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Abstract

The notion of noncrossing linked partition arose from the study of certain transforms in free

probability theory. It is known that the number of noncrossing linked partitions of [n+1] is equal

to the n-th large Schröder number rn, which counts the number of Schröder paths. In this paper

we give a bijective proof of this result. Then we introduce the structures of linked partitions

and linked cycles. We present various combinatorial properties of noncrossing linked partitions,

linked partitions, and linked cycles, and connect them to other combinatorial structures and

results, including increasing trees, partial matchings, k-Stirling numbers of the second kind, and

the symmetry between crossings and nestings over certain linear graphs.

Keywords: noncrossing partition, Schröder path, linked partition, linked cycle, increasing trees,

generalized k-Stirling number.

MSC Classification: 05A15, 05A18

1 Introduction

One of the most important combinatorial structures is a partition of a finite set N , that is, a

collection π = {B1, B2, . . . , Bk} of subsets of N such that (i) Bi 6= ∅ for each i; (ii) Bi ∩ Bj = ∅ if

i 6= j, and (iii) B1 ∪ B2 ∪ · · · ∪ Bk = N. Each element Bi is called a block of π.

Let N = [n], the set of integers {1, 2, ..., n}, and Bi, Bj be two blocks of a partition π of [n].

We say that Bi and Bj are crossing if there exist a, c ∈ Bi and b, d ∈ Bj with a < b < c < d.
4The first author was supported by the 973 Project on Mathematical Mechanization, the Ministry of Education,

the Ministry of Science and Technology, and the National Science Foundation of China.
5The third author was supported in part by NSF grant #DMS-0245526.
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Otherwise, we say Bi and Bj are noncrossing. A noncrossing partition σ is a partition of [n] whose

blocks are pairwise noncrossing.

Given partitions π and σ of [n] we say that π < σ if each block of π is contained in a block of σ.

This ordering defines a lattice on the set of all partitions of [n], which is called the partition lattice.

When restricted to the set of noncrossing partitions on [n], it is called the noncrossing partition

lattice and denoted NCn. The noncrossing partition lattice is a combinatorial structure that occurs

in a diverse list of mathematical areas, including, for example, combinatorics, noncommutative

probability, low-dimensional topology and geometric group theory. A nice expository article on the

subject is given in [4].

Recently, in studying the unsymmetrized T -transform in the content of free probability theory,

Dykema introduced a new combinatorial structure, the noncrossing linked partition [2], which

can be viewed as a noncrossing partition with possible some links with restricted nature drawn

between certain blocks of the partition. Dykema described two natural partial orderings on the

set of noncrossing linked partitions of [n], and compared it with the noncrossing partition lattice

NCn. In particular, he obtained the generating function for the number of noncrossing linked

partitions via transforms in free probability theory. It follows that the cardinality of noncrossing

linked partitions of [n + 1] is equal to the n-th large Schröder number rn, which counts the number

of Schröder paths of length n. A Schröder path of length n is a lattice path from (0, 0) to (n, n)

consisting of steps East (1, 0), North (0, 1) and Northeast (1, 1), and never lying under the line

y = x. The first few terms of the large Schröder numbers are 1, 2, 6, 22, 90, 394, 1806 . . .. It is the

sequence A006318 in the database On-line Encyclopedia of Integer Sequences (OEIS) [7].

The restricted link between blocks proposed by Dykema is as follows. Let E and F be two

finite subsets of integers. We say that E and F are nearly disjoint if for every i ∈ E ∩ F , one of

the following holds:

a. i = min(E), |E| > 1 and i 6= min(F ), or

b. i = min(F ), |F | > 1 and i 6= min(E).

Definition 1.1. A linked partition of [n] is a set π of nonempty subsets of [n] whose union is [n]

and any two distinct elements of π are nearly disjoint. It is a noncrossing linked partition if in

addition, any two distinct elements of π are noncrossing.

Denote by LP (n) and NCL(n)) the set of all linked partitions and noncrossing linked partitions

of [n] respectively. As before, an element of π is called a block of π. In the present paper we study

the combinatorial properties of linked partitions. Section 2 is devoted to the noncrossing linked

partitions. We construct a bijection between the set of noncrossing linked partitions of the set [n+1]

and the set of Schröder paths of length n, and derive various generating functions for noncrossing

linked partitions. In Section 3 we discuss the set LP (n) of all linked partition of [n]. We show that

LP (n) is in one-to-one correspondence with the set of increasing trees on n+1 labeled vertices, and
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derive properties of linked partitions from those of increasing trees. We also define two statistics

for a linked partition , 2-crossing and 2-nesting, and show that these two statistics are equally

distributed over all linked partitions with the same lefthand and righthand endpoints. Then we

propose a notion of linked cycles, which is a linked partition equipped with a cycle structure on

each of its block. We describe two graphic representations of linked cycles, give the enumeration of

the linked cycles on [n], and study certain statistics over linked cycles. In particular, we show that

there are two symmetric joint generating functions over all linked cycles on [n]: one for 2-crossings

and 2-nestings, and the other for the crossing number and the nesting number. This is the content

of Section 4.

2 Noncrossing linked partitions

This section studies the combinatorial properties of noncrossing linked partitions. Let fn =

|NCL(n)|, the number of noncrossing linked partitions of [n]. We establish a recurrence for the

sequence fn, which leads to the generating function. Then we give a bijective proof of the identity

fn+1 = rn, where rn is the n-th large Schröder number. Using the bijection, we derive various

enumerative results for noncrossing linked partitions.

The following basic properties of noncrossing linked partitions were observed in [2, Remark 5.4].

Property. Let π ∈ NCL(n).

1. Any given element i of [n] belongs to either exactly one or exactly two blocks; we will say i

is singly or doubly covered by π, accordingly.

2. The elements 1 and n are singly covered by π.

3. Any two blocks E, F of π have at most one element in common. Moreover, if |E ∩ F | = 1,

then both |E| and |F | have at least two elements.

Noncrossing linked partitions can be represented by graphs. One such graphical representation

is described in [2], which is a modification of the usual picture of a noncrossing partition. In this

representation, for π ∈ NCL(n), one lists n dots in a horizontal line, and connects the i-th one

with the j-th one if and only if i and j are consecutive numbers in a block of π. Here we propose a

new graphical representation, called the linear representation, which plays an important role in the

bijections with other combinatorial objects. Explicitly, for a linked partition π of [n], list n vertices

in a horizontal line with labels 1, 2, . . . , n. For each block E = {i1, i2, . . . , ik} with i1 = min(E) and

k ≥ 2, draw an arc between i1 and ij for each j = 2, . . . , k. Denote an arc by (i, j) if i < j, and

call i the lefthand endpoint, j the righthand endpoint. In drawing the graph we always put the

arc (i, j) above (i, k) if j > k. Denoted by Gπ this linear representation. It is easy to check that a

linked partition is noncrossing if and only if there are no two crossing edges in Gπ.
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Example 1. Figure 1 shows the linear representations of all (noncrossing) linked partitions in

NCL(3).

π

{1, 2, 3}

{1, 2}{2, 3}

{1}{2, 3}

Gπ π

{1, 2}{3}

{1, 3}{2}

{1}{2}{3}

Gπ

Figure 1: The elements of NCL(3) and their linear representations.

Given π ∈ NCL(n), for a singly covered element i ∈ [n], denote by B[i] the block containing i.

If i is the minimal element of a block B of π, we say that it is a minimal element of π. Our first

result is a recurrence for the sequence fn.

Proposition 2.1. The sequence fn satisfies the recurrence

fn+1 = fn + f1fn + f2fn−1 + · · · + fnf1, (1)

with the initial condition f1 = 1.

Proof. Clearly f1 = 1. Let π ∈ NCL(n + 1) and i = min(B[n + 1]).

If i = n + 1, then n + 1 is a singleton block of π. There are fn noncrossing linked partitions

satisfying this conditions.

If 1 ≤ i ≤ n, then for any two elements a, b ∈ [n] with a < i < b, a and b cannot be in the same

block. Hence π can be viewed as a union of two noncrossing linked partitions, one of {1, 2, . . . , i},
and the other of {i, i + 1, . . . , n + 1} where i and n + 1 belong to the same block. Conversely, given

a noncrossing linked partition π1 = {B1, . . . , Bk} of {1, 2, . . . , i} with i ∈ Bk, and a noncrossing

linked partition π2 = {C1, . . . , Cr} of {i, i + 1, . . . , n + 1} with i and n + 1 ∈ C1, we can obtain a

noncrossing linked partition π of [n + 1] by letting

π =

{

π1 ∪ π2 if Bk 6= {i},
π1 ∪ π2 \ {Bk} if Bk = {i}.

Also note that a noncrossing linked partition of {i, . . . , n + 1} with i and n + 1 in the same block

can be obtained uniquely from a noncrossing linked partition of {i, . . . , n} by adding n + 1 to the

block containing i. Hence we get

fn+1 = fn + f1fn + f2fn−1 + · · · + fnf1,

for all n ≥ 0.
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Prop. 2.1 leads to an equation for the generating function F (x) =
∑

n≥0 fn+1x
n.

F (x) =

∞
∑

n=0

fn+1x
n = 1 +

∞
∑

n=1

fnxn +

∞
∑

n=1

(f1fn + f2fn−1 + · · · + fnf1, )x
n

= 1 + x · F (x) + x · F (x)2.

It follows that

F (x) =
1 − x −

√
1 − 6x + x2

2x
. (2)

Formula (2) was first obtained by Dykema [2] using transforms in free probability theory. It is

the same as the generating function of the large Schröder numbers, where the n-th large Schröder

number rn counts the number of Schröder paths of length n, i.e., lattice paths from (0, 0) to (n, n)

consisting of steps (1, 0), (0, 1), and (1, 1), and never lying under the line y = x. Therefore

Theorem 2.2 (Dykema). For every n ≥ 0, the number of elements in NCL(n + 1) is equal to

the large Schröder number rn.

Here we construct a bijection between noncrossing linked partitions of [n+1] and Schröder paths

of length n. For convenience, we use E, N and D to denote East, North and Northeast-diagonal

steps, respectively.

A map φ from NCL[n + 1] to the set of Schröder paths of length n.

Given a noncrossing linked partition π of [n+1] (n ≥ 0), define a lattice path from the origin (0, 0)

by the following steps.

Step 1. Initially set x = 0. Move k − 1 N -steps if the block B[1] contains k elements.

In general, for x = i > 0, if i + 1 is the minimal element of a block B of π and |B| = k, move

(k − 1) N -steps.

Step 2. Move one D-step if i + 2 is a singly covered minimal element of π. Otherwise move one

E-step. Increase the value of x by one. (Note that the path reaches the line x = i + 1 now).

Iterate Steps 1 and 2 until x = n. When the process terminates, the resulting lattice path is φ(π).

Theorem 2.3. The above defined map φ is a bijection from the set of noncrossing linked partitions

of [n + 1] to the set of Schröder paths of length n.

Proof. In π each integer i ∈ [n + 1] is of one of the following types:

1. i is a singly covered minimal element;

2. i is singly covered, but i 6= min(B[i]);

3. i is doubly covered. In this case assume i belong to blocks E and F with i = min(F ) and

j = min(E) < i;
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Each element i of the first type except i = 1 contributes one D-step between the lines x = i−2 and

x = i− 1. Each element i of the second type contributes one N -step at the line x = min(B[i]), and

one E-step between the lines x = i− 2 and x = i− 1. Each element i of the third type contributes

one N -step at the line x = j, and one E-step between the lines x = i− 2 and x = i− 1. Hence the

path ends at (n, n), and at any middle stage, the number of N -steps is no less than that of E-steps.

This proves that the path φ(π) is a Schröder path of length n.

To show that φ is a bijection, it is sufficient to give the inverse map of φ. Given a Schröder path

of length n, for each i = 2, 3, . . . , n, check the segment between the lines x = i− 2 and x = i− 1. If

it is a D-step, then i is a singly covered minimal element. If it is a E-step, draw a line with slope

1 which starts at the middle point of this E-step, and lies between the Schröder path and the line

x = y. Assume the line meets the given Schröder path for the first time at x = j < i − 1. Then i

belongs to a block whose minimal element is j + 1. We call this diagonal segment between x = j

and x = i − 3
2 a tunnel of the Schröder path. See Figure 2 for an illustration.

The resulting collection of subsets of [n + 1] must be pairwise noncrossing. This is because for

any tunnel whose endpoints are A and B, where A is an N -step and B is an E-step, there are

an equal number of N -step and E-steps between A and B. Therefore for any E-step between A

and B, the tunnel starting from it must end at an N -step between A and B as well. Also note

that any element i ∈ [n + 1]\{1} can belong to at most two such subsets. If it happens, then both

subsets have cardinality at least two, and i is the minimal element of exactly one of them. Hence

the collection of subsets obtained forms a noncrossing linked partition. We leave to the reader to

check that this gives the inverse of φ(π).

Example 2. Tunnels in a Schröder path of length 5.

The tunnel between x = 1 and x = 3/2 implies that 3 is in a block B with min(B) = 2.

The tunnel between x = 2 and x = 3/2 implies that 4 is in a block B with min(B) = 3.

The tunnel between x = 1 and x = 7/2 implies that 5 is in a block B with min(B) = 2.

The tunnel between x = 0 and x = 9/2 implies that 6 is in a block B with min(B) = 1.

The corresponding noncrossing linked partition is π = {{1, 6}, {2, 3, 5}, {3, 4}}.

0 1 2 3 4 5

1

2

3

4

5

Figure 2: There are four tunnels in the Schröder path.

The bijection φ can be easily described via the linear representation of π. First in Gπ, add a

mark right before each singly covered minimal element except 1. The bijection φ transforms this

marked linear representation of π into a lattice path by going through the vertices from left to
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right, and replacing each left end of an arc with an N -step, each right end of an arc with an E-step,

and each mark with a D-step.

Example 3. Let π = {{1, 6}, {2, 3, 5}, {3, 4}}. The marked linear representation is

∗
1 2 3 4 5 6

The following steps yield the corresponding large Schröder path.

(0, 0)

x = 0 x = 1 x = 2 x = 3 x = 4

⇒ ⇒ ⇒ ⇒

Figure 3: The steps of φ that yield the corresponding Schröder path.

Example 4. The elements of NCL(3), their marked linear representations, and the corresponding

Schröder paths.

{1, 2, 3} {1, 2}{2, 3} {1, 3}{2} {1, 2}{3} {1}{2, 3} {1}{2}{3}

∗ ∗ ∗ ∗ ∗

Figure 4: The elements of NCL(3) and their corresponding Schröder paths.

A peak of the Schröder path is a pair of consecutive NE steps and a valley is a pair of consecutive

EN steps. The following results are well-known for Schröder paths.

Proposition 2.4.

1. Let p(n, k) be the number of Schröder paths of length n with k peaks. Then p(n, k) =

Cn−k

(2n−k
k

)

=
(n
k

)(2n−k
n−1

)

/n where the Cn is the n-th Catalan number 1
n+1

(2n
n

)

. It is also

the number of Schröder paths with k D-steps. Let p(0, 0) = 1. The generating function for

p(n, k) is

∑

n,k≥0

p(n, k)xntk =
1 − tx −

√

(1 − tx)2 − 4x

2
. (3)

7



2. Let v(n, k) be the number of Schröder paths of length n with k valleys. It also counts the

number of Schröder paths of length n with k NN -steps. Let v(0, 0) = 1. The generating

function V (x, t) =
∑

n,k≥0 v(n, k)xntk satisfies

x(t + x − tx)V (x, t)2 − (1 − 2x + tx)V (x, t) + 1 = 0.

Explicitly,

V (x, t) =
−1 + 2x − tx +

√
1 − 4x − 2tx + t2x2

2(−tx − x2 + x2t)
. (4)

3. Let d(n, k) be the number of Schröder paths of length n, containing k D’s not preceded by an

E. Let d(0, 0) = 1. The generating function D(x, t) =
∑

n,k≥0 D(n, k)xntk satisfies

D(x, t) = 1 + txD(x, t) + x(1 + x − tx)D(x, t)2.

Explicitly,

D(x, t) =
1 − tx −

√

(1 − tx)2 − 4x(1 + x − tx)

2x(1 + x − tx)
. (5)

These results can be found, for example, in OEIS [7], Sequence A060693 for Statement 1,

A101282 for Statement 2, and A108916 for Statement 3.

The correspondence π → φ(π) between noncrossing linked partitions of [n + 1] and Schröder

paths of length n allows us to deduce a number of properties for noncrossing linked partitions. It

is easily seen that the properties for an element of [n + 1] in a noncrossing linked partition listed

on the left correspond to the given steps of Schröder paths, listed on the right.

NCL(n + 1) steps in Schröder paths

singly covered minimal element i, i 6= 1 D

doubly covered element EN

singleton block {i}, i 6= 1 D not followed by an N

i ∈ B where min(B) = i − 1 NE

From Prop. 2.4 and the obvious symmetry between steps ED and DN there follows:

Proposition 2.5. 1. The number of noncrossing linked partitions of [n+1] with k singly covered

minimal elements i where i 6= 1 is equal to p(n, k) = Cn−k

(2n−k
k

)

=
(n
k

)(2n−k
n−1

)

/n. It is also

counts the number of noncrossing linked partitions on [n + 1] with k elements x such that

x, x − 1 lie in a block B with x − 1 = min(B). The generating function of p(n, k) is given by

Eqn. (3).

2. The number of noncrossing linked partitions of [n + 1] with k doubly covered elements is

v(n, k), whose generating function is given by Eqn. (4).
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3. The number of noncrossing linked partitions on [n+1] with k singleton blocks {i} where i 6= 1

is d(n, k), whose generating function is given by Eqn. (5).

At the end of this section, we count the noncrossing linked partitions by the number of blocks,

using the recurrence (1).

Proposition 2.6. Let b(n, k) be the number of noncrossing linked partition of [n] with k blocks.

Let B(x, t) = 1 +
∑

n,k≥1 b(n, k)xntk. Then B(x, t) satisfies the equation

(1 + x − tx)B(x, t)2 + (2tx − x − 3)B(x, t) + 2 = 0. (6)

Explicitly,

B(x, t) =
3 + x − tx −

√

(2tx − x − 3)2 − 8(1 + x − tx)

2(1 + x − tx)
. (7)

Proof. We derive a recurrence for b(n, k). Given π ∈ NCL(n) with k blocks, again let i =

min(B[n]). First, there are b(n − 1, k − 1) many noncrossing linked partitions in NCL(n) such

that i = n. Otherwise, assume 1 ≤ i ≤ n − 1. As in the proof of Prop. 2.1, π is a union of two

noncrossing linked partitions, π1 of [i], and π2 of {i, . . . , n} with i and n lying in the same block.

Assume π1 has t blocks, and π2 has r blocks. If i is a singleton of π1, then π has t − 1 + r many

blocks; if i is not a singleton of π1, then π has t + r many blocks. Finally, note that π2 can be

obtained by taking any noncrossing linked partition on {i, i + 1, . . . , n − 1}, and then adding n to

the block containing i. Combining the above, we get the recurrence

b(n, k) = b(n − 1, k − 1)

+
n−1
∑

i=1

∑

r+t=k

b(n − i, r)
[

b(i − 1, t) + b(i, t) − b(i − 1, t − 1)
]

. (8)

Note b(1, 1) = b(2, 1) = b(2, 2) = 1, and b(n, 0) = 0 for all n ≥ 1. If we set b(0, 0) = 1, then the

recurrence (8) holds for all n ≥ 1 and k ≥ 1. Now multiply both sides of (8) by xntk, and sum over

all n, k. Noticing that for any sequence gi,

∑

n≥1

n−1
∑

i=1

gign−ix
n =





∑

n≥0

gnxn





2

− 2g0

∑

n≥0

gnxn,

we get the equation (6) and hence the formula (7).

3 Linked partitions

In this section we study linked partitions. Recall that a linked partition of [n] is a collection of

pairwise nearly disjoint subsets whose union is [n]. The set of all the linked partitions on [n] is

denoted by LP (n), whose cardinality is lpn.
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It is not hard to see that lpn = n!. Instead of merely giving a counting argument, we present

a one-to-one correspondence between the set of linked partitions of [n] and the set of increasing

trees on n+1 labeled vertices. The latter is a geometric representation for permutations, originally

developed by the French, and outlined in the famous textbook [8, Chap.1.3]. Many properties of

linked partitions can be trivially deduced from this correspondence. As a sample, we list the results

involving the signless Stirling numbers and the Eulerian numbers. At the end of this section we

give the joint distribution for two statistics, 2-crossings and 2-nestings, over linked partitions with

given sets of lefthand and righthand endpoints.

Definition 3.1. An increasing tree on n + 1 labeled vertices is a rooted tree on vertices 0, 1, . . . , n

such that for any vertex i, i < j if i is a successor of j.

Theorem 3.2. There is a one-to-one correspondence between the set of linked partitions of [n] and

the set of increasing trees on n + 1 labeled vertices.

Proof. We use the linear representation Gπ for linked partitions. Recall that for π ∈ LP (n), Gπ is

the graph with n dots listed in a horizontal line with labels 1, 2, . . . , n, where i and j are connected

by an arc if and only of j lies in a block B with i = min(B). To get an increasing tree, one simply

adds a root 0 to Gπ which connects to all the singly covered minimal elements of π. This defines an

increasing tree on [n]∪{0}, where the children of root 0 are those singly covered minimal elements,

and j is a child of i if and only if (i, j) is an arc of Gπ and j > i.

Example 5. Let π = {{126}, {248}, {3}, {57}}. The singly covered minimal elements are {1, 3, 5}.
The corresponding increasing tree is given in Figure 5.

1 2 3 4 5 6 7 8

=⇒
1 2 3 4 5 6 7 8

0

=⇒
4

2

1

0

8

6

3
5

7

Figure 5: A linked partition and the corresponding increasing tree

The following properties of increasing trees are listed in Proposition 1.3.16 of [8].

Proposition 3.3. 1. The number of increasing trees on n + 1 labeled vertices is n!.

2. The number of such trees for which the root has k successors is the signless Stirling number

c(n, k) (of the first kind).

3. The number of such trees with k endpoints is the Eulerian number A(n, k).

Let β(π) = |{i is singly covered and i 6= min(B[i])}| + |{i : singleton block of π }|.

10



Corollary 3.4. 1. The number of linked partitions of [n] is n!.

2. The number of linked partitions of [n] with k singly covered minimal elements is the signless

Stirling number c(n, k) (of the first kind).

3. The number of linked partitions of [n] with β(π) = k is the Eulerian number A(n, k).

For a linked partition π with linear representation Gπ, we say that two arcs (i1, j1) and (i2, j2)

form a 2-crossing if i1 < i2 < j1 < j2; they form a 2-nesting if i1 < i2 < j2 < j1. Denoted by cr2(π)

and ne2(π) the number of 2-crossings and 2-nestings of π, respectively. For example, the linked

partition π = {{126}, {248}, {3}, {57}} in Example 5 has cr2(π) = 2 and ne2(π) = 2.

Given π ∈ LP (n), define two multiple sets

left(π) = {lefthand endpoints of arcs of π},
right(π) = {righthand endpoints of arcs of π}.

For example, for π = {{126}, {248}, {3}, {57}}, left(π) = {1, 1, 2, 2, 5}, and right(π) = {2, 6, 4, 7, 8}.
Clearly, each element of right(π) has multiplicity 1.

Fix S and T where S is a multi-subset of [n], T is a subset of [n], and |S| = |T |. Let LPn(S, T ) be

the set {π ∈ LP (n) : left(π) = S, right(π) = T}. We prove that over each set LPn(S, T ), the statis-

tics cr2(π) and ne2(π) have a symmetric joint distribution. Explicitly, let S = {ar1
1 , ar2

2 , . . . , arm
m }

with a1 < a2 < · · · < am. For each 1 ≤ i ≤ m, let h(i) = |{j ∈ T : j > ai}| − |{j ∈ S : j > ai}|. We

have

Theorem 3.5.

∑

π∈LPn(S,T )

xcr2(π)yne2(π) =
∑

π∈LPn(S,T )

xne2(π)ycr2(π) =

m
∏

i=1

yrih(i)−r2
i

(

h(i)

ri

)∣

∣

∣

∣

q=x/y

, (9)

where
(

n

m

)

is the q-binomial coefficient

(

n

m

)

=
(n)!

(m)!(n − m)!
=

(qn − 1)(qn − q) · · · (qn − qm−1)

(qm − 1)(qm − q) · · · (qm − qm−1)
.

Proof. For 1 ≤ m ≤ n, denote by
([n]

m

)

the set of integer sequences (x1, x2, . . . , xm) such that

1 ≤ x1 < x2 < · · · < xm ≤ n. We give a bijection from the set of linked partitions in LPn(S, T ) to

the set
∏m

i=1

([h(i)]
ri

)

.

Given an element s = (s1, s2, . . . , sm) in
∏m

i=1

(

[h(i)]
ri

)

where si ∈
(

[h(i)]
ri

)

, we construct a linked

partition π by matching each lefthand endpoint in S to a righthand endpoint in T . First, there

are rm lefthand endpoints at node am, and on its right there are h(m) many righthand endpoints.

Assume sm = (x1, x2, . . . , xrm). We connect the rm lefthand endpoints at node am to the x1-th,

x2-th, ..., xrm-th righthand endpoints after node am.
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In general, after matching lefthand endpoints at nodes ai+1, . . . , am to some righthand end-

points, we process the ri lefthand endpoints at node ai. At this stage there are exactly h(i) many

righthand endpoints available after the node ai. List them by 1, 2, . . . , h(i), and match the lefthand

endpoints at ai to the y1-th, y2-th, ..., yri
-th of them, if si = (y1, y2, . . . , yri

).

Continue the above procedure until each lefthand endpoint is connected to some righthand

endpoint on its right. This gives the desired bijection between LPn(S, T ) and
∏m

i=1

([h(i)]
ri

)

. In

particular, LPn(S, T ) is nonempty if and only if for every ai ∈ S, h(i) ≥ ri.

Example 6. Let S = {1, 1, 2, 2, 2, 3, 3}, T = {4, 5, 6, 7, 8, 9, 10}. Then h(1) = 2, h(2) = 5, h(3) = 7.

Figure 6 illustrates how to construct the linked partition for s = (s1, s2, s3) where s1 = (1, 2), s2 =

(2, 4, 5), and s3 = (3, 6).

1 2 3 4 5 6 7 8 9 10

=⇒
1 2 3 4 5 6 7 8 9 10

=⇒
1 2 3 4 5 6 7 8 9 10

Figure 6: An illustration of the bijection from LPn(S, T ) to
∏m

i=1

([h(i)]
ri

)

.

The numbers of 2-crossings and 2-nestings are easily expressed in terms of the sequence s =

(s1, s2, . . . , sm). Assume si = (x1, . . . , xri
). By the above construction, the number of 2-crossings

formed by arcs jk and ait with j < ai < k < t is
∑ri

t=1(xt − t), and the number of 2-crossings

formed by arcs jk and ait with j < ai < t < k is
∑ri

t=1(h(i)− xt − (ri − t)). Hence si contributes a

factor

x(
∑ri

t=1 xt)−(ri+1
2 )yrih(i)−(ri

2 )−
∑ri

t=1 xt

to the generating function
∑

π∈LPn(S,T ) xcr2(π)yne2(π). Since

∑

(x1,...,xri
)∈([h(i)]

ri
)

q(
∑

t xt)−(ri+1
2 ) =

(

h(i)

ri

)

,

and si are mutually independent, we have

∑

π∈LPn(S,T )

xcr2(π)yne2(π) =
m
∏

i=1

yrih(i)−r2
i

(

h(i)

ri

)

∣

∣

∣

∣

∣

q=x/y

.

The symmetry between cr2(π) and ne2(π) is obtained by the involution τ : (s1, s2, . . . , sm) →
(t1, t2, . . . , tm) on

∏m
i=1

(

[h(i)]
ri

)

, where ti = (h(i) + 1− xri
, . . . , h(i) + 1− x1) if si = (x1, . . . , xri

).

4 Linked cycles

As with matchings and set partitions, one can define the crossing number and the nesting number

for a given linked partition. Unfortunately, these two statistics do not have the same distribution
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over all linked partitions of [n]. Motivated by the work in [1], we want to find a suitable structure

over which the crossing number and nesting number have a symmetric joint distribution. For this

purpose we introduce the notion of linked cycles, which are linked partitions equipped with a cycle

structure on each of its block. It turns out that the set of linked cycles possesses many interesting

combinatorial properties.

4.1 Two representations for linked cycles

Definition 4.1. A linked cycle π̂ on [n] is a linked partition π = {B1, . . . , Bk} of [n] where for each

block Bi the elements are arranged in a cycle.

We call each such block Bi with the cyclic arrangement a cycle of π̂. The set of all linked cycles

on [n] is denoted by LC(n).

For a set B = {b1, b2, . . . , bk}, we represent by (b1, b2, . . . , bk) the cycle b1 → b2 → · · · → bk → b1.

In writing a linked cycle π̂, we use the convention that: (a) each cycle of π̂ is written with its minimal

element first, (b) the cycles are listed in increasing order of their minimal elements. For example,

for the linked partition π = {{126}, {248}, {3}, {57}} with cyclic orders (1 → 2 → 6 → 1), (2 →
8 → 4 → 2), (3 → 3), and (5 → 7 → 5), the linked cycle π̂ is written as π̂ = (126)(284)(3)(57).

Again the linked cycles may be represented by certain graphs. Here we introduce two such

graphical representations.

1. Cycle representation Gc
π̂. Let π̂ ∈ LC(n), the cycle representation Gc

π̂ of π̂ is a directed

graph on [n] with arcs (i, j) whenever i and j are consecutive elements in a cycle of π̂.

In drawing the figures, we put elements of a cycle Ci in a circle in clockwise order. If a cycle

Ci contains the minimal element of a connected component of Gc
π̂, then we say that Ci is the root

cycle of that component.

Example 7. The cycle representation for the linked cycle π = (126)(284)(3)(57) is given in Figure

7. There are three connected components and (126) is the root cycle of the connected component

(126)(284).

1
2

6

8

4

3

5 7

Figure 7: The cycle representation of the linked cycle π = (126)(248)(3)(57).

2. Linear representation Gl
π̂. Let π̂ ∈ LC(n), the linear representation Gl

π̂ of π̂ is a graph whose

vertices lie on a horizontal line, and each vertex is of one of the following kind: (i) a lefthand

endpoint, (ii) a righthand endpoint, or (iii) an isolated point.
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Start with n vertices in a horizontal line labeled 1, 2, . . . , n. We define Gl
π̂ by first splitting

vertices as follows:

1. If i is a singly covered minimal element of a cycle with k + 1 elements, and k ≥ 0, split the

vertex i into k vertices labeled i(1), i(2), . . . , i(k);

2. If i is singly covered, but not a minimal element, replace the vertex i by a vertex labeled i(0);

3. If i is doubly covered, and is the minimal element of a cycle of size k + 1, split the vertex i

into k + 1 vertices labeled i(0), i(1), i(2), . . . , i(k);

For a cycle Ci = (i1i2 . . . iti), if ti ≥ 2, then we have created vertices with labels i
(1)
1 , i

(2)
1 , . . . , i

(ti−1)
1 .

Add arcs (i
(1)
1 , i

(0)
ti

), (i
(2)
1 , i

(0)
ti−1), . . . , (i

(ti−1)
1 , i

(0)
2 ). Do this for each cycle of π̂, and the resulting

graph is Gπ
l.

Example 8. The linear representation for the linked cycle π̂ = (126)(284)(3)(57).

1(1) 1(2) 2(0) 2(1) 2(2)3(1) 4(0) 5(1) 6(0) 7(0) 8(0)

As for the linked partitions, sometimes it is useful to distinguish the set of singly covered

minimal elements of π̂. A vertex i is a singly covered minimal element of π̂ if and only if in the

linear representation Gl
π̂, there is no vertex i(0). The marked linear representation of π̂ is obtained

from Gl
π̂ by adding a mark before i(1) for each singly covered minimal i, except for i = 1. For

example, for π̂ in Example 8 we should add marks before vertices 3(1) and 5(1).

1(1) 1(2) 2(0) 2(1) 2(2)
∗
3(1) 4(0)

∗
5(1) 6(0) 7(0) 8(0)

For a linked partition π of [n], the marked linear representation of π has k marks if Gπ has k +1

connected components (as there is no mark before the vertex 1). In every connected component of

Gπ, the number of vertices is one greater than the number of arcs, so in Gπ,

n = #vertices

= #arcs + #components

= #arcs + #marks + 1.

For a linked cycle π̂ whose underlying linked partition is π, the marked linear representation of π̂

has the same number of arcs and marks as that of π. Hence
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Proposition 4.2. Any marked linear representation of a linked cycle of [n] satisfies

#arcs + #marks = n − 1.

Remark. It is clear that both the cycle representation Gc
π̂ and the linear representation Gl

π̂

uniquely determine π̂. In the marked linear representation of π̂, we may remove the labeling on the

vertices, as it can be recovered by the arcs and marks. More precisely, suppose G is a graph of a

(partial) matching whose vertices are listed on a horizontal line, and where some vertices 2, 3, . . . , n

have marks before them. If the total number of arcs and marks is n− 1, then one can partition the

vertices of G into n intervals in the following way. Start from the left-most vertex, end an interval

before each righthand endpoint or mark. Then for the ith interval, label the righthand endpoint

by i(0), the lefthand endpoints consecutively by i(1), i(2), . . . , and isolated point by i(1).

4.2 Enumeration of linked cycles

Let lcn be the cardinality of LC(n), the set of linked cycles on [n]. It is easy to get lc1 = 1, lc2 =

2, lc3 = 7, lc4 = 37. For any π̂ ∈ LC(n), let s(π̂) be the number of singly covered minimal elements

in π̂. s(π̂) is also the number of connected components in the cycle representation Gc
π̂. We denote

by f(n,m) the number of linked cycles in LC(n) with s(π̂) = m. Let size(π̂) =
∑

Ci
|Ci| where the

sum is over all cycles of π̂, and double(π̂) be the number of doubly covered elements of π̂.

Proposition 4.3. The numbers f(n,m) satisfy the recurrence

f(n,m) = (2(n − 1) − m)f(n − 1,m) + f(n − 1,m − 1)

with initial values f(1, 1) = 1, f(n, 0) = 0 and f(n,m) = 0 if n < m.

Proof. Clearly f(1, 1) = 1 and f(n,m) = 0 if n < m. For any linked cycle π̂ ∈ LC(n), 1 is always

a singly covered minimal element. Hence f(n, 0) = 0.

Given π̂ ∈ LC(n), after removing the vertex n and all edges incident to n in the cycle represen-

tation Gc
π̂, we get a linked cycle on [n − 1].

Conversely, given π̂′ = {B1, B2, ..., Bk} ∈ LC(n − 1), we can obtain a linked cycle π̂ of [n] by

joining the element n in one of the following mutually exclusive ways.

1. π̂ = π̂′ ∪ {n}, that is, π̂ is obtained from π̂′ by adding a singleton block {n}. In this case

s(π̂) = s(π̂′) + 1.

2. π̂ is obtained from π̂′ by inserting n into an existing cycle (a1a2...ak) of π̂′. Since n can be

inserted after any element ai, there are size(π̂′) many such formed π̂. For each of them,

s(π̂) = s(π̂′).

3. π̂ is obtained from π̂′ by adding a cycle of the form (i, n). Such a constructed π̂ is a linked

cycle if and only if i is singly covered and not a minimal element of π̂′. There are n − 1 −
s(π̂′) − double(π̂′) many choices for i. For each π̂ in this case, s(π̂) = s(π̂′).
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Combining these three cases, and noting that size(π̂′) = n− 1 + double(π̂′), we have size(π̂′) +

n − 1 − s(π̂′) − double(π̂′) = 2(n − 1) − s(π̂′), which leads to the desired recurrence

f(n,m) = (2(n − 1) − m)f(n − 1,m) + f(n − 1,m − 1).

The initial values of f(n,m) are

n \ k 1 2 3 4

1 1

2 1 1

3 3 3 1

4 15 15 6 1

The set of numbers {f(n,m) : n ≥ m > 0} are the coefficients of Bessel polynomials yn(x)

(with exponents in decreasing order), and has been studied by Riordan [6], and by W. Lang as the

signless k-Stirling numbers of the second kind with k = −1, [3]. From [6, pp77], we deduce that

f(n,m) =
(2n − m − 1)!

(m − 1)!(n − m)!2n−m
=

(

2n − m − 1

m − 1

)

(2n − 2m)!

(n − m)!2n−m
. (10)

A combinatorial proof of (10) is given at the end of this subsection, using a bijection between linked

cycles and certain set partitions. Another definition for f(n,m) is given by the coefficients in the

expansion of the operator (x−1dx)n, i.e.,

(x−1dx)n =

n
∑

m=1

(−1)n−mf(n,m)xm−2ndm
x , n ∈ N.

An extensive algebraic treatment based on this equation was given in [3]. The numbers {f(n,m)}
can be recorded in an infinite-dimensional lower triangular matrix. In particular, lcn, the cardinality

of LC(n), is the n-th row sum of the matrix. The exponential generating function of lcn is given

in Formula (54) of [3] as
∞

∑

n=1

lcn
xn

n!
= exp(1 −

√
1 − 2x) − 1.

In the OEIS [7] {lcn} is the sequence A001515, where the following recurrence is given.

an = (2n − 3)an−1 + an−2 (11)

Here we present a combinatorial proof based on the structure of linked cycles.

Proposition 4.4. The numbers f(n,m) satisfy the recurrence

f(n,m) = mf(n,m + 1) + f(n − 1,m − 1)

with initial values f(1, 1) = 1, f(n, 0) = 0 and f(n,m) = 0 if n < m.
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Proof. Let

A = {π̂ ∈ LC(n) : s(π̂) = m and n is not a singleton block},

and

B = {π̂ ∈ LC(n) : s(π̂) = m + 1},

Clearly |A| = f(n,m) − f(n − 1,m − 1). We will construct an m-to-one correspondence between

the sets A and B.

Let π̂ ∈ LC(n) with cycle representation Gc
π̂. First we describe an operation τ , which decomposes

a non-singleton connected component of Gc
π̂ into two. Let G1 be a connected component with at least

two vertices. Assume i1 is the minimal vertex of G1, which lies in the root cycle C1 = (i1i2 . . . it).

Then it must be at least 2. The operation τ removes the arcs (i1, i2) and (i2, i3), and adds an arc

(i1, i3).

The inverse operation ρ of τ merges two connected components G1 and G2 of a linked cycle as

follows. Assume the minimal elements of G1 and G2 are i1 and j1 respectively and i1 < j1. Then

i1 and j1 must be singly covered. Assume the root cycle of G1 is C1 = (i1i2 . . . ik). The operation

ρ inserts j1 into C1 to get (i1j1i2 . . . ik), and keeps all other cycles unchanged.

Now we can define the m-to-1 correspondence between the sets A and B. For any π̂ ∈ A the

cycle representation Gc
π̂ has m connected components, where n is not an isolated point. Applying

the operation τ to the component containing the vertex n, we get a linked cycle with m+1 connected

components. (See Figure 8 for an illustration.)

Conversely, given any π̂ ∈ B, there are m + 1 connected components in Gc
π̂. We may merge the

component containing n with any other component to get a linked cycle in A. There are m choices

for the other components, hence we get an m-to-one correspondence.

1
2

6

8

4

3
5 7

1 6 2 8

3

4

5 7

1 6
2 8

5

7

4

3

1 6 2

8

4
3

5 7

Figure 8: The operation τ on three linked cycles with 3 components all gives the same linked cycle

with 4 components.
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Theorem 4.5. The numbers lcn (n > 1) satisfy the recursive relation

lcn = (2n − 3)lcn−1 + lcn−2

with the initial values lc1 = 1 and lc2 = 2.

Proof.

lcn =
n

∑

m=1

f(n,m)

=

n
∑

m=1

[(2n − 2 − m)f(n − 1,m) + f(n − 1,m − 1)] (12)

=

n
∑

m=1

[(2n − 2 − m)f(n − 1,m) + (m − 1)f(n − 1,m) + f(n − 2,m − 2)] (13)

= (2n − 3)

n
∑

m=1

f(n − 1,m) +

n
∑

m=1

f(n − 2,m − 2)

= (2n − 3)lcn−1 + lcn−2,

where the equation (12) is obtained by applying Prop. 4.3 to f(n,m), and the equation (13) is

applying Prop. 4.4 to f(n − 1,m − 1).

In counting various kinds of set-partitions, Proctor found a combinatorial interpretation for

the sequence 2, 7, 37, 266, 2431, . . . as the number of partitions of [k] (0 ≤ k ≤ 2n) into exactly n

blocks each having no more than 2 elements, See [5, §7]. For example, for n = 2, there are 7 such

partitions. They are p1 = {{1}, {2}}, p2 = {{1, 2}, {3}}, p3 = {{1, 3}, {2}}, p4 = {{1}, {2, 3}},
p5 = {{1, 2}, {3, 4}}, p6 = {{1, 3}, {2, 4}}, p7 = {{1, 4}, {2, 3}}. Denote by P2(n) the set of such

partitions for 0 ≤ k ≤ 2n.

Our linked cycles provide another combinatorial interpretation. Using the marked linear repre-

sentation, we construct a bijection between the linked cycles on [n + 1] and the set P2(n).

A bijection γ between LC(n + 1) and P2(n).

Given a linked cycle π̂ ∈ LC(n+ 1) with the marked linear representation, removing the vertex

labels and all isolated points, then replacing each mark with a vertex, and relabeling the vertices

by 1, 2, . . . , k from left to right, we get a graph of a partition of [k] for some 0 ≤ k ≤ 2n, where

each block has 1 or 2 elements. By Prop. 4.2, there are exactly n blocks in this partition.

Conversely, given a partition of [k] (0 ≤ k ≤ 2n) in P2(n) we represent it by a graph whose

vertices are listed in a horizontal line, and there is an arc connecting i and j if and only if {i, j} is

a block. We can define a linked cycle on [n + 1] by the following steps:

1. Remove the labels of the vertices.
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2. Change each singleton block to a mark.

3. If a mark is followed by a righthand endpoint or another mark, add a vertex right after it,

and

4. If there is a mark before the first vertex, add a vertex at the very beginning.

The resulting graph is the marked linear representation of a linked cycle of [n + 1]. By the remark

at the end of §4.2, one can recover the labeling of the vertices, and hence the linked cycle.

Example 9. The linked cycle π = (126)(284)(3)(57) corresponds to the partition

{{1, 10}, {2, 3}, {4, 7}, {5, 12}, {6}, {8}, {9, 11}}, where n = 7 and 7 ≤ k ≤ 12.

1(1) 1(2) 2(0) 2(1) 2(2)
∗
3(1)4(0)

∗
5(1) 6(0) 7(0) 8(0)

mremove the labels and isolated points

∗ ∗

mchange marks to vertices and relabel all vertices

1 2 3 4 5 6 7 8 9 10 11 12

Figure 9: The procedure from a linked cycle to a partition.

We conclude this subsection with a combinatorial proof of Formula (10). Recall that f(n,m)

is the number of linked cycles on [n] with m singly covered minimal elements. Under the above

bijection γ, it is the number of partitions in P2(n− 1) with m− 1 isolated points, and hence n−m

blocks of size 2. For such a partition, the total number of points is k = 2(n−m)+m−1 = 2n−m−1.

To obtain such a partition, we can first choose m − 1 elements from [k] = [2n − m − 1] as isolated

points, and then construct a complete matching on the remaining 2(n−m) elements. The number

of ways to do this is then
(

2n − m − 1

m − 1

)

2(n − m)!

(n − m)!2n−m
.
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4.3 Crossings and nestings of linked cycles

In this subsection we present results on the enumeration of crossings and nestings, as well as 2-

crossings and 2-nestings, for linked cycles. This was our original motivation to introduce the notion

of linked cycles.

Given a linked cycle π̂ ∈ LC(n) with linear representation Gl
π̂. Denote by L = L(π) the vertex

labeling of Gl
π̂. Two different linked cycles π̂ and π̂′ on [n] may have the same vertex labeling. If

this happens, then π̂ and π̂′ share the following properties:

1. π̂ and π̂′ have the same number of cycles.

2. π̂ and π̂′ have the same set of singly covered minimal elements;

3. π̂ and π̂′ have the same set of doubly covered elements;

4. Each cycle Ci of π̂ can be paired with a unique cycle C ′
i of π̂′ such that |Ci| = |C ′

i|, and Ci

and C ′
i have the same minimal element.

Fix a vertex labeling L, denote by LCn(L) the set of all linked cycles π̂ with L(π̂) = L. In L, if a

vertex has a label i(0), we say it is a lefthand endpoint; if it has a label i(k) with k ≥ 1, we say it is

a righthand endpoint; if it has a label i, we say it is an isolated point. A π̂ ∈ LCn(L) corresponds

to a matching between the set of lefthand endpoints to the set of righthand endpoints.

Let k ≥ 2 be an integer. A k-crossing of π̂ is a set of k arcs (x1, y1), (x2, y2), . . . , (xk, yk)

of Gl
π̂ such that the vertices appear in the order x1, x2, . . . , xk, y1, y2, . . . , yk from left to right. A

k-nesting is a set of k arcs (x1, y1), (x2, y2), . . . , (xk, yk) such that the vertices appear in the order

x1, x2, . . . , xk, yk, . . . , y2, y1. Denoted by crk(π̂) the number of k-crossings of π̂, and nek(π̂) the

number of k-nestings of π̂. Finally, let cr(π̂) be the maximal i such that π̂ has a i-crossing and

ne(π̂) the maximal j such that π̂ has a j-nesting.

Our first result is an analog of Theorem 3.5, on the joint generating function of cr2 and ne2.

For any lefthand endpoint i(0), let

h(i) = |{righthand endpoints on the right of i(0)}| − |{lefthand endpoints on the right of i(0)}|.

Then

Theorem 4.6.

∑

π̂∈LCn(L)

xcr2(π̂)yne2(π̂) =
∑

π̂∈LCn(L)

xne2(π̂)ycr2(π̂)

=
∏

i(0)∈L

(xh(i)−1 + xh(i)−2y + · · · + xh(i)−kyk−1 + · · · + xyh(i)−2 + yh(i)).

In particular, the statistics cr2 and ne2 have a symmetric joint distribution over each set LCn(L).
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The proof is basically the same as that of Theorem 3.5. It is even simpler since every vertex is

the endpoint of at most one arc, that is, all ri = 1 in the proof of Theorem 3.5.

Perhaps more interesting is the joint distribution of cr(π̂) and ne(π̂) over LCn(L). Recall the

following result in [1]: Given a partition P of [n], let

min(P ) = {minimal block elements of P},
max(P ) = {maximal block elements of P}.

Fix S, T ⊂ [n] with |S| = |T |. Let Pn(S, T ) be the set {P ∈ Πn : min(P ) = S,max(P ) = T, }. Then

Theorem 4.7 (CDDSY).

∑

P∈Pn(S,T )

xcr(P )yne(P ) =
∑

P∈Pn(S,T )

xne(P )ycr(P ).

That is, the statistics cr(P ) and ne(P ) have a symmetric joint distribution over each set Pn(S, T ).

Although the standard representation for a partition of [n] given in [1] is different than the

linear representation defined in the present paper, they coincide on partial matchings. View the

graph Gl
π̂ as the graph of a partial matching P . Observe that by fixing the vertex labeling, we

actually fix the number of vertices in Gl
π̂, the set of minimal block elements of P (which is the set

of lefthand endpoints and isolated points), and the set of maximal block element of P (which is the

set of righthand endpoints and isolated points). Taking all linked cycles with the vertex labeling L
is equivalent to taking all possible partial matchings with the given sets of minimal block elements

and maximal block elements. Hence Theorem 4.7 applies to the set of linked cycles, and we obtain

the following theorem.

Theorem 4.8.
∑

π̂∈LNn(L)

xcr(π̂)yne(π̂) =
∑

π̂∈LNn(L)

xne(π̂)ycr(π̂).

That is, the statistics cr(P ) and ne(P ) have a symmetric joint distribution over each set LCn(L).
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