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ON ASYMPTOTIC CONSTANTS RELATED TO PRODUCTS OF

BERNOULLI NUMBERS AND FACTORIALS

BERND C. KELLNER

Abstract. We discuss the asymptotic expansions of certain products of Bernoulli num-
bers and factorials, e.g.,

n∏

ν=1

|B2ν | and

n∏

ν=1

(kν)! ν
r

as n → ∞

for integers k ≥ 1 and r ≥ 0. Our main interest is to determine exact expressions, in
terms of known constants, for the asymptotic constants of these expansions and to show
some relations among them.

1. Introduction

Let Bn be the nth Bernoulli number. These numbers are defined by

z

ez − 1
=

∞∑

n=0

Bn
zn

n!
, |z| < 2π,

where Bn = 0 for odd n > 1. The Riemann zeta function ζ(s) is defined by

ζ(s) =

∞∑

ν=1

ν−s =
∏

p

(1 − p−s)−1, s ∈ C, Re s > 1. (1.1)

By Euler’s formula we have for even positive integers n that

ζ(n) = −1

2

(2πi)n

n!
Bn. (1.2)

Products of Bernoulli numbers occur in certain contexts in number theory. For example,
the Minkowski–Siegel mass formula states for positive integers n with 8 | n that

M(n) =
|Bk|
2k

k−1∏

ν=1

|B2ν |
4ν

, n = 2k,

which describes the mass of the genus of even unimodular positive definite n× n matrices,
for details see [12, p. 252]. We introduce the following constants which we shall need further
on.
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Lemma 1.1. There exist the constants

C1 =
∞∏

ν=2

ζ(ν) = 2.2948565916... ,

C2 =
∞∏

ν=1

ζ(2ν) = 1.8210174514... ,

C3 =
∞∏

ν=1

ζ(2ν + 1) = 1.2602057107... .

Proof. We have log(1 + x) < x for real x > 0. Then

log
∞∏

ν=1

ζ(2ν) =
∞∑

ν=1

log ζ(2ν) <
∞∑

ν=1

(ζ(2ν) − 1) =
3

4
. (1.3)

The last sum of (1.3) is well known and follows by rearranging in geometric series, since
we have absolute convergence. We then obtain that π2/6 < C2 < e3/4, ζ(3) < C3 < C2, and
C1 = C2C3. �

To compute the infinite products above within a given precision, one can use the following
arguments. A standard estimate for the partial sum of ζ(s) is given by

ζ(s) −
N∑

ν=1

ν−s <
N1−s

s− 1
, s ∈ R, s > 1.

This follows by comparing the sum of ν−s and the integral of x−s in the interval (N,∞).
Now, one can estimate the number N depending on s and the needed precision. However,
we use a computer algebra system, that computes ζ(s) to a given precision with already
accelerated built-in algorithms. Since ζ(s) → 1 monotonically as s→ ∞, we next have to
determine a finite product that suffices the precision. From above, we obtain

ζ(s) − 1 < 2−s
(

1 +
2

s− 1

)
, s ∈ R, s > 1. (1.4)

According to (1.3) and (1.4), we then get an estimate for the remainder of the infinite
product by

log
∏

ν>N ′

ζ(ν) < 2−N
′+ε

where we can take ε = 3/N ′; the choice of ε follows by 2x ≥ 1 + x log 2 and (1.4).

We give the following example where the constant C1 plays an important role; see Finch
[8]. Let a(n) be the number of non-isomorphic abelian groups of order n. The constant C1

equals the average of the numbers a(n) by taking the limit. Thus, we have

C1 = lim
N→∞

1

N

N∑

n=1

a(n).
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By definition the constant C2 is connected with values of the Riemann zeta function on
the positive real axis. Moreover, this constant is also connected with values of the Dedekind
eta function

η(τ) = eπiτ/12
∞∏

ν=1

(1 − e2πiντ ), τ ∈ C, Im τ > 0,

on the upper imaginary axis.

Lemma 1.2. The constant C2 is given by

1/C2 =
∏

p

p
1

12 η

(
i
log p

π

)

where the product runs over all primes.

Proof. By Lemma 1.1 and the Euler product (1.1) of ζ(s), we obtain

C2 =
∞∏

ν=1

∏

p

(1 − p−2ν)−1 =
∏

p

∞∏

ν=1

(1 − p−2ν)−1

where we can change the order of the products because of absolute convergence. Rewriting
p−2ν = e2πiντ with τ = i log p /π yields the result. �

We used Mathematica [17] to compute all numerical values in this paper. The values
were checked again by increasing the needed precision to 10 more digits.

2. Preliminaries

We use the notation f ∼ g for real-valued functions when limx→∞ f(x)/g(x) = 1. As
usual, O(·) denotes Landau’s symbol. We write log f for log(f(x)).

Definition 2.1. Define the linear function spaces

Ωn = span
0≤ν≤n

{xν , xν log x}, n ≥ 0,

over R where f ∈ Ωn is a function f : R+ → R. Let

Ω∞ =
⋃

n≥0

Ωn.

Define the linear map ψ : Ω∞ → R which gives the constant term of any f ∈ Ω∞. For the
class of functions

F (x) = f(x) +O(x−δ), f ∈ Ωn, n ≥ 0, δ > 0, (2.1)

define the linear operator [·] : C(R+; R) → Ω∞ such that [F ] = f and [F ] ∈ Ωn. Then
ψ([F ]) is defined to be the asymptotic constant of F .

We shall examine functions h : N → R which grow exponentially; in particular these
functions are represented by certain products. Our problem is to find an asymptotic
function h̃ : R+ → R where h ∼ h̃. If F = log h̃ satisfies (2.1), then we have [log h̃] ∈ Ωn

for a suitable n and we identify [log h̃] = [log h] ∈ Ωn in that case.
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Lemma 2.2. Let f ∈ Ωn where

f(x) =

n∑

ν=0

(αν x
ν + βν x

ν log x)

with coefficients αν , βν ∈ R. Let g(x) = f(λx) with a fixed λ ∈ R+. Then g ∈ Ωn and

ψ(g) = ψ(f) + β0 log λ.

Proof. Since g(x) = f(λx) we obtain

g(x) =
n∑

ν=0

(αν (λx)ν + βν (λx)ν(log λ+ log x)).

This shows that g ∈ Ωn. The constant terms are α0 and β0 log λ, thus ψ(g) = ψ(f) +
β0 log λ. �

Definition 2.3. For a function f : R+ → R we introduce the notation

f(x) =
∑

ν≥1

′ fν(x)

with functions fν : R+ → R in case f has a divergent series expansion such that

f(x) =

m−1∑

ν=1

fν(x) + θm(x)fm(x), θm(x) ∈ (0, 1), m ≥ Nf ,

where Nf is a suitable constant depending on f .

Next we need some well known facts which we state without proof, cf. [10].

Proposition 2.4. Let

H0 = 0, Hn =
n∑

ν=1

1

ν
, n ≥ 1,

be the nth harmonic number. These numbers satisfy Hn = γ + log n + O(n−1) for n ≥ 1,
where γ = 0.5772156649... is Euler’s constant.

Proposition 2.5 (Stirling’s series). The Gamma function Γ(x) has the divergent series

expansion

log Γ(x+ 1) =
1

2
log(2π) +

(
x+

1

2

)
log x− x+

∑

ν≥1

′ B2ν

2ν(2ν − 1)
x−(2ν−1), x > 0.

Remark 2.6. When evaluating the divergent series given above, we have to choose a suitable
index m such that

∑

ν≥1

′ B2ν

2ν(2ν − 1)
x−(2ν−1) =

m−1∑

ν=1

B2ν

2ν(2ν − 1)
x−(2ν−1) + θm(x)Rm(x)

and the remainder |θm(x)Rm(x)| is as small as possible. Since θm(x) ∈ (0, 1) is not effec-
tively computable in general, we have to use |Rm(x)| instead as an error bound. Schäfke
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and Finsterer [15], among others, showed that the so-called Lindelöf error bound L = 1 for
the estimate L ≥ θm(x) is best possible for positive real x.

Proposition 2.7. If α ∈ R with 0 ≤ α < 1, then
n∏

ν=1

(ν − α) =
Γ(n+ 1 − α)

Γ(1 − α)
∼

√
2π

Γ(1 − α)

(n
e

)n
n

1

2
−α as n→ ∞.

Proposition 2.8 (Euler). Let Γ(x) be the Gamma function. Then

n−1∏

ν=1

Γ
(ν
n

)
=

(2π)
n−1

2

√
n

.

Proposition 2.9 (Glaisher [9], Kinkelin [11]). Asymptotically, we have

n∏

ν=1

νν ∼ A n
1

2
n(n+1)+ 1

12 e−
n2

4 as n→ ∞

where A = 1.2824271291... is the Glaisher–Kinkelin constant, which is given by

logA =
1

12
− ζ ′(−1) =

γ

12
+

1

12
log(2π) − ζ ′(2)

2π2
.

Numerous digits of the decimal expansion of the Glaisher–Kinkelin constant A are
recorded as sequence A074962 in OEIS [16].

3. Products of factorials

In this section we consider products of factorials and determine their asymptotic expan-
sions and constants. For these asymptotic constants we derive a divergent series represen-
tation as well as a closed formula.

Theorem 3.1. Let k be a positive integer. Asymptotically, we have

n∏

ν=1

(kν)! ∼ FkAk (2π)
1

4

(
k n

e3/2

)k
2
n(n+1)(

2πkek/2−1 n
)n

2 n
1

4
+ k

12
+ 1

12k as n→ ∞

with certain constants Fk which satisfy

logFk =
γ

12k
+
∑

j≥2

′ B2j ζ(2j − 1)

2j(2j − 1) k2j−1
.

Moreover, the constants have the asymptotic behavior that

lim
k→∞

Fk = 1, lim
k→∞

Fk
k = eγ/12, and

n∏

k=1

Fk ∼ F∞ nγ/12 as n→ ∞

with

logF∞ =
γ2

12
+
∑

j≥2

′ B2j ζ(2j − 1)2

2j(2j − 1)
.
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Theorem 3.2. If k is a positive integer, then

logFk = −
(
k +

1

k

)
logA +

1

12k
− 1

12k
log k +

k

4
log(2π) −

k−1∑

ν=1

ν

k
log Γ

(ν
k

)
.

We will prove Theorem 3.2 later, since we shall need several preparations.

Proof of Theorem 3.1. Let k ≥ 1 be fixed. By Stirling’s approximation, see Proposition
2.5, we have

log(kν)! =
1

2
log(2π) +

(
kν +

1

2

)
log(kν) − kν + f(kν) (3.1)

where we can write the remaining divergent sum as

f(kν) =
1

12kν
+
∑

j≥2

′ B2j

2j(2j − 1) (kν)2j−1
.

Define S(n) = 1 + · · · + n = n(n + 1)/2. By summation we obtain

n∑

ν=1

log(kν)! =
n

2
log(2πk) +

1

2
logn! − kS(n) + kS(n) log k

+ k
n∑

ν=1

ν log ν +
n∑

ν=1

f(kν).

The term 1
2
log n! is evaluated again by (3.1). Proposition 2.9 provides that

k
n∑

ν=1

ν log ν = k logA + kS(n) log n+
k

12
log n− k

2

(
S(n) − n

2

)
+O(n−δ)

with some δ > 0. Since limn→∞Hn− logn = γ, we asymptotically obtain for the remaining
sum that

lim
n→∞

(
n∑

ν=1

f(kν) − 1

12k
log n

)
=

γ

12k
+
∑

j≥2

′ B2j ζ(2j − 1)

2j(2j − 1) k2j−1
=: logFk. (3.2)

Here we have used the following arguments. We choose a fixed index m > 2 for the
remainder of the divergent sum. Then

lim
n→∞

n∑

ν=1

θm(kν)
B2m

2m(2m− 1) (kν)2m−1
= ηm

B2m ζ(2m− 1)

2m(2m− 1) k2m−1
(3.3)
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with some ηm ∈ (0, 1), since θm(kν) ∈ (0, 1) for all ν ≥ 1. Thus, we can write (3.2) as an
asymptotic series again. Collecting all terms, we finally get the asymptotic formula

n∑

ν=1

log(kν)! = logFk + k logA +
1

4
log(2π) + kS(n)

(
−3

2
+ log(kn)

)

+
n

2

(
log(2πk) +

k

2
− 1 + log n

)

+

(
1

4
+

k

12
+

1

12k

)
logn +O(n−δ′)

with some δ′ > 0. Note that the exact value of δ′ does not play a role here. Now, let k be
an arbitrary positive integer. From (3.2) we deduce that

logFk =
γ

12k
+O(k−3) and k logFk =

γ

12
+O(k−2). (3.4)

The summation of (3.2) yields

n∑

k=1

logFk =
γ

12
Hn +

n∑

k=1

∑

j≥2

′ B2j ζ(2j − 1)

2j(2j − 1) k2j−1
. (3.5)

Similar to (3.2) and (3.3), we can write again:

lim
n→∞

(
n∑

k=1

logFk −
γ

12
log n

)
=
γ2

12
+
∑

j≥2

′ B2j ζ(2j − 1)2

2j(2j − 1)
=: logF∞. (3.6)

�

The case k = 1 of Theorem 3.1 is related to the so-called Barnes G-function, cf. [2].
Now we shall determine exact expressions for the constants Fk. For k ≥ 2 this is more
complicated.

Lemma 3.3. We have F1 = (2π)
1

4 e
1

12/A2.

Proof. Writing down the product of n! repeatedly in n+ 1 rows, one observes by counting
in rows and columns that

n!n+1 =

n∏

ν=1

ν!

n∏

ν=1

νν . (3.7)

From Proposition 2.5 we have

(n + 1) logn! =
n+ 1

2
log(2π) − n(n + 1) + (n + 1)

(
n +

1

2

)
log n+

1

12
+O(n−1).

Comparing the asymptotic constants of both sides of (3.7) when n→ ∞, we obtain

(2π)
1

2 e
1

12 = F1 A (2π)
1

4 · A
where the right side follows by Theorem 3.1 and Proposition 2.9. �
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Proposition 3.4. Let k, l be integers with k ≥ 1. Define

Fk,l(n) :=
n∏

ν=1

(kν − l)! for 0 ≤ l < k.

Then [logFk,l] ∈ Ω2 and Fk,0(n) · · ·Fk,k−1(n) = F1,0(kn). Moreover

Fk,l(n)/Fk,l+1(n) = kn
n∏

ν=1

(
ν − l

k

)
for 0 ≤ l < k − 1

and [log(Fk,l/Fk,l+1)] = [logFk,l] − [logFk,l+1] ∈ Ω1.

Proof. We deduce the proposed products from (kν − l)!/(kν − (l + 1))! = kν − l and

n∏

ν=1

(kν)!(kν − 1)! · · · (kν − (k − 1))! =

kn∏

ν=1

ν!. (3.8)

Proposition 2.7 shows that [log(Fk,l/Fk,l+1)] ∈ Ω1. Since the operator [·] is linear, it follows
that

[log(Fk,l/Fk,l+1)] = [logFk,l − logFk,l+1] = [logFk,l] − [logFk,l+1] ∈ Ω1. (3.9)

From Theorem 3.1 we have [logFk,0] ∈ Ω2. By induction on l and using (3.9) we derive
that [logFk,l] ∈ Ω2 for 0 < l < k. �

Lemma 3.5. Let k be an integer with k ≥ 2. Define the k × k matrix

Mk :=




1 −1
1 −1

. . .
. . .

1 −1
1 1 · · · 1 1




where all other entries are zero. Then detMk = k and the matrix inverse is given by

M−1
k = 1

k
M̃k with

M̃k =




k − 1 k − 2 k − 3 · · · 2 1 1
−1 k − 2 k − 3 · · · 2 1 1
−1 −2 k − 3 · · · 2 1 1
...

...
...

...
...

...

−1 −2 −3 · · · 2 1 1
−1 −2 −3 · · · −(k − 2) 1 1
−1 −2 −3 · · · −(k − 2) −(k − 1) 1




.

Proof. We have detM2 = 2. Let k ≥ 3. We recursively deduce by the Laplacian determi-
nant expansion by minors on the first column that

detMk = (−1)1+1 detMk−1 + (−1)1+k detTk−1
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where the latter matrix Tk−1 is a lower triangular matrix having −1 in its diagonal. There-
fore

detMk = detMk−1 + (−1)1+k · (−1)k−1 = k − 1 + 1 = k

by induction on k. Let Ik be the k × k identity matrix. The equation Mk · M̃k = k Ik is
easily verified by direct calculation, since Mk has a simple form. �

Proof of Theorem 3.2. The case k = 1 agrees with Lemma 3.3. For now, let k ≥ 2. We
use the relations between the functions Fk,l, resp. logFk,l, given in Proposition 3.4. Since
[logFk,l] ∈ Ω2, we can work in Ω2. The matrix Mk defined in Lemma 3.5 mainly describes
the relations given in (3.8) and (3.9). Furthermore we can reduce our equations to R by
applying the linear map ψ, since we are only interested in the asymptotic constants. We
obtain the linear system of equations

Mk · x = b , x, b ∈ Rk,

where
x = (ψ([logFk,0]), . . . , ψ([logFk,k−1]))

T

and b = (b1, . . . , bk)
T with

bl+1 = ψ([log(Fk,l/Fk,l+1)]) =
1

2
log(2π) − log Γ

(
1 − l

k

)
for l = 0, . . . , k − 2

using Proposition 2.7. The last element bk is given by Theorem 3.1, Lemma 3.3, and
Lemma 2.2:

bk = ψ([log(F1,0(kn))]) =
1

4
log(2π) + logF1 + logA +

5

12
log k

=
1

2
log(2π) − logA +

1

12
+

5

12
log k.

By Lemma 3.5 we can solve the linear system directly with

x =
1

k
M̃k · b.

The first row yields

x1 =
1

k
bk +

1

k

k−1∑

ν=1

(k − ν) bν .

On the other side, we have

x1 = ψ([logFk,0]) = logFk +
1

4
log(2π) + k logA.

This provides

logFk = −
(
k +

1

k

)
logA +

(
k

4
+

1

2k
− 1

2

)
log(2π)

+
5

12k
log k +

1

12k
−

k−1∑

ν=2

ν − 1

k
log Γ

(ν
k

) (3.10)
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after some rearranging of terms. By Euler’s formula, see Proposition 2.8, we have

1

k

k−1∑

ν=1

log Γ
(ν
k

)
=

(
1

2
− 1

2k

)
log(2π) − 1

2k
log k. (3.11)

Finally, substituting (3.11) into (3.10) yields the result. �

Remark 3.6. Although the formula for Fk has an elegant short form, one might also use
(3.10) instead, since this formula omits the value Γ(1/k). Thus we easily obtain the value

of F2 from (3.10) at once: F2 = (2π)
1

4 2
5

24 e
1

24/A 5

2 .

Corollary 3.7. Asymptotically, we have

n−1∏

ν=1

Γ
(ν
n

)ν
∼ e

1−γ

12

A

(
(2π)

1

4

A

)n2 /
n

1

12 as n→ ∞

with the constants e
1−γ

12 /A = 0.8077340270... and (2π)
1

4/A = 1.2345601953....

Proof. On the one hand, we have by (3.4) that

n logFn =
γ

12
+O(n−2).

On the other hand, Theorem 3.2 provides that

n logFn = −
(
n2 + 1

)
logA +

1

12
− 1

12
log n+

n2

4
log(2π) −

n−1∑

ν=1

ν log Γ
(ν
n

)
.

Combining both formulas easily gives the result. �

Since we have derived exact expressions for the constants Fk, we can improve the calcu-
lation of F∞. The divergent sum of F∞, given in Theorem 3.1, is not suitable to determine
a value within a given precision, but we can use this sum in a modified way. Note that we
cannot use the limit formula

logF∞ = lim
n→∞

(
n∑

k=1

logFk −
γ

12
log n

)

without a very extensive calculation, because the sequence γn = Hn − logn converges too
slowly. Moreover, the computation of Fk involves the computation of the values Γ(ν/k).
This becomes more difficult for larger k.

Proposition 3.8. Let m,n be positive integers. Assume that m > 2 and the constants Fk

are given by exact expressions for k = 1, . . . , n. Define the computable values ηk ∈ (0, 1)
implicitly by

logFk =
γ

12k
+

m−1∑

j=2

B2j ζ(2j − 1)

2j(2j − 1) k2j−1
+ ηk

B2m ζ(2m− 1)

2m(2m− 1) k2m−1
.
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Then

logF∞ =
γ2

12
+

m−1∑

j=2

B2j ζ(2j − 1)2

2j(2j − 1)
+ θn,m

B2m ζ(2m− 1)2

2m(2m− 1)

with θn,m ∈ (θmin
n,m, θ

max
n,m ) ⊂ (0, 1) where

θmin
n,m = ζ(2m− 1)−1

n∑

k=1

ηk
k2m−1

, θmax
n,m = 1 + ζ(2m− 1)−1

n∑

k=1

ηk − 1

k2m−1
.

The error bound for the remainder of the divergent sum of logF∞ is given by

θerr
n,m =

(
1 − ζ(2m− 1)−1

n∑

k=1

1

k2m−1

)
|B2m| ζ(2m− 1)2

2m(2m− 1)
.

Proof. Let n ≥ 1 and m > 2 be fixed integers. The divergent sums for logFk and logF∞

are given by Theorem 3.1. Since we require exact expressions for Fk, we can compute the
values ηk for k = 1, . . . , n. We define

ηm,k = η′m,k = ηk for k = 1, . . . , n

and

ηm,k = 0, η′m,k = 1 for k > n.

We use (3.5) and (3.6) to derive the bounds:

θmin
n,m = ζ(2m− 1)−1

∞∑

k=1

ηm,k
k2m−1

< θn,m < ζ(2m− 1)−1

∞∑

k=1

η′m,k
k2m−1

= θmax
n,m .

We obtain the suggested formulas for θmin
n,m and θmax

n,m by evaluating the sums with ηm,k = 0,
resp. η′m,k = 1, for k > n. The error bound is given by the difference of the absolute values
of the minimal and maximal remainder. Therefore

θerr
n,m = (θmax

n,m − θmin
n,m)R =

(
1 − ζ(2m− 1)−1

n∑

k=1

1

k2m−1

)
R

with R = |B2m|ζ(2m− 1)2/2m(2m− 1). �

Result 3.9. Exact expressions for Fk:

F1 = (2π)
1

4 e
1

12/A2, F2 = (2π)
1

4 2
5

24 e
1

24/A 5

2 ,

F3 = (2π)
5

12 3
5

36 e
1

36/A 10

3 Γ
(

2
3

) 1

3 , F4 = (2π)
1

2 2
1

3 e
1

48/A 17

4 Γ
(

3
4

) 1

2 .

We have computed the constants Fk by their exact expression. Moreover, we have
determined the index m of the smallest remainder of their asymptotic divergent series and
the resulting error bound given by Theorem 3.1.
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Constant Value m Error bound

F1 1.04633506677050318098... 4 6.000 · 10−4

F2 1.02393741163711840157... 7 7.826 · 10−7

F3 1.01604053706462099128... 10 1.198 · 10−9

F4 1.01204589802394464624... 13 1.948 · 10−12

F5 1.00963997283647705086... 16 3.272 · 10−15

F6 1.00803362724207326544... 20 5.552 · 10−18

The weak interval of F∞ is given by Theorem 3.1. The second value is derived by
Proposition 3.8 with parameters m = 17 and n = 7. Thus, exact expressions of F1, . . . ,F7

are needed to compute F∞ within the given precision.

Constant Value / Interval m Error bound

F∞ (1.02428, 1.02491) 4 6.050 · 10−4

F∞ 1.02460688265559721480... 17 6.321 · 10−22

4. Products of Bernoulli numbers

Using results of the previous sections, we are now able to consider several products of
Bernoulli numbers and to derive their asymptotic expansions and constants.

Theorem 4.1. Asymptotically, we have
n∏

ν=1

|B2ν | ∼ B1

( n

πe3/2

)n(n+1)

(16πn)
n
2 n

11

24 as n→ ∞,

n∏

ν=1

|B2ν |
2ν

∼ B2

( n

πe3/2

)n2
(

4n

πe

)n
2 /

n
1

24 as n→ ∞

with the constants

B1 = C2F2A2(2π)
1

4 = C2 (2π)
1

2 2
5

24 e
1

24/A 1

2 ,

B2 = C2F2A2/(2π)
1

4 = C2 2
5

24 e
1

24/A 1

2 .

Proof. By Euler’s formula (1.2) for ζ(2ν) and Lemma 1.1 we obtain
n∏

ν=1

|B2ν | ∼ C2

n∏

ν=1

2 · (2ν)!
(2π)2ν

∼ C2 2n(2π)−n(n+1)

n∏

ν=1

(2ν)! as n→ ∞.

Theorem 3.1 states for k = 2 that
n∏

ν=1

(2ν)! ∼ F2 A2 (2π)
1

4

(
2n

e3/2

)n(n+1)

(4πn)
n
2 n

11

24 as n→ ∞.

The expression for F2 is given in Remark 3.6. Combining both asymptotic formulas above
gives the first suggested formula. It remains to evaluate the following product:

n∏

ν=1

(2ν) = 2n n! ∼ (2π)
1

2

(
2n

e

)n
n

1

2 as n→ ∞.
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After some rearranging of terms we then obtain the second suggested formula. �

Remark 4.2. Milnor and Husemoller [14, pp. 49–50] give the following asymptotic formula
without proof:

n∏

ν=1

|B2ν | ∼ B′ n! 2n+1 F (2n+ 1) as n→ ∞ (4.1)

where

F (n) =
( n

2πe3/2

)n2

4

(
8πe

n

)n
4 /

n
1

24 (4.2)

and B′ ≈ 0.705 is a certain constant. This constant is related to the constant B2.

Proposition 4.3. The constant B′ is given by

B′ = 2
1

24 2−
3

2 B2 = C2 e
1

24/2
5

4A 1

2 = 0.7048648734... .

Proof. By Theorem 4.1 we have

n∏

ν=1

|B2ν |
2ν

∼ B2G(n) as n→ ∞ (4.3)

with

G(n) =
( n

πe3/2

)n2
(

4n

πe

)n
2 /

n
1

24 .

We observe that (4.1) and (4.3) are equivalent so that

2B′F (2n+ 1) ∼ B2G(n) as n→ ∞.

We rewrite (4.2) in the suitable form

F (2n+ 1) =

(
n + 1

2

πe3/2

)n2+n+ 1

4
(

4πe

n+ 1
2

)n
2
+ 1

4 /
2

1

24

(
n+

1

2

) 1

24

.

Hence, we easily deduce that

G(n)/F (2n+ 1) =

(
1 +

1

2n

)−n2−n
2
+ 1

24

e
n
2 2

1

24

(
e1/2

4

) 1

4

.

It is well known that

lim
n→∞

(
1 +

x

n

)n
= ex and lim

n→∞
e−xn

(
1 +

x

n

)n2

= e−
x2

2 .

Evaluating the asymptotic terms, we get

2B′/B2 ∼ G(n)/F (2n+ 1) ∼ e
1

8 e−
1

4 2
1

24 e
1

8 2−
1

2 as n→ ∞,

which finally yields B′ = 2
1

24 2−
3

2 B2. �
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Theorem 4.4. The Minkowski–Siegel mass formula asymptotically states for positive in-

tegers n with 4 | n that

M(2n) =
|Bn|
2n

n−1∏

ν=1

|B2ν |
4ν

∼ B3

( n

πe3/2

)n2 / (4n

πe

)n
2

n
1

24 as n→ ∞

with B3 =
√

2B2.

Proof. Let n always be even. By Proposition 2.5 and (1.2) we have

2−n
∣∣∣∣
Bn/n

B2n/2n

∣∣∣∣ = 2
ζ(n)

ζ(2n)
πn

n!

(2n)!
∼

√
2

(
4n

πe

)−n

as n→ ∞,

since ζ(n)/ζ(2n) ∼ 1 and

log

(
n!

(2n)!

)
∼ n− n logn−

(
2n +

1

2

)
log 2 as n→ ∞.

We finally use Theorem 4.1 and (4.3) to obtain

M(2n) = 2−n
∣∣∣∣
Bn/n

B2n/2n

∣∣∣∣
n∏

ν=1

|B2ν |
2ν

∼
√

2B2

(
4n

πe

)−n

G(n) as n→ ∞,

which gives the result. �

Result 4.5. The constants B′, Bν (ν = 1, 2, 3) mainly depend on the constant C2 and the
Glaisher–Kinkelin constant A.

Constant Expression Value

A 1.28242712910062263687...
C2 1.82101745149929239040...

B1 C2(2π)
1

2 2
5

24 e
1

24/A 1

2 4.85509664652226751252...

B2 C22
5

24 e
1

24/A 1

2 1.93690332773294192068...

B3 C22
17

24 e
1

24/A 1

2 2.73919495508550621998...

B′ C2 e
1

24/2
5

4A 1

2 0.70486487346802031057...

5. Generalizations

In this section we derive a generalization of Theorem 3.1. The results show the structure
of the constants Fk and the generalized constants Fr,k, which we shall define later, in a
wider context. For simplification we introduce the following definitions which arise from
the Euler-Maclaurin summation formula.

The sum of consecutive integer powers is given by the well known formula

n−1∑

ν=0

νr =
Br+1(n) − Br+1

r + 1
=

r∑

j=0

(
r

j

)
Br−j

nj+1

j + 1
, r ≥ 0,
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where Bm(x) is the mth Bernoulli polynomial. Now, the Bernoulli number B1 = −1
2

is
responsible for omitting the last power nr in the summation above. Because we further
need the summation up to nr, we change the sign of B1 in the sum as follows:

Sr(n) =
n∑

ν=1

νr =
r∑

j=0

(
r

j

)
(−1)r−jBr−j

nj+1

j + 1
, r ≥ 0.

This modification also coincides with

ζ(−n) = (−1)n+1 Bn+1

n+ 1

for nonnegative integers n. We define the extended sum

Sr(n; f(⋄)) =

r∑

j=0

(
r

j

)
(−1)r−jBr−j

nj+1f(j + 1)

j + 1
, r ≥ 0,

where the symbol ⋄ is replaced by the index j+1 in the sum. Note that Sr is linear in the
second parameter, i.e.,

Sr(n;α+ βf(⋄)) = αSr(n) + βSr(n; f(⋄)).
Finally we define

Dk(x) =
∑

j≥1

′ B̂2j,k x
−(2j−1) where B̂m,k =

Bm

m(m− 1)km−1
.

Theorem 5.1. Let r be a nonnegative integer. Then
n∏

ν=1

ν ν
r ∼ ArQr(n) as n→ ∞,

where Ar is the generalized Glaisher–Kinkelin constant defined by

logAr = −ζ(−r)Hr − ζ ′(−r).
Moreover, logQr ∈ Ωr+1 with

logQr(n) = (Sr(n) − ζ(−r)) logn+ Sr(n;Hr −H⋄).

Proof. This formula and the constants easily follow from a more general formula for real
r > −1 given in [10, 9.28, p. 595] and after some rearranging of terms. �

Remark 5.2. The case r = 0 reduces to Stirling’s approximation of n! with A0 =
√

2π.
The case r = 1 gives the usual Glaisher–Kinkelin constant A1 = A. The expression
Sr(n;Hr−H⋄) does not depend on the definition of B1, since the term with B1 is cancelled
in the sum. Graham, Knuth, and Patashnik [10, 9.28, p. 595] notice that the constant
−ζ ′(−r) has been determined in a book of de Bruijn [7, §3.7] in 1970. The theorem above
has a long history. In 1894 Alexeiewsky [3] gave the identity

n∏

ν=1

ν ν
r

= exp (ζ ′(−r, n + 1) − ζ ′(−r))
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where ζ ′(s, a) is the partial derivative of the Hurwitz zeta function with respect to the
first variable. Between 1903 and 1913, Ramanujan recorded in his notebooks [5, Entry 27,
pp. 273–276] (the first part was published and edited by Berndt [5] in 1985) an asymptotic
expansion for real r > −1 and an analytic expression for the constant Cr = −ζ ′(−r).
However, Ramanujan only derived closed expressions for C0 and C2r (r ≥ 1) in terms of
ζ(2r + 1); see (5.9) below. In 1933 Bendersky [4] showed that there exist certain con-
stants Ar. Since 1980, several others have investigated the asymptotic formula, including
MacLeod [13], Choudhury [6], and Adamchik [1, 2].

Theorem 5.3. Let k, r be integers with k ≥ 1 and r ≥ 0. Then
n∏

ν=1

(kν)! ν
r ∼ Fr,kA

1

2
r Ak

r+1 Pr,k(n)Qr(n)
1

2 Qr+1(n)k as n→ ∞.

The constants Fr,k and functions Pr,k satisfy that lim
k→∞

Fr,k = 1 and logPr,k ∈ Ωr+2 where

logPr,k(n) =
1

2
Sr(n) log(2πk) + k Sr+1(n) log(k/e)

+ B̂r+2,k logn+

⌊ r+1

2
⌋∑

j=1

B̂2j,k Sr+1−2j(n).

The constants Ar and functions Qr are defined as in Theorem 5.1.

The determination of exact expressions for the constants Fr,k seems to be a very com-
plicated and extensive task in the case r > 0. The next theorem gives a partial result for
k = 1 and r ≥ 0.

Theorem 5.4. Let r be a nonnegative integer. Then

logFr,1 =
1

2
logAr − logAr+1 + Sr(1; B̂1+⋄,1 − logA⋄).

Case r = 0:

logFr,1 =
1

12
+

1

2
logA0 − 2 logA1.

Case r > 0:

logFr,1 = αr,0 +

r+1∑

j=1

αr,j logAj

where

αr,j =





Br+1

2r(r+1)
, r 6≡ j (mod 2), j = 0;

r∑
j=0

(
r
j

) Br−j Bj+2

(j+1)2(j+2)
, r ≡ j (mod 2), j = 0;

−δr+1,j −
(
r+1
j

)Br+1−j

r+1
, r 6≡ j (mod 2), j > 0;

0, r ≡ j (mod 2), j > 0

and δi,j is Kronecker’s delta.
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Proof of Theorem 5.3. Let k and r be fixed. We extend the proof of Theorem 3.1. From
(3.1) we have

log(kν)! =
1

2
log(2πk) + kν log

(
k

e

)
+

(
kν +

1

2

)
log ν +Dk(ν). (5.1)

The summation yields

n∑

ν=1

νr log(kν)! = F1(n) + F2(n) + F3(n)

where

F1(n) =
1

2
Sr(n) log(2πk) + kSr+1(n) log(k/e),

F2(n) = k

n∑

ν=1

νr+1 log ν +
1

2

n∑

ν=1

νr log ν,

F3(n) =

n∑

ν=1

νrDk(ν).

Theorem 5.1 provides

F2(n) = k (logAr+1 + logQr+1(n)) +
1

2
(logAr + logQr(n)) +O(n−δ)

with some δ > 0. Let R = ⌊ r+1
2
⌋. By definition we have

xrDk(x) =

R∑

j=1

B̂2j,k x
r+1−2j +

∑

j>R

′ B̂2j,k x
r+1−2j =: E1(x) + E2(x).

Therewith we obtain that

F3(n) =

R∑

j=1

B̂2j,k Sr+1−2j(n) +

n∑

ν=1

E2(ν).

For the second sum above we consider two cases. We use similar arguments which we have
applied to (3.2) and (3.3). If r is odd, then

lim
n→∞

n∑

ν=1

E2(ν) =
∑

j>R

′ B̂2j,k ζ(2j − (r + 1)). (5.2)

Note that B̂r+2,k = 0 in that case. If r is even, then we have to take care of the term ν−1.
This gives

lim
n→∞

(
n∑

ν=1

E2(ν) − B̂r+2,k log n

)
= γ B̂r+2,k +

∑

j>R+1

′ B̂2j,k ζ(2j − (r + 1)). (5.3)
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The right hand side of (5.2), resp. (5.3), defines the constant logFr,k. Finally we have to
collect all results for F1, F2, and F3. This gives the constants and the function Pr,k. It

remains to show that limk→∞ logFr,k = 0. This follows by B̂2j,k → 0 as k → ∞. �

The following lemma gives a generalization of Equation (3.7) in Lemma 3.3. After that
we can give a proof of Theorem 5.4.

Lemma 5.5. Let n, r be integers with n ≥ 1 and r ≥ 0. Then

n!Sr(n)

n∏

ν=1

ν ν
r

=

n∏

ν=1

ν! ν
r

n∏

ν=1

νSr(ν). (5.4)

Proof. We regard the following enumeration scheme which can be easily extended to n
rows and n columns:

11r

21r

31r

12r

22r

32r

13r

23r

33r

The product of all elements, resp. non-framed elements, in the νth row equals n! ν
r

, resp.
ν! ν

r

. The product of the framed elements in the νth column equals νSr(ν−1). Thus

n!Sr(n) =

n∏

ν=1

ν! ν
r

n∏

ν=1

νSr(ν)−νr

. �

Proof of Theorem 5.4. Let r ≥ 0. We take the logarithm of (5.4) to obtain

F1(n) + F2(n) = F3(n) + F4(n) (5.5)

where

F1(n) = Sr(n) logn!, F2(n) =
n∑

ν=1

νr log ν,

F3(n) =
n∑

ν=1

νr log ν!, F4(n) =
n∑

ν=1

Sr(ν) log ν.

Next we consider the asymptotic expansions F̃j of the functions Fj (j = 1, . . . , 4) when

n→ ∞. We further reduce the functions F̃j via the maps

C(R+; R)
[ ]−→ Ω∞

ψ−→ R

to the constant terms which are the asymptotic constants of [F̃j] in Ω∞. Consequently
(5.5) turns into

ψ([F̃1]) + ψ([F̃2]) = ψ([F̃3]) + ψ([F̃4]). (5.6)

We know from Theorem 5.1 and Theorem 5.3 that

ψ([F̃2]) = logAr and ψ([F̃3]) = logFr,1 +
1

2
logAr + logAr+1.
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For F̃4 we derive the expression

ψ([F̃4]) = Sr(1; logA⋄), (5.7)

since each term sjν
j in Sr(ν) produces the term sj logAj. It remains to evaluate F̃1.

According to (5.1) we have

log n! =
1

2
log(2π) − n +

(
n+

1

2

)
logn +D1(n) =: E(n) +D1(n).

Thus

F̃1(x) = Sr(x)E(x) + Sr(x)D1(x).

Since SrE ∈ Ω∞ has no constant term, we deduce that

ψ([F̃1]) = ψ([SrD1]) = Sr(1; B̂1+⋄,1).

The latter equation is similarly derived as (5.7), whereas we regard the constant terms of
the product of the polynomial Sr and the Laurent series D1. From (5.6) we finally obtain

logFr,1 =
1

2
logAr − logAr+1 + Sr(1; B̂1+⋄,1 − logA⋄).

Now, we shall evaluate the expression above. For r = 0 we get

logF0,1 =
1

12
+

1

2
logA0 − 2 logA1,

since

S0(1; B̂1+⋄,1 − logA⋄) = B̂2,1 − logA1 =
1

12
− logA1.

For now, let r > 0. We may represent logFr,1 in terms of logAj as follows:

logFr,1 = αr,0 +
r+1∑

j=1

αr,j logAj.

The term αr,0 is given by

αr,0 = Sr(1; B̂1+⋄,1) =
r∑

j=0

(
r

j

)
(−1)r−jBr−j

B̂j+2,1

j + 1

where the sum runs over even j, since B̂j+2,1 = 0 for odd j. If r is odd, then the sum
simplifies to the term Br+1/2r(r + 1). Otherwise we derive for even r that

αr,0 =
r∑

j=0

(
r

j

)
Br−j Bj+2

(j + 1)2(j + 2)
.

It remains to determine the coefficients αr,j for r+1 ≥ j ≥ 1. Since 1
2
xr−xr+1−Sr(x) is an

odd, resp. even, polynomial for even, resp. odd, r > 0, this property transfers in a similar
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way to 1
2
logAr − logAr+1 −Sr(1; logA⋄), such that αr,j = 0 when 2 | r− j. Otherwise we

get

αr,j = −
(

r

j − 1

)
Br−(j−1)

j
− δr+1,j = −

(
r + 1

j

)
Br+1−j

r + 1
− δr+1,j (5.8)

for 2 ∤ r − j, where the term − logAr+1 is represented by −δr+1,j . �

Corollary 5.6. Let r be an odd positive integer. Then

logFr,1 = − r!

(2πi)r+1


ζ(r + 1)

r
+

r−1

2∑

j=1

ζ(r + 1 − 2j)ζ(2j + 1) − (r + 2)ζ(r + 2)

2




= (−1)
r−1

2

r!

2


 |Br+1|
r(r + 1)!

+

r−1

2∑

j=1

|Br+1−2j | ζ(2j + 1)

(r + 1 − 2j)! (2π)2j
− (r + 2)ζ(r + 2)

(2π)r+1


 .

Proof. As a consequence of the functional equation of ζ(s) and its derivative, we have for
even positive integers n, cf. [5, p. 276], that

logAn = −ζ ′(−n) = −1

2

n!

(2πi)n
ζ(n+ 1) (5.9)

where the left hand side of (5.9) follows by definition. Theorem 5.4 provides

logFr,1 =
Br+1

2r(r + 1)
+

r+1

2∑

j=1

αr,2j logA2j.

Combining (5.8) and (5.9) gives the second equation above. By Euler’s formula (1.2) we
finally derive the first equation. �

Remark 5.7. For the sake of completeness, we give an analogue of (5.9) for odd integers.
From the logarithmic derivatives of Γ(s) and the functional equation of ζ(s), see [5, pp. 183,
276], it follows for even positive integers n, that

logAn−1 =
Bn

n
Hn−1 − ζ ′(1 − n) =

Bn

n
(γ + log(2π)) + 2

(n− 1)!

(2πi)n
ζ ′(n)

where

ζ ′(n) = −
∞∑

ν=2

log(ν) ν−n.

However, Mathematica is able to compute values of ζ ′ for positive and negative argument
values to any given precision.

Result 5.8. Exact expressions for Fr,1 in terms of Aj:
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Constant Expression Value

F0,1 e
1

12A
1

2

0 A−2
1 1.04633506677050318098...

F1,1 e
1

24A− 3

2

2 0.99600199446870605433...

F2,1 e
7

540A− 1

6

1 A− 4

3

3 0.99904614418135586848...

F3,1 e−
1

720A− 1

4

2 A− 5

4

4 1.00097924030236153773...

F4,1 e−
67

18900A
1

30

1 A− 1

3

3 A− 6

5

5 1.00007169725554110099...

F5,1 e
1

2520A
1

12

2 A− 5

12

4 A− 7

6

6 0.99937792615674804266...

Exact expressions for Fr,1 in terms of ζ(2j + 1):

F1,1 = exp

(
1

24
− 3ζ(3)

8π2

)
,

F3,1 = exp

(
− 1

720
− ζ(3)

16π2
+

15ζ(5)

16π4

)
,

F5,1 = exp

(
1

2520
+
ζ(3)

48π2
+

5ζ(5)

16π4
− 105ζ(7)

16π6

)
.

For the first 15 constants Fr,1 (r = 0, . . . , 14) we find that

max
0≤r≤14

|Fr,1 − 1| < 0.05,

but, e.g., F19,1 ≈ 371.61 and F20,1 ≈ 1.16 · 10−7.
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