaselAlgorithmT

Phasel
execute

PhaselAlgorithm1

-

Figure 3.26: Class diagram of general Solver of matrix equations.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Library Operation Matrix Equation
LAPACK++ method in utility class parameters of the method
SparseLib++ method in utility class parameters of the method
and IML++
Paladin method in Matrix parameters of the method
JLAPACK method in a utility class parameters of the method
OwlPack method in Matrix parameters of the method
MTL and ITL method in a utility class parameters of the method
PMLP method in Solver attributes of Solver
Diffpack method in MatrixEquation | class MatrixEquation
ISIS++ method in MatrixEquation | class MatrixEquation
Sparspak-++ or | method in Solver class MatrixEquation
Sparspak90
Oblio and Spin- | method in Solver attributes of Solver
dle
JAMA method in Matrix and | parameters of the method
Solver or attributes of Solver
Jampack method in utility class parameters of the method
BPKIT - -

BPKIT provides block preconditioners and an interface to be used
by iterative algorithms. However, BPKIT does not report how the
iterative algorithms are represented.

Table 3.5: Representation of matrix equations and the operation of solving them
in various object oriented libraries.

109

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

110

Library

Direct Solvers

Structured Matrix

Sparse Matrix

Tterative Solvers

LAPACK++
SparseLib++
and IML++
Paladin
JLAPACK
OwlPack

MTL and ITL
PMLP

Diffpack
ISIS++
Sparspak++ or
Sparspak90
Oblio and Spin-
dle

JAMA

Jampack
BPKIT

(a), (b) and (c)

~—~ |
S

54

—~
&
N N N N

see below

Systems of linear equations are represented as “(a)”.

Least square

problems are represented as “(b)”. Eigenproblems are represented as
“(c)”. Kinds of matrix equations that are not supported by the library

are denoted by

“ »

. BPKIT provides block preconditioners and an

interfaces to be used by iterative algorithms. However, BPKIT does
not report what iterative solvers are supported.

Table 3.6: Solvers of matrix equations provided by various object oriented li-

braries.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 111

matrix, unless it is trivial and efficient to solve (e.g. diagonal matrix or triangular
matrix). The second phase solves the matrix equation using the factorisation.
According to the properties of the coefficient matrix and its storage format a
factorisation and its specialised implementation can be selected. In other words,
a set of “if-then” rules can be defined. These rules test the matrix properties and
storage format of the operands and determine the corresponding implementation.
This set of rules define another rule based reasoning system.

As with matrix operations, behind the methods solveLinearSystem, solve-
LeastSquares, and solveEigenproblem the existence of different factorisations
and their specialised algorithms can be encapsulated. In this way, users have the
impression that there is only one implementation, although internally there are
multiple implementations.

In general, the factorisation phase can be characterised as pivoting or no-
pivoting. This characteristic distinguishes between a factorisation that needs to
check the stability or not. Hence, using method overloading, a method with
different parameters but same name (solveLinearSystem, solveLeastSquares,
and solveEigenproblem) is included. The parameters are the same, except for
an object of class MatrixEquationSolver that will indicate the characteristic of
pivoting or no-pivoting. Table 3.6 presents various object oriented libraries that
provide direct solvers for structured matrix equations.

A direct solver of a linear system of equations with a sparse coefficient matrix
has three different phases. The first phase produces a new ordering of the coef-
ficient matrix in order to conserve the sparsity. The second phase factorises the
re-ordered matrix, and then, the third phase solves the linear system.

The ordering phase can take into account the numerical values of the elements
of a matrix and simulate a factorisation. The ordering algorithms that take
into account the numerical values are called numerical ordering. Other ordering
algorithms that take into account structure but not specific numerical values are
called symbolic ordering. The factorisation phase after a numerical ordering does
not perform pivoting since it has already been calculated. This factorisation
phase knows exactly the fill-in elements and, therefore, the factorisation phase
can use a static storage format. However, the factorisation phase after a symbolic
ordering needs to perform pivoting, possibly creating an unknown number of new
fill-in elements, and therefore a dynamic data structure is necessary.

Table 3.6 presents Spindle and Oblio, and Sparspak+-+ or Sparspak90 as

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 112

object oriented libraries that provide direct solvers for sparse systems of lin-
ear equations. Spindle and Oblio are two complementary libraries as Spindle
provides ordering algorithms (minimum degree algorithms) and Oblio provides
factorisations and for symmetric matrices. Sparspak++ and Sparspak90 are ob-
ject oriented wrappers, C++ and Fortran 90 respectively, of the Sparspak library
([GL79], [GL81)).

Figures 3.27, 3.28, 3.29 and 3.30 present the classes LinearSystemDirect-
Solver, GeneralFactorisation, KindOfPhase and Ordering. LinearSystem-
DirectSolver has two sub-classes, LinearSystemDirectSolverStructuredMatrix
and LinearSystemDirectSolverSparseMatrix, since the phases of solving a lin-
ear system are different for structured matrices and sparse matrices. Linear-
SystemDirectSolverStructuredMatrix is client of class Factorisation which
represents the phases of solving a linear system with a structured matrix. Linear-
SystemDirectSolverSparseMatrix is a client of class KindOfPhase. KindOf-
Phase distinguishes between numerical ordering and factorisation represented as
its sub-class NumericalOrderingAndFactorisation, and symbolic ordering and
factorisation represented as SymbolicOrderingAndFactorisation. Since there is
a dependence between the ordering phase and the factorisation, based on how the
ordering is represented, NumericalOrderingAndFactorisation and Symbolic-
OrderingAndFactorisation are further specialised. Each of these classes is a
client of two classes that represent the factorisation of a sparse matrix and the
ordering. Class Ordering is specialised into SymbolicOrdering and Numerical-
Ordering and then further to take account of the data structure that represents
the ordering. Class GeneralFactorisation is specialised into Factorisation
and SparseMatrixFactorisation. SparseMatrixFactorisation is specialised
for the structure in which the ordering is represented. Class GeneralFactorisation

has as an attribute a boolean flag which indicates if pivoting is to be performed.

Iterative Solvers of Matrix Equations

An iterative solver of matrix equations comprises two phases that are repeat-
edly executed. The first phase is the algorithm itself, while the second phase
is a termination test. The first phase usually requires preconditioning matrices.
These matrices are created from the coefficient matrix in an attempt to make the

algorithm converge in fewer iterations.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 113

Linear SystemSol ver

AN

‘ Linear SystemDir ectSol ver ‘

i
| |

‘ LinearSystemDirectSolverStructuredM atrix ‘ ‘ LinearSystemDirectSol verSparseM atrix

Figure 3.27: Class diagram of class LinearSystemSolver for direct solvers.

Some iterative algorithms are known not to converge for certain matrix proper-
ties. The best combination of a preconditioner and an iterative algorithm cannot
be chosen, practically, only given the properties of the coefficient matrix. Users
need to be able to select the iterative algorithm, the preconditioner, and the
termination test to be used.

Figure 3.31 presents class LinearSystemIterativeSolver. A specific itera-
tive algorithm is represented as a class inheriting from LinearSystemIterative-
Solver. This class is a client of class TerminationTest. A termination test
algorithm is represented as a class that inherits from TerminationTest. A
method test that returns a Boolean is included in TerminationTest. The
create method of sub-class of LinearSystemIterativeSolver takes as param-
eter the matrix defining the linear system of equations. When the algorithm can
be preconditioned another method with the same name create but with other
parameters the preconditioning matrices is included in the class.

A preconditioning matrix is the output of an operation that takes an input
matrix and returns another matrix. Hence, a preconditioner operation is rep-
resented as a method in class Matrix having as parameter an object of class
Preconditioner. Each kind of preconditioner operation is represented as a class
inheriting from Preconditioner.

Table 3.6 presents various object oriented libraries that provide iterative solvers

114

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

deinonushusnuoes ioe X LI NeS feds

donpnusbuisnbulep IO eaewnN

doin1onaishu s NUoIes LoJedpu AU LIBPIO o BN

Te.npnIsHusNUONeS LIoJRX LITeNSS Jeds

TaInpnJSBusNBulBPIO eI 1BWNN

ToINNISBUSNUOES LIoITe-PU BU LBPIO 2D LBLUNN

%

uoIres 1Iojoe-puyBULIBP.IO [20 1BWINN

deJnonushusnuoies ioe-X LI eS feds

donpnusbuisnbuliepIOd1oquiAS

doIn1onisBu s NUO IS LI0Je4pu AU LIBPIOD I oqu IS

To.npnusHusNUOes1I01R X LITe|\BS Jeds

TaInpNnIsHusNBUIBPIOd!0qUIAS

ToANNASBU S NUO TES LI0JJepU YBULBPIOI1|0gW IS

|

Uoes L10Joe 4pUYBU1IBP IO O0WS

|

8seydiopun

Figure 3.28: Class diagram of class Kind0fPhase for direct solvers.

115

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

(@'x)onios (a'x)onios
(d@In1onus)epIOks (doInjonuis)epIORrs
'Ly THeRR0 'y T)eRa10
deJnionis deJnjpnis
T oy
Bunonidop Bunonidop

dpanpNISBusNrUO e LIRS X LI Nes ledS

denonnisBusNTUO Tes o1 X LI NBs eds

|
!

| |

7 de.n1n.nsBu s NUO 1es 1I0JoR 4X LITRARS Jeds 7

7stuo:hmmc.wsco_Hﬁ_hosmu_x:a_zwma% 7

7 uoijes 1ioJe-X iR |ABS Jeds 7

}

7 uoljes|ioloe [e oues) 7

Bunonidop uesjoog

deJninuis geinpnns

q‘xe XU

¥ TEXURN

(@x)enjos (@x)enjos

E'HyT))emal E'syTyeEen

Hi* " T4 ST

Bunonidop Bunonidop

MUOIIESLI0)Ie TUOIES 1I0)Je
(ax)enjos

uoljes|iojoe—

Bunonidop

uo|lyes|iojoe- e RueD)

Figure 3.29: Class diagram of class GeneralFactorisation for direct solvers.

116

(doIn1oNns)epIORh doJn1onuis ganonis (ToIn1onuIs)eplORb
()orni0 T2IN1ONAS TaINPNIS (e)orean
e XURN

deJnionus ToINoNIS

dainpnnsbusnobuspiO e BN TaINPNISBUsNHBULBPIOI 1 [OqUIAS
(dRanonus)JepiOleh (Te.nionus).lepIORb
(e)orealo (eorolo
daJinonis TaInoNIS
doinounnsBusnTbuLepIO e LBWNN TaImonnSbusNTOULBPIOI 1 [OqUIAS

| % % @N

7 donpnasbuisnbuliepioedtiswuny 7 7 TannsbusNBulep IO [edLBWNN 7 7 dennusbuisnbuliepIOdljoquis 7 7 Tan1nsbusNBuIBP IO joqWAS

| | | |
%

7 BulsepIOfeatewnN 7 Buiiep10o1joquiis

v

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

Figure 3.30: Class diagram of class Ordering for direct solvers.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 117

for matrix equations.

3.3 Summary

The analysis and design of an object oriented linear algebra library is the core of
this chapter. Object oriented software construction is proposed and reviewed as
a way of improving the development of linear algebra programs.

The analysis and design has kept in mind the requirements of both users
(experts and non-experts) and library developers. Traditional libraries provide
users with complex interfaces, and library developers are faced with an explosion
of matrix calculation implementations.

From the fact that matrix calculations are defined in terms of matrices and
their dimensions and not in terms of matrix properties and storage formats, cur-
rent object oriented libraries’ designs (Tables 3.1 and 3.2, and Figures 3.12, 3.13,
3.14 and 3.15) do not fully model linear algebra. These libraries do not allow a
matrix to vary its properties during execution time. Consider, for example, the
B + A+ B matrix calculation, where A and B are square matrices of order n, but
A is a dense matrix while B is an upper triangular matrix. After the calculation
is performed, B becomes a dense matrix. A new class structure (Figures 3.16 and
3.17) has been designed that enables a library to manage the storage formats and
to propagate the matrix properties; this is a novel functionality for linear algebra
libraries. In this way, matrices can vary their properties and storage formats
transparently.

The class structure has been extended so that sections of matrices and matri-
ces formed by merging other matrices can be created without the need to replicate
matrix elements and can be used like any other matrix. Hence, the new matrices
(sections and merged) can have any property. By contrast, the reviewed object
oriented libraries (Table 3.1) consider these new matrices to be dense matrices
(Table 3.3).

From the set of reviewed object oriented libraries (Tables 3.1, 3.4 and 3.5),
and from the analysis and design reported in this chapter, the following guidelines

support the creation of simpler interfaces:
e matrices are represented by classes that encapsulate the way they are stored;

e a matrix calculation is represented as a unique visible method, although

118

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA

1S9 LUoTRUIWB |

|

HJeuonIpuoosd

TJouonpuoIBId

7 Tise JUoleu W |

¢

%

JauonIpuods.id

(Msayo uesjoog

MIBA|0SeAIRIe] [WRISAS Jesul T

T/BA|0SBAIRB] |WRAS esul

|

|
¢

1oL UoeULLLB L

JOA|0SBA IR 8] WSISAS fesu

JOA|0S108 J1IqWeIS/AS JesulT

|

(d*e)j0seU0nIpUOIDId

|

XURW

d Jeuonpuodsid
g‘xe XuBN

(%) anjos

BA|0SWeISAS Fesurn

Figure 3.31: Class diagram of class LinearSystemSolver for iterative solvers.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 119

different implementations and a rule based reasoning system that selects

the adequate implementation are hidden behind the visible method; and

e when the reasoning system cannot be defined, the different algorithms, and
not the implementations, are presented as classes and objects of these classes

are passed as parameters.

The reviewed object oriented linear algebra libraries (Table 3.1) provide basic
matrix operations, and solution of matrix equations with iterative and direct
algorithms. However, none of them support all these matrix calculations (Tables
3.4 and 3.6). Following the above guidelines, a library interface that accounts for
all these matrix calculations has been proposed. This class structure, the novel
functionality and the proposed library interface constitute the design of a new
library known as the Object Oriented Linear Algebra LibrAry (OOLALA).

Developers of traditional libraries have benefited from two abstraction levels at
which matrix calculations can be implemented. These abstraction levels reduce
the number of implementations. Matrix abstraction level enables matrices to
be represented and accessed independently of their storage formats. Iterator
abstraction level is an implicit way of traversing matrices. That is, a matrix
is traversed without explicitly expressing the positions of the elements that are
accessed. A matrix iterator is defined so that it accesses only the elements that
can be implied to be nonzero from the matrix properties.

The next chapter adapts OOLALA to a specific object oriented programming
language, Java. The implementation of the novel functionality and the imple-
mentation of matrix calculations using the abstraction levels are also illustrated.
Chapter 5 describes the problems or limits in developing linear algebra programs
based on libraries, either traditional or object oriented.

Readers interested in acquiring more background on object oriented software
construction are recommended to look at [Mey97], [Boo94| and [GHJV95], and, as
introductions to object oriented scientific programming, at [Dub97] and [Nor96].
Modelica ([MEO98], [FE98], [Mod]), and MathObject ([FVHF92], [FEV93], [FA93],
[FVHF95], [AF95], [Obj]) offer an object oriented mathematical language that
allows users to represent equation-based model directly. The projects Over-
ture ([BHQ98], [BCHQ97], [BDH'98], [BHQ99], [OVE]), Pooma ([HKBR9S],
[HRC*98], [KCC*98], [CCH*99], [HC99], [POO]), Cogito ([Ran95], [Ah195], [MOTI7],
[TMO*97], [Cog]), Diffpack ([BL97], [Lan99] , [Dif]) and PETSc ([BGMS97],
[BGMS99], [PET]) have focused on object oriented partial differential equations.

CHAPTER 3. OBJECT ORIENTED LINEAR ALGEBRA 120

Other object oriented linear algebra libraries, such as SLES a library of iterative
solvers of systems of linear equations that is part of PETSc, SMOOTH ([AL96],
[SMO]) an ordering library of sparse matrices, and SPOOLES ([AG99], [SPO]) a
library of direct solvers for sparse linear equations, have not been reviewed since
they are implemented in C (a non object oriented language) and, therefore, their
designs are limited. Other object oriented linear algebra libraries have a different
design objective. For example, LAKe ([NE99]) focuses on using the same code for
sequential and parallel iterative solvers, and Cactus ([McD89]) focuses on finite
dimensional vector spaces instead of matrix algebra. Other object oriented linear
algebra libraries that have not been reviewed in this thesis include TNT ([Poz97],
[TNT]) and some others listed at http://oonumerics.org/oon.

Chapter 4

Implementation of OoLALA

The previous chapter has reported an analysis and design of an object oriented
linear algebra library. The library, OOLALA, has been designed independently
of any programming language. OOLALA offers a novel functionality for libraries:
propagation of matrix properties and management of storage formats. OoLALA
also enables library developers to implement matrix calculations at two abstrac-
tion levels: matrix and iterator abstraction levels. These abstraction levels reduce
the number of implementations of a given matrix calculation.

Matrix abstraction level is independent of the storage format in which ma-
trices are represented. A given matrix element is mapped automatically to the
position of its storage format. Iterator abstraction level, apart from also being
independent of the storage format, traverses matrices without explicitly indicat-
ing the positions of the elements that are accessed. A matrix iterator is defined
so that only the nonzero elements of matrices are accessed.

The objective of this chapter is to describe how OoLALA is adapted and
implemented in Java. At the same time, example programs are presented to
show users how to develop programs using OOLALA.

Firstly, OoLALA is adapted to the specific characteristics of Java (Section
4.1). An example program that declares, creates and initialises matrices, illus-
trates how these are implemented using UML object diagrams (introduced in
the previous chapter) and UML sequence diagrams (introduced in this chapter)
(Section 4.2). Two more example programs show how views (i.e. sections of a
matrix or matrices formed by merging other matrices) are created and how they
are implemented (Section 4.3). The management of storage formats is presented

in conjunction with the propagation of properties (Section 4.4). Finally, matrix

121

CHAPTER 4. IMPLEMENTATION OF OOLALA 122

calculations are implemented at matrix and iterator abstraction levels (Section
4.5).

4.1 Adapting OOLALA to Java

Java is a clean and strongly typed object oriented language. Unlike other lan-
guages (C++, Ada95, ...) which have evolved from their procedural subsets (C,
Ada83, ...), Java was designed to be an object oriented language. Java offers
built in parallelism, a powerful set of classes to develop graphical interfaces and
makes network based applications easy to program.

Java programs are compiled into an intermediate language known as bytecode.
A Java Virtual Machine (JVM) is an interpreter of bytecodes. The JVMs enable
Java programs to be written once and run on any computer (as long as an im-
plementation of a JVM exists for it). Both the language and the JVM have been
fully specified, leaving no details to the discretion of compiler developers.

The Java Grande Forum! (JGF), an open forum to academia, industry or
government, was formed under the belief that “Java has potential to be a better
environment for Grande Applications development than any previous languages
such as Fortran and C++" [Jav98]. The term Grande Application is also defined
“as an application of large-scale nature, potentially requiring any combination of
computers, networks, I/0, and memory”. Numerical linear algebra libraries are
the kernels of most of these applications.

However, Java has some poor characteristics for implementing OOLALA:
e Java does not support multiple inheritance;

e Java does not support generic classes, nor complex numbers as a language

data type, nor light-weight classes; and
e Java specifies a multidimensional array as an array of arrays.

The following paragraphs discuss the problems that these characteristics of
Java cause and the decisions taken to overcome them.

Multiple inheritance has been used in the class structure of OOLALA to model
matrix properties that result from composing other matrix properties. For ex-

ample, class SymmetricBandedProperty inherits from SymmetricProperty and

! Java Grande Forum web site at http://www.javagrande.org/

CHAPTER 4. IMPLEMENTATION OF OOLALA 123

Matrix Property ViewOr StorageFormat ‘

oo] [|

‘ Propertyl...PropertyJ ‘

Figure 4.1: Class diagram of class Property and its sub-classes adapted to Java.

BandedProperty. Since multiple inheritance is not available, every class repre-
senting matrix properties simply inherits from the class Property. Figure 4.1
presents the changes to the Property class inheritance hierarchy.

Ideally, generic classes would be used to develop only one version of OOLALA
independent of the data type of the matrix elements. Users would choose the
data type of the matrix elements and the compiler would generate automatically
the version of OOLALA. Section 3.1.4 described how generic classes can be em-
ulated using inheritance and client relation. The OwlPack linear algebra library
([BK99b], [BK99a], [BKP98]) has been implemented emulating generic classes
by an equivalent class Matrix having a client relation with an abstract class
Number from which Float, ..., Complex classes inherit. OwlPack also has been
implemented by writing one version of the library for each data type. It is re-
ported that the version emulating generic classes is between 4 times and 100 times
slower than writing one version for each data type depending on the benchmark.
In order to close the gap, Budilimé¢ and Kennedy ([BK99b], [BK99a]) propose
interprocedural and interclass compiler optimisation, which are only possible if
the compilation strategy of Java is changed. Currently, the compiler can only
consider one class at the time. On the other hand, JGF proposes the inclusion of
light-weight classes. A light-weight class is a class whose objects are treated by
the compiler and the JVM as variables of a language data type. In response to
this proposal, Sun (owner of Java specification) plans to write a proposal for light-
weight classes [Jav99]. Other projects have experimented with generic classes in
Java ([AFM97], [BMLI7], [OW97]). Given current circumstances, OOLALA is

implemented by developing a version for each data type.

CHAPTER 4. IMPLEMENTATION OF OOLALA 124

Java multidimensional arrays are specified to be an object array that has ob-
jects array. This specification creates a very powerful data structure. Given a
two-dimensional Java array, each of its one-dimensional arrays can be substituted
with different arrays of different sizes. However, this structure does not ensure
that the objects array are continuous in memory and this might result in a poor
memory locality. This structure also needs to perform bound and null object
checks for each dimension since both checks are compulsory in the Java language
specification. This array structure and the precise exception model do not allow
all the compiler optimisation techniques developed for fixed size multidimensional
arrays. The Java exception model specifies that an exception must appear in strict
program order. The above motivated the JGF Numerics Working Group to de-
velop a Java package with multidimensional arrays mapped into one-dimensional
Java arrays. This package was developed by the IBM’s Ninja group? [MMG99],
which at the same time developed compiler techniques to identify exception-free
code sections. For these exception-free code sections, compiler optimisation tech-
niques developed for Fortran and C can be applied [MMG98]|. The experiments
reported with the array package show an improvement of 15% in MFlops per-
formance when multiplying two matrices using two-dimensional arrays from the
package compared with two-dimensional language arrays [MMG99].

Blount and Chatterjee ([BC99],[BC98]) in their JLAPACK library also store
matrices by mapping them into one-dimensional language arrays. They optimised
this approach by noting that most matrix calculations are implemented with
sequential, stride inc, access to the matrices. This enables the next position in
a one-dimensional language array to be calculated as lastposition + inc instead
ofasi—14(j—1)*n, where 1 <i <nand1 < j < m. Note that a Java
language array has its first element in index 0 and that two-dimensional arrays
are mapped column-wise (as in Fortran). It is reported that LU factorisation on a
Pentium II is around 1.5 times faster and on a Ultra Spark around 3 times faster
than a version obtained using the f2j translator [DDS99] which uses language
two-dimensional arrays ([BC98], [BC99]).

OOLALA represents two-dimensional arrays by mapping them to one-dimen-
sional language arrays in a column-wise form. In order to exploit Blount and

Chatterjee’s array access observation, new methods, incIndexColumn and incIndexRow,

2Ninja group address http://www.research.ibm.com/ninja

CHAPTER 4. IMPLEMENTATION OF OOLALA 125

are included in Matrix. This constitutes the final design modification due to par-

ticular features of Java.

4.2 Declare and Access Matrices

The first step in writing a program is to declare variables. In numerical linear
algebra the variables are mainly matrices. Using OOLALA, users declare objects
of class Matrix. These objects are then given dimensions and properties. The
next step in writing a program is to initialise the variables. In OOLALA, users
access objects of class Matrix using mainly element and assign. Figure 4.2 gives
an example program to declare and initialise matrices.

Figure 4.3 introduces UML sequence diagram notation. A sequence diagram is
a way of representing the life (creation, invocations of methods, and destruction)
of objects over time. Objects are represented by rectangles in which their names
and class names are written underlined. A method invocation is represented as an
arrow with solid head from the object that invokes the method to the object where
the method is invoked. An object (in sequential execution) becomes active when a
method is invoked in it. The time that an object is active is represented by a thin
rectangle under the object. An object remains active while an invoked method
remains unfinished. This does not mean that the flow of control is in this object.
The flow of control is transferred to another object when a method is invoked in
this other object. The flow of control returns when the method is finished. The
arrows represent the transfer of control flow (in sequential execution).

Figure 4.4 presents the sequence diagram for the statements labelled as ac-
tion 1 and action 2 in the example program of Figure 4.2. The first statement
declares an object of class Matrix and the second statement sets the dimension
and property. Users only perceive what is on the left of the object a in Figure
4.4; the methods invoked and objects on its right are not visible to users. Figure
4.5 presents the object diagram after every object Matrix has been declared and
properties have been set. Note that only the object e has requested a specific
storage format. The other storage formats have been selected automatically, see
Section 4.4 for details.

Finally, Figure 4.6 presents the sequence diagram for the statements labelled
as action 3 and action 4 in the example program of Figure 4.2. These are invo-

cations to assign and element methods. Again, users only perceive what is on

CHAPTER 4. IMPLEMENTATION OF OOLALA 126

class DeclareAndAccessMatrices
{
public static void main(String args[])
// how to declare and set properties
{
// begin declare matrices
Matrix a = new Matrix(); // action 1
Matrix b = new Matrix(); Matrix c = new Matrix();
Matrix d = new Matrix(); Matrix e = new Matrix();
// end declare matrices
double temp;

// begin set matrices properties
a.setDenseMatrix(10,15); // action 2

// numRows=10 and numColumns=15
b.setBandedMatrix(20,30,2,1);

// numRows=20, numColumns=30,

// numUpperBandwidth=2 and numLowerBandwidth=1
c.setSymmetricMatrix(15);

// numRows=15 and numColumns=15
d.setSymmetricBandedMatrix(15,3);

// numRows=15, numColumns=15,

// numUpperBandwidth=3 and numLowerBandwidth=3
e.setBandedMatrix(100,100,50,65,00LalaStorageFormat .denseFormat ()) ;

// numRows=100, numColumns=100

// numUpperBandwidth=50 and numLowerBandwidth=65

// requested dense format
// end set matrices properties

// begin access matrices
a.assign(8,6,3.14159); // action 3
temp=a.element(8,6); // action 4
// end access matrices
}// end main
}// end class DeclareAndAccessMatrices

Figure 4.2: Example program of how to declare and access matrices using
OoLALA.

CHAPTER 4. IMPLEMENTATION OF OOLALA

|

Time |

objectA : ClassA objectB : ClassB :

T T :
| |

methodX ! |

<<create>> objectC : ClassC |

T N 1

- |

o ______ 11 |

S e L | |

methodY I ! |

: methodZ 1 |

|

|

|

|

returnZ :

returny 00000 | <o oo oo oo oo |

”””””””” T |

=0T T ! v

Figure 4.3: UML sequence diagram notation.

main

i AN
actionl | __

AN
action2 | _ _

<<create>>

setDenseMatrix

a: Matrix

<<create>>

pa: DenseProperty

<<create>>

sfa: DenseFormat

127

Figure 4.4: Sequence diagram for declaring a dense matrix using OOLALA.

CHAPTER 4. IMPLEMENTATION OF OOLALA 128

a: Matrix pa: DenseProperty sfa: DenseFormat ‘

b : Matrix pb : BandedProperty sfb : BandFormat ‘

c: Matrix pc : SymmetricProperty

[]]

sfc : UpperPackedFormat ‘

: BandFormat ‘

E

pd : SymmetricBandedProperty

=
8
: S : g :

[

e: Matrix pe : BandedProperty sfe : DenseFormat ‘

Figure 4.5: Object diagram after declaring and setting properties of matrices.

the left of object a in Figure 4.6, the rest occurs transparently.

4.3 Create Views

A view can be either a section of a matrix or a matrix formed by merging other
matrices. Figure 4.7 presents an example program showing how different sections
of matrices can be created. In this program, a 5 x 5 dense matrix A is represented
by an object a of class Matrix. Three matrices represented by three objects
(sectionl, section2 and sectiond) of class Matrix are created as sections of a.
These three matrices do not replicate the matrix elements. Figure 4.8 presents
the sections of the matrix A for each object Matrix. Figure 4.9 presents the
sequence diagram for the program and Figure 4.10 presents the object diagram
after all the sections have been created. Each object of class Matrix has its own
properties, but they share the object of class DenseFormat. This shared object
stores the elements of the matrix A and, consequently, the elements of the defined
sections of A.

A merged matrix is formed by merging other matrices. Figure 4.11 presents an
example program which creates a 5 x 5 block diagonal matrix from its block sub-
matrices. The objects zerol_2, zero2_1 and zero2_2 of class Matrix represent
zero matrices with different dimensions. The objects diagl, diag2 and diag3

of class Matrix represent the block sub-matrices which are on the diagonal of

CHAPTER 4. IMPLEMENTATION OF OOLALA 129

‘ main ‘ ‘ a: Matrix ‘ ‘ pa: DenseProperty ‘ ‘ sfa: : DenseFormat

T T T

N) I I I

-1 a8 1 assign : . :
' assign .

I -

s---------------- = |

N - o | |

; element ! !
g ;
element I

number

number (- T

number S-————- - T I

- - === L | |

I I I

L . I I

Figure 4.6: Sequence diagram for access methods.

class CreateSections
{
public static void main (String args([])
{
// begin declare matrices
Matrix a= new Matrix();
Matrix sectionl= new Matrix();
Matrix section2= new Matrix();
Matrix section3= new Matrix();
// end declare matrices

a.setDenseMatrix(5,5); // set properties
// begin create sections
a.getSubMatrix(sectionl,3,5,3,5);
a.getTranspose(section?2);
a.getUpperTriangularSection(section3);
// end create sections
}// end main
}// end CreateSections

Figure 4.7: Example program of how to create sections of matrices using
OoLALA.

CHAPTER 4. IMPLEMENTATION OF OOLALA 130

aip a2 aiz a4 Ais
Q21 Q22 (23 QA24 Q25 33 (34 G35
31 (32 G33 a34 035 43 Q44 C4p
g1 Q42 (43 Q44 Q45 53 G54 G55
as1 G52 (Gs3 As54 As5
Matrix a Matrix sectionl

aip Q21 azr Aa41 0z ajp a2 aiz a4 Aals
Q12 Q22 Az2 Q42 A52 Qo2 Q23 A4 A5
Q13 Q23 a33 43 As3 33 az4 A35
Q14 Q24 A34 Q44 G54 Q44 Q45
a5 Q25 G35 (A45 055 ass

Matrix section2 Matrix section3

Notation: blanks represent zero elements which cannot be modified.

Figure 4.8: Graphical representation of the sections of matrices and matrices
created in Figure 4.7.

matrix A. Matrix A is represented by an object a of class Matrix formed after
the execution of the statement labelled as action 1. Figure 4.12 describes the
object structure after this statement has been executed. Figure 4.13 presents the
matrices that each object of class Matrix represents.

The object a represents a block diagonal matrix. Looking at the object dia-
gram (see Figure 4.12), the block diagonal matrix is stored as a set of objects of
class StorageFormat. Each object is used for certain block sub-matrices of A. In
general, any matrix can be partitioned into block sub-matrices. Each block can
have different properties and therefore different advisable storage formats. The
class structure of OOLALA enables users to operate transparently with a matrix
that is stored by its blocks, and each block is stored in any advisable storage
format.

Moreover, since the object a is of class Matrix, sections of the matrix repre-
sented by a can be also created regardless of a being stored by its blocks. The
statement labelled as action 2 in Figure 4.11 makes the object section a section
of the matrix represented by a. The object section represents a diagonal matrix
(see Figure 4.13). Hence, the object diagram in Figure 4.14, presents the object

section linked to an object of class DiagonalProperty. Efficient algorithms for

131

7 Ayiadoidrenbuels | seddn : zsd W

ze|nbuell) loddNeb

, , , , , ,
| | ! | | !
| | ! | | L 7
! ! | ! ! ” uonespuyALBdoHUI|
1 1 .
N R e :
I 1
| | ! | \ 7 fyiedoigesueq : gsd 7 | <<aleI>>
| | H | | ”
| | ! | [~~~ "t Tt >l
| | I | - | !
” | N | CO_ﬁvwmmechm‘_._. . gss “) <<9E2I0>> T
, ” ! ” | | asodstres | B
I
” ” ” ” ! F \\\\\\\\\\\\\ =
| | e]
I I
! ! | uonoespUYALBAOIUI|
,
I I
I I
I |
I I
I I
I I
|
I
|
|
|
I
|
|

Uo119855400]4 : TSS

[=7 s Sy T3]

XU : Zuoioes XU : TUONOSS 7 7 XURW ‘e 7 7 upew 7

XURIA : EUONJes

CHAPTER 4. IMPLEMENTATION OF OOLALA

Figure 4.9: Sequence diagram for the sections created in Figure 4.7.

132

CHAPTER 4. IMPLEMENTATION OF OOLALA

[JeBeiors
0T=SMoywnu
OT=sSuwnjopwnu

Tewlogssueq (ejs

Aadoidesuaq :ed

uonoasesodsuel] : €SS

Auadoludesuaq : gsd

XUBA : U003

XURN e

ann=Jeddnsi

uonossenfuen : zss

Auedoidrenbuel | Jaddn : zsd

XU : guondss

g=1se|(
g=lse||
g=aseq(
g=o5eq|

uoN9eS300|g : TSS

Auedoidesuaq : Tsd

XU : TUONOSS

Figure 4.10: Object diagram after the sections have been created in Figure 4.7.

CHAPTER 4. IMPLEMENTATION OF OOLALA 133

class CreateAMergedMatrix
{
public static void main (String[] args)
{
//begin declare matrices
Matrix a= new Matrix();
Matrix zerol_2= new Matrix();
Matrix zero2_1= new Matrix();
Matrix zero2_2= new Matrix();
Matrix diagl= new Matrix();
Matrix diag2= new Matrix();
Matrix diag3= new Matrix();
Matrix section = new Matrix();
//end declare matrices
Matrix array={{diagl,zero2_1,zero2_2},
{zero1_2,diag2,zerol_2},
{zero2_2,zero2_1,diag3}};

// begin set properties
diagl.setDenseMatrix(2,2);
diag2.setDenseMatrix(1,1);
diag3.setLowerTriangularMatrix(2,2);
zerol_2.setZeroMatrix(1,2);
zero2_1.setZeroMatrix(2,1);
zero2_2.setZeroMatrix(2,2);

// end set properties

// create a matrix by merging matrices
a.merge(array); // action 1
// create a section of matrix
a.getSubMatrix(section,2,4,2,4); // action 2
}// end main
}// end CreateAMergedMatrix

Figure 4.11: Example program of how to create a matrix by merging matrices
using OOLALA.

determining the nonzero elements structure, described in [BW99], enable the li-
brary to identify the matrix as being diagonal. In this way, a section of matrix A
or of a set of matrices (block sub-matrices) can be created and used transparently

as a matrix.

4.4 Management of Storage Formats

In all the examples that have been presented, the programs have not specified the

class of storage format, except once (see Figures 4.2, 4.7, and 4.11). However, the

134

CHAPTER 4. IMPLEMENTATION OF OOLALA

Fewlio4paxded Mo : Epss

Ayedoidrenbuens | emo : gpd

ewloAgssueq : ¢pis

xurW : gbeip

Auedoidesueq : gpd

ewlodgesueq : TIPS

XU\ : Zbep

Aedoidesuaq : Tpd

XurW : 1eip

smoyduwinu

suwnjopwnu
[1llo1gjofere
[1[]>oolgiosmoywnu
[1[oolgsosuwinjoowinu
£=uwin|oQusx20|gwnu
£=M0YHU [S¥}20|gwinu

Auedoidosez : Z gzd

XURW : g golz

pable A ew

Auadoidorz i T gzd v‘

XURW : T ¢oslez

Aedoidosez : Z Tzd

XUR : Z T0lZ

Auadoideuobeigyoolg :ed

XU e

Figure 4.12: Object diagram after a matrix has been created by merging matrices

from example program in Figure 4.11.

CHAPTER 4. IMPLEMENTATION OF OOLALA 135

(o) (00)

Matrix zero2_1 zerol_2
0 0 dly; dlqs
0 0 d121 d].gg
Matrix zero2.2 Matrix diagl
d311 0
() <d321 d322>
Matrix diag2 Matrix diag3
dln d]_12 0 0 0
dle; dlos 0 0 0 dlog 0 0
0 0 d211 0 0 0 d211 0
0 0 0 d311 0 0 0 d311
0 0 0 | d321 d3e
Matrix a Matrix section

Figure 4.13: Graphical representation of the matrices created in Figure 4.11.

object diagrams have always presented objects of a sub-class of StorageFormat
(see Figures 4.5, 4.10, and 4.12). OOLALA chooses automatically and stati-
cally a storage format for every matrix. Before invoking any matrix calculation
that changes the matrix elements, OOLALA decides whether the storage for-
mat and properties need to be changed. Consider, for example, the addition
C < A+ B where A and B are tridiagonal matrices and C' is a bidiagonal ma-
trix. After performing the addition C' also becomes tridiagonal. A program using
OoLALA would create objects a, b, ¢ of class Matrix and set the correspon-
dent properties of each matrix. The program would continue with the statement
c.addInto(a,b);; this method invoked in c, would change its linked object of
class BidiagonalProperty by one of class TridiagonalProperty. Depending on
the class of the linked object that represents the storage format, different action
could be taken. Suppose the actual storage format is large enough to store the
extra elements that will be created and it is advisable to have the result matrix
in this storage format, then no action is needed. This would be the case if ¢ were
linked with an object of class DenseFormat. Otherwise (either the storage format

is not large enough or it is not advisable to store the result matrix in that storage

136

CHAPTER 4. IMPLEMENTATION OF OOLALA

ULI0paYJed MO : EPJS _|A Auedougeinbue | emo : gpd xueW\ : gheip
7 Tewogesued : gpis _|A fiedoidesueq : zpd XURW : ZBeip
7 Tewlo4esueq : TPS _|A Apdoidesueq : Tpd XURW : T6eip

SMoYwinu
suwinoJwWNu
[1[ls01g)0/e 102
[1[Pioolgosmoywnu

(1[0 g0suwnjoownu
£=uwnjoQu S0 |gwnu

£=MOYU S0 |giNu

7 Auedoidoez : g gzd

XURN : Z ¢olz

pableN ew

7 Aedoidoez : 1 gzd

XURW : T gokz

7 Auedoidoez : g Tzd

I |

XURN : Z T0Z

Ayiadoud euoBeigyoo|g :ed 7

XURN (e

Auedo.deuobeq - sd

y=1se|
y=pe|l
Z=oseq
Z=8seq!

v‘

uonIesSYo0|g 1SS

XL : UONSS

Figure 4.14: Object diagram after a section of matrix, which has been created by

merging matrices, is created — example program in Figure 4.11.

CHAPTER 4. IMPLEMENTATION OF OOLALA 137

Property | Storage Format
de df
ba df or bf
sy upf
sb upf or bf
ut upf
It Ipf
ub upf or bf
b Ipf or bf

Table 4.1: Storage format selected for each matrix property.

format), the linked object representing the storage format would be changed.

The following paragraphs explain how to select a storage format for a certain
property, how to detect inconsistency between properties and storage formats,
and how consistency is recovered. The description is limited to a set of properties
(dense (de), banded (ba), symmetric (sy), symmetric banded (sb), upper triangu-
lar (ut), and lower triangular (1t) properties) and a set of storage formats (dense
(df), band (bf), upper packed (upf) and lower packed (lpf) formats). These prop-
erties and storage formats are those supported in BLAS ([DCHHS88b|, [DCHD90])
and were described in Section 2.2.

The first question to answer is how OOLALA chooses a storage format for a
matrix with certain properties. Table 4.1 presents recommended storage formats
for each matrix property as a set of static “if-then” rules. These rules do not
have an explicit representation in OOLALA; they are included in the code of each
method setPropertyMatrix. For example, inside the code of setDenseMatrix
there is a part that creates an object of class DenseFormat. The rules select,
whenever possible, a storage format which uses the least memory space. Note
that some rules can choose between band format and another format. The band
format is selected when the upper bandwidth and lower bandwidth are less than
half the number of columns and number of rows, respectively. This condition is
an initial guess that needs validation with experiments.

The second question is how to detect inconsistency between matrix properties
and storage formats. An inconsistent situation can only arise when a user sets
a property and an inconsistent storage format, or when a matrix calculation re-

sults in a change of property. The first case is easier to solve. Table 4.2 presents

CHAPTER 4. IMPLEMENTATION OF OOLALA 138

bf upf Ipf
Vv
Vv

<K

Vv
Vv
Vv v

Table 4.2: Consistency between storage formats and matrix properties.

&
L&

the advisable combinations. When a user sets a property and a storage for-
mat (e.g. a.setDenseMatrix(10,10,00LalaStorageFormat.bandFormat()) ;)
OOLALA checks the combination against Table 4.2 and raises an exception of
class NonAdvisablePropertyAndStorageFormatCombination when necessary.

The second case, when a matrix calculation results in a property change,
requires the prediction of the new property of the matrix and the identification
of the circumstances under which each matrix calculation triggers a property
change. Note that a property is considered to be changed even if the property is
the same but some characteristic of the property has been changed. For example,
a banded matrix may remain a banded matrix but with a reduced or increased
bandwidth.

Table 4.3 presents the matrix property of the result matrix from an analysis of
the operand properties for matrix addition. Table 4.4 presents equivalent infor-
mation for matrix-matrix multiplication. These tables are constructed assuming
no knowledge of the numerical values of the elements apart from that implied by
the properties of their matrices.

The prediction of matrix properties for matrix-matrix multiplication and ma-
trix addition is fully determined; the tables represent static “if-then” rules. These
rules use the properties of the operands to decide the property of the result ma-
trix. OOLALA implements them as internal tables that are consulted by the
codes of addInto and multiplyInto.

Having explained how to detect inconsistent combinations of matrix properties
and storage formats, it is now described how to recover consistency; i.e., the
storage format needs to be changed in order to be consistent with the matrix

property. Table 4.5 presents the selection of the new storage format. In the first

CHAPTER 4. IMPLEMENTATION OF OOLALA

0—

2=

4 —
5 —
6 —
7T —

8 —

B
A de ba sy sb ut It ub Ib
de 0o 0 0 0 0O 0 0 O
ba o 1 o 1 1 1 1 1
sy o 0 2 2 0 0 0 O
sb o 1 2 3 1 1 1 1
ut o 1 0 1 4 0 4 1
It o 1 0 1 0 5 1 5
ub o 1 0 1 5 1 6 1
b o 1 o 1 1 4 1 7

c.setDenseMatrix(a.numRows (), a.numColumns())

if (Math.max(a.upperBandwidth(), b.upperBandwidth())

== a.numColumns()-1 && Math.max(a.lowerBandwidth(),
b.lowerBandwidth()) == a.numRows()-1)

{ c.setDenseMatrix(a.numRows(), a.numColumns()) }

else { c.setBandedMatrix(a.numRows(), a.numColumns(),
Math.max(a.upperBandwidth(), b.upperBandwidth()),
Math.max(a.lowerBandwidth(), b.lowerBandwidth())) }
.setSymmetricMatrix(a.numRows())
.setSymmetricBandedMatrix(a.numRows (), a.upperBandwidth())
.setUpperTriangularMatrix(a.numRows (), a.numColumns())
.setLowerTriangularMatrix(a.numRows (), a.numColumns())
.setSymmetricMatrix(a.numRows())
.setUpperTriangularBandedMatrix (a.numRows (),
.numColumns (), Math.max (a.upperBandwidth(),
.upperBandwidth()), 0)
.setLowerTriangularBandedMatrix (a.numRows (),
.numColumns(), 0, Math.max(a.lowerBandwidth(),
.lowerBandwidth()))

oM 0O oMo o0 o0 o000

139

Table 4.3: Rules for determining the properties of the result matrix C' for the
addition of matrices C' <+ A + B.

CHAPTER 4. IMPLEMENTATION OF OOLALA

0—
1—

2 =

c.setDenseMatrix(a.numRows(), b.numColumns())

B
A de ba sy sb ut It ub Ib
de o 0 0 o 0 0 1 1
ba o 1 0 1 0 0 0 O
Sy o 0 0 0 0 0 0 O
sb o 1 0 2 0 0 1 1
ut o 0 0 o0 3 0 3 1
It o 0 0 0O 0 4 1 4
ub o 1 o0 1 3 1 5 1
b 0o 1 0 1 1 4 1 6

if (a.upperBandwidth() + b.upperBandwidth() >=

b.nomColumns()-1 && a.lowerBandwidth() + b.lowerBandwidth()

>= a.numRows()-1)

{ c.setDenseMatrix(a.numRows(), b.numColumns()) }
else {c.setBandedMatrix(a.numRows(), b.numColumns(),
Math.min(a.upperBandwidth() + b.upperBandwidth(),
b.nomColumns()-1), Math.min(a.lowerBandwidth() +
b.lowerBandwidth(), a.numRows()-1)) }

if (a.upperBandwidth()==0 && b.upperBandwidth()==0 &&

a.lowerBandwidth()==0 && b.lowerBandwidth()==0)
{ c.setSymmetricBandedMatrix(a.numRows(), 0) }

else { c.setBandedMatrix(a.numRows(), b.numColumns(),
Math.min(a.upperBandwidth() + b.upperBandwidth(),
.nomColumns()-1), Math.min(a.lowerBandwidth() +
.lowerBandwidth(), a.numRows()-1)) }
.setUpperTriangularMatrix(a.numRows (), b.numColumns())
.setLowerTriangularMatrix(a.numRows (), b.numColumns())
.setUpperTriangularBandedMatrix (a.numRows(),
.numColumns (), Math.min(a.upperBandwidth() +
.upperBandwidth(), b.nomColumns()-1))
.setLowerTriangularBandedMatrix (a.numRows (),
.numColumns () ,Math.min(a.lowerBandwidth() +
.lowerBandwidth(), a.numRows()-1))

oo o oo oo o0 oo

140

Table 4.4: Rules for determining the properties of the resultant matrix C' for the
matrix-matrix multiplication C' < AB.

CHAPTER 4. IMPLEMENTATION OF OOLALA 141

df bf upf Ipf
de df df df
ba bf or df bfor df bf or df
sy upf upf
sb bf or upf bf or upf
utr upf upf
ltr Ipf Ipf
utb bf or upf upf
1th bf or Ipf Ipf

Table 4.5: Storage formats transitions triggered by a new matrix property.

row the current storage format of the matrix is specified, while the new matrix
properties are specified in the first column. In some cases, two different storage
formats can be selected: band format or some other. As before, the band format
is selected when the upper and lower bandwidths are less than half the number
of columns and rows, respectively.

Since views of matrices do not have an explicit storage format, they are treated
as special cases. Views are matrices that are sections of other matrices, or matri-
ces formed by merging other matrices. When a section matrix is operated on and
its property is changed, the property of the matrix of which it is a section might
change and, consequently, its storage format also. These changes are performed
when such situations arise. However, when the matrix that has a section is op-
erated on, a lazy algorithm is implemented. This algorithm updates the matrix
and leaves a signal for the section matrix that is not updated. Only when the
section matrix is used again is its new property updated.

For a matrix formed by merging other matrices, either the matrices or the
merged matrix can be operated on and their properties changed. When a merged
matrix changes its properties, every matrix of which it is formed has to be
adapted. However, when a matrix that forms part of the merged matrix changes
its properties, a lazy implementation can again be used. The merged matrix is
only updated when it is subsequently used.

Other matrix calculations, and techniques for dealing with sparse and block
matrices, are implemented similarly, but following the structure predictions de-
scribed in [Gil94] [Coh99].

CHAPTER 4. IMPLEMENTATION OF OOLALA 142

4.5 Matrix Calculations

A matrix calculation is divided into four phases: select among the implementa-
tions with the appropriate functionality, check correctness of parameters, predict
property of the result matrix, and the specialised implementation of the matrix
calculation. In earlier chapters, the storage format (Section 2.3.3), matrix (Sec-
tion 3.2.1) and iterator (Section 3.2.3) abstraction levels have been introduced.
Matrix and iterator abstraction levels have been introduced as a way of traversing
matrices, but examples of how to implement operations with them have yet to be
presented. These abstraction levels (matrix and iterator) enable library develop-
ers to code fewer implementations, compared with the storage format abstraction
level, but still deal with the same storage formats and matrix properties.

Matrix calculations are only defined for certain (conformable) matrices. For
example, the addition of matrices is only defined for matrices that have the same
numbers of rows and columns. Similarly, the matrix-matrix multiplication C' <
AB is only defined for A being a n x k£ matrix and B a £ x m matrix. These
tests are straightforward to implement and are, therefore, omitted in the following
description. Simply note that the test is performed before any of the instructions
of the matrix calculation implementation are executed. When the test is not
successful an exception is raised and the matrices are left unmodified.

In traditional libraries, users have to select a subroutine that represents an
implementation of the matrix calculation for matrices with certain properties
and certain storage formats. Since OOLALA encapsulates, whenever possible, the
different implementations behind a unique method offered to its users, a selection
algorithm is necessary. The selection algorithm varies with the abstraction level

at which the matrix calculations are implemented.

4.5.1 Implementing at Different Abstraction Levels

Matrix-matrix multiplication is used to describe how matrix and iterator abstrac-
tion levels can reduce the number of implementations compared with storage
format abstraction level. Among the different combinations of storage formats
and matrix properties, the following combinations are selected to illustrate the

abstraction levels for the operation C' + AB:

e A and B are both dense matrices stored in dense format,

CHAPTER 4. IMPLEMENTATION OF OOLALA 143

e A is an upper triangular matrix and B is a dense matrix, both stored in

dense format, and

e A is an upper triangular matrix stored in packed format and B is a dense

matrix stored in dense format.

Figures 4.15 and 4.16 present implementations at storage format abstraction
level. Note that these implementations use two-dimensional language arrays for
the sake of clarity (on the right hand side of Figure 4.15 the same implementation
is presented but the arrays are mapped into one-dimensional language arrays).
Since implementation at this abstraction level requires access to the representa-
tion of the storage format, there is a different implementation for each storage
format.

The matrix abstraction level is independent of the storage formats. Figure
4.17 presents the implementations for the three combinations. Only two imple-
mentations are necessary corresponding to A dense or A upper triangular, and
the only difference between the implementations is the bound on the inner i loop.

The iterator abstraction level is also independent of the storage formats and of
the nonzero element structures. Figure 4.18 presents an implementation in which
the elements are accessed through the method currentElement and nextElement.
Depending on the property of the matrix nextElement accesses different matrix

positions.

4.5.2 Selecting an Implementation

The selection algorithm for implementations at storage format abstraction level
checks the properties and storage formats of the matrices involved in an operation.
The selection algorithm for implementations at matrix abstraction level simply
checks the matrix properties. Finally, the selection algorithm for implementations
at iterator abstraction level checks the mathematical relation matrix properties
(symmetric, positive definite, etc.).

Recall that only certain matrix calculations have a complete decision tree and,
therefore, not all matrix calculations have a selection algorithm implemented. In
these cases, users pass the selection as a parameter (see direct and iterative solvers
of matrix equations, in Section 3.2.4).

Some object oriented libraries follow the guidelines of BLAS and LAPACK

and implement matrix calculations taking into account the properties and storage

CHAPTER 4. IMPLEMENTATION OF OOLALA

144

double aln][k];
double b[k] [m];
double c[n][m];
double temp;
int j,1,1;

for (j=0; j'=m; j++)
{
for (i=0; il=n; i++)
{
c[i]1[j1=0.0;
}// end for
}// end for
for (j=0; j'=m; j++)
{
for (1=0; 1'=k; 1++)
{
temp=b[1][j1;
if (temp!=0.0)
{
for (i=0; i'=n; i++)
{
c[i][j1+=ali] [1]*temp;
}// end for
}// end if
}// end for
}// end for

double al[n*k];
double b[k*m];
double c[n*m];
int j,1,1i;

int column_c=0;
int column_a=0;
int ind_b=0;

int ind_a, ind_c;

for (ind_c=0; ind_c!=n*m; ind_c++)

{

c[ind_c]=0.0;
}// end for
ind_c=0;
for (j=0; j!=m; j++)

{
column_a=0;
for (1=0; 1'=k; 1++)
{
temp=b[ind_b];
if (temp!=0.0)
{
ind_a=column_a;
ind_c=column_c;
for (i=0; i'=n; i++)
{
c[ind_cl+=alind_c]*temp;
ind_c++;
ind_a++;
}// end for
}// end if
column_a+=n;
ind_b++;
}// end for
column_c+=n;
}// end for

Figure 4.15: Implementation of matrix-matrix multiplication C' < AB at storage
format abstraction level where A and B are dense matrices stored in dense format.

CHAPTER 4. IMPLEMENTATION OF OOLALA 145

double a[n][k]; double ap[(n*k)*(nxk)/2+k/2];
double b[k] [m]; double b[k] [m];
double c[n][m]; double c[n] [m];
double temp; double temp;
int j,1,1; int j,1,1i;
for (j=0; j'!'=m; j++) for (j=0; j'!=m; j++)
{ {
for (i=0; i'=n; i++) for (i=0; i!=n; i++)
{ {
c[i1[j1=0.0; cl[il[j1=0.0;
}// end for }// end for
}// end for }// end for
for (j=0; j!=m; j++) for (j=0; jl=m; j++)
{ {
for (1=0; 1!'=k; 1++) for (1=0; 1!=k; 1++)
{ {
temp=b[1][j]1; temp=b[11[j];
if (temp!=0.0) if (temp!=0.0)
{ {
for (i=0; i'=1+1; i++) for (i=0; i!=1+1; i++)
{ {
clil [jl+=alil [1]*temp; c[i]l [j1+=ap[i+1x(1-1) /2] *temp;
}// end for }// end for
}// end if }// end if
}// end for }// end for
}// end for }// end for

Figure 4.16: Implementations of matrix-matrix multiplication C' +— AB at storage
format abstraction level where A is an upper triangular matrix stored in packed
format (right) or dense format (left) and B is a dense matrix stored in dense
format.

CHAPTER 4. IMPLEMENTATION OF OOLALA

146

Matrix a=new Matrix();
Matrix();

Matrix();

Matrix b=new
Matrix c=new
double temp;
int j,1,1i;

a.setDenseMatrix(n,k);
b.setDenseMatrix(k,m);
c.setDenseMatrix(n,k);

for (j=0; j'!'=m; j++)
{
for (i=0; i'=n; i++)
{
c.assign(i,j,0.0);
}// end for
}// end for
for (j=0; j'=m; j++)
{
for (1=0; 1!'=k; 1++)
{
temp=b.element(1,j);
if (temp!=0.0)
{
for (i=0; i'=n; i++)
{
c.assign(i,j,c.element(i,j)
+a.element (i,1)*temp) ;
}// end for
}// end if
}// end for
}// end for

Matrix a=new Matrix();
Matrix();

Matrix();

Matrix b=new
Matrix c=new
double temp;

int j,1,1i;

a.setUpperTriangularMatrix(n,k);
b.setDenseMatrix(k,m) ;
c.setDenseMatrix(n,k) ;

for (j=0; j!=m; j++)
{
for (i=0; i!=n; i++)
{
c.assign(i,j,0.0);
}// end for
}// end for
for (j=0; j!=m; j++)
{
for (1=0; 1'=k; 1++)
{
temp=b.element(1,]j);
if (temp!=0.0)
{
for (i=0; i!=1+1; i++)
{
c.assign(i,j,c.element(i,j)
+a.element (i,1)*temp) ;
}// end for
}// end if
}// end for
}// end for

Figure 4.17: Implementations of matrix-matrix multiplication C' - AB at matrix
abstraction level where A is dense matrix (left) or upper triangular matrix (right)

and B is a dense matrix.

CHAPTER 4. IMPLEMENTATION OF OOLALA 147

Matrix a=new Matrix();
Matrix b=new Matrix();
Matrix c=new Matrix();
double atemp, btemp;
// set properties

b.setColumnWise();
a.setColumnWise();

b.begin();
while (!'b.isMatrixFinished()) // for (j= ...)
{
while (!b.isVectorFinished()) // for (1= ...)
{

b.nextElement () ;
b.currentElement (1,btemp) ;
if (btemp!=0.0)
{
a.beginAt(1,1);
while ('a.isVectorFinished()) // for (i= ...)
{
a.nextElement () ;
a.currentElement (i,atemp) ;
c.assign(i,j,atemp*btemp) ;
}// end while
}// end if
}// end while
b.nextVector(j);
}// end while

Figure 4.18: Implementation of matrix-matrix multiplication C' <— AB at iterator
abstraction level.

CHAPTER 4. IMPLEMENTATION OF OOLALA 148

a: Matrix ‘ ‘ pa: DenseMatrix
: :

norml |
1 norml
I
I N R
: result
result | ==
I
I
I

‘ b : Matrix ‘ ‘ pb : BandedMatrix ‘

i N
1 1 implementation for
rorml H : i banded matrices
|
~ I I
N | |
~ I I
”””””””” ‘ BN ! !
1 implementation for | |
dense matrices

Figure 4.19: Sequence diagram of dynamic binding as a selection of norm1 imple-
mentations.

format of only one matrix. These libraries can implement the selection algorithm
implicitly using the dynamic binding mechanism provided by most object oriented
languages. A simpler unary example || A||; is represented by r=a.norm1 () ; where
a is an object of class Matrix. The object a is linked with an object of a subclass
of Property. The implementation of the selection algorithm is simply to invoke
the method norm1 in the linked object representing the property. The dynamic
binding mechanism would check the class of this object and select the method
that is implemented in this class. Figure 4.19 presents a sequence diagram where
the method norm1 is invoked in two matrices with different properties.

In a more general case, where binary operations are implemented using the
properties and storage formats of both matrices, the selection algorithm has to
be implemented explicitly.

Java offers the possibility of calling subroutines written in other languages
using its Java Native Interface. OOLALA can implement a selection algorithm
that checks if a traditional library supports the combination of matrix properties
and storage formats and then call the subroutine. Even when the combination
of matrix properties and storage format is not supported it remains possible
to always call traditional library subroutines. In this way, OOLALA becomes
simply a wrapper for traditional libraries; users of OOLALA benefit from a simpler
interface, and library developers can save their legacy code and concentrate on

new functionality. Experiences with the Java Native Interface accessing Fortran

CHAPTER 4. IMPLEMENTATION OF OOLALA 149

BLAS and LAPACK have reported similar performance to that achieved by the
Fortran libraries ([BG97], [BC98], [BC99], [GFHM98], [GGMS99)).

4.6 Summary

The implementation of OOLALA is the core of this chapter. The OOLALA’s
design has been modified so that:

e the Property inheritance class hierarchy does not use multiple inheritance

to model composed properties, such as symmetric banded;
e a version of OOLALA is created for each numerical data type; and

e two-dimensional arrays are implemented by mapping them to one-dimensional

Java language arrays.

Example programs have been presented showing how matrices and views are
created and initialised. Users can specify the storage format for each matrix and
can also rely on the library which can automatically select the storage format
according to the matrix properties. UML object diagrams and sequence diagrams
illustrate the implementations.

The management of storage formats requires the propagation of properties,
and is implemented by checking the consistency between the property and storage
format of a given matrix. Consistency is checked when matrices are created (users
having specified a storage format) and when matrices are operated on as their
properties may vary.

A matrix calculation in OOLALA is divided into checking correctness of pa-
rameters, propagating the properties, selecting an implementation and imple-
menting the matrix calculation. The implementation of the matrix calculation
can be at storage format, matrix or iterator abstraction levels. Matrix abstraction
level reduces the number of implementations, since this abstraction level is inde-
pendent on storage formats. However, this abstraction level remains dependent
on the matrix properties because the implementations indicate explicitly the ma-
trix position of the elements to be accessed. The iterator abstraction level defines
a matrix iterator that traverses a matrix (column-wise or row-wise) accessing the
nonzero elements. A matrix iterator does not declare explicitly the elements to
be accessed. Thus, for this abstraction level, the number of implementations is

reduced to the number of mathematical matrix properties.

CHAPTER 4. IMPLEMENTATION OF OOLALA 150

Obviously, the selection algorithm varies depending on the abstraction level
at which matrix calculations are implemented. OOLALA can become an object
oriented interface, or a wrapper, of traditional libraries if the selection algorithm
always selects subroutines of these libraries. OOLALA can be also a hybrid
library where some matrix calculations are implemented at iterator abstraction
level while others are implemented at storage format abstraction level.

The next chapter analyses circumstances under which the propagation of prop-
erties and the management of storage formats can fail, or be inefficient. It also
presents situations where users have to choose among semantically equivalent
matrix calculations with different execution times. These situations are either
not solved by libraries or it is unusual for libraries to address them.

Experiences of matrix properties propagation and of automatic storage for-
mat management by compilers have been reported in [Bik96], [BW96], [Mar97]
and for Matlab in [GMS92]. Comparisons between implementations at iterator
abstraction level and implementations at storage format abstraction level have
been reported in [SLI8b|, [SLI8c]|, [SLI8al, [SLI9], [SLLII] for MTL, which is
written in C++.

Chapter 5
Limits of the Library Approach

This thesis has followed a library approach as the way of improving the develop-

ment of linear algebra programs. An object oriented library that:
e encapsulates storage formats and matrices in classes,

e selects the appropriate implementation of certain matrix calculations given

the properties and storage formats of the matrix operands, and

e is able to manage the storage formats and to propagate matrix properties

(a novel functionality for libraries)

has been designed and described how the library could be implemented.

The objective of this chapter is to investigate the difficulties in developing the
program with minimum execution time; linear algebra libraries, both traditional
and object oriented, cannot solve this challenge.

The difficulties can be in one of two forms. Firstly, different semantically
equivalent matrix expressions that can be implemented yielding different pro-
grams, and the execution times of these programs may be different. The term se-
mantically equivalent is used since it is only when perfect floating point arithmetic
is assumed that the programs are really equivalent. The equivalent expressions
are obtained from the mathematical properties of the matrix operations. The
commutative property of matrix addition (Section 5.1), the associative property
of matrix multiplication (Section 5.2), and the distributive property of matrix
multiplication are discussed.

The second difficulty is directly related to the novel functionality. Examples

are presented to illustrate where a library approach cannot propagate efficiently

151

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 152

the properties through matrix calculations (Section 5.4). It is also described the
problem of selecting the best storage format for each matrix of a program (Section
5.5).

Finally, the chapter provides an overview of a software environment for the
development of linear algebra programs,i.e. a problem solving environment, that
merges the library approach with techniques to address the difficulties identified
(Section 5.6).

5.1 The Best Order Problem

The commutative property of matrix addition states that
A+ B=B+ A. (5.1)

When adding 3 matrices, the commutative property yields the following identities:

A+B+C = A+C+B
= B+A+C
= B+C+A.
= C+A+B
= C+B+A

the number of different ways of representing the addition of 3 matrices is 3x2 = 6.

When the number of matrices is increased up to 4, the commutative property
yields 4! = 24 different representations (ordering of the additions). In general,
when adding n matrices the commutative property yields n! different represen-
tations. Users who want to develop a program that calculates the addition of n
matrices can develop n! different programs; each program corresponds to a differ-
ent order of addition. For example, the addition A+ B+C' can be programmed as
R=(A+B)+C or R=(B+C)+A or R=(C+B)+A or ..., all being semantically equivalent
programs. However, the execution time of each program varies depending on the
order of addition and the properties of A, B and C'.

For example, suppose that A and B are diagonal matrices and C' is a dense
matrix, and all of them are m x m matrices. A specialised program that imple-
ments R=(A+B)+C would use 2m floating point addition instructions, 3m + m?

memory read instructions and 2m? memory write instructions. On the other

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 153

(A+B)+C (C+A)+B
R=A+B R=R+C Total R=C+A R=R+B Total
N+ \+H m+\ E+\
add m m 2m m m 2m
#read | 2m miP4+m mi+3m | m*+m m*+m 2(m*+m)
write | m? m? 2m? m? m? 2m?

Table 5.1: Number of instructions for programs implementing A + B + C' and
C + A+ B, where A and B are m x m diagonal matrices (\) and C'is a m x m
dense matrix (H).

hand, another specialised program which implements R=(C+A)+B would use the
same number of instructions except that the number of memory read instruc-
tions becomes 2(m + m?) (Table 5.1 shows how these counts are obtained). As-
suming constant execution time for memory access, the program implemented as
R=(A+B)+C would be faster as it executes m? —m fewer memory read instructions.

The best order problem is defined as the search for the program that has mini-
mum execution time to calculate an expression of n elements which are combined
by the same commutative binary operation.

The addition of n matrices constitutes a best order problem, and so a search
space of n! possible solutions characterises the addition of n matrices.

In this case, the best order problem can be solved by first selecting the two
matrices which, when added, produce a matrix with the minimum number of
nonzero elements. When more than one pair of matrices produce a matrix with
the minimum number of nonzero elements, the pair that collectively the smallest
number of nonzero elements is selected. In this way the best order problem for
n matrices is solved recursively in terms of the best order problem for n — 1
matrices. The base case occurs when n = 2.

This algorithm needs a mechanism to predict the number of nonzero elements
for the result matrix. Table 4.3 presented the rules when dense and banded
matrices are added. Different prediction algorithms can be used when sparse
matrices are considered. The simplest algorithm makes the worst-case prediction,
that the number of nonzero elements as the sum of the numbers of nonzero
elements of the two added matrices. More sophisticated algorithms would need
to exploit the specific structures of the matrices.

Note that, the best order problem cannot be solved by a library unless a

subroutine (or method) is provided which implements the addition of n matrices.

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 154

This is not the usual case.

5.2 The Best Association Problem
The associative property of matrix multiplication states that

(AB)C = A(BC). (5.2)
When 4 matrices are multiplied, the associative property yields

((AB)C)D = (A(BC))D
— A(B(CD)
(

—~

I
s

Each representation is formed dividing the 4 matrix multiplication into two
subsets by introducing parenthesis (e.g. (AB)(CD) or (A)(BCD)). When a
subset has only one or two matrices, that subset is a base case. Otherwise, the
subset is recursively subdivided until a base case subset is found.

Let ANI(n) be the number of ways of representing the multiplication of n
matrices (i.e., the association of the n — 1 matrix multiplications). It is straight-
forward to show that ANI(3) = 2, ANI(4) = 6 and, in general, ANI(n) =
S PANI())ANI(n —i). ANI(n) is known as the catalan number ([Slo73],
[PB85]). Other examples of catalan numbers are ANI(5) = 14 and ANI(15) =
2674440.

Each representation is the basis of a different program, and all such pro-
grams are semantically equivalent. However, the execution time of these programs
varies. The variation is due to matrix dimensions and matrix properties. For ex-
ample, consider the matrix multiplication ABC' where A and B are n x n dense
matrices and C' is a n X 1 dense matrix. The association (AB)C performs one
matrix-matrix multiplication (O(n?) floating point operations) and one matrix-
vector multiplication (O(n?) floating point operations). On the other hand, the
association A(BC) performs two matrix-vector multiplications (20(n?) floating
point operations).

The best association problem, also referred to as the chain multiplication

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 155

problem [God73], is defined as the search for the program to calculate an ex-
pression of n elements which are combined by the same binary associative and
non-commutative operation.

The multiplication of n matrices constitutes a best association problem and so
a search space of ANT(n) (catalan numbers) possible solutions characterises the
multiplication of n matrices. Algorithms to solve the best association problem
can be found in [HS82] [HS84] [Coh99].

A library can only solve the best association problem if a subroutine (or
method) is provided which implements the multiplication of n matrices. Again,

this is not the usual case.

5.3 The Maximum Common Factor Problem

The distributive property of matrix multiplication states that
A(B+(C)=AB+ AC. (5.3)

The right hand side of Equation 5.3 implies that the implementation would re-
quire two matrix multiplications and one addition. On the other hand, the left
hand side of Equation 5.3 implies that the implementation would require one mul-
tiplication and one addition. The execution times would be significantly different
and the left hand side of Equation 5.3 would be faster.

The distributive property can be generalised as
ABi+By+---+ By) = AB; + ABy + - - - + ABy,

where A, By, Bs, ..., By, are matrices or combinations of matrix calculations that
produce a matrix. With this generalisation in mind, the mazimum common factor
problem is defined as finding the matrix A, so that the expression A(B; + By +
-+ -+ By) has no further common factors. That is, there is no matrix X, different
from the identity matrix, such that B; = XY; and i =1,2,...,h.

Assuming a language that allows a matrix to be a variable, the maximum
common factor problem can be solved applying standard compiler techniques.
In the first phase, forward substitution is applied to replace variables by their
current expression. This facilitates common subexpression elimination; the com-

mon expression is replaced by an appropriately initialised new variable. Finally,

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 156

A=CxDxH
B=CxD*J

R=A+B

(a) original code
R=C*DxH+CxDx*J

(b) after forward substitution

TEMP=C*D
R=TEMP*H+TEMPx*J

(c) after common subexpression elimination
R=TEMPx* (H+J)

(d) after strength reduction

Figure 5.1: Example of applying standard compiler optimisations in order to solve
the maximum common factor problem.

strength reduction optimisation exploits the distributive property of matrix mul-
tiplication to replace an expensive operation with an equivalent, but less expen-
sive, operation. Figure 5.1 presents the effects of forward substitution, common
subexpression elimination, and strength reduction in a program where the vari-
ables are matrices. The compiler optimisations above described are presented in
more detail by Aho, Sethi and Ullman [ASUS85].

A library can never solve the maximum common factor problem since its
solution requires knowledge about the data flow in a program.

Similar situations arise when AB~1C or A+ B~'C or B~'C need to be com-
puted, where A, B and C are matrices or combinations of matrix calculations that
produce matrices. Calculation of B~!C by forming the inverse matrix is known
to be more time consuming than solving the system of linear equations BX = C
for X. The solution follows exactly the steps defined for solving the maximum
common factor problem, except that the strength reduction rule is different.

A further example is the system of linear equations A;A,... A,z = b where

Ay, Ay, ..., A, are square matrices. Instead of carrying out the chained matrix

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 157

multiplication, with a cost of 2n® + O(n?) floating point operations for each mul-
tiplication, each matrix can be LU-factorised (4; = L;U; and i = 1,2,...,p) at a
cost less than or equal to §n3 + O(n?) floating point operations per factorisation.

The work of Marsolf ([Mar97], [MGG97]) in the Falcon project uses transfor-
mation patterns for interactively restructuring Matlab’s programs. Users define
patterns to be found in a Matlab program and specify how the code matched
with a pattern should be restructured ([Mar97] Chapter 4). These transforma-
tion patterns enable the Falcon environment to apply traditional restructuring
compiler transformations ([Mar97] Chapter 5), such as loop unrolling [BGS94],
and basic algebraic transformations ([Mar97] Chapter 6). Among other basic
algebraic transformations, Marsolf presents a limited solution to the multiplica-
tion of n matrices (best association problem Section 5.2) and a solution to the
example, where the inversion of a matrix is avoided by solving a system of linear
equations, as presented above. Marsolf’s solution to the multiplication of n ma-
trices identifies the vectors and multiplies these first. However, transformation
patterns cannot implement the algorithm presented in [Coh99] for the general
best association problem. This algorithm uses information related to the number
of nonzero elements in rows and columns and this information is not represented
by the transformation patterns. Transformation patterns are able to perform the
strength reductions presented in this section, but Marsolf does not show how
forward substitution or common subexpression elimination can be implemented

with the transformation patterns.

5.4 The Matrix Property Propagation Problem

OoLALA is able to propagate the properties of a matrix through matrix calcula-
tions. However, a library cannot efficiently propagate matrix properties that are
a consequence of the history of previous matrix calculations. For example, the
matrix multiplication AB where A and B are symmetric is known to generate a
dense unsymmetric result matrix. Similarly, the matrix multiplication BA also
generates a dense unsymmetric matrix. Applying the rules of addition, AB+ BA
is the addition of two dense matrices and generates a dense unsymmetric ma-
trix. However, for A and B symmetric, AB + BA is also a symmetric matrix
(AB + (AB)" = AB + BA).

In order to address this problem, a library would have to keep a history for

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 158

each matrix. This history would record the matrix calculations that have been
carried out on each matrix and the parameters’ matrix properties of those matrix
operations. On the other hand, a compiler is able to identify these situations as
long as they can be specified by a set of if-then rules. The implementation is
similar to how a compiler checks the type of an expression; when it detects an
incorrect type, it sends an error message. Similarly, the compiler is checking an
expression of matrices and detects a special situation. Instead of sending an error
message, the compiler changes the matrix properties of the expression. For a
more technical approach to these compiler techniques consult [ASU85] Chapters
4 and 5.

Despite the fact that Marsolf’s work ([Mar97], [MGG97]) in the Falcon envi-
ronment and Bik and Wijshoff’s Sparse Compiler ([Bik96], [BW96], [BBKW98],
[BW99]) propagate matrix properties, they do not identify this problem or present

any solution.

5.5 The Best Storage Format Problem

Matrices can be stored in different storage formats. Table 4.2 presents the ad-
visable combinations of matrix properties and storage formats in the context of
OoLALA. The storage format influences the execution time of implementations
of matrix operations and it determines the memory position where each element
of a matrix is kept. An implementation of a matrix calculation determines a log-
ical access pattern to the matrix elements, which is mapped to a physical access
pattern to the memory. When the storage format is changed, the logical access
pattern to the elements of a matrix remains unchanged, but the physical access
pattern varies. Different physical access patterns have different rates of cache
reuse. Consider, for example, the well-known case of arrays stored row-wise or
column-wise. For this case, compiler optimisation techniques have been devel-
oped to modify the loops so that an array is traversed in the order it is stored in
memory [BGS94].

OOLALA enables users to abstract their programs from the storage formats
and from how the matrix properties are propagated through matrix calculations.
Hence, the structure of a linear algebra program is divided into two parts. The
first part of the program declares the input matrices and their matrix properties

(optionally their storage formats). In the second part, the matrices are operated

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 159

and auxiliary matrices are created to hold intermediate or final results. Before
each matrix calculation is performed, the storage format of the associated ma-
trices can be changed. These storage format changes could be represented by
invocations of mapping methods. These methods would map from a current stor-
age format of a matrix to a specified new storage format. These mapping methods
can be inserted at any point of the program and the semantics of the program
remains unchanged. The program produces the same result (assuming perfect
arithmetic) independently of the number and the location in the program of the
mapping methods. The visible effects of mapping methods are the execution time
and memory requirement. The execution time decreases when the time of execut-
ing the mapping methods added to the time of executing the matrix calculations
with the new storage formats is less than the time of executing the matrix oper-
ations with the previous storage formats; otherwise the execution time increases
(or remains unchanged).

The best storage format problem is defined as the search for the linear algebra
program with the minimum execution time among those programs with equivalent
functionality but with different storage formats.

In general, the solution of the best storage format problem is computationally
infeasible [Mac87]. Bik and Wijshoff have proposed an heuristic to automatically
select the storage format [BW96]; this heuristic is integrated with their Sparse
Compiler and, since it requires knowledge of the instruction flow, it cannot be

included in any library.

5.6 Overview of a Linear Algebra Problem Solv-

ing Environment

Previous sections have presented problems or limits associated with linear alge-
bra libraries. Some of these, for example the best order and the best association
problems, can be solved within a library, but this is unusual. The other prob-
lems, the maximum common factor, the matrix properties propagation and the
best storage format, can only be approached at compile time. These problems
motivate a move from linear algebra libraries to problem solving environments.
A problem solving environment is software, often with graphical user interfaces,
which enables users to develop programs using as the programming language the

problem domain language. A problem solving environment integrates domain

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 160

specific libraries, compiler techniques, artificial intelligence, visualisation and any
other computer science discipline that may help users in developing their pro-
grams [GHR94].

A linear algebra problem solving environment should provide support for,
and encapsulate, the different tasks that users have to perform when developing

a linear algebra program, namely:
(a) describe the problem in terms of matrix calculations,
(b) analyse the matrices to determine their properties,
(c) select a library or libraries which support the calculations and properties,

(d) map the matrix calculations into the implementations provided by the li-

brary,

(e) analyse how the matrix properties are propagated through the matrix op-

erations,

(f) declare the variables conforming to the storage format which is supported

by the selected implementations,

(g) select the best combination of preconditioner and iterative solver for a given

system of linear equations, and

(h) select the best ordering algorithm for a direct solver for a given sparse

system of linear equations.

OOLALA has encapsulated tasks (c) and (f), and, partially, tasks (d) and (e).
This chapter has presented examples of how to help users to efficiently map their
matrix calculations into matrix implementations provided by libraries, i.e. task
(d). To this end, matrix operation properties have been presented as a way of
describing different semantically equivalent programs but with different execution
times. Solutions of the best association problem are proposed by Hu and Ching
[HS82][HS84] and by Cohen [Coh99].

The basis for the solution of the maximum common factor problem is based
on standard compiler optimisation techniques applied to variables of type ma-
trix. Marsolf [Mar97] partially implements some of the solution of the maximum
common factor problem together with solutions to other related problems’ based

on strength reduction.

CHAPTER 5. LIMITS OF THE LIBRARY APPROACH 161

The solution of propagating matrix properties through more than one opera-
tion at each time, i.e. task (e), is based on syntax directed translation [ASUS85|,
a standard compiler technique to parse programming languages.

Automatic detection of nonzero structure, i.e. task (b), has been addressed
by Bik and Wijshoff [BW99]. They have also proposed a heuristic for solving the
best storage format problem [BW96].

The selection of the best combination of preconditioner and iterative solver,
i.e. task (g), together with the best ordering algorithm, i.e. task (h), for sparse

systems of linear equations, remain as open research problem.

Chapter 6
Conclusions

Object oriented linear algebra libraries are proposed as a way of improving the
development process for linear algebra programs. Object oriented software con-
struction offers linear algebra abstraction and encapsulation of implementation
details. Designs for traditional linear algebra libraries are dominated by imple-
mentation details which are visible to the users. As a consequence, the intellectual
distance between a linear algebra description of a problem and its description with
traditional libraries is too large.

An object oriented analysis and design of a linear algebra library has been
conducted, and, as a result, different object oriented models have been proposed.
These models serve to classify a set of object oriented linear algebra libraries.
The object oriented model accepted has features not found in other libraries, and
it enables functionality previously reserved for compilers. Based on the reviewed
object oriented libraries and on the conducted analysis and design, a library
interface has been proposed for basic matrix operations and for the solution of
matrix equations. The object oriented model, the increased functionality and the
interface constitute the design of a new object oriented library.

Libraries offer limited help in developing a linear algebra program; they cannot
identify a sequence of calls (or invocations) and match this with a different but
semantically equivalent (assuming perfect floating point arithmetic) sequence of
calls that could be less time consuming. This thesis has analysed and identified
some of these limits.

The following section explains the above in more detail. The chapter ends
with an evaluation of the limitations of the work presented (Section 6.2) and

suggestions for future work (Section 6.3).

162

CHAPTER 6. CONCLUSIONS 163

6.1 Summary

The numerical linear algebra community has analysed matrices and their cal-
culations in order to find characteristics, i.e. matrix properties, which can be
exploited by the implementations of the operations in order to reduce their exe-
cution times. Matrix properties are characteristics of matrix structures that arise
repeatedly in linear algebra problems. Some of the matrix properties also enable
matrices to be stored in compressed forms (e.g. for a sparse matrix that has 10%
of nonzero elements). The algorithms that exploit the properties and use the data
structures have been implemented in Fortran 77 as subroutines and these subrou-
tines have been grouped into libraries, traditional libraries. For each algorithm
there are as many different implementations as different combinations of advis-
able storage formats for the matrix parameters, and the number of algorithms is
related to the number of combinations of properties for the matrix parameters.
Thus, traditional libraries developers experience an explosion in the number of
implementations and they have to choose which of the different possibilities are
implemented.

The matrix calculations are divided into two groups: basic matrix operations
and solution of matrix equations, some of which have rule based reasoning sys-
tems. These reasoning systems can be implemented as a set of “if-then” rules
based on the properties and storage format of the matrices and decide the ap-
propiate implementation for a matrix calculation.

When developing a linear algebra program with traditional libraries, the non-

trivial tasks that have to be performed are:
e analysis of the properties of matrices,
e selection of the storage formats, and
e selection of the subroutines that deliver the minimum execution time.

Building on a review of existing object oriented linear algebra libraries a new
class structure (see Figures 3.16 and 3.17) has been designed. This class struc-
ture enables a library to manage the storage formats and to propagate the matrix
properties; a novel functionality for linear algebra libraries. In this way, matri-
ces can transparently vary their properties and storage formats when they are

operated on. This class structure and a proposed library interface constitute the

CHAPTER 6. CONCLUSIONS 164

design of a new library known as the Object Oriented Linear Algebra LibrAry
(OoLALA).

Developers of traditional libraries have benefited from two abstraction levels
at which matrix calculations can be implemented. These abstraction levels reduce
the number of implementations. The matrix abstraction level enables matrices
to be represented and accessed independently of their storage formats and the
iterator abstraction level provides an implicit way of traversing matrices.

A matrix calculation in OOLALA is divided into checking the correctness of
the parameters, propagating the properties, selecting an implementation and im-
plementing the matrix calculation. The implementation of the matrix calculation
can be at storage format, matrix or iterator abstraction levels.

Obviously, the selection algorithm varies depending on the abstraction level
at which matrix calculations are implemented. OOLALA can become an object
oriented interface, or a wrapper, of traditional libraries if the selection algorithm
selects always subroutines of these libraries. OOLALA can also be a hybrid
library where some matrix calculations are implemented at iterator abstraction
level while others are implemented at storage format abstraction level.

The thesis concludes by identifying difficulties in developing a linear algebra
program with minimum execution time that linear algebra libraries, both tra-
ditional and object oriented, cannot solve, and suggest that a problem solving

environment [GHR94| might overcome the difficulties.

6.2 Critique

The main omission from the thesis is that it has not been possible to address the
question of how much performance is lost by implementing matrix calculations at
matrix and iterator abstraction levels compared with traditional libraries’ imple-
mentations at storage format abstraction level. However, the main objective was
to create an object oriented design of linear algebra. Due to time constraints, it
has not been possible to implement fully this design.

Further, object oriented libraries have been justified because they are easier
to use than traditional libraries, and this has been supported by clear arguments.
However, a more scientific approach would have used metrics defined by the

software engineering community to justify this claim.

CHAPTER 6. CONCLUSIONS 165

6.3 Future Work

The previous section summarises the immediate future work: an evaluation of
the performance lost when implementing matrix calculations at matrix and it-
erator abstraction levels compared with traditional libraries’ implementations at
storage format abstraction level. Hybrid libraries, where some matrix calcula-
tions are implemented at storage format abstraction level and others at iterator
abstraction level, pose the further question — which matrix calculations should
be implemented at which abstraction level in order to minimise execution time.

Another performance question is whether block algorithms and recursive algo-
rithms ([WD98], [AGK™99]) currently used in implementations at storage format
abstraction level will reduce the execution time of implementations at iterator
and matrix abstraction levels.

This thesis has concentrated on sequential linear algebra programs. A logical
extension is to design and implement OOLALA for parallel programs. Among

others, the issues that need to be addressed are:

e threads sharing objects versus objects communicating and synchronising by

remote method invocation,

e the way in which users take part in the parallelisation process of a linear

algebra program,

e the performance comparison of parallel implementations at iterator and ma-
trix abstraction levels with implementations at storage format abstraction

level,

e the performance of compilers at parallelising implementations at iterator

and matrix abstraction levels,

A long-term objective is the implementation of the outlined linear algebra
problem solving environment for sequential and parallel programs is the objective.

The implementation includes the improvement of current solutions to the tasks:
1. analysis of matrices to determine their properties ([Bik96], [BW99));

2. mapping the matrix calculations into the implementations provided by li-
braries — ([Mar97], [MGG97]);

CHAPTER 6. CONCLUSIONS 166

3. analysis of propagation of matrix properties through matrix operations, —
([Bik96], [BBKW9S8], [Mar97], [MGGIT]);

4. selection of the best combination preconditioner and iterative solver for a

given system of linear equations (open problem); and

5. selection of the best ordering algorithm for a direct solver for a given sparse

system of linear equations (open problem).

Bibliography

[AbbS3]

[ABD*95]

[Abr80]

[ACMW99)

[AF95)

[AFM97]

[AG99]

Rossell J. Abbot. Program design by informal English descriptions.
Communications of the ACM, 26(11):882-894, 1983.

E. Anderson, Z. Bai, C. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostouchov, and S. Sorensen.
LAPACK User’s Guide. SIAM Press, 2! edition, 1995.

Jean-Raymond Abrial. The specification language Z: Syntax and
”semantics”. Technical report, Oxford University Computing Labo-

ratory, Programming Research Group, 1980.

Benjamin A. Allan, Robert L. Clay, Kyran D. Mish, and Alan B.
Williams. ISIS++ Reference Guide: Iterative Scalable Implicit
Solver in C++ wversion 1.1. Sandia National Laboratories Liver-
more, 1999.

Niclas Andersson and Peter Fritzson. Generating parallel code from
object oriented mathematical models. In Proceedings of the 5" ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 48-57, 1995.

O. Agesin, S. Freund, and J. Mitchell. Adding type parameterization
to the Java language. In Proceedings of the Symposium on Object
Oriented Programming: Systems, Languages and Applications, pages
49-65, 1997.

Cleve Ashcraft and Roger Grimes. SPOOLES: An object-oriented
sparse matrix library. In SIAM Conference on Parallel Processing
for Scientific Computing, 1999.

167

BIBLIOGRAPHY 168

[AGK*99]

[Ah195]

[ALO6]

[ANS83]

[AR94]

[Ara89]

[ASMS0]

[ASUS5]

[Aus98|

[Axe94]

[BBCT94]

Bjarne Stig Andersen, Fred Gustavson, Alexander Karaivanov, Jerzy
Wasniewski, and Plamen Y. Yalamov. Lawra — linear algebra with
recursive algorithms. In Proceedings of the Conference on Parallel

Processing and Applied Mathematics, 1999.

Krister Ahlander. An object-oriented approach to construct pde
solvers. Technical Report 197, Department of Scientific Computing,
Uppsala University, 1995.

Cleve Ashcraft and Joseph W. H. Liu. SMOOTH: A Software Pack-
age For Ordering Sparse Matrices, November 1996.

ANSI (American National Standards Institute) and US Goverment
Deparment of Defense. Ada Joint Program Office: Military Standard
— Ada Programming Language, 1983.

Howard Anton and Chris Rorres. Elementary Linear Algebra: Ap-
plications Versions. John Wiley & Sons, 7% edition, 1994.

G. Arango. Domain analysis: From art to engineering discipline.
SISOFT Engineering Notes, 14(3), 1989.

Jean-Raymond Abrial, Stephen A. Schuman, and Bertran Meyer. A
specification language. In R. McNaughten and R.C. Mckeag, editors,
On the Construction of Programs. Cambridge University Press, 1980.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Prin-
ciples, Techniques and Tools. Addison Wesley, 1985.

Matthew H. Austern. Generic Programming and the STL: Using and
Ezxtending the C++ Standard Template Library. Addison Wesley,
1998.

Owe Axelsson. [Iterative Solution Methods. Cambridge University
Press, 1994.

Richard Barrett, Michael Berry, Tony Chan, James Demmel, June
Donato, Jack J. Dongarra, Voctor Eijkhout, Roldan Pozo, Charles
Romine, and Hank van der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. STAM, 1994.

BIBLIOGRAPHY 169

[BBKW98] Aart J. C. Bik, Peter J. H. Brinkhaus, Peter M. W. Knijnenburd, and

[BBVT99]

[BCYS]

[BCYY]

[BCHQY7]

[BDD*95]

[BDH*98]

Harry A.G. Wijshoff. The automatic generation of sparse primitives.
ACM Transactions on Mathematical Software, 24(2):190-225, June
1998.

Lubomir Birov, Yuri Bartenev, Anatoly Vargin, Avijit Purkayastha,
Anthony Skjellum, Yoginder Dandass, and Purushotham Bangalore.
The parallel mathematical libraries project (PMLP) — a next gener-
ation scalable sparse object oriented mathematical library suite. In
Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing, March 1999.

Brian Blount and Siddhartha Chatterjee. An evaluation of Java
for numerical computing. In Denis Caromel, Rodney R. Oldehoeft,
and Marydell Tholburn, editors, Computing in Object-Oriented Par-
allel Environments, Second International Symposium [SCOPE 98,
number 1505 in Lecture Notes in Computer Science, pages 35—46.

Springer-Verlag, 1998.

Brian Blount and Siddhartha Chatterjee. An evaluation of Java for
numerical computing. Scientific Programming, 7(2):97-110, 1999.
Special Issue: High Performance Java Compilation and Runtime

Issues.

David L. Brown, Geoffrey S. Chesshire, William D. Henshaw, and
Daniel J. Quinlan. OVERTURE: An object oriented software system
for solving partial differential equations in serial and parallel envi-
ronments. In Proceedings of the Figth SIAM Conference on Parallel
Processing for Scientific Computing, 1997.

Zhaojun Bai, David Day, James Demmel, Jack Dongarra, Ming Gu,
Axel Ruhe, and Henk van der Vorst. Templates for linear algebra
problems. Lecture Notes in Computer Science, 1000:115-140, 1995.

David L. Brown, Kei Davis, William D. Henshaw, Daniel J. Quin-
lan, and Kristi Brislawn. OVERTURE: Object-oriented parallel
adaptive mesh refinement for serial and parallel environments. In

S. Demeyer and J. Bosch, editors, Object-Oriented Technology —

BIBLIOGRAPHY 170

[BG97]

[BGMS97]

[BGMS99]

[BGS94]

[BHQOS]

[BHQ99)

ECOOP’98 Workshop Reader, volume 1543 of Lecture Notes in Com-
puter Science, pages 446-447. Springer-Verlag, 1998. Workshop on
Parallel Object-Oriented Scientific Computing.

Aart J. C. Bik and Dennis B. Gannon. A note on native level 1 BLAS
in Java. Concurrency: Practice and Ezperience, 9(11):1091-1099,
1997. Special Issue: Java for Computational Science and Engineering

— Simulation and Modelling II.

Satish Balay, William D. Gropp, Lois Curfman Mclnnes, and
Barry F. Smith. Efficient management of parallelism in object ori-
ented numerical software libraries. In E. Arge, A. M. Bruaset, and
H. P. Langtangen, editors, Modern Software Tools in Scientific Com-
puting, pages 163—202. Birkhauser Press, 1997.

Satish Balay, William D. Gropp, Lois Curfman Mclnnes, and
Barry F. Smith. PETSc 2.0 users manual. Technical Report ANL-
95/11 - Revision 2.0.24, Argonne National Laboratory, 1999.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler
transformations for high-performance computing. Computing Sur-
veys, 26(4):345-420, 1994.

David L. Brown, William D. Henshaw, and Daniel J. Quinlan.
OVERTURE: An object-oriented framework for solving partial dif-
ferential equations. In Yutaka Ishikawa, Rodney R. Oldehoeft,
John V.W. Reynders, and Marydell Tholburn, editors, Scientific
Computing in Object-Oriented Parallel Environments, First Inter-
national Conference ISCOPE 97, volume 1343 of Lecture Notes in
Computer Science, pages 177-184. Springer-Verlag, 1998.

David L. Brown, William D. Henshaw, and Daniel J. Quinlan.
OVERTURE: An object-oriented framework for solving partial dif-
ferential equations on overlapping grids. In Michael E. Henderson,
Christopher R. Anderson, and Stephen L. Lyons, editors, Object Ori-
ented Methods for Interoperable Scientific and Engineering Comput-
ing, STAM Proceedings in Applied Mathematics, 1999. Proceedings
of SIAM Workshop on Object Oriented Methods for Interoperable
Scientific and Engineering Computing, October 1998.

BIBLIOGRAPHY 171

[Bik96]

[BK99a]

[BK99b)]

[BKP9S]

[BL97]

[BLA9O]

[BMLI7]

[Bo094|

[BPB*99]

Aart J. C. Bik. Compiler Support for Sparse Matriz Computations.
PhD thesis, Department of Computer Science, Leiden University,
1996.

Zoran Budimli¢ and Ken Kennedy. The cost of being object-oriented:
A preliminary study. Scientific Programming, 7(2):87-96, 1999. Spe-

cial Issue: High Performance Java Compilation and Runtime Issues.

Zoran Budimli¢ and Ken Kennedy. Prospects for scientific comput-
ing in polymorphic object-oriented style. In Proceedings of the Ninth
SIAM Conference on Parallel Processing for Scientific Computing,
March 1999.

Zoran Budimli¢, Ken Kennedy, and Jeff Piper. The cost of being
object-oriented: A preliminary study. In Workshop for Java for
High Performance Network Computing at EUROPAR’98, 1998.

Are Magnus Bruaset and Hans Petter Langatangen. Object-oriented
design of preconditioned iterative methods in Diffpack. ACM Trans-
actions on Mathematical Software, 23(1):50-80, 1997.

BLAS Technical Forum. Document for the Basic Linear Algebra
Subprograms Standard, August 1999. Draft.

Josehp A. Bandk, Andrew C. Myers, and Barbara Liskov. Param-
etized types for Java. In Proceeding of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pages 132-145, 1997.

Grady Booch. Object-oriented analysis and design with applications.

Benjamin Cummings, 1994.

Lubomir Birov, Arkady Prokofiev, Yuri Bartenev, Anatoly Vargin,
Avijit Purkayastha, Yoginder Dandass, Vladimir Erzunov, Elena
Shanikova, Anthony Skjellum, Purushotham Bangalore, Eugeny
Shuvalov, Vitaly Ovechkin, Nataly Frolova, Sergey Orlov, and
Sergey Egorov. The parallel mathematical libraries project (PMLP):
Overview, innovations and design issues. In V. Malyshkin, editor,

Fifth International Conference on Parallel Computing Technologies

BIBLIOGRAPHY 172

[BPK]

[BRJ99)]

[BW96]

[BW99]

[CCH*99]

[CHY6]

[CHYS]

— PaCT’99, number 1662 in Lecture Notes in Computer Science.
Springer-Verlag, 1999.

Computer Science Deparment, University of Minnesota and
Minnesota Supercomputer Institute, and Mathematical Algo-
rithms and Scalable Computing Group, SGI/Cray Research,
Inc. Block Preconditioning ToolKit (BPKIT) web page.
http://www.cs.umn.edu/ chow/bpkit.html.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

Aart J. C. Bik and Harry A. G. Wijshoff. Automatic data struc-
ture selection and transformation for sparse matrix computations.
IEEE Transactions on Parallel and Distributed Systems, 7(2):109-
126, 1996.

Aart J. C. Bik and Harry A. G. Wijshoff. Automatic nonzero struc-
ture analysis. STAM Journal of Computing, 28(5):1576-1587, 1999.

Julian C. Cummings, James A. Crotinger, Scott W. Haney,
Willian F. Humphrey, Steve R. Karmesin, John V.W. Reynders,
Stephen A. Simith, and Timothy J. Williams. Rapid application
development and enhanced code interoperability using the POOMA
framework. In Michael E. Henderson, Christopher R. Anderson,
and Stephen L. Lyons, editors, Object Oriented Methods for Inter-
operable Scientific and Engineering Computing, SIAM Proceedings
in Applied Mathematics, 1999. Proceedings of SIAM Workshop on
Object Oriented Methods for Interoperable Scientific and Engineer-
ing Computing, October 1998.

Edmond Chow and Michael A. Heroux. Block preconditioning
toolkit reference manual. Technical Report UMSI 96/183, University
of Minnesota Supercomputing Institute, September 1996.

Edmond Chow and Michael A. Heroux. An object-oriented frame-
work for block preconditioning. ACM Transactions on Mathematical
Software, 24(2):159-183, 1998.

BIBLIOGRAPHY 173

[Cog]

[Coh99]

[DBMST79]

[DCHDI0]

[DCHHS8a]

[DCHHS88D)

[DDS99)

[DERS6]

[Dif]

[Dij79]

Software tools for High-Performance Computing, Department of Sci-
entific Computing, Uppsala University. Cogito project web page.
http://www.tdb.uu.se/research/swtools/cogito.html.

Edith Cohen. Structure prediction and computation of sparse ma-
trix products. Journal of Combinatorial Optimization, 2(4):307-332,
1999.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LIN-
PACK Users” Guide. STAM Press, 1979.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and lain Duff.
A set of level 3 basic linear algebra subprograms. ACM Transactions
on Mathematical Software, 16:1-17, 1990.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
Richard J. Hanson. Algorithm 656: An extended set of FORTRAN
basic linear algebra subprograms. ACM Transactions on Mathemat-
ical Software, 14:18-32, 1988.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
Richard J. Hanson. An extended set of FORTRAN basic linear al-
gebra subprograms. ACM Transactions on Mathematical Software,
14:1-17, 1988.

David M. Dooling, Jack Dongarra, and Keith Seymour. JLAPACK
— compiling LAPACK FORTRAN to Java. Scientific Programming,
7(2):111-138, 1999. Special Issue: High Performance Java Compila-

tion and Runtime Issues.

I[. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse
Matrices. Oxford Science Publications, 1986.

Numerical Objects A.S. Diffpack web page.

http://www.nobjects.com.

E. Dijkstra. Programming as a human activity. In Classics in Soft-

ware Engineering. Yourdon Press, 1979.

BIBLIOGRAPHY 174

[DKPYS]

[DKP99]

[DLN*94]

[DLPRY6]

[DNS97a]

[DNS97b]

[DNS98]

[DPW93a]

Florin Dobrian, Gary Kumfert, and Alex Pothen. Object-oriented
design for sparse direct solvers. In Denis Caromel, Rodney R.
Oldehoeft, and Marydell Tholburn, editors, Computing in Object-
Oriented Parallel Environments, Second International Symposium
ISCOPE 98, number 1505 in Lecture Notes in Computer Science,
pages 207-214. Springer-Verlag, 1998.

Florin Dobrian, Gary Kumfert, and Alex Pothen. The design of
sparse direct solvers using object-oriented techniques. In A. M. Bru-
aset, H. P. Langtangen, and E. Quak, editors, Advances in Software
Tools for Scientific Computing, volume 10 of Lecture Notes in Com-

putational Science and Engineering. Springer-Verlag, 1999.

Jack Dongarra, Andrew Lumsdaine, Xinhui Niu, Roldan Pozo, and
Karin Remington. Sparse matrix libraries in C++ for high perfor-
mance architectures. In Proceedings of the Conference on Object
Oriented Numerics OON-SKI, pages 122—138, 1994.

Jack Dongarra, Andrew Lumsdaine, Roldan Pozo, and Karin A.
Remington. IML++ v. 1.2: Iterative Methods Library Reference
Guide, 1996.

Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Szymanski.
Expressing object-oriented concepts in Fortran 90. ACM Fortran
Forum, 16(1):13-18, 1997.

Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Szymanski.
How to express C++ concepts in Fortran 90. Scientific Program-
ming, 6(4):363-390, 1997.

Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Szymanski.
How to support inheritance and run-time polymorphism in Fortran
90. Computer Physics Communications, 115:9-17, 1998.

Jack J. Dongarra, Roldan Pozo, and David W. Walker. LA-
PACK++: A design overview of object-oriented extensions for high
performance linear algebra. In Proceedings of Supercomputing 93,
pages 162-171. IEEE Computer Society Press, 1993.

BIBLIOGRAPHY 175

[DPW93b)]

[DPW96]

[Dub97]

[Duf77]

[DW95]

[EGSS82

[FA93]

[FE98]

[FEV93]

Jack J. Dongarra, Roldan Pozo, and David W. Walker. An object
oriented design for high performance linear algebra on distributed

memory architectures. In Proceedings of the Conference on Object
Oriented Numerics OON-SKI, 1993.

Jack Dongarra, Roldan Pozo, and David Walker. LAPACK++ wv.
1.1: High Performance Linear Algebra Users’ Guide, April 1996.

Paul F. Dubois. Object Technology for Scientific Computing.
Prentice-Hall, 1997.

[ain S. Duff. MA28 : A set of FORTRAN subroutines for sparse
unsymmetric linear equations. Technical Report R-8730, HMSO,
AERE Harwell Laboratory, 1977.

Jack J. Dongarra and David W. Walker. Software libraries for lin-
ear algebra computations on high performance computers. STAM
Review, 37(2):151-180, June 1995.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman.
Yale sparse matrix package. International Journal of Numerical
Methods for Engineering, pages 1145-1151, 1982.

Peter Fritzson and Niclas Andersson. Generating parallel code from
equations in the objectmath programming environments. In Jens
Volkert, editor, Parallel Computation, Second International ACPC
Conference, volume 734 of Lecture Notes in Computer Science, pages
219-232. Springer-Verlag, 1993.

Peter Fritzson and Vadim Engelson. Modelica - a unified object-
oriented language for system modeling and simulation. In Eric Jul,
editor, ECOOP’98 — Object-Oriented Programming 12" European
Conference, volume 1445 of Lecture Notes in Computer Science,

pages 67-90. Springer-Verlag, 1998.

Peter Fritzson, Vadim Engelson, and Lars Viklund. Variant han-
dling, inheritance and composition in the ObjectMath computer al-
gebra environment. In Alfonso Miola, editor, Design and Imple-
mentation of Symbolic Computation Systems, volume 722 of Lecture

Notes in Computer Science, pages 145-160. Springer-Verlag, 1993.

BIBLIOGRAPHY 176

[FVHF92)

[FVHF95]

[Ganb9a
[Ganb9b]

[GBDM?77]

[GFHMO3]

[GGMS99]

[GHIV95]

[GHR94]

Peter Fritzson, Lars Viklund, Johan Herber, and Dag Fritzson. In-
dustrial application of object-oriented mathematical modeling and
computer algebra in mechanical analysis. In Georg Heeg, Boris Mag-
nusson, and Bertrand Meyer, editors, Technology of Object-Oriented
Languages and Systems — TOOLS 7, pages 167-181. Prentice Hall,
1992.

Peter Fritzson, Lars Viklund, Johan Herber, and Dag Fritzon. High-
level mathematical modeling and programming. IEEE Software,
12(4):77-87, 1995.

F. R. Gantmacher. The Theory of Matrices Vol. 1. Chelsea, 1959.
F. R. Gantmacher. The Theory of Matrices Vol. 2. Chelsea, 1959.

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matrizx
Eigensystem Routines: FISPACK Guide FExtenston, volume 51 of
Lecture Notes in Computer Science. Springer-Verlag, 1977.

Vladimir Getov, Susan Flynn-Hummel, and Sava Mintchev. High-
performance parallel programming in Java: Exploiting native li-
braries. Concurrency: Practice and FEzperience, 10(11):863-872,
1998.

Vladimir Getov, Paul Gray, Sava Mintcheva, and Vaidy Sunderam.
Multi-language programming environments for high performance
Java computing. Scientific Programming, 7(2):139-146, 1999. Spe-

cial Issue: High Performance Java Compilation and Runtime Issues.

Erich Gamma, Richard Helm, Ralph Johson, and John Vlissides.
Design Patterns: FElements of Reusable Object Oriented Software.
Addison Wesley, 1995.

Estratis Gallopoulos, Elias N. Houstis, and John R. Rice. Com-
puter as thinker/doer: Problem solving environments for computa-

tional science. IEEE Computational Science Engineering Magazine,
1(2):11-23, 1994.

BIBLIOGRAPHY 177

[Gi194]

[GJ95]

[GJPY6]

[GL79]

[GL81]

[GLOY]

[GMS92]

[GodT73]

[Gol91]

[GvLI6]

[HC99)]

John R. Gilbert. Predicting structure in sparse matrix computa-
tions. SIAM Journal of Matriz Analysis and Applications, 15(1):62—
79, 1994.

F. Guidec and J. M. Jézéquel. Polymorphic matrices in paladin.
In Workshop on Object-based Parallel and Distributed Computation
OBPDC, Lecture Notes in Computer Science. Springer-Verlag, 1995.

F. Guidec, J. M. Jézéquel, and J. L. Pacherie. An object-oriented
framework for supercomputing. Systems and Software, June 1996.

Special issue on Software Engineering for Distributed Computing.

Alan George and Joseph W. H. Liu. The design of a user interface
for a sparse matrix package. ACM Transactions on Mathematical
Software, 5:134-162, 1979.

Alan George and Joseph W. H. Liu. Computer Solution of Large
Sparse Positive Definite Systems. Prentice Hall, 1981.

Alan George and Joseph W. H. Liu. An object-oriented approach
to the design of a user interface for a sparse matrix package. SIAM
Journal of Matriz Analisys and Applications, 20(4):953-969, 1999.

John R. Gilbert, Cleve Moler, and Robert Schereiber. Sparse ma-
trices in Matlab: Design and implementation. STAM Journal on
Matriz Analysis and Applications, 13(1):333-356, 1992.

Sadashiva S. Godbole. On efficient computation of matrix chain
products. IEEE Transactions on Computer, C-22(9):864-866, 1973.

David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5-48,
1991.

Gene H. Golub and Charles F. van Loan. Matriz Computations.
John Hopkins University Press, 3" edition, 1996.

Scott Haney and James Crotinger. How templates enable high-
performance scientific computing in C++. IEEE Computing in Sci-
ence and Engineering, 1(4):66-72, 1999.

BIBLIOGRAPHY 178

[Hig96]

[HKBROS]

[HRC98]

[HS82]

[HS84]

[IML]

[1S1]

[ITL]

[Jamal

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM Publications, 1996.

William Humphrey, Steve Karmesin, Federico Basseti, and John
Reynders. Optimization of data-parallel field expressions in the
POOMA framework. In Yutaka Ishikawa, Rodney R. Oldehoeft,
John V.W. Reynders, and Marydell Tholburn, editors, Scientific
Computing in Object-Oriented Parallel Environments, First Inter-
national Conference ISCOPE 97, number 1343 in Lecture Notes in
Computer Science, pages 184-194. Springer-Verlag, 1998.

William Humphrey, Robert Ryne, Timothy Cleand, Julian Cum-
mings, Salman Habib, Graham Mark, and Ji Qiang. Particle beam
dynamics simulations using the POOMA framework. In Denis Car-
omel, Rodney R. Oldehoeft, and Marydell Tholburn, editors, Com-
puting in Object-Oriented Parallel Environments, Second Interna-
tional Symposium ISCOPE 98, number 1505 in Lecture Notes in
Computer Science, pages 25-34. Springer-Verlag, 1998.

Te Chiang Hu and M. T. Shing. Computation of matrix chain prod-
ucts. Part I. STAM Journal on Computing, 11(2):362-373, 1982.

Te Chiang Hu and M. T. Shing. Computation of matrix chain prod-
ucts. Part II. SIAM Journal on Computing, 13(2):228-251, 1984.

Iterative Methods — Library — (IML++) library web page.
http://math.nist.gob/iml++/.

Distributed Applications Research Deparment, Sandia National
Laboratories. Iterative Scalable Implicit Solver in C++ (ISIS++)
web page. http://z.ca.sandia.gov /isis.

Laboratory for Scientific Computing, University of Notre
Dame. Iterative Template Library (ITL) web page.
http://www.lsc.nd.edu/research/itl.

Department of Computer Science, University of Maryland and Math-
ematical and Computations Sciences Division, NIST. Jampack li-

brary web page. ftp://math.nist.gov/pub/Jampack/Jampack.html.

BIBLIOGRAPHY 179

[JAMD]

[Javos]

[Jav99|

[JCI092]

[JLA]

[KCC+9g]

[KP98]

[Kru95]

[LAB*81]

Mathematical and Computations Sciences Division, NIST and The
MathWorks. JAMA library web page. http://math.nist.gov/jama/.

Java Grande Forum. Making Java Work for High-
End Computing, November 1998. available at
http://www.javagrande.org/reports.htm.

Java Grande Forum. Interim Java Grande Forum Report, June 1999.

available at http://www.javagrande.org/reports.htm.

Ivar Jacobson, Magnus Christenson, Patrik Johnson, and Gunnar
Overgaard. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison Wesley, 1992.

Department of Computer Science, University of
North Carolina. JLAPACK library web page.
http://www.cs.unc.edu/Research/HARPOON /jlapack.

Steve Karmesin, James Crotinger, Julian Cummings, Scott Haney,
William Humphrey, John Reynders, Stephen Smith, and Timothy
Williams. Array design and expression evaluation in POOMA II.
In Denis Caromel, Rodney R. Oldehoeft, and Marydell Tholburn,
editors, Computing in Object-Oriented Parallel Environments, Sec-
ond International Symposium ISCOPE 98, number 1505 in Lecture
Notes in Computer Science, pages 231-238. Springer-Verlag, 1998.

Gary Kumfert and Alex Pothen. An object-oriented collection
of minimum degree algorithms. In Denis Caromel, Rodney R.
Oldehoeft, and Marydell Tholburn, editors, Computing in Object-
Oriented Parallel Environments, Second International Symposium
ISCOPE 98, number 1505 in Lecture Notes in Computer Science,
pages 95-106. Springer-Verlag, 1998.

Philippe Kruchten. The 74+41” view model of software architecture.
IEEE Software, 12(6):42-50, November 1995.

Barbara H. Liskov, Russel Atkinson, T. Bloom, E. Moss, J. Craig
Schaffert, R. Scheiffer, and Alan Snyder. CLU Reference Manual.
Springer-Verlag, 1981.

BIBLIOGRAPHY 180

[Lan99)]

[LAP]

[LHKK79]

[Liu90]

[LS95]

[Mac87]

[Mar97]

[Mat]

[McD89)

[MEO93]

[Mey97]

Hans Petter Langtangen. Computational Partial Differential Equa-
tions, Numerical Methods and Diffpack Programming, volume 2 of
Lecture Notes in Computational Science and Engineering. Springer-
Verlag, 1999.

LAPACK++ library web page. http://math.nist.gov/lapack++/.

C. L. Lawson, R. J. Hanson, D. Kincais, and F. T. Krogh. Basic
linear algebra subprograms for fortran usage. ACM Transactions on
Mathematical Software, 5:308-323, 1979.

Joseph W. H. Liu. The role of elimination trees in sparse factoriza-
tion. SIAM Journal of Matriz Analysis and Applications, 11(1):134—
172, 1990.

Meng Lee and Alexander Stepanov. The Standard Template Library.
Technical report, Hewlet Packard Laboratories, 1995.

Mary E. Mace. Memory Storage Patterns in Parallel Processing.
Kluwer Academic Publishers, 1987.

Bret Andrew Marsolf. Techniques for the Interactive Development
of Numerical Linear Algebra Libraries for Scientific Computation.
PhD thesis, University of Illinois At Urbana-Champaign, 1997.

The MathWorks. PRO-MATLAB User’s Guide.

John Alan McDonald. Object-oriented programming for linear al-
gebra. In OOPSLA’89 Conference Proceedings on Object-oriented
Programming Systems, Languages and Applications, pages 175184,
October 1989. Published in ACM SIGPLAN Notices, Vol. 24, No.
10.

Sven Erik Mattsson, Hilding Elmqvist, and Martin Otter. Physi-
cal system modeling with Modelica. Control Engineering Practice,
6(4):501-510, 1998.

Bertrand Meyer. Object Oriented Software Construction. Prentice
Hall, 2" edition, 1997.

BIBLIOGRAPHY 181

IMGGO7]

[MMG98]

[MMGO9]

[MS95]

[MTL]

[Mul97]

[NE99]

Bret Andrew Marsolf, K. A. Gallivan, and E. Gallopoulos. On the
use of algebraic and structural information in a library prototyping
and development environment. In Proceedings 15" IMACS World
Congress on Scientific Computation, Modelling and Applied Mathe-
matics, pages 565-570, 1997.

José E. Moreira, Sam P. Midkiff, and Manish Gupta. From flop
to megaflops: Java for technical computing. In 11th International
Workshop on Languages and Compiler for Technical Computing,
1998.

José E. Moreira, Samuel P. Midkiff, and Manish Gupta. A standard
java array package for technical computing. In Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Com-
puting, March 1999.

Modelica Design Group. Modelica modeling language web page.
http://www.modelica.org/.

Eva Mossberg, Kurt Otto, and Michael Thuné. Object-oriented soft-
ware tools for the construction of preconditioners. Scientific Pro-
gramming, 6:285-295, 1997.

David R. Musser and Atul Saini. STL Tutorial and Reference Guide:
C++ Programming with Standard Template Library. Addison Wes-
ley, 1995.

Laboratory for Scientific Computing, University of Notre
Dame. Matriz Template Library (MTL) web page.
http://www.lsc.nd.edu/research /mtl.

Pierre-Alain Muller. Instan UML. Wrox, 1997.

Eric Noulard and Nahid Emad. Object oriented design for reusable
parallel linear algebra software. In Patrick Amestoy, Philippe Berger,
Michael Daydé, Iain Duff, Valerie Fraysse Luc Giraud, and Daniel
Ruiz, editors, Proceedings Euro-Par’99 Parallel Processing — 5" In-
ternational Euro-Par Conference, number 1685 in Lecture Notes in

Computer Science. Springer-Verlag, 1999.

BIBLIOGRAPHY 182

[Nor96]

[OVE]

[OW97]

[Owl]

[PB85]

[PET]

[PML]

[POO]

[Poz97]

Charles D. Norton. Object-Oriented Programming Paradigms in Sci-
entific Computing. PhD thesis, Department of Computer Science,
Rensselaer Polytechnic Institute, New York, 1996.

Programming Environments Laboratory, Department of
Computer and Information Science, Linkoping Univer-
sity. ObjectMath programming environment web page.

http://www.ida.liu.se/labs/pelab/omath/.

Center for Applied Scientific Computing, Lawrence Liver-
more National Laboratory. Overture framework web page.

http://www.llnl.gov/casc/Overture/.

Martin Odersky and Philip Wadler. Pizza into java: Translating
theory into practice. In Proceeding of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pages 146-159, 1997.

Department of Computer Science, University of Rice. Ob-
jects within the Linear Algebra Package (OwlPack) web page.
http://www.cs.rice.edu/~budimlic/OwlPack.

Paul W. Purdom and Cynthia A. Brown. The Analysis of Algo-
rithms. Holt, Rinehart and Winston, 1985.

Mathematics and Computer Science Division at Argone National
Laboratory. Portable Ezxtensible Toolkit for Scientific Computation
(PETSc) web page. http://www.mces.anl.gov/petsc.

High Performance Computing Laboratory, Mississippi State Uni-
versity. Parallel Mathematical library Project (PMLP) web page.
http://www.erc.msstate.edu/research/labs/hpcl/pmlp/.

Advanced Computing Laboratory, Los Alamos National Labora-
tory. Parallel Object-Oriented Methods and Applications (POOMA)

framework web page. http://www.acl.lanl.gov/Pooma.

Roldan Pozo. Template numerical toolkit for linear algebra: High

performance programming with C++ and the Standard Template

BIBLIOGRAPHY 183

[Pre97]

[PRLO6]

[Ran95]

[Rat97a]

[Rat97h]

[RBYG]

[Ric96]

[Rog93]

[Saa96]

[SBD*76]

Library. The International Journal of Supercomputer Applications
and High Performance Computing, 11(3):251-263, 1997.

Roger S. Pressman. Software Engineering: a Practioner’s Approach.
McGraw Hill, 4 edition, 1997.

Roldan Pozo, Karin A. Remington, and Andrew Lumsdaine.
SparseLib++ v. 1.5: Sparse Matrixz Class Library Reference Guide,
April 1996.

Jarmo Rantakokko. Object-oriented software tools for composite-
grid methods on parallel computers. Technical Report 165, Depart-
ment of Scientific Computing, Uppsala University, 1995.

Rational Software Corporation. Unified Modeling Language:
Notation Guide, version 1.1 edition, 1997. Available at
http://www.rational.com/uml/1.1/.

Rational Software Corporation. Unified Modeling Lan-
guage: Semantics, version 1.1 edition, 1997. Available at
http://www.rational.com/uml/1.1/.

John R. Rice and Ronald F. Boisvert. From scientific software li-
braries to problem solving environments. I[EEE Computational Sci-

ence and Engineering Magazine, pages 44-53, 1996.

John R. Rice. Scalable scientific software libraries and problem solv-
ing environments. Technical report, Computer Science, Purdue Uni-
versity, 1996. TR-96-001.

Rogue Wave Software Inc. First Annual Object Oriented Numerics
Conference, 1993.

Youcef Saad. Iterative Methods for Sparse Linear Systems. PWS,
1996.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe,
V. C. Klema, and C. B. Moler. Matriz eigensystem routines: EIS-
PACK guide., volume 5 of Lecture Notes in Computer Science.
Springer-Verlag, 2" edition, 1976.

BIBLIOGRAPHY 184

[SLI8a|

[SLI8b]

[SLI8c]

[SL99]

[SLL99]

[Slo73]

Jeremy G. Siek and Andrew Lumsdaine. The matrix template li-
brary: A generic programming approach to high performance nu-
merical linear algebra. In Denis Caromel, Rodney R. Oldehoeft,
and Marydell Tholburn, editors, Computing in Object-Oriented Par-
allel Environments, Second International Symposium [SCOPE 98,
number 1505 in Lecture Notes in Computer Science, pages 59-70.

Springer-Verlag, 1998.

Jeremy G. Siek and Andrew Lumsdaine. The matrix template
library: A unifying framework for numerical linear algebra. In
S. Demeyer and J. Bosch, editors, Object-Oriented Technology —
ECOOP’98 Workshop Reader, volume 1543 of Lecture Notes in Com-
puter Science, pages 466—467. Springer-Verlag, 1998. Workshop on
Parallel Object-Oriented Scientific Computing.

Jeremy G. Siek and Andrew Lumsdaine. A rational approach to
portable high performance: The basic linear algebra instruction set
(BLAIS) and the fixed algorithm size template (FAST) library. In
S. Demeyer and J. Bosch, editors, Object-Oriented Technology —
ECOOP’98 Workshop Reader, volume 1543 of Lecture Notes in Com-
puter Science, pages 468-489. Springer-Verlag, 1998. Workshop on
Parallel Object-Oriented Scientific Computing.

Jeremy G. Siek and Andrew Lumsdaine. The matrix template li-
brary: Generic components for high-performance scientific comput-
ing. IEEE Computing in Science and Engineering, 1(6):70-78, 1999.

Jeremy G. Siek, Andrew Lumsdaine, and Lie-Quann Lee. Generic
programming for high performance numerical linear algebra. In
Michael E. Henderson, Christopher R. Anderson, and Stephen L.
Lyons, editors, Object Oriented Methods for Interoperable Scientific
and Engineering Computing, STAM Proceedings in Applied Mathe-
matics, 1999. Proceedings of SIAM Workshop on Object Oriented
Methods for Interoperable Scientific and Engineering Computing,
October 1998.

Neil J. A. Sloane. A Handbook of Integer Sequences. Academic Press,
1973.

BIBLIOGRAPHY 185

[SM8S]

[Ste99]

[T197]

[TMO*97]

[TNT]

[WD9S]

[Wie98]

S. Shlaer and S. Mellor. Object-Oriented Systems Analysis: Modeling
the World in Data. Yourdon Press, 1988.

Sparse Matriz Object-oriented Ordering methods (SMOOTH) web
page. http://www.cs.yorku.ca/ joseph/Smooth/SMOOTH.html.

SparseLib++ library web page. http://math.nist.gov/sparselib++/.

Sparse Object Oriented Linear Equations Solver (SPOOLES) web
page. http://www.netlib.org/linalg/spooles/spooles.2.2.html.

George W. Stewart. Introduction to Matriz Computations. Academic
Press, 1973.

George W. Stewart. The Jampack QOwner’s Manual, 1999.
ftp://thales.cs.umd/pub/Jampack/AboutJampack.html.

Lloyd N. Trefethen and D. Bau III. Numerical Linear Algebra. STAM
Press, 1997.

Michael Thuné, Eva Mossberg, Peter Olsson, Jarmo Rantakokko,
Krister Ahlander, and Kurt Otto. Object-oriented construction of
parallel PDE solvers. In Erlend Arge, Are Magnus Bruaset, and
Hans Petter Langtangen, editors, Modern Software Tools for Scien-
tific Computing, pages 203-226. Birkh&duser, 1997.

Mathematical and Computational Sciences Division, NIST. Tem-
plate Numerical Toolkit (TNT) web page. http://math.nist.gov/tnt /.

R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear
algebra software. In Proceedings of Supercomputing '98. IEEE Press,
1998.

Roel Wieringa. A survey of structured and object-oriented software
specification methods and techniques. ACM Computing Surveys,
30(4):459-527, December 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

