
ar
X

iv
:m

at
h/

06
11

69
8v

1 
 [

m
at

h.
C

O
] 

 2
2 

N
ov

 2
00

6

A Bijection on Dyck Paths and Its Cycle Structure

DAVID CALLAN

Department of Statistics
University of Wisconsin-Madison

1300 University Ave
Madison, WI 53706-1532

callan@stat.wisc.edu

November 21, 2006

Abstract

The known bijections on Dyck paths are either involutions or have notoriously

intractable cycle structure. Here we present a size-preserving bijection on Dyck

paths whose cycle structure is amenable to complete analysis. In particular, each

cycle has length a power of 2. A new manifestation of the Catalan numbers as labeled

forests crops up enroute as does the Pascal matrix mod 2. We use the bijection to

show the equivalence of two known manifestations of the Motzkin numbers. Finally,

we consider some statistics on the new Catalan manifestation.

1 Introduction There are several bijections on Dyck paths in the literature

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], usually introduced to show the equidistribution of statistics:

if a bijection sends statistic A to statistic B, then clearly both have the same distribution.

Another aspect of such a bijection is its cycle structure considered as a permutation on

Dyck paths. Apart from involutions, this question is usually intractable. For example,

Donaghey [7] introduces a bijection, gets some results on a restriction version, and notes

its apparently chaotic behavior in general. In similar vein, Knuth [8] defines a conjugate

(R) and transpose (T ), both involutions, on ordered forests, equivalently on Dyck paths,

and asks when they commute [8, Ex. 17, 7.2.1.6], equivalently, what are the fixed points of

(RT )2? This question is still open. (Donaghey’s bijection is equivalent to the composition

RT .)
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In this paper, after reviewing Dyck path terminology (§2), we recursively define a

new bijection F on Dyck paths (§3) and analyze its cycle structure (§4, §5). §4 treats

the restriction of F to paths that avoid the subpath DUU , and involves an encounter

with the Pascal matrix mod 2. §5 generalizes to arbitrary paths. This entails an explicit

description of F involving a new manifestation of the Catalan numbers as certain colored

forests in which each vertex is labeled with an integer composition. We show that each

orbit has length a power of 2, find generating functions for orbit size, and characterize

paths with given orbit size in terms of subpath avoidance. In particular, the fixed points of

F are those Dyck paths that avoid DUDD and UUP+DD where P+ denotes a nonempty

Dyck path. §6 uses the bijection F to show the equivalence of two known manifestations

of the Motzkin numbers. §7 considers some statistics on the new Catalan manifestation.

2 Dyck Path Terminology A Dyck path, as usual, is a lattice path

of upsteps U = (1, 1) and downsteps D = (1,−1), the same number of each, that stays

weakly above the horizontal line joining its initial and terminal points (vertices). A peak

is an occurrence of UD, a valley is a DU .

→

↑

peak upstep

valley
vertex

↑
return

downstep
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ground level

A Dyck 7-path with 2 components, 2DUDs, and height 3

The size (or semilength) of a Dyck path is its number of upsteps and a Dyck path of size

n is a Dyck n-path. The empty Dyck path (of size 0) is denoted ǫ. The number of Dyck

n-paths is the Catalan number Cn, sequence A000108 in OEIS . The height of a vertex

in a Dyck path is its vertical height above ground level and the height of the path is the

maximum height of its vertices. A return downstep is one that returns the path to ground

level. A primitive Dyck path is one with exactly one return (necessarily at the end). Note

that the empty Dyck path ǫ is not primitive. Its returns split a nonempty Dyck path into

one or more primitive Dyck paths, called its components. Upsteps and downsteps come in

matching pairs: travel due east from an upstep to the first downstep encountered. More

precisely, D0 is the matching downstep for upstep U0 if D0 terminates the shortest Dyck

2
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subpath that starts with U0. We use P to denote the set of primitive Dyck paths, Pn for

n-paths, P(DUU) for those that avoid DUU as a subpath, and P[DUU ] for those that

contain at least one DUU . A path UUUDUDDD, for example, is abbreviated U3DUD3.

3 The Bijection Define a size-preserving bijection F on Dyck paths recur-

sively as follows. First, F (ǫ) = ǫ and for a non-primitive Dyck path P with components

P1, P2, . . . , Pr (r ≥ 2), F (P ) = F (P1)F (P2) . . . F (Pr) (concatenation). This reduces mat-

ters to primitive paths. From a consideration of the last vertex at height 3 (if any), every

primitive Dyck path P has the form UQ(UD)iD with i ≥ 0 and Q a Dyck path that is

either empty (in case no vertex is at height 3) or ends DD; define F (P ) by

F (P ) =





U iF (R)UDDi if Q is primitive, say Q = URD, and

U i+1F (Q)Di+1 if Q is not primitive.

Schematically,
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definition of F on primitive Dyck paths

Note that R = ǫ in the top left path duplicates a case of the bottom left path but no

matter: both formulas give the same result.

The map G, defined as follows, serves as an inverse of F and hence F is indeed

a bijection. Again, G(ǫ) = ǫ and for a non-primitive Dyck path P with components

P1, P2, . . . , Pr (r ≥ 2), G(P ) = G(P1)G(P2) . . . G(Pr). By considering the lowest valley

vertex, every primitive Dyck path has the form U i+1QDi+1 with i ≥ 0 and Q a non-

primitive Dyck path (Q = ǫ in case valley vertices are absent); define G(P ) by

G(P ) =





UUG(R)D(UD)iD if Q ends UD, say Q = RUD, and

UG(Q)(UD)iD otherwise.
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The bijection F is the identity on Dyck paths of size ≤ 3, except that it interchanges

U3D3 and U2DUD2. Its action on primitive Dyck 4-paths is given in the Figure below.

−→

−→

−→

−→

−→

−→Dyck path P image F (P )
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action of F on primitive Dyck 4-paths

4 Restriction to DUU -avoiding Paths To analyze the

structure of F a key property, clear by induction, is that it preserves #DUUs, in par-

ticular, it preserves the property “path avoids DUU”. A DUU -avoiding Dyck n-path

corresponds to a composition c = (c1, c2, . . . , ch) of n via ci = number of Ds ending at

height h− i, i = 1, 2, . . . , h where h is the height of the path:
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3

1

3

2

DUU -avoiding path P ↔ composition (3, 1, 3, 2)

Under this correspondence, F acts on compositions of n : F is the identity on com-

positions of length 1, and for c = (ci)
r
i=1 with r ≥ 2, F (c) is the concatenation of

IncrementLast
(
F (c1, . . . , cr−2)

)
, 1cr−1−1, cr where IncrementLast means “add 1 to the

last entry” and the superscript refers to repetition. In fact, F can be described explicitly

on compositions of n:

Proposition 1. For a composition c of n, F (c) is given by the following algorithm. For

each entry c in even position measured from the end (so the last entry is in position 1),

replace it by c− 1 1s and increment its left neighbor.

For example, 4 2 1 5 2 3 =
6

4
5

2
4

1
3

5
2

2
1

3→ 1 13 3 10 6 11 3 = 14 3 6 1 3.

Primitive DUU -avoiding Dyck n-paths correspond to compositions of n that end with

a 1. Let Cn denote the set of such compositions. Thus |C1| = 1 and for n ≥ 2, |Cn| = 2n−2

since there are 2n−2 compositions of n− 1.

Denote the length of a composition c by #c. The size of c is the sum of its entries.

The parity of c is the parity (even/odd) of #c. There are two operations on nonempty

compositions that increment (that is, increase by 1) the size: P = prepend 1, and I =

increment first entry. For example, for c = (4, 1, 1) we have size(c) = 6, #c = 3, the

parity of c is odd, P (c) = (1, 4, 1, 1), I(c) = (5, 1, 1).

Lemma 2. P changes the parity of a composition while I preserves it.

We’ll call P and I augmentation operators on Cn and for A an augmentation operator,

A′ denotes the other one.

Lemma 3. Let A be an augmentation operator. On a composition c with #c ≥ 2,

A ◦ F = F ◦ A if #c is odd and A ◦ F = F ◦ A′ if #c is even.

5



This follows from Proposition 1.

Using Lemma 3, an F -orbit (c1, . . . , cm) in Cn together with an augmentation operator

A1 ∈ {P, I} yields part of an F -orbit in Cn+1 via a “commutative diagram” as shown:

c1
F
−−−→ c2

F
−−−→ . . .

F
−−−→ ci

F
−−−→ ci+1

F
−−−→ . . .

F
−−−→ cm

F
−−−→ c1yA1

yA2

yAi

yAi+1

yAm

yAm+1

d1
F
−−−→ d2

F
−−−→ . . .

F
−−−→ di

F
−−−→ di+1

F
−−−→ . . .

F
−−−→ dm

F
−−−→ dm+1

Let B(c1, A1) denote the sequence of compositions (d1, . . . ,dm) thus produced. By

Lemma 3, Ai+1 = Ai or A′
i according as #ci is odd or even (1 ≤ i ≤ m). Hence, if

the orbit of c1 contains an even number of compositions of even parity, then Am+1 = A1

and so dm+1 = d1 and B(c1, A1) is a complete F -orbit in Cn+1 for each of A1 = P and

A1 = I. On the other hand, if the orbit of c1 contains an odd number of compositions

of even parity, then Am+1 = A′
1 and the commutative diagram will extend for another m

squares before completing an orbit in Cn+1, consisting of the concatenation of B(c1, P )

and B(c1, I), denoted B(c1, P, I). In the former case orbit size is preserved; in the latter

it is doubled.

Our goal here is to generate F -orbits recursively and to get induction going, we now

need to investigate the parities of the compositions comprising these “bumped-up” orbits

B(c, A) and B(c, P, I). A bit sequence is a sequence of 0s and 1s. In the sequel all

operations on bit sequences are modulo 2. Let S denote the partial sum operator

on bit sequences: S
(
(ǫ1, ǫ2, . . . , ǫm)

)
= (ǫ1, ǫ1 + ǫ2, . . . , ǫ1 + ǫ2 + . . . + ǫm). Let em denote

the all 1s bit sequence of length m and let e denote the infinite sequences of 1s. Thus

Se = (1, 0, 1, 0, 1, . . .). Let P denote the infinite matrix whose ith row (i ≥ 0) is Sie (Si

denotes the i-fold composition of S). The (i, j) entry pij of P satisfies pij = pi−1,j + pi,j−1

and hence P is the symmetric Pascal matrix mod 2 with (i, j) entry =
(

i+j

i

)
mod 2. The

following lemma will be crucial.

Lemma 4. Fix k ≥ 1 and let Pk denote the 2k × 2k upper left submatrix of P . Then the

sum modulo 2 of row i in Pk is 0 for 0 ≤ i ≤ 2k − 1 and is 1 for i = 2k − 1.

Proof The sum of row i in Pk is, modulo 2,

2k−1∑

j=0

pij =

2k−1∑

j=0

(
i + j

i

)
=

(
i + 2k

i + 1

)
=

(
i + 2k

i + 1, 2k − 1

)

6



and for i < 2k − 1 there is clearly at least one carry in the addition of i + 1 and 2k − 1 in

base 2 so that, by Kummer’s well known criterion, 2 |
(

i+2k

i+1,2k−1

)
and the sum of row i is 0

(mod 2). On the other hand, for i = 2k − 1 there are no carries, so 2 ∤
(

i+2k

i+1,2k−1

)
and the

sum of row i is 1 (mod 2).

Now let p(c) denote the mod-2 parity of a composition c : p(c) = 1 if #c is odd, = 0

if #c is even. For purposes of addition mod 2, represent the augmentation operators P

and I by 0 and 1 respectively so that, for example, p(A(c)) = p(c) + A + 1 for A = P

or I by Lemma 2. Then the parity of di+1 above can be obtained from the following

commutative diagram (all addition modulo 2)

p(ci) −−−→ p(ci+1)yA

yp(ci)+A+1

. . . −−−→ p(ci+1) + p(ci) + A

This leads to

Lemma 5. Let pi denote the parity of ci so that p = (pi)
m
i=1 is the parity vector for the

F -orbit (ci)
m
i=1 of the composition c1. Then the parity vector for B(c, A) is

Sp + Sem + (A + 1)em.

Now we are ready to prove the main result of this section concerning the orbits of F on

primitive DUU -avoiding Dyck n-paths identified with the set Cn of compositions of n that

end with a 1. The parity of an orbit is the sum mod 2 of the parities of the compositions

comprising the orbit, in other words, the parity of the total number of entries in all the

compositions.

Theorem 6. For each n ≥ 1,

(i ) all F -orbits on Cn have the same length and this length is a power of 2.

(ii ) all F -orbits on Cn have the same parity.

(iii ) the powers in (i ) and the parities in (ii ) are given as follows:

For n = 1, the power (i.e. the exponent) is 0 and the parity is 1. For n = 2, the

power and parity are both 0. As n increases from 2, the powers remain unchanged

7



and the parity stays 0 except that when n hits a number of the form 2k +1, the parity

becomes 1, and at the next number, 2k + 2, the power increases by 1 and the parity

reverts to 0.

Proof We consider orbits generated by the augmentation operators P and I. No

orbits are missed because all compositions, in particular those ending 1, can be generated

from the unique composition of 1 by successive application of P and I. The base cases

n = 1, 2, 3 are clear from the orbits (1)→ (1), (1, 1)→ (1, 1), (2, 1)→ (1, 1, 1)→ (2, 1).

To establish the induction step, suppose given an orbit, orb(c), in C2k+1 (k ≥ 1) with

parity vector p = (ai)
2k

i=1 and (total) parity 1. Then the next orbit B(c, P, I) has parity

vector

p1 = (Sp,Sp + e2k) + Se2k+1

with parity (Sp’s cancel out) 1 + 1 + . . . + 1︸ ︷︷ ︸
2k

+ 1 + 0 + 1 + 0 + . . . + 1 + 0︸ ︷︷ ︸
2k+1

= 0 for k ≥ 1.

Successively “bump up” this orbit using A = ǫ1, ǫ2, . . . , in turn until the parity hits 1

again. With Sum(v) denoting the sum of the entries in v, the successive parity vectors

p1,p2, . . . are given by

pi =
(
Sip,Sip +

i−2∑

j=1

Sum(Sjp)Si−1−je2k + Si−1e2k

)
+

Sie2k+1 + Si−1e2k+1 +

i−2∑

j=1

ǫjS
i−1−je2k+1 + (ǫi−1 + 1)e2k+1 .

Applying Lemma 4 we see that, independent of the ǫi’s, pi has sum 0 for i < 2k − 1

and sum 1 for i = 2k − 1. This establishes the induction step in the theorem.

Corollary 7. For n ≥ 2, the length of each F -orbit in Pn(DUU) is 2k where k is the

number of bits in the base-2 expansion of n− 2.

Proof This is just a restatement of part of the preceding Theorem.

5 The Orbits of F The preceding section analyzed F on P(DUU), paths

avoiding DUU . Now we consider F on P[DUU ], the primitive Dyck paths containing a

DUU . Every P ∈ P[DUU ] has the form AQB where

8



(i) A consists of one or more Us

(ii) C := AB ∈ P(DUU)

(iii) Q /∈ P and Q ends DD (and hence Q contains a DUU at ground level).

To see this, locate the rightmost of the lowest DUUs in P , say at height h. Then

A = Uh, Q starts at step number h + 1 and extends through the matching downstep of

the middle U in this rightmost lowest DUU , and B consists of the rest of the path.
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← matching →

Q B

red UDs may be absent

The AQB decomposition of a path containing a DUU

Call the path AB the (DUU -avoiding) skeleton of P and Q the (DUU -containing)

body of P . In case P ∈ P(DUU), its skeleton is itself and its body is empty. If the

skeleton of P is UD, then P is uniquely determined by its skeleton and body. On the

other hand, a skeleton of size ≥ 2 and a nonempty body determine precisely two paths P

in P[DUU ], obtained by inserting the body at either the top or the bottom of the first

peak upstep in the skeleton, as illustrated.
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S two possible P s

B
B

Recapturing a path P ∈ P[DUU ] from a skeleton S and body B

Thus paths in P[DUU ] correspond bijectively to triples (S, B, pos) where S ∈ P(DUU)

is the skeleton, B 6= ǫ is the body, and pos = top or bot according as B is positioned at the

top or bottom of the first peak upstep in S, with the proviso that pos = top if S = UD.

In these terms, F can be specified on P[DUU ] as follows.
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Proposition 8.

F
(
(S, B, pos)

)
=





(F (S), F (B), pos ) if height(S) is odd, and

(F (S), F (B), pos′ ) if height(S) is even.

Proof Let h(P ) denote the height of the terminal point of the lowest DUU in P ∈

P[DUU ]. The result clearly holds for h(P ) = 1. If h(P ) ≥ 2, then P has the form

U2Q(UD)aD(UD)bD with a, b ≥ 0 and Q a Dyck path that ends DD. So F (P ) =

U b+1F (Q)(UD)a+1Db+1 and h(Q) = h(P )− 2. These two facts are the basis for a proof

by induction that begins as follows. If h(Q) = 0, then the body of F (P ) has position =

bottom, while the body of P has position bottom or top according as a ≥ 1 or a = 0. In

the former case, the skeleton of P has height 3 and position has been preserved, in the

latter height 2 and position has been reversed.

Iterating the skeleton-body-position decomposition on each component, a Dyck path

has a forest representation as illustrated below. Each vertex represents a skeleton and is

labeled with the corresponding composition. When needed, a color (top or bot) is also

applied to a vertex to capture the position of that skeleton’s body.
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b b b b

b b b

11 11
1

1 1 11

21

11 11, bot

A Dyck path and corresponding LCO forest

The 3 trees in the forest correspond to the 3 components of the Dyck path. The skeleton

of the first component is UD and its body has 2 identical components, each consisting

of a skeleton alone, yielding the leftmost tree. The skeleton of the third component is

UUDD and its body is positioned at the bottom of its first peak upstep, and so on. Call
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this forest the LCO (labeled, colored, ordered) forest corresponding to the Dyck path.

Here is the precise definition.

Definition. An LCO forest is a labeled, colored, ordered forest such that

• the underlying forest consists of a list of ordered trees (a tree may consist of a root

only)

• no vertex has outdegree 1 (i.e., exactly one child )

• each vertex is labeled with a composition that ends 1

• each vertex possessing children and labeled with a composition of size ≥ 2 is also

colored top or bot

• For each leaf (i.e. vertex with a parent but no child ) that is the rightmost child of

its parent, its label composition has size ≥ 2.

The size of an LCO forest is the sum of the sizes of its label compositions. The corre-

spondence Dyck path↔ LCO forest preserves size, and primitive Dyck paths correspond

to one-tree forests. Thus we have

Proposition 9. The number of LCO forests of size n is the Catalan number Cn, as is

the number of one-tree LCO forests of size n + 1.

The C4 = 14 one-tree LCO forests corresponding to primitive Dyck 5-paths are shown,

partitioned into F -orbits.

→ → →

15 221 311 41
• • • •

→→→

121111212111131
••••

→ →

11, bot 11, top

1 11 1 11 1 21 1 111 1 1 11 1111

1 1 1 1

@@�� @@�� @@�� @@�� @@�� @@��
•

•
• •

•

• •

•
• •

•
• • •

•
• • •

•

The LCO one-tree forests of size 5, partitioned into F -orbits

We can now give an explicit description of F on Dyck paths identified with LCO

forests. On an LCO forest, F acts as follows:
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• the underlying list of ordered trees is preserved

• each label c becomes F (c) as defined in Prop. 1

• each color (top/bot) is preserved or switched according as the associated label c has

odd or even length.

From this description and Cor. 7, the size of the F -orbit of a Dyck path P can be

determined as follows. In the LCO forest for P , let ℓ denote the maximum size of a leaf

label and i the maximum size of an internal (i.e., non-leaf) label (note that an isolated

root is an internal vertex). Let k denote the number of bits in the base-2 expansion of

max{ℓ− 2, i− 1}. Then the F -orbit of P has size 2k.

It is also possible to specify orbit sizes in terms of subpath avoidance. For Dyck paths

Q and R, let Q top R (resp. Q bot R) denote the Dyck path obtained by inserting R

at the top (resp. bottom) of the first peak upstep in Q. Then the F -orbit of a Dyck

path P has size ≤ 2k iff P avoids subpaths in the set {Q top R, Q bot R : R 6= ǫ, Q ∈

Pi(DUU), 2k−1 + 1 < i ≤ 2k + 1}. For k ≥ 1, listing these Qs explicitly would give

22k

− 22k−1

proscribed patterns of the form Q top R, R 6= ǫ (and the same number of

the form Q bot R). For k = 0, that is, for fixed points of F , the proscribed patterns

are UP+UDD and UUP+DD with P+ a nonempty Dyck path, and avoiding the first of

these amounts to avoiding the subpath DUDD.

The generating function for the number of F -orbits of size ≤ 2k can be found using the

“symbolic” method [15]. With Fk(x), Gk(x), Hk(x) denoting the respective generating

functions for general Dyck paths, primitive Dyck paths, and primitive Dyck paths that

end DD (x always marking size), we find

Fk(x) = 1 + Gk(x)Fk(x)

Gk(x) = x +
x(1− (2x)2k

1− 2x

(
x + (Fk(x)− 1)Hk(x)

)

Hk(x) = Gk(x)− x

leading to

Fk(x) =
1− ak −

√
1− 4x−

ak(2− ak)x
1− x

2x− ak

,

where ak = (2x)2k+1. In this formulation it is clear, as expected, that limk→∞ Fk(x) =
1−

√
1−4x

2x
, the generating function for the Catalan numbers. The counting sequence for

12



fixed points of F , with generating function F0(x), is sequence A086625 in OEIS .

6 An Application Ordered trees and binary trees are manifestations of

the Catalan numbers A000108 . Donaghey [12, 13] lists several types of restricted tree

counted by the Motzkin numbers A001006 . In particular, the following result is implicit

in item IIIC of [13].

Proposition 10. The Motzkin number Mn counts right-planted binary trees on n + 1

edges with no erasable vertices.

Here, planted means the root has only one child, and erasable refers to a vertex incident

with precisely 2 edges both of the same slope—the vertex could then be erased, preserving

the slope, to produce a smaller binary tree. The M3 = 4 such trees on 4 edges are shown.
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The right-planted binary 4-trees with no erasable vertices

Translated to Dyck paths, Prop. 10 is equivalent to

Proposition 11. Mn counts Dyck (n+1)-paths that end DD and avoid subpaths DUDU

and UUP+DD with P+ denoting a nonempty Dyck subpath.

We will use F to give a bijective proof of Prop. 11 based on the fact [14] that Mn also

counts DUD-avoiding Dyck (n + 1)-paths. (Of course, path reversal shows that #UDUs

and # DUDs are equidistributed on Dyck paths.) Define statistics X and Y on Dyck

paths by X = # DUDs and Y = # DUDUs + # UUP+DDs + [paths ends with UD]

(Iverson notation) so that the paths in Prop. 11 are those with Y = 0. Prop. 11 then

follows from

Proposition 12. On Dyck n-paths with n ≥ 2, F sends the statistic X to the statistic

Y .

13

http://www.research.att.com:80/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A086625
http://www.research.att.com/~njas/sequences/Seis.html
http://www.research.att.com:80/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A000108
http://www.research.att.com:80/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001006


Proof Routine by induction from the recursive definition of F . However, using the

explicit form of F , it is also possible to specify precisely which DUDs correspond to each

of the three summands in Y . For this purpose, given a DUD in a Dyck path P , say

D1U2D3 (subscripts used simply to identify the individual steps), let S(D1U2D3) denote

the longest Dyck subpath of P containing D1U2D3 in its skeleton and let h denote the

height at which D1U2D3 terminates in S(D1U2D3). If h is odd, D1U2D3 is immediately

followed in P by D4 or by UD4 (it cannot be followed by UU). In either case, let U4

be the matching upstep for D4. Then the steps D1, U2, D3, U4 show up in F (P ) as part

of a subpath U4U2P
+D3D4 with P+ a Dyck path that ends D1. On the other hand,

if h is even, D1U2D3 either (i) ends the path (here S(D1U2D3) = P and h = 0) or is

immediately followed by (ii) U4 or (iii) D. In case (iii), let U4 be the matching upstep.

Then D1, U2, D3, U4 show up in F (P ) as a subpath in that order (cases (ii) and (iii)) or

F (P ) ends U2D3 (case (i)). The details are left to the reader.

7 Statistics Suggested by LCO Forests There are various

natural statistics on LCO forests, some of which give interesting counting results. Here

we present two such. First let us count one-tree LCO forests by size of root label. This is

equivalent to counting primitive Dyck paths by skeleton size. Recall that the generalized

Catalan number sequence
(
C

(j)
n

)
n≥0

with C
(j)
n := j

2n+j

(
2n+j

n

)
is the j-fold convolution of

the ordinary Catalan number sequence A000108. (See [16] for a nice bijective proof.)

And, as noted above, in the skeleton-body-position decomposition of a primitive Dyck

path, if the body is nonempty it contains a DUU at (its own) ground level and ends DD.

Lemma 13. The number of Dyck n-paths that contain a DUU at ground level and end

DD is C
(4)
n−3.

Proof In such a path, let U0 denote the middle U of the last DUU at ground level.

The path then has the form AU0BD where A and B are arbitrary nonempty Dyck paths,

counted by C
(2)
n−1. So the desired counting sequence is the convolution of

(
C

(2)
n−1

)
with

itself and, taking the U0D into account, the lemma follows.

The number of primitive DUU -avoiding Dyck k-paths is 1 if k = 1, and 2k−2 if k ≥ 2.

But if k ≥ 2, there are two choices (top/bottom) to insert the body. So the number of

primitive Dyck (n + 1)-paths with skeleton size k is 2k−1C
(4)
n−k−2 for 1 ≤ k ≤ n− 2 and is

2n−1 for k = n + 1. Since there are Cn primitive Dyck (n + 1)-paths altogether, we have

established the following identity.
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Proposition 14.

Cn = 2n−1 +

n−2∑

k=1

2k

n− k

(
2n− 2k

n− 2− k

)
.

Lastly, turn an LCO forest into an LCO tree by joining all roots to a new root. The

purpose of doing this is so that isolated roots in the forest will qualify as leaves in the

tree. The symbolic method then yields

Proposition 15. The generating function for LCO trees by number of leaves (x marks

size, y marks number of leaves ) is

1−
√

1− 4x 1− x
1− xy

2x
.

The first few values are given in the following table.

n \ k 1 2 3 4 5 6 7 8

1 1

2 1 1

3 2 2 1

4 4 6 3 1

5 8 17 12 4 1

6 16 46 44 20 5 1

7 32 120 150 90 30 6 1

8 64 304 482 370 160 42 7 1

number of LCO trees of size n with k leaves
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[11] J. Vaillé, Une bijection explicative de plusieurs propriétés remarquables des ponts,

European J. Combin. 18 (1997), no. 1, 117–124.

[12] Robert Donaghey and Louis Shapiro, Motzkin numbers, J. Combinatorial Theory

Ser. A 23, 291–301, 1977. MR0505544

[13] Robert Donaghey, Restricted plane tree representations of four Motzkin-Catalan

equations, J. Combinatorial Theory Ser. B 22, (1977), no. 2, 114–121, 1977.

MR0432532

[14] Y. Sun, The statistic “number of udu’s” in Dyck paths, Disc. Math., 287 (2004),

Issue 1-3 (October 2004), 177-186.

[15] Robert Sedgewick and Philippe Flajolet, An Introduction to the Analysis of Algo-

rithms, Addison-Wesley, 1996.

16

http://www-cs-faculty.stanford.edu/~knuth/fasc4a.ps.gz


[16] Wen-jin Woan, Uniform partitions of lattice paths and Chung-Feller generalizations.

Amer. Math. Monthly 108 (2001), no. 6, 556–559.

17


