Using Mathematics on the Web and Other Computer Technology to Facilitate Learning

ITL Conference Tuesday, March 19, 1:45 - 3:15

Ernesto Duran, Instructional Technology Lab Steven L. Jordan, Mathematics, Statistics, and Computer Science Jeffrey E. Lewis, Honors College, Mathematics, Statistics, and Computer Science Clifford E. Tiedemann, Anthropology

Themes:

- communication of mathematics
- computation
- modelling
- visualization
- deduction

Jordan:

• Blackboard; The Geometer's Sketchpad; Graphing Calculator

Tiedemann:

 Analysis of spatial data -- visualization, statistical techniques modelling, testing of hypotheses

Lewis:

• *TeX* and more

Steven Jordan: jordan@uic.edu; 996-3307; 327 SEO

Education of teachers of mathematics (from elementary school through university)

a. A few favorite web sites:

- The first place to look -- http://mathforum.org/ the Math Forum (Drexel University; formerly hosted by Swarthmore University; funded by NSF; cited by all math sites, including AMS, MAA)
- Federal agencies with statistical services:
 http://www.fedstats.gov/agencies/. This is an annotated bibliography, including Centers for Disease Control and Prevention, Bureau of Labor Statistics, Bureau of the Census, NASA.
- Neil Sloane's *On-Line Encyclopedia of Integer Sequences*: http://www.research.att.com/~njas/sequences/.
- Chicago Public Schools: http://www.cps.edu/; Illinois State Board of Education: http://www.isbe.net/.
- Stupid math tricks: http://www.cecm.sfu.ca/pi/yapPing.html.

b. Experiences with *Blackboard*: http://courseinfo.edu/.

- "Practicum: MthT 589" -- threaded discussion; more productive than weekly meetings
- Probability and Statistics -- forced the issue -- good for interim reports on projects
- STEAC -- an idea whose time may never come.

c. Geometer's Sketchpad:

- Getting Started -- circumscribed circle
- Perspective drawing: Professor James Heitsch, Lou Ann Tollefson
- Other programs: Maple, Mathematica, Logo, Excel

d. Graphing Calculator

- Reform calculus
- Rational function, piecewise linear equation
- parametic equation
- χ^2

Clifford E. Tiedemann, Associate Professor Emeritus of Anthropology; clifft@uic.edu

Using Monte Carlo Methods in the Analysis of Spatial Patterns

The formal statistical material--that which supports part II in the outline below--comes form Ebdon, 1985. *Statistics in Geography*. 2nd ed. Blackwell. Everything else, including all program code, is my own and is distributed to students for use on ICARUS.

I. Introduction

- A. Why do we do this? ...in an attempt to understand spatial processes.
- B. What are spatial processes?
 - 1. conscious and unconscious "decisions" or documentable sequences of events that give rise to arrangements of things on landscapes
 - 2. examples: arrangements of points: cities and towns, eagles' nests, partiular tree species, lunar craters; of zones: census-tract data, crime incidences by police district, voting tallies by precinct
 - 3. arrangements we see are "artifacts" of the processes that gave rise to them
- C. Are there conceptual models of spatial processes?
 - 1. geography: central place theory
 - 2. notions of bird-nesting behavior, seed distribution, etc.
- II. A quick review of "standard" pattern analytic methods, which involves
 - A. having students fabricate two sets of hypothetical datasets
 - 1. use random number generaters to create point and quadrat data
 - 2. objectives: get people up and running on ICARUS, thinking in terms of what "random" MIGHT mean, and able to do some editting
 - B. develop a real world dataset
 - 1. use immediately available means to come up with point and quadrat data for an assigned study area
 - 2. objective: learn some of the methods (and drudgery?) of developing real world data and preparing it for analysis
 - C. and process fabricated and real data using a variety of analyses
 - 1. fixed quadrat methods (with multiple variations for each)
 - a. quadrat counts, single-process models
 - b. mixed-process models
 - c. join count methods
 - 2. floating quadrat methods
 - 3. neareast neighbor methods
 - a first and higher order neighbors

- e. effects and implications of "biases" and "disturbances"
- 4. contiguity analysis for (fixed) quadrats
 - a. Moran's "I" statistic
 - b. Geary's "C" statistic
- 5. contiguity analysis for points
- 6. objectives: assess test capabilities, assumptions, formulation of working and null hypotheses, interpretations, and data requirements
- III. Shooting for more than "one-number ouotcomes," as in...
 - A. tease more information out of nearest neighbor analysis
 - 1. "standardizing" nearest neighbor distances
 - 2. size-spacing analysis of central places
 - B. and out of Geary's "C" statistic.
 - 1. computations resemble those for Chi-square
 - 2. contributing terms may lend themselves to K-S testing
 - 3. develop criteria for contextual evaluations of quadrat values
 - C. objectives: learn to identify "anomalous" observations and patterns
- III. Extentions to "nonstandard" applications, as in...
 - A. locate potentially viable market centers in rural areas
 - B. support archeological "prospecting"
 - C. recognize possible "dispersed cities"
 - D. devise "geographic taxonomies"
 - E. objectives: add to existing knowledge and/or guide future research

TeX and More

TeX PDF and Html Document Production

Prof. Jeff E. Lewis

Honors College Associate Dean for Academic Affairs

Professor Emeritus of Mathematics

Tel: (312)355-1304 Honors College: (312)413-2260 Fax: (312) 413-1266

e-mail: jlewis@uic.edu web http://www.math.uic.edu/~lewis/

http://www.math.uic.edu/~lewis/tex/production.pdf http://www.math.uic.edu/~lewis/tex/production.htm

TeX PDF and Html Document Production

- 1. Introduction
- 2. Producing PDF from TEX
 - 2.1 Producing PDF with dvips and Distiller or Ghostscript
 - 2.2 Producing PDF using DVIPDFM
- 3. Producing HTML from TeX Source Files with TtH
- 4. Graphics and TtH and dvipdfm
 - 4.1 EPS Graphics
 - 4.2 PiCTEX Graphics
 - 4.3 Samples

Resources