On a sequence related to the Josephus problem

Ralf Stephan*

In this short note, we show that an integer sequence defined on the minimum of differences between divisor complements of its partial products is connected with the Josephus problem ($q=3$).

We prove the following theorem and, finally, state the relatedness of two constants.

Theorem. Let a_{n} and b_{n} be recursively defined as

$$
\begin{aligned}
& a_{0}=4, a_{n}=\min \left(\left|d_{j}-p_{n} / d_{j}\right|>1\right), \quad p_{n}=\prod_{k=0}^{n-1} a_{k}, \\
& \quad d_{j} \mid p_{n}, \quad 1 \leq j \leq \sigma\left(p_{n}\right) . \\
& b_{1}=1, b_{n}=\left\lceil\frac{1}{2} \sum_{k=1}^{n-1} b_{k}\right\rceil .
\end{aligned}
$$

(1) Then $a_{n}=2^{b_{n}}$, for $n>2$.

The first terms of a_{n} and b_{n} are [S||Z|

$$
a_{n \geq 0}=\{4,3,4,2,4,8,16,64, \ldots\}, \quad b_{n \geq 1}=\{1,1,1,2,3,4,6,9,14 \ldots\} .
$$

We need two lemmata.
Lemma 1. For $k>0$,

$$
\begin{equation*}
\sigma\left(3 \cdot 2^{k}\right)=2 k+2 \tag{2}
\end{equation*}
$$

Proof. This is true for $k=1$, and the set of divisors of $3 \cdot 2^{k+1}$ is the set of divisors of $3 \cdot 2^{k}$ plus 2^{k+1} and $3 \cdot 2^{k+1}$ itself.

Lemma 2. Let $\delta(m)$ denote the smallest absolute value of the differences between complementary divisors of $m>1$:

$$
\delta(m)=\min \left(\left|d_{j}-\frac{m}{d_{j}}\right|\right), \quad d_{j} \mid m, \quad 1 \leq j \leq \sigma(m) .
$$

Then

$$
\begin{equation*}
\delta\left(3 \cdot 2^{k}\right)=2^{\lceil k / 2\rceil}, \quad k>0 \tag{3}
\end{equation*}
$$

Proof. Let us sort the divisors of $3 \cdot 2^{k}$ by size and call these D_{j} :

$$
D_{1 \leq j \leq 2 k+2}=\left\{1,(2,3), \ldots,\left(2^{i}, \frac{3}{2} 2^{i}\right),\left(2^{i+1}, \frac{3}{2} 2^{i+1}\right), \ldots,\left(2^{k}, \frac{3}{2} 2^{k}\right), 3 \cdot 2^{k}\right\} .
$$

Any smallest complementary divisor difference must be the one where the divisors are in the exact middle of the sorted list, which, using (2), is $k+1$. And so, $\delta\left(3 \cdot 2^{k}\right)=D_{k+2}-D_{k+1}$.

[^0]Now, the proposition (3) is true for $k=1$. For every increase of k by one, $\sigma(m)$ increases by two, and the index of the wanted pair of divisors increases by one, so $D_{k+2}-D_{k+1}$ goes through the values

$$
\begin{aligned}
\frac{3}{2} 2^{i}-2^{i} & =2^{i-1} \\
2^{i+1}-\frac{3}{2} 2^{i} & =2^{i-1} \\
\frac{3}{2} 2^{i+1}-2^{i+1} & =2^{i} \\
2^{i+2}-\frac{3}{2} 2^{i+1} & =2^{i}
\end{aligned}
$$

so it doubles every second step which is just the meaning of (3).
Fixing the induction base at $\delta\left(p_{3}=48\right)=2^{1}=2^{b_{3}}$ to make sure that $D_{k+2}-D_{k+1}>1$, the main proposition (1) is now obvious, since the powers of two in a_{n} behave the same way under multiplication as unity does in b_{n} under addition.

Because the asymptotics of b_{n} are known $[\mathbf{C}]$, with

$$
b_{n}=\left\lceil c \cdot\left(\frac{3}{2}\right)^{n}-\frac{1}{2}\right\rceil, \quad c=0.36050455619661495910154466 \ldots,
$$

the investigation of $a_{n \geq 3}=2^{b_{n}}$ is settled, except for the closed form for c. Reble already proved $\left[\underline{\mathbb{R}}\right.$ that b_{n} is connected to the Josephus problem. Independently, our numerics show that

$$
\begin{equation*}
c=\frac{2}{9} K(3), \tag{4}
\end{equation*}
$$

with $K(3)$ the universal constant in the same problem with $q=3$, a constant already discussed ($|\mathrm{OW}||\mathrm{HH}|)$, and whose closed form is still unknown.

REFERENCES

[C] B. Cloitre, OEIS, 11/2002, A073941.
[GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994
[HH] L. Halbeisen and N. Hungerbühler, The Josephus problem, http://citeseer.nj.nec.com/235856.html.
[OEIS] N. Sloane, Online Enyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/Seis.html
[OW] A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33 (1991), 235-240.
http://citeseer.nj.nec.com/odlyzko91functional.html
[R] D. Reble, message to seqfan mailing list, ID <3EA7336C. BBAE31C1@nk. ca>, 04/2003.
[S] R. Stephan, OEIS, 04/2003, A082125.
[Z] R. Zumkeller, OEIS, 11/2002, A073941.

[^0]: *The author can be reached at mailto:ralf@ark.in-berlin.de.

