
A�goVista�A Search Engine for Computer Scientists

Christian S� Collberg Todd A� Proebsting
The University of Arizona Microsoft Research

January ��� ����

University of Arizona Computer Science Technical Report
�������

Microsoft Research Technical Report
MSR�TR��������

Department of Computer Science
University of Arizona
Tucson� AZ �	���

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond� WA
��	�

�

A�goVista�A Search Engine for Computer Scientists

Christian S� Collberg

Department of Computer Science�

University of Arizona� Tucson� AZ�

collberg�cs�arizona�edu

Todd A� Proebsting

Microsoft Research�

Redmond� WA�

toddpro�microsoft�com

Abstract

We describe A�goVista� a web�based search engine de�
signed to allow applied computer scientists to clas�
sify problems and �nd algorithms and implementations
that solve these problems� Unlike other search engines�
A�goVista is not keyword based� Rather� users provide
a set of input�output samples that describe the behav�
ior of the problem they wish to classify� This type of
query�by�example requires no knowledge of specialized
terminology� only an ability to formalize the problem�

The search mechanism of A�goVista is based on a
novel application of program checking� a technique de�
veloped as an alternative to program veri�cation and
testing�

� Background

Frequently� working software developers will encounter
a problem with which they are unfamiliar� but which �
they suspect � has probably been treated by the Com�
puter Science theory community� Just as frequently�
theoretical computer scientists will be working on a
problem which they suspect might have a practical ap�
plication�

Unfortunately� the programmer with a problem in
search of a solution and the theoretician with a solu�
tion in search of an application are unlikely to connect
across the geographical and linguistic chasm that often
separate the two� In many organizations working pro�
grammers do not have easy access to a theoretician� and�
when they do� they often �nd communication di
cult�

In this paper we will describe A�goVista� a web�
based� interactive� searchable� and extensible database
of problems and algorithms designed to bring together
applied and theoretical computer scientists� Working
programmers can query A�goVista to look for theoreti�
cal results that are relevant to their current application�
Theoretical computer scientists can extend A�goVista
with problems with which they are familiar� or with ref�
erences to new algorithms they have developed for these
problems�

A�goVista is based on a novel application of a tech�
nique known as program �or result� checking� devel�
oped over the last decade by Manuel Blum and oth�

ers ���������������
� as an alternative to program veri��
cation and testing� Program checking extends programs
with checkers to allow them to verify the correctness of
the results they compute�

��� Two Motivating Episodes

To motivate the need for specialized search engines
for computer scientists� we will consider two concrete
episodes from the experience of the authors�

Working on the design of graph�coloring register al�
location algorithms� Todd showed his theoretician col�
league Sampath Kannan the graphs in Figure ��a��

�Do these graphs mean anything to you�� Todd
asked�

�Sure�� Prof� Kannan replied� �they�re series�
parallel graphs��

This was the beginning of a collaboration which re�
sulted in a paper in the Journal of Algorithms �����

In a similar episode� Christian showed his the�
oretician colleague Clark Thomborson the graph�
transformation in Figure ��b��

�Do you know what I am doing here�� Christian
asked�

�Sure�� Prof� Thomborson soon replied� �you�re
shrinking the biconnected components of the underlying
�undirected� graph��

This result became an important part of a joint pa�
per on software watermarking ����

It�s important to note that� while in both these
episodes the authors �who consider themselves �theory�
challenged�� had a pretty good grasp of the problem
they were working on� they lacked knowledge of the
relevant terminology� Hence� standard keyword�based
search techniques would not have been of much assis�
tance� In these episodes� the theoretical computer sci�
entist provided the crucial problem classi�cation that
allowed the authors to conduct further bibliographical
searches themselves�

��� Interacting with A�goVista

A�goVista� is an online database that stores and codi�
�es problems� algorithms� and combinatorial structures

�AlgoVista�cs�arizona�edu�

Figure �� Some motivating examples and queries�

�a� Series parallel graphs�

s

t

t

s

t

s

t

s

t

s

t

s

t

s

t

s

t

s

�b� Shrinking biconnected components�

�

�c� A topological sorting query

f

�
BBB�

a

c

b

d

�
CCCA ��

h
a d b c, , ,

i

�d� Bipartite graph query�

developed within the Computer Science theory commu�
nity� An applied computer scientist will typically inter�
act with A�goVista by providing input�output samples�
A�goVista will then search its database looking for prob�
lems that map input to output� As a concrete example�
consider the query in Figure ��c�� This query asks�

�Suppose that from the linked structure on
the left of the � I compute the list of nodes
to the right� What function f am I then com�
puting��

A�goVista might then respond with�

�This looks like a topological sort of
a directed acyclic graph� You can
read more about topological sorting at
http���hissa�ncsl�nist�gov��black�
CRCDict�HTML�topologcsort�html� A Java
implementation can be found at http�
��www�math�grin�edu��rebelsky�Courses�
������F�Outlines�outline�	��html��

A�goVista is also able to classify some simple com�

�

binatorial structures� Given the query in Figure ��d��
A�goVista might respond with�

�This looks like a complete bipartite graph�
You can read more about this structure
at http���www�treasure
troves�com�math�
CompleteBipartiteGraph�html��

��� Organization

The remainder of this paper is organized as follows� Sec�
tion � introduces program checking and describes how
checklets �program checkers in A�goVista� are used as
the basic entries in A�goVista�s database� Section �
presents the overall architecture of A�goVista and dis�
cusses relevant security issues� Section � describes the
design of the A�goVista query language and type sys�
tem� Section 	 introduces query transformations that
the system uses to bridge any potential semantic gap
between user queries and checklets� Section � discusses
checklet design issues� Section � describes how advanced
type analysis can speed up searching� and Section � eval�
uates the performance of the search algorithms� Sec�
tion
 discusses related work� and Section ��� �nally�
summarizes our results�

� Program Checking

A�goVista can be seen as a novel application of program
checking� an idea popularized by Manuel Blum and his
students� The idea behind program checking is simply
this� Suppose we are concerned about the correctness
of a procedure P in a program we�re writing� We intend
for P to compute a function f � but we�re not convinced
it does so� We have three choices�

�� We can attempt to prove that P � f over the
entire domain of P � Unfortunately� in spite of
decades of research into program veri�cation� it is
still only feasible to prove the correctness of trivial
programs�

�� We can test that P �x� � f�x�� where x is drawn
from a reasonable domain of test data� The prob�
lem with testing is that the actual distribution of
input data to the program is often either unknown
or prohibitively large�

�� We can include a result checker CPf with the pro�
gram� For every actual input x given to P � the
result checker checks that P �x� � f�x��

We normally require CPf and P to be independent of
each other� i�e� they should be programmed using very
di�erent algorithms� We also want the checker to be
e�cient� To ensure that these conditions are met� it is
generally expected that a result checker CPf should be
asymptotically faster than the program P that it checks�
That is� we expect that if P runs in time T then CPf
should run in time o�T ��

Much theoretical research has gone into the search
for e
cient result checkers for many classes of problems�

In some cases� e
cient result checkers are easy to con�
struct� For example� let P �x� return a factor of the
composite integer x� This is generally thought to be
a computationally di
cult problem� However� check�
ing the correctness of a result returned by P is trivial�
it only requires one division� On the other hand� let
P �x� return a least�cost traveling salesman tour of the
weighted graph x� Checking that a given tour is actu�
ally a minimum�cost tour seems to be as expensive as
�nding the tour itself�

��� Checklets� Result Checkers in A�goVista

The A�goVista database consists of a collection of result
checkers which we call checklets� A checklet typically
takes a user query input�output as input and either
accepts or rejects� If the checklet accepts a query� it also
returns a description of the problem it checks for�

Figure � shows some simple checklets� Simplest of all
is the integer addition checklet intAdd of Figure � �a��
Given the query p��	� ��� ��q the checklet would accept
and return the result �http���www�cs�arizona�edu�
�collberg�IntAdd�html�� Figures � �b� and �c� show
a straightforward �slow� and a more complex �faster�
implementation of a sorting checklet�

Figure � �d�� �nally� shows a particularly interesting
checklet for topological sorting� Any acyclic graph will
typically have more than one topological order� It is
therefore not possible for the checklet to simply run a
topological sorting procedure on the input graph and
compare the resulting list of nodes with the output list
given in the query� Rather� the checklet must� as shown
in Figure � �d�� �rst check that every node in the input
graph occurs in the output node list� and then check
that if node f comes before node t in the output list
then there is no path t� f in the input graph�

In some cases it may be di
cult to construct check�
lets which run in an acceptable length of time� This
is particularly true of NP�hard problems for which it
would seem to be impossible to �nd polynomial time
result checking algorithms� In these cases we may have
to use spot�checking ����� a recent development in result
checking� to check hard problems probabilistically�

Writing checklets for �oating point problems can
also be challenging� For example� which� if any� of
the queries p��� � ��������	���q� p������� � ������q�
and p��� � ���q should a �oating�point square root
checklet accept� In all cases� the right hand side
is an approximation of

p
�� but just how accurate

should the approximation be in order to be accept�
able to the checklet� In our current implementation�
�oating�point comparisons are done in the minimum
precision of any �oating�point number in the input
query� Hence� p��� � ��������	���q will accept �since
��������	���� � ��

� � ��� when comparing
with a precision of one decimal digit�� but p������� �
������q will not �since ������� � ��

�
� �� ������
when comparing with four digits� precision��

�

Figure �� Some simple checklets�

�a� An integer addition checklet�

checklet intAdd ��int a� int b
 � int c

if �a�b
�c then

accept http���www�cs�arizona�edu��collberg�IntAdd�html
else

reject

�b� A slow sorting checklet�

checklet sorting� �int�� input � int�� output

int�� tmp � quicksort�input

if tmp � output then

accept http���hissa�ncsl�nist�gov��black�CRCDict�termsArea�html�sort
else

reject

�c� A faster sorting checklet� Its speed depends on how fast we can compare two multisets for equality� If the
elements are small enough we can use bucket sort in O�n� time� Otherwise� we can use a hashing scheme that
runs in time proportional to the size of the hash table�

checklet sorting� �int�� input � int�� output

if length�input
 �� length�output
 then

reject
for i�� to length�output

� do

if output�i� � output�i��� then
reject

if the multisets input and output don�t contain the same elements then
reject

accept http���hissa�ncsl�nist�gov��black�CRCDict�termsArea�html�sort

�d� A topological sorting checklet�

checklet topologicalSort �Digraph inGraph � Node�� outNodeList

if the nodes of inGraph �� outNodeList then

reject
for �f� t� � the edges of inGraph do

if index of f in outNodeList � index of t in outNodeList then
reject

accept http���hissa�ncsl�nist�gov��black�CRCDict�HTML�topologcsort�html

� System Overview

Points ��� 	� in Figure � show how a typical user
will search A�goVista� A query is submitted through
the A�goVista web page� transferred to the A�goVista
server� and matched against the checklets in the check�
let database �the checklet coop�� The output from any
accepting checklet is transferred back to the client and
presented to the user�

Figure � shows the basic A�goVista search algorithm�
The algorithm is very simple� a query is submitted
to every checklet in the database� and the response
of every accepting checklet is returned� In Section 	
we show that a query may also undergo a set of rep�
resentation transformations prior to being submitted�
These transformations try to compensate for the fact

that user queries and checklets may use di�erent data
representations for the same problem� In Section � we
explore more sophisticated algorithms that speed up
search times signi�cantly�

��� Extending the Database

To extend the database with new problem classi�ca�
tions� a user downloads a checklet template� modi�es
and tests it� and uploads the new checklet into the server
where it is added to the checklet coop� This is illustrated
by points ��� �� in Figure ��

To the best of our knowledge� A�goVista is the �rst
search engine on the web to allow arbitrary users to
upload executable code into its database� Obviously�
there are a number of security issues that have to be
addressed�

	

(
1
,
2
)
=
=
>
3

E
x
a
m
p
l
e
:

T
e
m
p
l
a
t
e

A
d
d

C
h
e
c
k
l
e
t
:

S
e
a
r
c
h

R
e
s
u
l
t
s

(
2
)

I
n
t
e
g
e
r

M
e
a
n

(
1
)

I
n
t
e
g
e
r

S
u
b

(
1
,
3
)
=
=
>
2

Q
u
e
r
y
:

A
l
i
c
e

}
r
e
t
u
r
n

f
a
l
s
e

b
o
o
l
e
a
n

c
h
e
c
k

(
q
u
e
r
y
)

{

}c
l
a
s
s

I
n
t
A
d
d

e
x
t
e
n
d
s

C
h
e
c
k
l
e
t

{

~
/
A
d
d
.
j
a
v
a

c
l
u
c
k

P
a
s
s
w
o
r
d
:

U
p
l
o
a
d

F
i
l
e
:

N
a
m
e
:

R
e
g
i
s
t
e
r

N
a
m
e
:

E
m
a
i
l
:

P
a
s
s
w
o
r
d
:

A
l
i
c
e

a
l
i
c
e
@
c
s

c
l
u
c
k

al
go

vi
st

a.
cs

.a
ri

zo
na

.e
du

B
ro

w
se

r

al
go

vi
st

a.
cs

.a
ri

zo
na

.e
du

B
ro

w
se

r

B
ro

w
se

r

al
go

vi
st

a.
cs

.a
ri

zo
na

.e
du

al
go

vi
st

a.
cs

.a
ri

zo
na

.e
du

B
ro

w
se

r

B
o
b

C
h
e
c
k
l
e
t

C
o
o
p

D
o
n

(
1
,
3
)
=
=
>
2

A
d
d

M
e
a
n

B
i
p
a
r
t
i
t
e

U
n
i
o
n
-
F
i
n
d

S
u
b

S
e
a
r
c
h

E
n
g
i
n
e

(
1
,
3
)
=
=
>
2

C
o
n
t
r
i
b
u
t
o
r
s

(
3
,
1
)
=
=
>
2

A
l
i
c
e

T
r
a
n
s
f
o
r
m
a
t
i
o
n
s

B
ob

A
�
g
oV
is
ta

A
�
g
o
V
is
ta

A
�g
oV
is
ta

A
�
g
oV
is
ta

A
�
g
oV
is
ta

��

��

��

��

��

��

��

F
l
o
a
t
�
I
n
t
�
F
l
o
a
t
�
I
n
t

F
l
i
p
P
a
i
r
�
�a
�b
�
�

�b
�a
�

A
li
ce

F
ig
u
re
�
�
A
li
ce
�
a
th
eo
re
ti
ci
a
n
�
a
n
d
B
o
b
�
a
so
ft
w
a
re
d
ev
el
o
p
er
�
in
te
ra
ct
w
it
h
A
�
g
o
V
is
ta
�
A
t
��
�
B
o
b
su
b
m
it
s
a
se
a
rc
h
q
u
er
y�
A
t
��
�
th
e
q
u
er
y
is
m
u
ta
te
d

in
to
a
se
t
o
f
tw
o
q
u
er
ie
s
b
y
th
e
tr
a
n
sf
o
rm
a
ti
o
n
d
a
ta
b
a
se
�
A
t

��
�
th
e
se
a
rc
h
en
g
in
e
m
a
tc
h
es
th
es
e
q
u
er
ie
s
a
g
a
in
st
th
e
ch
ec
k
le
ts
in
th
e
ch
ec
k
le
t
co
o
p
�

T
h
e
o
u
tp
u
t
o
f
a
n
y
a
cc
ep
ti
n
g
ch
ec
k
le
ts
is
re
tu
rn
ed
to
B
o
b
a
t

	�
�
A
t

��
�
A
li
ce
re
g
is
te
rs
a
s
a
p
o
te
n
ti
a
l
co
n
tr
ib
u
to
r
to
A
�
g
o
V
is
ta
�
A
t

��
�
sh
e
su
b
m
it
s
a
n

ex
a
m
p
le
q
u
er
y
o
f
a
ch
ec
k
le
t
A
d
d
sh
e
in
te
n
d
s
to
w
ri
te
a
n
d
re
ce
iv
es
a
te
m
p
la
te
ch
ec
k
le
t
in
re
tu
rn
�
A
t

��
�
sh
e
m
o
d
i�
es
th
e
te
m
p
la
te
�
a
n
d
u
p
lo
a
d
s
it
to
th
e

ch
ec
k
le
t
co
o
p
�

�

Figure �� Exhaustive search algorithm�

function search �query

q � parse�query

responses � fg
for every combination of query transformations T��T��� � ��� do

q� � T��T��� � � q � � ���
for every checklet c in the coop do

if c accepts q� with response r then
responses � responses � frg

return responses

Figure 	� Evil and stupid checklets�

�a� A checklet that always accepts� returning a bogus URL�

checklet evil� �any � any

accept http���www�quayle�org�

�b� A denial�of�service checklet that steals memory and�or CPU cycles�

checklet evil� �any � any

while true do

Node n � new Node

�c� A checklet that reads from or writes to the local �le system�

checklet evil� �any � any

exec �mail evil�spam�com � �etc�passwd� �bin�rm
R ��

�d� A prime factorization checklet that uses an extremely slow result checking algorithm� although a trivial fast
one exists� The e�ect is identical to that of a denial�of�service attack�

checklet stupid� �int composite � int�� factors

int�� primes � factor�composite
 �� Known factorization algorithms are slow�
if primes � factors then

accept http���www�utm�edu�research�primes
else

reject

�e� A checklet providing a list of accepting examples�

checklet intAdd ��int a� int b
 � int c

examples ����
����� ����
�����
if �a�b
�c then accept � � �

Figure 	 shows some examples of hostile checklets�
Figure 	 �a� shows an overly general checklet evil� that
was uploaded in an attempt to promote someone�s web
site� Regardless of the input query� evil� will always
accept and return a link to the bogus site� Checklet
evil� in Figure 	 �b� launches a denial�of�service at�
tack by stealing as many CPU cycles or as much mem�
ory as possible� Checklet evil� in Figure 	 �c� attempts
to compromise the security of the A�goVista server by
reading from or writing to the local �le system� Check�
let stupid� in Figure 	 �d�� �nally� while not being out�

rightly hostile� uses an extremely slow result checking
algorithm which results in e�ects similar to that of a
denial�of�service attack�

A�goVista checklets are written in Java and are ex�
ecuted with the same security privileges as an applet
would� This allows us to rely on Java�s built�in security
features to prevent checklets from compromising the se�
curity of the A�goVista server�

Denial�of�service attacks ���� are more di
cult to
deal with� While time�outs are used to stop checklets
from stealing too many CPU cycles� as far as we are

�

aware� Java does not provide the means to limit the
dynamic memory allocation of a process�

It is unclear whether there are any strong techni�
cal means to prevent attacks by overly general check�
lets� The same problem plagues keyword search engines
such as AltaVista� to promote their own web�pages un�
scrupulous users will �submit pages with numerous key�
words� or with keywords unrelated to the real content
of the page� ���� Currently� we require every check�
let to provide a list of accepting examples� as shown in
Figure 	 �e�� When a checklet is uploaded A�goVista
ensures that

a� the checklet accepts every one of the example
queries it has provided� and

b� the checklet only accepts a small fraction of all the
example queries provided for all other checklets in
the coop�

While not foolproof� this policy provides a reasonable
level of security�

� The Query Language

To make the use of A�goVista a pleasant experience�
users must be able to easily formalize their queries� This
necessitates the design of a natural and expressive query
language� QL� the A�goVista query language� is essen�
tially a domain�speci�c language where the domain is
very large� users need to be able to express any rea�
sonable mapping between any reasonable literal data
structures�

As is always the case with domain�speci�c languages�
there is a tension between a minimalist syntax �LISP�
like� for example� and a �kitchen�sink� syntax� The
former has a few simple primitives whereas the latter
has many complex primitives� one for each anticipated
use� The minimalist syntax is easy to learn but combin�
ing the primitives into complex sentences �queries� in
our case� can be cumbersome� The kitchen�sink syntax�
on the other hand� has a steeper learning�curve� but
common sentences �those anticipated by the language
designers� are easier to express��

QL is of �medium� complexity� while it has some
kitchen�sink features� there are many data structures
which cannot be expressed directly but have to be con�
structed by combining simple primitives� QL primitives
include integers� �oats� booleans� lists� tuples� atoms�
and links� Links are �directed and undirected� edges
between atoms that are used to build up linked struc�
tures such as graphs and trees� Special syntax was pro�
vided for these structures since we anticipate that many
A�goVista users will be wanting to classify graph struc�
tures and problems on graphs�

Figure ��a� shows the syntax of QL� and Figure ��b�
gives some example queries� In the query in Fig�
ure ��b� �� a pair of integers �� and �� is mapped to
an integer ���� A�goVista returns the result set hBinary

�Our terms �minimalist language� and �kitchen�sink lan�
guage� are equivalent to the terms union�language and
intersection�language coined by Davidson and Fraser ����

or� Integer addi since � � � � � and � j � � �� In the
query in Figure ��b� �� a directed graph is mapped to
a directed graph� Each graph is represented� by conven�
tion� as a pair of a node�list and an edge�list� The query
in Figure ��b� �� asks A�goVista to classify a particu�
lar graph� which turns out to be a strongly connected
directed graph�

Figure ��b� 	�� �nally� shows a query that maps a
pair of vectors to a vector�

p��������������
��������������q�

A�goVista returns the result hList appendi since
append��������������
������������� To arrive at
this result A�goVista �rst swapped the input pair us�
ing a query transformation� We discuss this further in
Section 	�

��� The A�goVista Type System

In Section � we show how type analysis can speed up
A�goVista�s search engine� The idea is to assign a type
signature to every query� checklet� and query transfor�
mation� and only submit a query to a checklet if the
signature of the query matches that of the checklet�

Figure ��a� shows the A�goVista type hierarchy�
Only some of these types are directly expressible in QL�
For example� even though A�goVista has a set type�
there is no concrete QL syntax for sets� Rather� as we
will see in Section 	� query transformations are respon�
sible for inferring a collection of possible types from a
QL query� including that a vector p�������q could rep�
resent the set f�� �� �g� This allows checklets to be very
speci�c about what types of queries they will accept�
and it allows A�goVista users to be very non�speci�c
in how they formulate their queries� For example� an
unsophisticated user might issue the query

p��������������	�
����������	�q

in the search for the set union operation� He is not re�
quired by the A�goVista type system to explicitly state
that the three operands are sets� since he may not even
be familiar with this concept� Rather� he can simply
represent the sets as vectors� A�goVista�s general term
for �collections of objects��

The set union checklet� on the other hand� can spec�
ify explicitly that it will only accept queries that map
two sets to a third set� i�e� that has the signature

Map�Pair�Set�Int
�Set�Int

�Set�Int

�

Type�checking queries and checklets will prevent a
query such as

p��������������	�
����������	�q

from being submitted to the set union checklet since one
of the vectors is not a set�

Figure ��b� shows the mapping from QL queries to
type signatures� Figure ��c� gives some examples�

�

F
ig
u
re
�
�
A
�
g
o
V
is
ta
�s
q
u
er
y
la
n
g
u
a
g
e
a
n
d
ex
a
m
p
le
q
u
er
ie
s�

�a
�
A
g
ra
m
m
a
r
fo
r
Q
L
�
A
�
g
o
V
is
ta
�s
q
u
er
y
la
n
g
u
a
g
e�

S

�
i
n
t
jf
l
o
a
t
jb
o
o
l
j

�

P
ri
m
it
iv
e
ty
p
es
�

S
 �
�
�
!
S
j

�

M
a
p
fr
o
m
in
p
u
t
to
o
u
tp
u
t�

a
t
o
m
�
 �
!
S
�
j

�

N
o
d
e
w
it
h
o
p
ti
o
n
a
l
n
o
d
e
d
a
ta
S
�

a
t
o
m

�
!
�
 �
!
S
�
a
t
o
m
j
�

D
ir
ec
te
d
ed
g
e
w
it
h
o
p
ti
o
n
a
l
ed
g
e
d
a
ta
S
�

a
t
o
m

!
�
 �
!
S
�
a
t
o
m
j
�

U
n
d
ir
ec
te
d
ed
g
e
w
it
h
o
p
ti
o
n
a
l
ed
g
e
d
a
ta
S
�

 �
!
�
S
f
�
!
S
g�
 �
!
j

�

L
is
t
o
f
el
em
en
ts
�

 �
!
S
 �
!
S

!

�

T
u
p
le
o
f
tw
o
el
em
en
ts
�

b
o
o
l

�
 t
r
u
e
!
j
f
a
l
s
e
!

a
t
o
m

�
 a
!
��
�
z
!

d
i
g
i
t

�
 �
!
��
�
�
!

i
n
t

�
d
i
g
i
t
fd
i
g
i
t
g

f
l
o
a
t

�
i
n
t
 �
!
i
n
t

�b
�
E
x
a
m
p
le
Q
L
q
u
er
ie
s�

�

Q
L
q
u
er
y

Q
u
er
y
ex
p
la
n
a
ti
o
n

Q
u
er
y
R
es
u
lt

��

�
�
�
�

�
�
�
�

W
h
a
t
fu
n
ct
io
n
m
a
p
s
th
e
tw
o
in
te
g
er
s
�
a
n
d
�
to

th
e
in
te
g
er
�
�

hB
in
a
ry
o
r�
In
te
g
er
a
d
d
i

��

�
�
a
�
b
�
c
�
�
�
a

�
b
�
b

�
c
�

�
�
�

�
�
a
�
b
�
c
�
�
�
a

�
a
�
a

�
b
�
a

�
c
�
b

�
b
�
b

�
c
�
c

�
c
�

W
h
a
t
fu
n
ct
io
n
m
a
p
s

a

b
c

to

a

b
c

�

hT
ra
n
si
ti
v
e
cl
o
su
re
i

��

�
�
a
�
b
�
c
�
�
�
a

�
b
�
b

�
c
�
c

�
a
�

W
h
a
t
k
in
d
o
f
g
ra
p
h
is
th
is
�

a

b
c

�

hS
tr
o
n
g
ly
co
n
n
ec
te
d
g
ra
p
h
i

	�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

W
h
a
t
fu
n
ct
io
n
m
a
p
s
th
e
li
st
s
�
�
�
�
�
a
n
d
�
�
�
�
�
�
�

to
th
e
li
st
�
�
�
�
�
�
�
�
�
�
�
�

hL
is
t
a
p
p
en
d
i

��

�
�
a
�
b
�
c
�
d
�
�
�
a

�
c
�
a

�
d
�
b

�
c
�
d

�
c
�
d

�
b
�

�
�
�

�
a
�
d
�
b
�
c
�

L
is
t
o
f
ed
g
es
re
p
re
se
n
ta
ti
o
n
�

hT
o
p
o
lo
g
ic
a
l
so
rt
i

��

�
a

�
c
�
a

�
d
�
b

�
c
�
d

�
c
�
d

�
b
�
�
�
�
�
a
�
d
�
b
�
c
�

L
is
t
o
f
ed
g
es
re
p
re
se
n
ta
ti
o
n
�
N
o
d
e
se
t
is
im
p
li
ed
�

hT
o
p
o
lo
g
ic
a
l
so
rt
i

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
	
�
�
�
�
�

A
d
ja
ce
n
cy
m
a
tr
ix
re
p
re
se
n
ta
ti
o
n
�

hT
o
p
o
lo
g
ic
a
l
so
rt
i

��

�
�
a
�
b
�
c
�
d
�
�
�
a

�
�
c
�
d
�
�
b

�
�
c
�
�
c

�
�
�
�
d

�
�
c
�
b
�
�

�
�
�
�
a
�
d
�
b
�
c
�

L
is
t
o
f
n
ei
g
h
b
o
rs
re
p
re
se
n
ta
ti
o
n
�

hT
o
p
o
lo
g
ic
a
l
so
rt
i

��

�
a

�
�
c
�
d
�
�
b

�
�
c
�
�
c

�
�
�
�
d

�
�
c
�
b
�
�
�
�
�
�
a
�
d
�
b
�
c
�

L
is
t
o
f
n
ei
g
h
b
o
rs
re
p
re
se
n
ta
ti
o
n
�
N
o
d
e
se
t
is
im
�

p
li
ed
�

hT
o
p
o
lo
g
ic
a
l
so
rt
i

Figure �� A�goVista�s type System�

�a� QL�s type hierarchy�

Digraph

DAG

Tree

Linked

Graph

List

VectorNumber MatrixBool Null

Primitive Container Node

Int SetPairFloat

Edge

DEdge UEdge

Object

�b� Type assignment for QL�

T �int� � Int
T �float� � Float
T �true� � Bool
T �false� � Bool
T �S� ���! S�� � Map�T �S��� T �S���
T � �! S� �! S�
!� � Pair�T �S��� T �S���
T � �!� S� f �!S� g � �!� � if T �S�� � T �S�� then Vector�T �S��� else 	
T �atom� � Node�Null���
T �atom�S� � Node�T �S��
T �atom
�!�S atom� � DEdge�T �S��
T �atom
�! atom� � DEdge�Null���
T �atom

!�S atom� � UEdge�T �S��
T �atom

! atom� � UEdge�Null���

�c� Examples of QL�s type system�

QL query Signature

� Int
	�� Float
true Bool
������� Vector�Int

���	��
 Pair�Int�Float

a Node�Null
a�� Node�Int
a
�b DEdge�Null
a
���b DEdge�Int
a

b UEdge�Null
a

����b UEdge�Float
��a�b�c���a
�b�a
�c�
 Pair�Vector�Node�Null

�Vector�DEdge�Null

��a���b���c�����a
�b�a
�c�
 Pair�Vector�Node�Int

�Vector�DEdge�Null

����
���� Map�Pair�Int�Int
�Int

����������	�
����	��� Map�Pair�Vector�Int
�Vector�Int

�Vector�Int

��

� Query Transformations

Early on in the design of A�goVista we realized that
there is often a representational gap between a user�s
query and the checklet that is designed to match this
query� For example� there are any number of reasonable
ways for a user to express the topological sorting query
in Figure ��c�� including representing the input graph as
a list of edges� an adjacency matrix� or a list of neighbors�
These queries are shown in Figure ��b� ��� ��� The
corresponding topological sorting checklet� on the other
hand� might expect the input graph only in a matrix
form�

This gap between query and checklet representation
is probably the most contentious part of A�goVista� and
solving this problem is a major key to the success of the
search engine� We have considered two ways of attack�
ing the problem�

�� The �rst solution is the kitchen�sink approach to
query language design that was alluded to in the
previous section� The idea is to provide special
syntax for every conceivable literal data structure�
including graphs� trees� lists� polygons� points� line
segments� planes� sets� bags� etc� The advantage
of this approach is that the query language syn�
tax will guide both checklets and queries to use
the same representation� The disadvantages are
�a� that it is di
cult to know when the query lan�
guage is complete� and �b� that the query language
becomes large and di
cult to learn�

�� The second approach is to provide a set of query
transformations that will automatically mutate
queries between common representations� For ex�
ample� given the topological sorting query in Fig�
ure ��b� ��� A�goVista would automatically pro�
duce the queries in Figure ��b� ��� ��� all of
which would be matched against the checklets in
the checklet coop�

The current implementation of A�goVista uses the
second approach� Figures � and
 lists the transforma�
tions currently in use by the search engine�

Transformation T B �Float�IntFloor� in Figure �
transforms a �oat to an integer by truncation� Trans�
formation T F swaps the elements of a pair� Transfor�
mation T H converts a vector to a set� provided the el�
ements of the vector are unique� Transformations T I
through T O are concerned with transforming a pair of
vectors to various linked structures�

Figure �� gives an elaborate query transformation
example� A user query

p�a
���b�b
���c�q

is �rst transformed �using the Vector�VectorPair
transformation� to

p��a�b�c���a
���b�b
���c�
q

by adding the list of nodes left out by the user� Through
a series of analyses it is eventually determined that the
query represents a linked list

pList�
�Int
���a�b�c���a
���b�b
���c�
q�
which could also be represented by the vector

pVector�Int
������q�

Since the vector is of size two� it could also represent a
pair� The elements of this pair� �nally� can be swapped
and converted from integers to �oats� The A�goVista
search engine would hand o� any or all intermediate
results of this string of transformations to checklets that
have the appropriate signature�

� Checklet Design

Extending the A�goVista coop with a new checklet may
seem like an involved process� but� fortunately� much
has been automated� A typical upload involves the fol�
lowing steps�

�� Produce an example query� for example
p����
����q for the IntAdd checklet�

�� Submit the example query to A�goVista�s checklet
template generator� Figure �� shows the template
produced from the query p����
����q�

�� Fill in the Description�
 method with a short de�
scription of the problem the checklet tests for�

�� Fill in the References�
 method with a list of
hyper�references to on�line resources related to the
problem�

	� Replace �return false� in the Check�
 method
with the relevant program checking code that re�
turns true if the checklet accepts a query� and
false otherwise� The Check�
 method takes an
AlgoVista�CL�Object as argument� essentially the
abstract syntax tree of a parsed query� The tem�
plate already contains code to unpack this repre�
sentation� For example� in Figure �� intVal� and
intVal� contain the input part of the query� and
intVal� the output part� Hence� in our exam�
ple� �return false� would be replaced by �return
�intVal��intVal�
��intVal��

�� Upload the new checklet to the A�goVista server
where it will be compiled� veri�ed� and tested�
A�goVista will possibly return a list of compilation
errors or security violations that have to be �xed
before the checklet will be accepted into the coop�

The most di
cult part is certainly constructing the
actual program checking code� Inspiration can some�
times be had from the result checking literature ��������
�������
�� but more often by examining existing check�
lets� A�goVista supports this by making the source code
of checklets available for perusal�

��

Figure �� Query transformations �A��
 represents Null� Greek letters are type variables� Examples are in the format
signature�query�
T A Int�Float�Int�Float

Description� Convert an integer to a �oat�
Example� Int���Float����

T B Float�IntFloor�Float�Int
Description� Round a real number to the nearest smaller integer�
Example� Float�����Int��

T C Float�IntCeil�Float�Int
Description� Round a real number to the nearest larger integer�
Example� Float�����Int��

T D Int�Bool�Int�Bool
Description� Convert ��� to false�true�
Condition� The integer must be � or ��
Example� Int���Bool�false

T E Bool�Int�Bool�Int
Description� Convert false�true to ����
Example� Bool�true�Int��

T F FlipPair�Pair����
�Pair����

Description� Swap the elements in a pair�
Example� Pair�Int�Float
�������
�Pair�Float�Int
�������

T G Vector�Pair�Vector��
�Pair����

Description� Convert a vector to a pair�
Condition� The vector must contain exactly � elements�
Example� Vector�Int
�������Pair�Int�Int
�����

T H Vector�Set�Vector��
�Set��

Description� Convert a vector to a set�
Condition� The vector must contain no duplicate elements�
Example� Vector�Int
�����������Set�Int
�f�������g

T I VectorPair�Linked�Pair�Vector��
�Vector��

�Linked����

Description� Convert a pair of vectors of nodes and edges to a linked structure�
Example� Pair�Vector�Node�Int

�Vector�DEdge�

���a���b�����a
�b�
�

Linked�Int�

���a���b�����a
�b�

T J Vector�VectorPair�Vector��
�Pair�Vector�

�Vector��

Description� Convert a vector of edges to a pair of vectors of nodes and edges�
Example� Vector�DEdge�

��a
�b�c
�d��Pair�Vector�

�Vector�

���a�b�c�d���a
�b�c
�d�

T K Linked�Graph�Linked����
�Graph����

Description� Convert a linked structure to an undirected graph�
Condition� The linked structure must be undirected�
Example� Linked�
�

���a�b�c���a

b�b

c�c

a�
�Graph�
�

���a�b�c���a

b�b

c�c

a�

T L Linked�Digraph�Linked����
�Digraph����

Description� Convert a linked structure to a digraph�
Condition� The linked structure must be directed�
Example� Linked�
�

���a�b�c���a
�b�b
�c�c
�a�
�Digraph�
�

���a�b�c���a
�b�b
�c�c
�a�

T M Digraph�DAG�Digraph����
�DAG����

Description� Convert a digraph to a directed acyclic graph�
Condition� The digraph must be acyclic�
Example� Digraph�
�

���a�b�c���a
�b�b
�c�a
�c�
�DAG�
�

���a�b�c���a
�b�b
�c�a
�c�

T N DAG�Tree�DAG����
�Tree����

Description� Convert a directed acyclic graph to a tree�
Condition� No node may have indegree � �� Exactly one node must have indegree � ��
Example� DAG�
�

���a�b�c�d���a
�b�b
�c�c
�d�
�Tree�
�

���a�b�c�d���a
�b�b
�c�c
�d�

T O Tree�List�Tree����
�List����

Description� Convert a tree to a linked list�
Condition� No node may have outdegree � ��
Example� Tree�
�

���a�b�c���a
�b�b
�c�
�List�
�

���a�b�c���a
�b�b
�c�

��

Figure
� Query transformations �B��

T P List�VectorA�List���

�Vector��

Description� Convert a linked list to a vector�
Example� List�Int�

���a���b���c�����a
�b�b
�c�
�Vector�Int
��������

T Q List�VectorB�List�
��
�Vector��

Description� Convert a linked list to a vector�
Example� List�
�Int
���a�b�c�d���a
��� b�b
��� c�c
��� d�
�Vector�Int
��������

T R Linked�MatrixA�Linked�
�

�Matrix�Int

Description� Convert a linked structure to an adjacency matrix representation�
Example� Linked�
�

���a�b�c���a
�b�b
�c�c
�a�
�Matrix�����Int
�������� ������ ������

T S Linked�MatrixB�Linked�
��
�Matrix��

Description� Convert a linked structure to an adjacency matrix representation�
Example� Linked�
�Int
���a�b���a
���b�b
���b�
�Matrix�����Int
������ ����

T T VectorOfVectors�Matrix�Vector�Vector��

�Matrix��

Description� Convert a vector of vectors to a matrix representation�
Condition� All vectors must be of the same length�
Example� Vector�Vector�Int

�����������	���Matrix�����Int
������ ��	�

Figure ��� Query transformation example� The �rst line is the user�s QL query� Subsequent lines show the query and
its signature after a transformation�

Vector�DEdge�Int

��a
���b�b
���c�
T
J� Pair�Vector�Node�

�Vector�DEdge�Int

���a�b�c���a
���b�b
���c�

T
I� Linked�
�Int
���a�b�c���a
���b�b
���c�

T
L� Digraph�
�Int
���a�b�c���a
���b�b
���c�

T
M� DAG�
�Int
���a�b�c���a
���b�b
���c�

T
N� Tree�
�Int
���a�b�c���a
���b�b
���c�

T
O� List�
�Int
���a�b�c���a
���b�b
���c�

T
Q� Vector�Int
������

T
G� Pair�Int�Int
�����

T
F� Pair�Int�Int
�����

T
A� Pair�Float�Int
�������

T
A� Pair�Float�Float
���������

� Query Optimization

In Section � we described a straight�forward algorithm
that employs exhaustive search to submit every possible
mutation of a query to every checklet in the checklet
coop� Obviously� with dozens of transformations and
maybe hundreds of checklets this procedure will be pro�
hibitively expensive�

In this section we will examine a more sophisticated
search algorithm that explores the fact that queries�
checklets� and transformations are all typed� To see how
type�analysis can help us speed up the search� consider
a situation where we have two checklets

FloatExp� Map�Pair�Float�Int
�Float

FloatAdd� Map�Pair�Float�Float
�Float

where FloatExp checks for real exponentiation and
FloatAdd checks for real addition� and two transforma�
tions

Int�Float�Int�Float
FlipPair� Pair����
�Pair����

where Int�Float promotes an integer to a real and
FlipPair commutes a pair�

Suppose the input query is p������
���	��q� This
input has a signature of Map�Pair�Float�Int
�Float
�
and therefore can be tested immediately against
the FloatExp checklet� Similarly� by applying the
Int�Float transformation� the query can be trans�

��

Figure ��� The checklet template generated automatically by A�goVista from the example query p����
����q�

public class IntAdd implements AlgoVista�DataBase�Checklet f

public String Description �� f
return ���

g

public String�� ProtoExamples �� f
String �� examples � f���	
������g�
return examples�

g

public String Signature �� f
return �Map�Pair�Int��	Int���	Int�����

g

public AlgoVista�DataBase�Reference�� References �� f
AlgoVista�DataBase�Reference �� examples � f

new AlgoVista�DataBase�Reference��tag�	�link��
g�
return examples�

g

public boolean Check �AlgoVista�CL�Object obj� throws Throwable f
AlgoVista�CL�Map mapObject
 � �AlgoVista�CL�Map�obj�
AlgoVista�CL�Object mapInput
 � mapObject
�GetInput���
AlgoVista�CL�container�vector�Pair pairObject
 � �AlgoVista�CL�container�vector�Pair�mapInput
�
AlgoVista�CL�Object pairFirst
 � pairObject
�GetFirst���
AlgoVista�CL�primitive�number�Int intObject
 � �AlgoVista�CL�primitive�number�Int�pairFirst
�
long intVal
 � intObject
�GetInt���
AlgoVista�CL�Object pairSecond
 � pairObject
�GetSecond���
AlgoVista�CL�primitive�number�Int intObject� � �AlgoVista�CL�primitive�number�Int�pairSecond
�
long intVal� � intObject��GetInt���
AlgoVista�CL�Object mapOutput
 � mapObject
�GetOutput���
AlgoVista�CL�primitive�number�Int intObject
 � �AlgoVista�CL�primitive�number�Int�mapOutput
�
long intVal
 � intObject
�GetInt���
return false�

g
g

formed into p��������
���	��q� which matches the sig�
nature of FloatAdd� and therefore can be submitted to
that checklet�

It is a simple observation that a query ptrue����q
�which has the type Map�Bool�Int
� can never match
any of the checklets� regardless of which transformations
are applied� Still� the algorithm in Section � would
apply all possible combinations of transformations to
ptrue����q and submit any generated query mutation
to every checklet in the coop�

We will next show how precomputation can speed
up searching by eliminating any such useless transfor�
mations�

��� Fast Checking by Precomputation

Whenever a new checklet is added to the database�
A�goVista generates a new search procedure ST �C au�
tomatically� This procedure is hardcoded to handle ex�
actly the set of transformations T which are available in
the transformation database� and the set of checklets C

which are currently available in the checklet coop� ST �C
is constructed such that given an input query q whose
type is T �q�� ST �C will apply exactly those combinations
of transformations to q that will result in viable mutated
queries� A query is viable if it is correctly typed for
checking by at least one checklet�

In other words� A�goVista�s optimized search proce�
dure ST �C will never perform a useless transformation�
one that could not possibly lead to a mutated query
correctly typed for some checklet�

In order to apply transformations and to test
checklets e
ciently� A�goVista determines the signa�
ture of an input query upon its arrival� Given the
query�s signature� A�goVista knows exactly which� if
any� checklets to test� and which� if any� transfor�
mations to apply� Furthermore� A�goVista knows
the exact signature of each newly�generated query
because it knows the input query signature and
how the transformation will transform the signature�
�For example� A�goVista knows that applying the
FlipPair transform to Map�Pair�Float�Int
�Float

��

will yield Map�Pair�Int�Float
�Float
�� This obser�
vation yields a very simple� but highly optimized archi�
tecture for A�goVista to apply transformations and test
checklets based on signatures� in which there is one func�
tion per signature responsible for all the operations that
a�ect queries of that signature� Each function has three
parts� verifying the originality of the query� testing all
matching checklets� and generating isomorphic queries
by applying transformations� All generated queries are
simply handed o� to the function that handles their sig�
nature�

For the given checklets and transformations
above� the function that handles the signature
Map�Pair�Float�Int
�Float
 is as follows�

set FI F AlreadySeen�
function FI F�query Q
 f

if Q in FI F AlreadySeen then return�
insert Q into FI F AlreadySeen�

Check if the FloatExp
query accepts Q�

Apply Int�Float �whose signature is
Map�Int�Float

 to Q� yielding Q� �whose
signature is Map�Pair�Float�Float
�Float

�

Call FF F�Q�
�
g
The AlreadySeen�set prevents the same query mu�

tation from being produced more than once�
����
����

T
F� ����
����

T
F� ����
����

T
F� ����
����
� � � �

The only non�trivial aspect of the gener�
ated function is knowing which transforma�
tions can be applied to a given signature� and
where� For instance� given the query signature�
Map�Pair�Pair�Int�Float
�Pair�Float�Int

� it is
possible to apply the FlipPair transformation at any
of the four Pairs in the query"even the nested ones�

In addition to the signature�speci�c functions� it is
also necessary to generate a large decision tree that de�
termines the signature of the original query before that
query is dispatched to the appropriate function�

��� The Query Signature Graph

Figure �� is a graphical representation of the functions
that would be generated for the checklets and transfor�
mations in our running example� The nodes depict the
signature�bound functions and the edges show transfor�
mations from one signature to another� The shaded
nodes are those nodes that have associated checklets�

To construct this query signature graph we start
with those signatures accepted by checklets"they are
trivially acceptable� Then� for all of those signatures�
we apply the inverted transformations wherever pos�
sible� I�e�� at each step of this process we determine

those signatures that are one transformation away from
the given acceptable signature� By repeatedly apply�
ing these inverted transformations� all acceptable query
transformations can be discovered and the graph can be
constructed�

There is� however� one unfortunate complication to
this architecture� With a su
ciently rich set of trans�
formations� it is possible to generate an in�nite number
of signatures�

�a
�b�b
�c�
T
J� ��a�b�c���a
�b�b
�c�

T
J� ��a�b�c����a�b�c���a
�b�b
�c�

T
J� ��a�b�c����a�b�c����a�b�c���a
�b�b
�c�

� � � �

To avoid this problem� and to bound the number of
signatures� we put a limit on the number of transfor�
mations that will be applied to any query� This limit is
currently set to four� This would seem to limit the use�
fulness of A�goVista� but in practice this is not so� First
of all� the exhaustive search algorithm from Section �
is still available to those users who are willing to trade
a somewhat longer response�time for a more complete
response� Secondly� very deep chains of transformations
will often mutate a query beyond recognition� resulting
in spurious query results that have little meaning to the
user�

With our current database of
	 checklets� with ��
unique signatures� and �� transformations� A�goVista
can accept queries with
��� di�erent signatures�

The generation of the decision tree and all of the
signature�speci�c functions is done automatically by a
small Icon program �����

	 Evaluation

The ultimate test for A�goVista will be

a� whether theoreticians will be willing to extend the
database with new problem speci�cations� and

b� whether the resulting database will actually pro�
vide useful information to practicing programmers�

Two secondary concerns are

c� whether security breaches can be prevented� and

d� whether the performance of the search engine will
be adequate to ensure reasonable response time�

Unfortunately� most of these questions remain unan�
swered at this time� since A�goVista has yet to be fully
deployed and so far the authors are its only users�

We can� however� give some preliminary timing mea�
surements to evaluate the relative performance of the
two search algorithms�

Table � shows the search times for some typical
queries� The times were collected by running each query
four times and averaging the wall clock times of the last
three runs� The reason for discarding the �rst measure�
ment is that Java start�up times are quite signi�cant

�	

Figure ��� Query signature graph� The two transformations Int�Float and FlipPair are represented by I � F and
��� ��� ��� ��� respectively� Shaded nodes represent viable signatures� those that have associated checklets�

�I� I�� I

�I� I�� F �I�F�� I

�I�F�� F �F� I�� I

�F�F�� I�F� I�� F

�F�F�� F

I� F

��� ��� ��� ��

I� F I� F

I� F

��� ��� ��� ��

I� F

I� F
��� ��� ��� ��

I� F

��� ��� ��� ��

I� F

I� F

��� ��� ��� ��

I� F

I� F

I� F

��� ��� ��� ��

I� F

��� ��� ��� ��

��� ��� ��� ��

and unpredictable� Furthermore� in web applications
such as this one� programs are typically pre�loaded into
�a large� primary memory and queries are �elded with�
out any disk accesses�

The �ve columns of Table � show the query� the av�
erage wall clock times for the query using the exhaus�
tive and the precomputed search� and the average wall
clock times for generating all mutated queries using the
exhaustive and the precomputed algorithms� In other
words� the last two columns do not include the execution
times of the checklets� just the time it takes to generate
the transformed queries that would be submitted to the
checklets�

Looking at Table � it is clear� as would be expected�
the precomputed search algorithm is vastly superior
to the exhaustive algorithm� However� it should be
stressed that the comparison is inherently unfair� The
exhaustive algorithm� although slower� will sometimes
report results that the precomputed algorithm will over�
look� The reason is that the precomputed algorithm
limits the number of transformations that can be ap�

plied to a query� while the exhaustive one does not�
In our current implementation we limit the precom�

puted algorithm to apply at most six transformations�
The hard�coded programs generated by the algorithms
in Section � are rather large �even limiting the search to
four mutations yields roughly ��� million lines of code
over ����� Java classes� and current Java tools are only
barely able to handle programs of this size�

 Related Work

A number of web sites� for example the CRC Dictio�
nary ��� and the Encyclopedia of Mathematics ����� al�
ready provide encyclopedic information on algorithms�
data structures� and mathematical results� Like all en�
cyclopedias� however� they are of no use to someone
unfamiliar with the terminology of the �eld they are
investigating�

More relevant to the present research is Sloane�s On�
Line Encyclopedia of Integer Sequences ����� This search

��

Table �� Timing measurements� Times are in seconds� Anomalous measurements are due to rounding errors and
inadequate timer resolution� The measurements were collected on a lightly loaded Sun Ultra �� workstation with a
��� MHz UltraSPARC�IIi CPU and �	� MB of main memory�

Search Mutations

Query Exhaustive Precomputed Exhaustive Precomputed

p����
����q ���	 ���� ���� ����

p���������q ���� ���� ���� ���

p��a�b�c�d���a
�b�b
�c�c
�d�d
�a�
q ���� ���� ���� ����

p��a�b�c�d���a
�b�b
�c�c
�d�
����a�b�c�d�q ���	� ����
��
 ����

p��a�b�c�d���a
���b�b
���c�c
���d�
����q ����
 ���� ���	� ����

p�a
���b�b
���c�c
���d�����q ���� ���� ���� ����

p����������	�����
����������	�����q ���� ���� ���� ����

p�����	�����������������	�����q ���� ���� ���� ����

service allows users to look up number sequences with�
out knowing their name� For example� if a user entered
the sequence p�� �� �� 	� �� ��� ��� ��q� the server would re�
spond with �Fibonacci numbers�� It is interesting to
note that� although many of the entries in the database
include a program or formula to generate the sequences�
these programs do not seem to be used in searching the
database� A similar search service is Encyclopedia of
Combinatorial Structures ��	��

Inductive Logic Programming �ILP� ��� is a branch
of Machine Learning� One application of ILP has been
the automatic synthesis of programs from examples
and counter�examples� For example� given a language
of list�manipulation primitives �car� cdr� cons� and
null� and a set of examples

append���������
�
append��������������
�
append����������	���������	�
�

an ILP system might synthesize the following Prolog�
program for the append predicate�

append�A� B� B
 �

null�A
�

append�A�B�C
 �

car�A� X
� cdr�A� Y
�
append�Y� B� C�
�
cons�X� C�� C
�

Obviously� this application of ILP is far more
ambitious than A�goVista� While both ILP and
A�goVista produce programs from input�output
examples� ILP synthesizes them while A�goVista just
retrieves them from its database� The ILP approach
is� of course� very attractive �we would all like to have
our programs written for us#�� but has proven not
to be particularly useful in practice� For example�
in order to synthesize Quicksort from an input of
sorting examples� a typical ILP system would �rst
have to be taught Partition from a set of examples

that split an array in two halves around a pivot element�

partition�����������
�
partition�������������
�
partition�������������
�
partition����������������������������
�

A�goVista is essentially a reverse de�nition dic�
tionary for Computer Science terminology� Rather
than looking up a term to �nd its de�nition �as one
would in a normal dictionary�� a reverse de�nition
dictionary allows you to look up the term given its
de�nition or an example� The DUDEN ��� series
of pictorial dictionaries is one example� to �nd out
what that strange stringed musical instrument with a
hand�crank and keys is called� you scan the musical
instruments pages until you �nd the matching picture
of the hurdy�gurdy� Another example is The Describer�s
Dictionary ���� where one can look up pmixture of
gypsum or limestone with sand and water and
sometimes hair used primarily for walls and
ceilingsq to �nd that this concoction is called plaster�

�� Summary

A�goVista provides a unique resource to computer sci�
entists to enable them to discover descriptions and im�
plementations of algorithms without knowing theoret�
ical nomenclature� A�goVista is a web�based search
engine that accepts input�output pairs as input and
�nds algorithms that match that behavior� This Query�
By�Example mechanism relieves users of the burden
of knowing terminology outside their domain of ex�
pertise� A�goVista is extensible"algorithm designers
may upload their algorithms into A�goVista�s database
in the form of checklets that recognize acceptable in�
put�output behavior�

A�goVista is operational at http���AlgoVista�cs�
arizona�edu�� Figure �� shows a snapshot of this web
page�

��

Figure ��� Snapshot of the A�goVista web page�

Acknowledgments� Will Evans pointed out the
relationship between checklets and program checking�
Dengfeng Gao implemented most of the checklets in the
current database� We thank them both�

References

��� AltaVista � Adding pages or URLs to the
index� http���www�altavista�com�cgi
bin�
query�pg�addurl�

��� Francesco Bergadano and Daniele Gunetti� Induc�
tive Logic Programming � From Machine Learning
to Software Engineering� MIT Press� �

	� ISBN
���������
����

��� Paul E� Black� Algorithms� data structures� and
problems � terms and de�nitions for the CRC dic�
tionary of computer science� engineering and tech�
nology� http���hissa�ncsl�nist�gov��black�
CRCDict�

��� Manuel Blum� Program checking� In Somenath
Biswas and Kesav V� Nori� editors� Proceedings of
Foundations of Software Technology and Theoreti�
cal Computer Science� volume 	�� of LNCS� pages
��
� Berlin� Germany� December �

�� Springer�

�	� Manuel Blum� Program result checking� A new
approach to making programs more reliable� In
Svante Carlsson Andrzej Lingas� Rolf G� Karls�
son� editor� Automata� Languages and Program�
ming� �	th International Colloquium� volume ���

��

of Lecture Notes in Computer Science� pages �����
Lund� Sweden� 	�
 July �

�� Springer�Verlag�

��� Manuel Blum and Sampath Kannan� Designing
programs that check their work� Journal of the
ACM� ��������
��
�� January �

	�

��� Michael Clark and Bernadette Mohan� The
Oxford�DUDEN Pictorial English Dictionary� Ox�
ford University Press� �

	� ISBN ���
����������

��� Christian Collberg and Clark Thomborson�
Software watermarking� Models and dynamic
embeddings� In Principles of Programming
Languages
���� POPL���� San Antonio� TX�
January �

� http���www�cs�auckland�ac�nz�
�collberg�Research�Publications�CollbergTh�
omborson��a�index�html�

�
� Jack W� Davidson and Christopher W� Fraser�
Automatic generation of peephole optimizations�
In Proceedings of the SIGPLAN ��
 Symposium
on Compiler Construction� pages �������� ACM�
ACM� �
���

���� Funda Erg$un� Sampath Kannan� S� Ravi Kumar�
Ronitt Rubinfeld� and Mahesh Vishwanathan�
Spot�checkers� In Proceedings of the �	th Annual
ACM Symposium on Theory of Computing �STOC�
���� pages �	
����� New York� May ����� �

��
ACM Press�

���� David Grambs� The Describer�s Dictionary� W� W�
Norton % Company� �

	� ISBN ���
������	���

���� Ralph E� Griswold and Madge T� Griswold� The
Icon Programming Language� Prentice Hall� Engle�
wood Cli�s� NJ� � edition� �

��

���� Sampath Kannan and Todd A� Proebsting� Regis�
ter allocation in structured programs� Journal of
Algorithms� �
������������ November �

��

���� Zheng YL Leiwo J� A method to implement a
denial of service protection base� In INFORMA�
TION SECURITY AND PRIVACY� volume ����
of LNCS� pages
������ Berlin� Germany� �

��
Springer�

��	� St!ephanie Petit� Encyclopedia of combi�
natorial structures� http���algo�inria�fr�
encyclopedia�

���� Ronitt Rubinfeld� Batch checking with applications
to linear functions� INFORMATION PROCESS�
ING LETTERS� ������������ May �

��

���� Ronitt Rubinfeld� Designing checkers for programs
that run in parallel� ALGORITHMICA� �	��������
���� April �

��

���� Neil J� A� Sloane� Sloane�s on�line encyclopedia
of integer sequences� http���www�research�att�
com��njas�sequences�index�html�

��
� Hal Wasserman and Manuel Blum� Software relia�
bility via run�time result�checking� Journal of the
ACM� ������������
� November �

��

���� Eric Weisstein� Encyclopedia of mathematics�
http���www�treasure
troves�com�math�

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

