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Abstract

A large number of combinatorial structures can be speci�ed using context free grammars� These

grammars can be interpreted as systems of equations on the enumerating generating functions�

showing that counting the structures is closely connected to constructing them� yielding a

general method for unranking� We describe the connection of enumeration and construction

through formal power series� extend the basic operations with permutation groups and analyse

them using P�olya ennumeration� give a bijection for graphs� and �nally show the relation to

solutions of systems of elements from a semiring�
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Chapter �

Introduction

An essential aspect of combinatorics is enumeration� Once a discrete structure has been identi�

�ed and described one of the most basic questions one can ask is how many di�erent instances

of such structures exist� This has led to great accomplishments in �nding solutions that run

the scale from exact closed form� to recurrences� to asymptotics� What is often left out of such

investigations� mostly considered as a trivial or unimportant secondary issue� is the method�

ological construction of those instances that are being counted� As we will show� this very

general problem is not so trivial� is interesting in its own right� and even practical�

Flajolet and Zimmermann ��� ��� have de�ned a calculus for the description of general classes

of combinatorial structures� They use this calculus both to enumerate the structures� that is to

calculate the number of objects of a given size� and to uniformly generate random examples of

a given size� Their method is to take a description of the class of structures� which is in e�ect

a grammar for recognition of the class as a language� and calculate a corresponding generating

function �formal power series� that enumerates the objects by number of terminal symbols�

Here� these methods are extended to produce a bijection of such classes of structures with

�



the natural numbers� allowing the development of ranking and unranking algorithms� First� I

will discuss the use of generating functions for enumerating combinatorial structures de�ned

using the constructors union� product� sequence� cycle� and set� in both labeled and unlabeled

universes� Second� I will describe algorithms for each of these constructors for unranking� for

creating a unique structure for a given integer� Third� I will derive these generating functions

and algorithms from a suitable interpretation of P�olya�s cycle index �Zyklenzeiger� and its

related interpretation in semirings� And �nally� I will show the relationship between grammars

producing these structures and semiring operations�






Chapter �

Combinatorial Structures

��� Description

The most common combinatorial objects are those associated with con�gurations of sets and

integers� A combination of size k from a set of n elements is a subset of those elements� a

permutation on the same set is list of distinct elements where position in the list matters� a set

partition is a partition of a set of elements into subsets� an integer partition is a set of positive

integers that sum to n� These classes can be di�erentiated by certain properties� ordered�

unordered� labeled� unlabeled� invariant under certain operations� Thus a permutation of a set

of n objects is an ordered� labeled set� an integer partition of n is an unordered� unlabeled set

of sets whose total size is n� A necklace is an ordered set of unlabeled objects that is the same

if it is rotated or re�ected�

Some combinatorial objects have a recursively de�ned substructure� There are many vari�

eties of trees� k�ary trees have nodes of degree k� plane trees have ordered sub�trees� hierarchies

are rooted trees that have no nodes with exactly one child� context�free grammar derivations

	



are parse trees for words in context�free grammars� These are all characterized by objects

having sub�objects of the same class�

��� Speci�cation

We can create many combinatorial structures using construction grammars� At �rst we have

only the primitive elements � for the null element of size  and x� y� z � � � the terminal symbols

�or atoms� of size �� Then we can create larger objects with the following operations� alternate

choice �called disjoint union or ���� or Union�� concatenation �called product or ���� or Prod��

set� sequence� and cycle� For example� the set of binary trees can be constructed with the

following recursive operation�

B � Union���Prod�z�Prod�B�B��� � � � z � B �B

or as a context�free grammar G � fT� V� S�Pg of terminals� variables� start symbol and pro�

ductions from V � �V � T ��

T � f�� zg� V � fBg� S � B�

P �

�����
����

B � zBB

B � ��

�����
����

A binary tree can be constructed by a leaf �the �� or as an interior node �z� and by two

recursive subtrees� See Figure 
�� for all such trees of weight � and Figure 
�
 for those of

weight ��

Considered as a grammar� this sort of formal object description can be used to produce

random structures� At each union� make a choice� Then recursively create new substructures�

stopping when there are no more subobjects to be expanded� Here� the ��� and ��� are simply

�
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� � the identity objects for union and concatenation

x� y� z � � � objects of size one

Union ��� the union of two disjoint classes

Prod ��� the Cartesian product of 
 classes

Seq all the ordered collections of any length

Cyc same as Seq but only those isomorphic by rotating the

elements

Dih same as Cyc but only those isomorphic by reversing the

elements �a dihedral� or cycle that can be ��ipped over��

Set the power set of items from a class �all the unordered

collections of any size with no repetitions�

Bag the multisets of items from a class �all the unordered col�

lections of any size with repetitions allowed�

Table ���� Operations on combinatorial structures

appropriate symbolic shorthand for alternative and concatenation� The object z is a constant

symbol �or equivalently an atom� standing for an object of size or weight one� The object � is a

constant of weight  whose concatenation yields the original� The basic objects and operations

on structures are in Table 
��� extended from Zimmermann�s work ���� ���

There are two interpretations of atoms� labeled and unlabeled� which lead to two uses of the

constructors� With the labeled interpretation� all atoms in an object are marked uniquely from

a set of so that they are all considered distinct and therefore no structure parts can be repeated

exactly� This means that in the labeled universe there are no multisets� This is somewhat

�



analogous to sampling without replacement� Unlabeled atoms yield structures where atoms

can only be distinguished by name of the atom�

Some simple extensions are possible� Limitations of size can be made for the iterative

constructors� e�g� sequences of �z� of length less than � are constructed by Seq�z� card � ��� As

above for binary trees� recursion can be used�

Examples of some basic combinatorial labeled structures and their construction grammars

are in Table 
�
 and unlabeled in Table 
�	�

permutations Seq�z� � Set�Cyc�z�� the mapping or cycle

decomposition

set partitions Set�Set�z� card � ��� set of nonempty sets

surjections Seq�Set�z� card � ��� the onto function is from

the nth set in the sequence

to n

Table ���� Some labeled structures

A labeled example is the set partitions� There are �� of weight � in the customary lattice

�� shown in Figure 
�	� The labels for z are all that is shown �e�g� the �rst one is really

ffz�� z�� z�� z�� z�gg�� since there is only one atom�

An unlabeled example is the 
�combinations from a set of � are constructed from �� � z���

they are ��tuples whose elements can be either z or � whose total weight is 
� They are�

�z� z� �� �	 �z� �� z� �	 �z� �� �� z	 ��� z� z� �	 ��� z� �� z	 ��� �� z� z	

Combinations are usually viewed as �labeled� objects�

f�� 
g f�� 	g f�� �g f
� 	g f
� �g f	� �g�
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Figure ���� Set partitions of size �
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r�combinations �� � z�n from a set of n elements�

an element is either in a

subset �z�� or not ���

integer partitions Bag�Bag�z� card � ���

rooted trees �nested multisets� RT � z � Bag�RT� z is the root with an un�

ordered set of subtrees

rooted plane trees RPT � z � Seq�RPT� z is the root with an or�

dered set of subtrees re�

stricted to the plane� i�e� a

sequence

irreversible necklaces Cyc�Bag�z� card � ��� cycles

necklaces Dih�Bag�z� card � ��� dihedrals

Table ���� Some unlabeled structures

�



What we mean by labeled is that every atom is labeled distinctly� In this latter traditional

example� the atoms are ��
�	� and �� with the unavoidable con�uence of notation between

integer labels and atoms with integer name� 
�combinations from a set of size � can also be

constructed to look the traditional way with A � Set�x� y � z � w� card � 
��

In the labeled universe� Seq� Cyc� Dih� and Set can all be constructed from � and � as in

Table 
���

Seq�A� � � � A � A �A � A�A �A � � � �

�
X
��i

Ai

Cyc�A� � A �
�



A� A �

�

	
A� A�A �

�

�
A�A� A�A � � � �

�
X
��i

�

i
Ai

Dih�A� � A �
�



A� A �

�

	�
A� A� A �
�

��
A� A� A�A � � � �

�
�




X
��i

�

i
Ai �

�



A �

�

�
A�A

�
�



Cyc�A� �

�



A �

�

�
A� A

Set�A� � � � A �
�


 
A�A �

�

	 
A �A� A �

�

� 
A�A �A� A � � � �

�
X
��i

�

i 
Ai

Table ���� Generating functions for labeled structures

For example� the four operations are shown for labeled objects of size four in Table 
���

To enumerate these classes� we use the exponential generating function whose nth coe�cient

is the number of objects with n atoms�

�



size permutations cycles necklaces combinations

� �� � �� � �� � �� �
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 � �� 
 � �� 
 � �� 
 �

�
 � �

	 �� 
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 �
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 � � �� � 
 	 � �� 
 	 � � �� 
 	 � � �� 
 	 � �

�� 
 � 	 � �
 � � 	 � �	 � � 
 � �� � 	 
 � �� 
 � 	 � �� 
 � 	 �

�� 	 
 � � �
 	 � � � �	 
 � � � �� 
 � 	 � �� 	 
 � � �� 	 
 � �

�� 	 � 
 � �
 	 � � � �	 
 � � � �� 
 	 � � �� 	 � 
 �

�� � 
 	 � �
 � � 	 � �	 � � 
 � �� 	 � 
 � �� � 
 	 �

�� � 	 
 � �
 � 	 � � �	 � 
 � � �� 	 
 � � �� � 	 
 �

total 
� � 	 �

Table ���� Labeled structures similar to permutations

��



There is a subtle notational !confusion" here between generating function and constructor�

most noticeably in the speci�cation for combinations� As will be shown later� this overuse of

notation is intentional�

These rules for constructing these objects can be used for determining the number of possible

objects with a given number of atoms �or terminal symbols�� A generating function for a class

of objects is simply the power series on a variable x whose coe�cient ai for xi is the number of

objects with i atoms�

A�x� � a� � a�x � a�x
� � � � ��

�X
i
�

ai�xi

where ai is the number of A objects of size i� Algebraic operations on power series are well de�

�ned� they correspond with the combinatorial operations given above� Given two combinatorial

classes� A and B� whose enumerating generating functions are A�z� and B�z� respectively� if the

class C can be constructed from A and B then the generating function C�z� can be computed

as follows�

operation generating function

C � A � B �� C�z� � A�z� � B�z�

C � A� B �� C�z� � A�z��B�z�

C � Seq�A� �� C�z� �
�

�� A�z�

C � Cyc�A� �� C�z� � log
�

��A�z�

C � Dih�A� �� C�z� �
�



log

�

��A�z�
�

�



A�z� �

�

�
A�z��

C � Set�A� �� C�z� � exp�A�z��

The derivations of ��� and ��� come from simple combinatorics� and with little surprise� the

use of the symbols ��� and ��� for both operations on strings and operations on polynomials

is not coincidental� those for Seq� Cyc� Dih� and Set from the Taylor series expansion of their

�




respective functions� The de�nitions for Seq� Cyc� Dih� and Set are mostly useful as shorthand

for the in�nite series and do not �gure directly in actual computations� though the Taylor series

expansions do�

Note the bounds on the summation for the expansions� These make combinatorial sense�

For Seq and Set� a sequence or set of length zero� an object of weight zero exists� namely ��

because the only property it has is ordered or unordered� For Cyc and Dih� an object must be

cycled or reversed to check for isomorphism� but the empty object cannot be cycled or reversed�

Given the formal description of ordered binary trees� we can either compute the coe�cients

directly or calculate symbolically a closed form of the generating function from the recurrence

relation using conventional techniques�

B�z� � � � zB�z�� � � � z � 
z� � �z� � ��z� � � � �

 � zB�z�� � B�z� � �

B�z� �
��p

�� �z


z

�zn�B�z� � �zn���B�z��������
n� ��



� �
n

�
�

�n � �� 


n��
n� 


n�n 

�
�

�n � ��

�

n

n

�
� C�n�

where the coe�cients of B�z� are the Catalan numbers C�n��� �Note� �zn�B�z� is the coe�cient

of zn in the power series B�z��� In general� the generating function can be �nitely approximated

�Combinatorially� the following grammar constructs the same structures though with leaf nodes of weight ��

B� � Union�z�Prod�B��B��� � z 	B� �B�

T � fzg� V � fBg� S � B�P �

���
��

B � B�B�

B� � z

���
��

By analysis of its characteristic equation� B�z���B�z�	z � 
� we come up with a closed form �zn���B��z� � C�n�

�	



from such recursively de�ned descriptions by repeated application of the operations to an initial

value� stopping when the number of iterations have reached the maximum number of objects

wanted�

For unlabeled structures� where atoms are not marked uniquely� enumerating generating

functions can be computed from the ordinary generating function� Given A and B� whose

ordinary generating functions are A�z� and B�z� respectively� if the class C can be constructed

from A and B then the generating function C�z� can be computed as in Table 
���

C � A � B �� C�z� � A�z� � B�z�

C � A�B �� C�z� � A�z��B�z�

C � Seq�A� �� C�z� �
�

��A�z�

C � Cyc�A� �� C�z� �
X
��i

��i�

i
log

�

�� A�zi�

C � Dih�A� �� C�z� �
�



Cyc�A�z�� �

�

�
�
A�z� � A�z�� � A�z��� Seq�A�z���

C � Bag�A� �� C�z� � exp

�
A�z�

�
�
A�z��



�
A�z��

	
� � � �

�

� exp�
X
��i

�

i
A�zi��

C � Set�A� �� C�z� � exp�A�z�� A�z��



�
A�z��

	
� � � ��

� exp�
X
��i

����i�� �

i
A�zi��

Table ���� Generating functions for unlabeled structures

��



��n� is Euler�s totient function� the number of positive integers less than and relatively

prime to n� Only the �rst three correspondences are obvious� the combinatorial explanation of

the rest will be shown in the next chapter� These equations can be found in Zimmermann�s

papers ��� ���� a new derivation of them is given here�

A good example of the connections among the constructor� the generating function� and

the corresponding class of combinatorial objects is the Fibonacci sequence� Take the basic

combinatorial proof� the number of distinct ways Fn of placing ��s and 
�s in a row whose sum

is n is equal to such rows of length n� � followed by a � or rows of length n� 
 followed by a


� and these two cases are mutually exclusive� This yields the recurrence relation�

Fn � Fn�� � Fn��� F� � �� F� � �

�we de�ne F� � � because by combinatorial convention there is exactly one way to do nothing��

To solve this linear recurrence numerically in the usual way� we �nd the roots of the character�

istic equation and get Fn � �

p

���n � ��n�� where � � ���p
��

� � To get the generating

function F �x� from the recurrence� we need to do the following�

F �x� � F� � F�x � F�x
� � � � �

xF �x� � F�x � F�x
� � � � �

x�F �x� � F�x
� � � � �

then solving this system for F �x��

F �x�� F ��� xF ��� � �xF �� � xF �x� � x�F �x�

F �x�� xF �x�� x�F �x� � F �� � x�F ���� F ���

F �x� �
�

�� x� x�

��



Instead� we can use the combinatorial constructors as follows� We have singletons or pairs

of unlabeled elements �size � or 
� that are placed in a sequence� This yields immediately�

Seq�x � x�� �
�

�� �x � x��
�

So we see the generating function is also the object generator� The closed form for the recurrence

is convenient for calculating numbers� the generating function is convenient for calculating

constructions�

These methods show that from a combinatorial description of a class� we can quickly get a

symbolic form for the generating function� Using the algebra of formal power series� for each

of the combinatorial operators we can compute the actual coe�cients in the power series� For

example� we can compute the generating function of �
���A�x��� where A�x� is a polynomial��

A short example� one already in Table 
�	� is that for set partitions� Combinatorially� the

class is generated by taking labeled sets of sets of size greater than one� Translating directly

to the generating function yields ee
x��� the classic generating function for the Bell numbers�

which is what we expect�

To be explicit� a construction using these methods only produces implementations isomor�

phic to the intended structure� but not necessarily a unique implementation� For example� the

two constructors�

Perm� � Seq�z�

Perm
 � Set�Cyc�z��

�If A�x� has a non�zero coe�cient a�� then� in Seq�A�z��� then the repeated multiplication of A�x� will always

make additions to every coe�cient of B� Since the series is unbounded� each coe�cient is unbounded also So

we can only make the iterative constructors on objects whose generating function has f� � 
 This restriction

also applies to the other in�nite operations

��



are combinatorially isomorphic� they both represent the set of all permutations� The �rst is

the implementation as a functional map� the second as a cyclic decomposition� It is easy to see

that the generating functions are identical�

Perm��z� � �
��� z�

Perm
�z� � exp�log��
��� z��� � �
��� z��

Another interesting simpli�cation is that for unlabeled Set�z�� the sets on an atom without

repetition� Combinatorially� it is obvious that Set�z� � � � z� the only sets constructible out of

a singleton is the empty set or the singleton itself� The generating function also bears this out�

Set�z� � exp�
X
i��

����i
�

i
zi�

� exp�log�� � z�� from the Taylor expansion

� � � z�

��



Chapter �

Permutation Groups and Structure

Isomorphism

��� Permutations

Objects� as we have described� that have structured components can be considered as permuta�

tions on items from a set� where some permutations are considered the same as others� Suppose

these equivalences are determined by a set of permutations on the same number of objects� The

notation

nx� x� � � � xnn

is a map�

�x� � � �� � � ��� � � xn�

is a cycle decomposition �usually with singleton cycles left out�� Given the permutation

n
 	 � � � n �n� a full cycle on all the elements� the permutations �� 
 � � � n� is equivalent to

�
 	 � � � n ��� By transitivity� it is also equivalent to �	 � � � � n � 
� � � ��n � � � �n � ��� This is

��



the same description of cycles in terms of isomorphism classes induced by a group of permu�

tations� A permutation group G acting on a set S �which we normally take to be the set

�n� � f�� 
� � � � � ng� is a set of permutations on S closed on composition�

Since any set of permutations on n objects generates a subgroup of the symmetric group of

order n� we will start with the properties of this group in order to derive those of its subgroups�

A permutation group G acting on the set S �we only consider S � �n� � f� �� 
� � � �n � �g�

de�nes equivalence classes on the set S� If a permutation takes one object to another then we

say they are isomorphic� Objects that are distinct after action by G are the non�isomorphic

objects we seek� a representative from the quotient set �or cosets� S
G is chosen from each� By

Lagrange�s Theorem� jS
Gj � jSj
jGj� To illustrate� the dihedral group on n objects is of order


n� The number of distinct permutations induced then is
n 


n
�

�n � �� 



� Knowing the order

of a group or family of groups� we can easily compute its enumerating generating function�

Constructing objects from classes generated from arbitrary permutation groups is a little more

involved� A permutation group G acting on a set of size n induces a quotient set on Sn�� The

members of each of the cosets of Sn
G are now equivalent over the permutations G� all we seek

is a single representative from each coset�

��� P�olya Enumeration

P�olya�s methods of enumeration is used to compute generating functions for objects with invari�

ance under permutations� Over all permutations of n objects� there is an equivalence relation

�A fact from basic group theory is that if G is normal in Sn then the quotient set Sn�G is also a group and

that there is a unique homomorphism from S to Sn�G and G maps to the identity element of Sn�G Since we

will deal with arbitrary groups we are not guaranteed this structure on the cosets

��



on the set acted on by a permutation� For example� on the set �n� � f� �� � � � � n � �g� the

single permutation cycle � � � � � n � ��� leaves �n � �� equivalence classes of permutations�

since there are n similar permutations by applying the cycle up to n times� With this in mind�

we seek to enumerate these equivalence classes for a given group of permutations to get the

non�isomorphic objects under the action of that group� Since a set of permutations generates

a group� we can use some group concepts to aid in �nding the generating function�

A basic notion is Burnside�s Lemma that the number of equivalence classes� N�G�� induced

by a permutation group G acting on a set S is�

N�G� �
�

jGj
X
��G

FP���

where FP��� is the number of �xed points in a permutation �� that is� the number of cycles

of length one� To show this� consider the set S that G acts on� For s � S� s equals ��s� for

some �� and certainly at least one in the identity permutation� The number of �xed points over

all permutations must equal the number of times that s � ��s� over all items in S� If we call

FP�s� the number of permutations � where s � ��s�� then combinatorially� by �rst counting

the �xed points over all permutations and then counting them over all elements of S� we get�

X
��G

FP��� �
X
s�S

FP�s�

The cycle decompositions of the permutations in a group G can now be transformed directly

to a generating function� for a permutation acting on a set enumerated by another generating

function A�x�� each cycle of length k in a permutation contributes a factor of A�xk� �this

is sometimes abbreviated as a distinct variable xk�� The generating function for the objects

enumerated by A�x� acted upon by a permutation group G is then�

Z�G��A�x�� �
�

jGj
X
��G

Y
cycle ����

A�xj�
�j�






Since this function depends on the cycle decomposition of the permutations� we can write this

using a slightly di�erent notation� where the permutations in G are represented by the integer

partition

Z�G��A�x�� �
�

jGj
X
��G

jGjY
k
�

A�xk�ek

where ek is the number of cycles of length k in the permutation ��

For the more common families of groups� we can compute the cycle index as follows �fol�

lowing Harary and Palmer �����

� Identity group In� Sometimes called En� this is the trivial group whose permutation

group is de�ned by the single permutation ����� � � ��n � �� whose generating term is

xn� � No collection of elements is equivalent to any other unless it has exactly the same

elements�

� Cyclic group Cn� Generated by the single permutation � � �� 
 � � � n � � �� If n is not

prime� then some of the permutations repeat when generated as �k� Speci�cally� for any

divisor d of n� there will be ��d� permutations that have exactly n
d cycles of length d�

This yields the term ��d�x
n�d
d �

� Dihedral group Dn� Generated by �� 
 � � � �n� �� � and ��n� �� �n� 
� � � � � �� It has

the same terms as for the cyclic group plus those induced by this extra permutation� If

n is odd� we get �n� ��

 pairs and a singleton �or x�x
�n�����
� �� If n is even� we likewise

have two singletons and �n� 
�

 pairs� and also n

 pairs because of the even parity �or

x��x
�n�����
� � x

n��
� ��

� Symmetric group Sn�or Sym�n�� Generated by � �� and � � � � � n � ��� This includes

every possible permutation� The cycle structure is de�ned by all the integer permutations


�



on n since the cycle decomposition partitions the permutation into disjoint sets� For each

partition� the number of permutations in Sn is a function of the di�erent sizes of parts

in the partition as a reduction of the maximum number of permutations n � For a single

part of size k �corresponding to one cycle of length k in the permutation�� the number

of permutations is divided by k� If there are j cycles of length k we must divide by j 

since each cycle can be permuted with another of the same length� This yields
n 

kekek 
for

each part of size k� where e is a partition of n� ei is the number of cycles of length i� and

X
��i�n

ei � n�

� Alternating group An� or Alt�n�� The alternating group is only the even permutations�

those with an even number of transpositions �swaps or 
�cycles�� Only odd cycles are

equivalent to an even number of transpositions� so a permutation is odd if it has an odd

number of even cycles� Using this� we can take the cycle index for Sn and account for

even cycles�

This is summarized in Table 	�� �following ���� where ��n� is the set of integer partitions of n�

he�� e�� � � � � eni � ��n�� n �
Pn

k
� kek �

For an arbitrary permutation group� we can compute the cycle index naively by listing all

the group elements and adding its appropriate generating function term� using basic group

algorithms as in Butler �	� and permutation algorithms in Nijenhuis and Wilf ��
�� This naive

algorithm is as good as we can get� Goldberg ��� has shown this problem to be NP�complete�

Luckily� most applications are limited to those groups mentioned above�







Identity� Z�In� � xn� �	���

Cyclic� Z�Cn� �
�

n

X
djn

��d�x
n�d
d �	�
�

Dihedral� Z�Dn� �
�



Z�Cn� �

�����
����

�
�x�x

�n�����
� odd

�
�

	
x
n��
� � x��x

�n�����
�



even

�	�	�

Symmetric� Z�Sn� �
�

n 

X
e���n�

Y
��k�n

�xk
k�ekn 

ek  

�
X

e���n�

Y
k

xekk
kekek 

�	���

Alternating� Z�An� �
X

e���n�

Y
k

� � ����e��e�����xekk n 

kekek  
�	���

Table ���� Group cycle�index generating functions

As an example� Figure 	�� shows the objects of size four produced by

C��x � y� � �
��s�� � s�� � 
s���x� y�

� �
���x � y�� � �x� � y��� � 
�x� � y���

� x� � x�y � 
x�y� � xy� � y��

Combinatorially this is equivalent to the cycles on four points of two colors�

• •

x�y�

• •

••

• •

•

•

•

•

x� x�y �xy�� xy� y�

Figure ���� The cycles on four points of two colors


	



Harary and Palmer ��� show that operations on permutation groups yield operations on the

cycle index� The direct product of two groups gives the product of the two generating functions�

The lexicographic composition �or wreath product� of two groups gives the composition of their

generating functions�

From the cycle indexes on these groups we can determine the cycle index for the family of

structures of unspeci�ed size under each group� These will then correspond to the operations

above that produce objects that are invariant under a group for any size sub�objects� Here is

the new derivation of the generating functions for the combinatorial operators Seq� Cyc� Dih�

Set� and Bag�

Seq �
X
n��

Z�In� �
X
n��

xi
�

��� x�
�	���

Cyc �
X
n��

Z�Cn� �
X
n��

�

n

X
djn

��d�x
n�d
d

�
X
d��

X
r��

�

dr
��d�xrd

�
X
d��

��d�

d

X
r��

xrd
r

�
X
d��

��d�

d
log

�

�� xd
�	���

Dih �
X
n��

Z�Dn� �
�




X
n��

Z�Cn� �
�




X
n
�k����

x�x
�n�����
�

�
�

�

X
n
�k��

�x
n��
� � x��x

n����
� �

�
�



Cyc�x� �

�

�

X
k��

�
x�x
k��
� � xk� � x��x

k��
� �

�
�



Cyc�x� �

�

�
�
x� � x� � x���

X
k��

xk���

�
�



Cyc�x� �

�

�
�
x� � x� � x���

X
k��

xk�

�
�



Cyc�x� �

�

�
�
x� � x� � x���

�

�� x�


�



�
�



Cyc�x� �

�

�
�
x� � x� � x��� Seq�x�� �	���

Bag �
X
n��

Z�Sn� �
X
n��

X
e���n�

Y
k

xekk
kekek 

�
X
e���

xe��
�e�e� 

�
X
e���

xe��

e�e� 

� � �

�
Y
i��

X
ei��

xeii
ieiei 

�
Y
i��

X
t��

�xi
i�
t

t 

�
Y
i��

e
xi
i � exp�

X
i��

xi
i

� �	���

Set �
X
n��

Z�An � Sn� � exp�
X
i��

����i��xi
i

� �	���

Again� these have the parameters to the generating function left out for readability� For

example� Bag should really read

Bag�A�x�� � exp�
X
i��

A�xi�

i
�

Equation 	�� is not as straightforward as the rest� A multiset can have repetitions� but a

set cannot� So a set is a one�to�one function to the underlying objects� We can get this from

An�Sn as follows� Sn counts the set of all functions on n� An is the set of all even permutations�

Its generating function counts all one�to�one functions twice �because each functional pair is

counted twice for each value by an even permutation� and all others once� So the di�erence

gives the one�to�one functions�

Z�An � Sn� � Z�An�� Z�Sn�

�
X

e���n�

Y
k

����e��e�����xekk n 

kekek 

Equation 	�� then follows�


�



The generating function that results from the application of any of these functions to another

generating function will result in a new generating function that counts the corresponding com�

binatorial object� The cycle indexes for the groups count objects invariant over that particular

group and size� the corresponding in�nite sum counts objects over all sizes� Two comments can

be made here� First� if the base generating function� has a nonnegative coe�cient for x� and

one of the in�nite sums is applied� then the application will not be convergent� Second� in appli�

cation of this technique to other groups� not every type of group is amenable to summation� the

sporadic simple groups �such as the Mathieu groups� have no in�nite ranged parameters� their

permutation groups have a speci�c set of generating permutations that are not parameterizable�

This does not prevent one from using the cycle index for those groups as a generating function

for a constant sized set� Third� all the groups so far treat all the elements of the underlying set

symmetrically� in the sense that the sizes of the orbits of every element are equal� This is not

a necessary restriction�

��� Enumeration and Construction Algorithms

Here we develop new algorithms to enumerate and construct objects de�ned by these operations

e�ciently�

����� Polynomial Operations

All the operations on formal power series can be implemented with polynomials� which can be

de�ned as formal power series where there exists an n� called the degree� such that all coe�cients

with index greater than n are zero� All the operations converge� with some restriction on

�Also called the ��gure counting series�


�



values� If a coe�cient an is needed� all the power series involved in the calculation of an need

polynomials of degree no more than n to guarantee convergence up to that coe�cient� So all

running time analyses will be in terms of n� the maximum coe�cient desired� Note that we are

not considering the operations performed on the integer coe�cients for two reasons� First� such

operations can be handled by an unlimited precision math package for e�ciently computing

addition� multiplication� etc� Second� there is no method here to predict a priori the asymptotic

complexity of a sequence�

The elementary operations of addition� subtraction� creation of zero and identity� are � �n��

because they all access or set every coe�cient of a polynomial exactly once� Multiplication of

polynomials is �
�
n�
�
� the exact formula is�

hi �
iX

k
�

fkgi�k�

Here a three�for�four algorithm will not aid us because we are not dealing with symbolic poly�

nomials� all operations ignore coe�cients greater than the limiting degree and so exactly

�
n




�

independent coe�cient multiplications are necessary� Symbolic multiplication of two polyno�

mials of degree n results in a polynomial of degree 
n� whereas here the result is still degree n�

so no algorithm on recombining parts of the polynomial will be faster�

Point�to�point multiplication of polynomials �the Hadamard product� is � �n�� similar to

the elementary operations�

The operation of computing the kth power of a power series can be accomplished in

�
�
n� logk

�
by using repeated squaring� We can modify an �

�
n�
�

algorithm by Nijenhuis

and Wilf ��
� to compute the kth power� Their algorithm computes g�x� � �� � f�x��k� We

can convert any polynomial to such a form in � �n�� then after application� convert back ap�

propriately� for an �
�
n�
�

algorithm�


�



g�x� � �� � f�x��k

g��x� � kf ��x��� � f�x��k��

�
kf ��x��� � f�x��k

�� � f�x��

� kf ��x�g�x�� g��x�f�x�

X
��i

�i � ��gi��x
i � k

X
��i

�i� ��fi��x
i�
X
��i

gix
i �
X
��i

�i � ��gi��x
i�
X
��i

fix
i

�
X
��i

X
��j�i

k�j � ��fj��gi�jxi �
X
��i

X
��j�i

�j � ��gj��fi�jxi

�
X
��i

xi
X

��j�i
k�j � ��fj��gi�j � �i� j�fj��gi�j

�
X
��i

xi
X

��j�i
�k�j � ��� �i� j��fj��gi�j

g� � �

gi �
�

i

X
��j�i

�kj � i� j�fjgi�j

To get any polynomial into the appropriate form� �nd the �rst non�zero coe�cient� fs� Shift

all the coe�cients left by s and divide by fs� This makes the f� equal � and in the correct form�

After applying the above algorithm� shift right k�s� and multiply by fks �


�



The rest of the operations are much simpler� The closure of a power series�
�

�� f�x�
�

X
��i

f�x�i can be computed in �
�
n�
�

by rearranging and solving for coe�cients�

g�x� �
�

�� f�x�

� � � f�x�g�x�

X
��i

gix
i � � �

X
��i

fix
i�
X
��i

gix
i

� � �
X
��i

X
��j�i

fjgi�jxi

g� � �

gi �
X

��j�i
fjgi�j

Since necessarily f� �  for this to converge� by default g� � � and the rest can be computed

in order�

Similarly� the exponential can be computed in �
�
n�
�

by considering the logarithmic deriva�

tive of g�x� � exp f�x� and solving for the coe�cients�

g�x� � exp f�x�

�log g�x��� � �log exp f�x���

g��x�
g�x� � f ��x�

g��x� � g�x�f ��x�

X
��i

�i� ��gi��x
i �

X
��i

gix
i�
X
��i

�i� ��fi��x
i

�
X
��i

X
��j�i

�j � ��gi�jfj��x
i

g� � �

gi �
�

i

X
��j�i

jgi�jfj
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Since log is the inverse of exp� we can reverse the recurrence relation for exp�

g� � 

gi � fi � �

i

X
��j�i

jgjfi�j

Instead of using composition of log and �
��f � we can determine the coe�cients of log �

��f

directly for a better constant factor running time�

g��x� � �log
�

�� f�x�
��

�
f ��x�

�� f�x�

� f ��x� � g��x�f�x�

X
��i

�i� ��gi��x
i �

X
��i

�i� ��fi��x
i �

X
��i

�i� ��gi��x
i�
X
��i

fix
i

�
X
��i


��i � ��fi��x

i �
X

��j�i
�j � ��gj��fi�jxi

�
A

g� � 

gi � fi �
�

i

X
��j�i

jgjfi�j

These take care of all the labeled operations� The unlabeled need them but also some

additional computation� By de�nition� In�A�x�� � A�x�n� which we have just seen� For Cn and

Dn� a naive algorithm iterates over all divisors of n �for � �
p
n�� and multiplies by the totient

��n� �which also takes � �
p
n� to compute�� for a total � �n� �See Appendix A�� For Sn and

An� we have to sum over all partitions of n� The number of partitions of n is O

�
e
p
n

n

�
�see

Andrews ��� for a full treatment�� Computing the cycle structure and corresponding generating

function term is linear in the number of distinct parts of a partition �since that is the form of

the partition we compute from�� The number of distinct parts is O �
p
n�� so the total time is

O

�
e
p
n

p
n

�
� This is better than exponential but worse than O

	
nlogn



�

	



For the full unlabeled families� Cyc and Dih have the same runnign time as C and D�

Because Set and Bag simplify so much from S and A� they are not near to exponential� The

summation must be handled iteratively but can be sped up by repeated squaring for a running

time �
�
n� logn

�
�

The algorithms and their running times are tabulated as follows�

Operation Running time

���� � � � �n�

� �
�
n�
�

f�x�k�
�

�� f�x�
�
�
n�
�

exp� log� log
�

�� f�x�
�
�
n�
�

I �
�
n�
�

C�D �
�
n� logn

�
S�A O

�
e
p
n

p
n

�

Cyc�Dih �
�
n� logn

�
Set�Bag �

�
n� logn

�

Table ���� Running time of basic enumerators

����� Construction from Enumeration

These above algorithms are used to compute the coe�cients of generating functions for a family

of objects de�ned by the combinatorial operators� In other words� they enumerate the classes

by number of atomic elements they contain� They can also be used to construct the objects in

	�



a family� Bijections between integers and the structures speci�ed by the operations above can

be made through the generating functions� Unranking� taking the bijection from integers to

structures� is the process that given an integer n� constructs the nth structure of a speci�cation�

Given the nature of generating functions� it is convenient to know the size �number of atoms or

terminal symbols� in the structure� The general procedure for unranking works recursively by

decomposition into previously computed operations� For all these construction algorithms� we

�rst assume that the generating function of the object and its base objects� have already been

computed�

Disjoint union can be constructed by considering the two base generating functions� if the

object sought of given weight has rank less than the maximum rank of same weight of the �rst

base object� then construct the object from that� Otherwise� subtract the maximum from the

rank sought and construct using the second base� So one constructs either from the �rst or

from the second�

Product of two bases uses convolution� A product is an ordered pair� the weights of the two

parts adding to the total sought� First� see how many objects there are of weight zero from the

�rst base� and weight n from the second� then weight � and weight n � �� and so on until the

rank sought� r� lies within the appropriate range� For each new range� subtract the �numeric�

product of the number of �rst base objects of size k and the number of second base objects of

size n� k� Once that range is found� construct the object of weight k from the �rst base with

rank r mod k� and an object of weight n � k from the second with rank r
k�

A sequence is similar to product� not only in that a sequence is a series of products� but

also by comparison of recurrence relations� the second base generating function for sequences

is the sequence itself� but always of lower weight�

	




A set of n elements over a base object can be constructed from its rank� Consider the sum

of the number of the base objects up to the size of the set object sought� Use that sum to

construct the �rst element of the set� Subtract ranks and weights accordingly� and continue

with the rest of the elements� using ranks less than the one used for the object in the previous

set element�

A multiset is constructed almost exactly like a set except the rank of the element object

can be less than or equal to that of the previous element�

A cycle is constructed by choosing the �rst object as for set and multiset but then allowing

any element of any rank less than that of the �rst in the rest of the elements� as though the

last n� � elements were a sequence none of whose ranks are greater than the �rst�

A dihedral is constructed by choosing the �rst two elements as with multiset� then the rest

as with sequence�

����� Enumerating the Complement

Some combinatorial structures can be de�ned as the complement of some subset of a set� The

best example of this is the free trees �unrooted� unlabeled� no restrictions�� It can be de�ned as

the set of rooted trees that are not bisymmetric about an edge� If T �x� counts the rooted trees�

then those bisymmetric about an edge is counted by unordered pairs of rooted trees� These

are the one�to�one bivalent functions on trees� Removing these from the set of all rooted trees

gives Otter�s classical formula for free trees�

t�x� � T �x�� Set�T �x�� card � 
�

� T �x�� �

�T �x��� T �x���

where T �x� � x�BagT �x�� the rooted general trees�

		



For construction� subtraction of generating functions does not give enough information� it

does not tell us exactly which elements of the universe the subset should remove� Assuming

we had a ranking function for t�x�� given the ith rooted tree� we could check if it is edge

symmetric� If so� we would try i � � and so on� until we found one not edge symmetric� This

method is not very convenient� since every construction needs a ranking algorithm� and every

rooted tree needs to be constructed and veri�ed to get the appropriately numbered free tree�

This depends on the order of the number of structures of the superset and therefore is usually

highly ine�cient�

	�



Chapter �

Enumeration and Construction of

Graphs

Graphs� as a class of combinatorial objects� must be handled somewhat specially as compared to

what we�ve already seen� they don�t have the convenient recursive substructure that the others

have� First� we will analyze them alone� and then in the context of other classes of objects�

Similar to the basic labeled structures above� labeled graphs are fairly simple objects to

enumerate and construct �see ��� Chap ������ For an undirected graph on n vertices� there are

�n
�

�
possible edges� and therefore 
�n�� graphs� These are then simple to unrank� an ordering of

subsets of
�n
�

�
gives a ranking for the graphs�

Enumeration of unlabeled graphs is not so obvious� Take a random graph on n vertices�

Labeled� it is isomorphic to other graphs by some permutation of labels� This preserves the

adjacency relation of all vertices� while removing the labels� Indeed� any permutation preserving

adjacency is an allowable isomorphism� This naturally leads to the use of groups� namely� the

symmetric group of all permutations acting on the n vertices�
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��� Graph Enumeration by Coset Enumeration

For example� following Sims ����� to enumerate the non�isomorphic graphs of size three� take

the set of three vertices labeled �� 
� and 	� From above� there are
��
�

�
� 	 edges�

a � f� �g

b � f� 
g

c � f�� 
g

and therefore 
� � � di�erent labeled graphs�

G� � fg G� � fcg

G� � fag G� � fa� cg

G� � fbg G � fb� cg

G� � fa� bg G� � fa� b� cg

The choice of order is by considering the characteristic function for each set of edges as a

binary numeral� c � 
�� b � 
�� a � 
�� To �nd out which graphs are isomorphic to each other�

that is to determine the partition into sets whose members are isomorphic� we must take all

permutations of f� �� 
g� Sym�	� as they act on the graphs� Take� for example� a permutation

from Sym�	�� � ��� It transforms the edges to na c bn� or equivalently in cycles �b c�� The set

of all these edge permutations will then induce permutations on the graphs� The permutation

�b c� takes the set fa� bg to fa� cg or� in terms of the graphs they represent� it takes G to G��

So for all the graphs� �b c� yields the permutation of graphs� �G�G���G�G�� So if we start

with all permutations of nodes and propagate their actions on the set of edges and thereby on

the set of graphs� we get a set of permutations on graphs�

	�



�� � ��

� � 
� � �G�G�G���G�GG��

� 
 �� � �G�G�G���G�G�G�

� �� � �G�G���G�G�

� 
� � �G�G���G�G�

�� 
� � �G�G���G�G��

The graphs in each cycle of one of these permutations are isomorphic� From here it is a

simple task to �nd the overlap of all the cycles in all of these permutations by merging the

equivalence classes de�ned by all the cycles� This �nal permutation �with �xed points� is

�G���G�G�G���G�GG���G��� So the �nal non�isomorphic graphs are� taking a representative

from each set� G�� G�� G�� G�� which are easy to con�rm by inspection�

• •

•

• •

•

• •

•

• •

•

� x x� x�

Figure ���� The representative non�isomorphic graphs G�� G�� G�� G�

As to higher order graphs� some of the calculations of permutations can be eliminated by

only using the generating permutations for the symmetric group� � �� and � � � � � n � ���

Calculate the images of just these two in the permutations of edges� then calculate the images

in the permutations of graphs� Since the two permutations generate Sym�n�� their images in

the permutations on graphs will generate all the graph isomorphisms� Instead of trying to

calculate all these permutations� all that is needed is to determine the orbits induced by the

graph permutations� with an elementary algorithm �see �	���
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For example� to enumerate the non�isomorphic graphs of size four� take the set of four

vertices labeled � �� 
� and 	� From above� there are
��
�

�
� � edges�

a � f� �g b � f� 
g d � f� 	g

c � f�� 
g e � f�� 	g

f � f
� 	g�

and therefore 
 � �� di�erent labeled graphs in order�

G� � fg

G� � fag

G� � fbg

� � �

G� � fa� c� d� e� fg

G� � fb� c� d� e� fg

G� � fa� b� c� d� e� fg

The choice of order is by the considering the characteristic function for each set of edges as

a �reversed� binary numeral� a � 
�� b � 
�� � � �f � 
�� To �nd out which ones are isomorphic

to each other� that is to determine the partition into sets� we must take all permutations

of f� �� 
� 	g � Sym��� as they act on the edges and so acting on graphs� For example� a

permutation from Sym���� � 	 ��� transforms the edges to nc f e b a dn� or equivalently the

permutation �a c e��b f d�� The set of all these edge permutations will then induce permutations

on the graphs� For example� with a little computation� the permutation �a c e��b f d� takes

G�� � b� c� d to G�� � f� e� b� The full transformation will induce a permutation of graphs to

graphs� whose equivalence classes of the permutations are shown in Table ��� and canonical

members of each equivalence class in Figure ��
�

	�



�� no edges

�� 
 � � �� 	
� � edge

�		�
 ��� 
 unconnected edges

�	 � � � � �� 
 
� 	� 	� � ��� 
 connected edges

���
� �� ��� �crow�s foot� � K���

��
�
 �� �� C�

��	�� 

 
� 
� 
� 	� 	� 	� �� � ��� P�

�	�� ��� C�

���
	 
� 
� 	� �	 �� �	 �� �� �� �� �oil can� � C� � e

�	��� �� �� �� �
� � edges � K� � e

��	� � edges � K�

Table ���� Equivalence classes of graphs induced by permutations on nodes
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• •

••

b�aba�

• •

••

• •

••

• •

••

ba�b b�a� b�a�b

• •

••

• •

••

• •

••

• •

••

• •

••

• •

••

• •

••

a ba� b�a� babaab �bab�� b�ab b

Figure ���� The non�isomorphic graphs on four points

This derivation both enumerates and generates in order the unlabeled graphs� �rst by count�

ing the number of orbits� and second by using the characteristic vector �the most e�cient rep�

resentation for doing the above permutation calculations� of the representative of each orbit�

However� because we must work on the entire set of labeled graphs� the space complexity is ex�

ponential O
	

n

�



and the time complexity at least that much� Also� in contrast to the methods

at the beginning� this method does not lend itself well to generalization or specialization�

��� Graph Enumeration by P�olya Enumeration

A classical result of Harary�s �known but not published by P�olya�� is the derivation of a gen�

erating function for enumerating graphs using the cycle index for Sn� The cycle index for all

permutations of n elements is given in equation 	��� These permutations induce permutations

�



on the edges as described above� Consider a permutation on �n�� it induces a permutation on

the group of �
�n
�

�
� pairs on �n�� These pairs can be considered as edges of an undirected graph�

The cycle index for this !pair group" is called S
���
n � This is a cycle index polynomial with the

same coe�cients as Sn but on terms that are representative of the permutations on graph edges�

corresponding to the permutations on graph nodes� the monomial for the edge permutations is

a function of the monomial for the node permutations�

To compute the term in S
���
n from Sn� there are two cases� First� the pair may come from

two di�erent cycles in the permutation from Sn� If the two point cycles are of length i and

j� then there will be gcd�i� j� edge cycles of length lcm�i� j� �abbreviated �i� j� and �i� j�

respectively�� Since there are ei and ej point cycles� the corresponding factor is x
�i�j�eiej
�i�j	 � If

i � j this over counts the cycles� we only have a factor x
k�ek

� �
k � For example� in Figure ��	�

the point cycles � ���
 	 � �� induce the edge cycles �a b c d��e f g h� with gcd�
� �� � 
 cycles of

length lcm�
� �� � ��



�




	

�

�

a

b

c

d

e

f

g

h

Figure ���� Disjoint point cycles inducing cycles on edges between

Second� the pair may come from within a single cycle of length k� If k is odd �k � 
i � ���

there will be i edge cycles of length 
i � � for a factor of x
ie�i��
�i�� � For example� in Figure ����

��



� � 
 	 �� induces the edge cycles �a c f j g��b e i d h� with i � 
 cycles of length 
i� � � �� Note

that the labels are in order based on the order of the nodes� this somewhat obtuse edge ordering

allows adding a node without changing the labels on the edges�



�


	

�

a

c

f

j

g

bd
e

h

i

Figure ���� An odd point cycle and the induced edge cycles

If k is even �k � 
i�� there will be i � � cycles of length 
i and one cycle of length i �for a

total factor of �xix
i��
�i �e�i � because an even cycle will induce a single half length cycle on edges

from point i to point 
i� For example� in Figure ���� the point cycle � � 
 	 � �� induces the

edge cycles �a c f j o k��b e i n j l��d h m� with i� � � 
 cycles of length 
i � �� and one cycle of

length i � 	�

So� for the complete equation� over all cases�

S���
n �

X
e���n�


� Y

k

�

kekek  
�
Y

k
�i��

x
ie�i��
�i�� �

Y
k
�i

�xix
i��
�i �e�i �

Y
k

x
k�ek

�
�

k �
Y
i�j

x
�i�j�eiej
�i�j	

�
A

For example� the pair group S
���
� can be easily computed from S� as follows�

S� �
�


�
�x��� �x�x�� 	x��� �x�x��� �x��

yields

S
���
� �

�


�
�x�� �x��� 	x��x

�
�� �x��x

�
�� �x�x��

�






�




	

�

�

a

c

fj

o

k

b

e

g

i

l

n

d

h

m

Figure ���� An even point cycle and the induced edge cycles
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• •

••

• •

••

x�� x�x
�
� x�� x�x� x�

� � � � �

• •

••

• •

••

• •

••

• •

••

• •

••

y� y��y
�
� y��y

�
� y�� y�y�

Figure ���� The mapping of point cycles to edge cycles for S�

�	



as depicted in Figure ����

For directed graphs� we consider the group on �restricted� ordered pairs� called S
��	
n � Again�

since this is induced by permutations on the points� we look at the generic cycle structure of

integer partitions� If the directed edges are between two di�erent cycles of length i and j� the

factor involves x
�i�j�eiej
�i�j	 from the unordered case� but is squared to account for both directions�

When i � j� the factor is similarly formed� x
�k�ek

�
�

k � If the points are in the same cycle� there are



�k
�

�
� k�k � �� directed edges within the cycle� which yields k � � cycles of length k� same as

in the case for odd cycles on unordered pairs� This also accounts for cycles of even length here

because a directed edge will not match itself after halfway through the cycling as an unordered

edge would� So the complete equation is�

S��	
n �

X
e���n�


� Y

k

�

kekek 
�
Y
k

x
�k���ek
k �

Y
k

x
�k�ek

�
�

k �
Y
i�j

x
��i�j�eiej
�i�j	

�
A

To account for loops �self�directed edges�� an extra factor
Q

k x
ek
k is needed� This is then

the cycle index for the unrestricted ordered pair group� denoted S�
n�

The cycle index generating functions for families of graphs and digraphs are as follows with

some simpli�cation of exponents �all product ranges are from � to n��
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So now that we have a generating function for these di�erent types of graphs� what does

it mean when we apply it to another generating function# Since the transformation of the

��



permutation group takes points into edges� the generating functions act on edges� Any function

to which one of these graph enumerators is applied will place objects on the graph edges� For

example� let the function be � � x� The �x� will produce an edge in the graph� the ��� will

not� So generating function S
���
n ���x� will enumerate the non�isomorphic graphs on n vertices�

After the manipulation of polynomials and their coe�cients� the non�isomorphic graphs on �

points are counted by�

S
���
� �� � x� � � � x � 
x� � 	x� � 
x� � x� � x

where the coe�cient of xi is the number of graphs on � points with i edges� These coe�cients

can be seen in the example in Figure ��
�

The running time on these graph enumeration algorithms starts with the number of parti�

tions which is O

�
e
p
n

n

�
� For each partition� computing the part of the term corresponding to

induced edge cycles within an odd or even cycle is O �
p
n� �the maximum number of distinct

parts�� Between cycles is O
	p

n
�



� O �n� pairs with O �logn� for the gcd$lcm computation

on cycle lengths 	 n

� The total running time is then O
	
e
p
n logn



�

Multigraphs are graphs with unlimited edges between points or equivalently graphs with

weighted edges counted by

S���
n �� � x � x� � � � �� � S���

n

�
�

�� x

�
� S���

n �Seq�x���

Graphs with colored edges can be determined by

S���
n �x � y � z � � � ��

where the variables stand for the di�erent colors�

Relations with given properties can be counted �as in Davis ����� Unrestricted relations

on n objects are counted by S�
n�� � x�� the unrestricted directed graphs� Irre�exive relations

��



�or equivalently re�exive� are counted by S
���
n �� � x�� the directed graphs with no self�loops�

Symmetric� irre�exive relations are counted by S
��	
n �� � x��

Connected graphs �directed or undirected� can be enumerated by considering that any graph

is a multiset of its components� This means if UGrf�A�x�� is the generator for graphs with edges

from A�x�� then the number of connected graphs Conn�A�x�� is speci�ed by�

Grf�A�x�� � Bag�Conn�A�x����

In the labeled case �Bag being equivalent to Set�� taking logs gets us�

Conn�A�x�� � log�Grf�A�x���

whose coe�cients are computable using our previously de�ned log operation� For unlabeled

graphs� we have from the de�nition for Bag�

X
��i

Conn�A�xi��

i
� log�Grf�A�x���

��



By inspecting the coe�ecients� we �nd that we can apply classical M�obius inversion to get

the coe�cients for Conn�

G��x� � log�Grf�A�x���

�
X
��i

Conn�A�xi��

i

�

c� � c� � c� � c� � c� � c � � �

� c�

 � � c�

 � � c�

 � � �

� c�
	 � c�
	 � � �

� c�
� � � �

� c�
� � � �

� c�
� � � �

�
X
��i

X
jji

ci�jx
i

j
summingby columns

Conn�A�x�� �
X
��i

X
jji

��j�

j
gi�jx

i by M�obius inversion �����

This calculates the coe�cients for the inverse of the multiset operation� The running time of the

calculation using ��� is O �n� �O ��� �O ���� The last two items are discussed in Appendix A and

are both � �
p
n�� From these results� the running time for computing connected components is

O
�
n�
�

The operator Conn is most obviously used for counting connected subclasses of species of

graphs� One might wonder what the same multiset inverse applied to the other constructions

means combinatorially� Those whose top level constructor is Set or Bag are easy to analyze�

for example� the !connected" set partitions �SP � Set�Set�z� card � ���� are combinatorially

those with a single partition� of which there is only one for each n �and none for zero�� as can

be seen directly from the application of log to the generating function�

��



A more interesting example would not have head term exp or �� It certainly can�t be

Cyc or Dih because the generating function produced by log has zero for its �rst coe�cient�

and applying log to this will not converge� So all that is left is Seq� This immediately gives

Cyc in the labeled case� the connected sequences are the cycles� For unlabeled structures�

the correspondence is not immediate� By the generating function� it is the �rst term in the

summation that computes Cyc� Combinatorially� it is those sequences of a single cycle� The

connected Bags are the base objects with identical element sequences replacing each atom�

Similarly� the connected Sets are the one�to�one functions on the base set with identical element

sequences replacing each atom�

The running times for the graph and connected constructions are in Table ��
�

Operation running time

graph O
	
e
p
n logn




connected O
�
n�
�

Table ���� Running time of graph and connected operators
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Chapter �

Power Series� Languages� and

Semirings

��� De�nition

The connection between power series and languages began with Chomsky and Sch�utzenberger

���� they note the relation between the words in a language and formal power series� Kuich

and Salomaa ��� describe rational and algebraic power series and their respective relation to

regular and context�free languages�

The transition from the polynomial enumerating function for a class to the construction

of grammars for the class is possible because of their similar algebraic structure� they are

both semirings� A semiring is a closed algebraic system �R����� � �	 where R is the set of

elements� � and � binary operations on R� with elements � � � R �not necessarily distinct�

satisfying the following properties�

� �R��� � is a commutative monoid� � is associative and commutative� with  the identity�

��



� �R��� �� is a monoid�� � is associative with � the identity�

� � distributes over � from the left and right� a��b�c� � a�b�a�c� �a�b��c � a�c�b�c

Rings are semirings with additive inverse� i�e� a ring is a semiring with addition augmented from

a monoid to a group� Notice that under this axiomatization� � is not necessarily commutative�

and  may not be an annihilator �a� and �a do not necessarily equal �� We can de�ne matrices

over a semiring� where

�A �M B�ij � �A�ij � �B�ij

and

�A �M B�ij �
X
k

�A�ik��B�kj

This de�nition satis�es all the semiring axioms itself� except that there is no multiplicative

identity� which is not necessary�

Both formal power series and languages are semirings� Formal power series over N �for

enumeration� form a semiring� Languages form a non�commutative semiring in the following

manner �following Kuich and Salomaa ����� Let S be the set of sets of tuples over a �nite

alphabet� � is disjoint union of sets of tuples� with  � 
 the empty set�� is concatenation of sets

of tuples� where concatenation of two tuples is the �rst followed by the second� concatenation of

two sets is the set of all possible ordered pairs concatenated� and � � f�g where � is the empty

string of length zero� Distributivity follows from the de�nition of union and concatenation�

A regular language has three equivalent characterizations� it is a language that is�

� accepted by a �nite automaton�

� recognized by a grammar whose productions are from V � �V � ��T �

�



� generated by an expression using �� �� and � �the latter called closure� de�ned as a� �

� � a�a���

Because of the latter characterization� any combinatorial structure formed using union�

product� and sequence can now be speci�ed as a regular language �with the restriction imposed

by the second characterization��

We can de�ne a particular regular language by a system of equations over words and vari�

ables�

x� � A��x� � A��x� � � � �� A�nxn � b�

x� � A��x� � A��x� � � � �� A�nxn � b�

���
���

xn � An�x� � An�x� � � � �� Annxn � bn

where the xi are unknown sets of strings de�ned by the mutually recursive equivalences� Aij �

P
t� t � T such that there is a rule xi � xjt� and the bi are �nite sets of strings of length one

corresponding to the rule xi � t� t � T � Note that all Aij and bi are constants in the semiring of

strings� By convention� x� is the principle language being de�ned by the system� This encodes

a grammar for a regular language as a linear system of equations with variables �the unknown

sets being solved for�� and the constants �the �nite sets of words���

In this light� we can view the system vectors and matrices over the semiring elements�

�x � A��x ��b

The solution to this equation is �x � A�b� where A� is the closure of the matrix over a

semiring� with appropriate use of the semiring operations� where A� � I � A�A�� Lehmann

�The equivalence with Deterministic Finite Automata can easily be seen if we consider the variables xi as the

states� x� as the start state� a transition from state xj to xi with edge label Aij � t if xi � xjt� and bi is either

null if xi is not a �nal state or � if it is

��



���� showed that Gaussian elimination on systems of linear equations over semirings can solve

this system in O
�
n�
�
� This algorithm is identical to Kleene�s algorithm for closure over regular

languages� The solution of such a system is in terms of the constants using the operations ��

�� and ��

The polynomial interpretation of such a solution is in terms of enumerating generating func�

tions� mapping the semiring of a regular language to the semiring of multivariate polynomials

over the naturals whose variables are the alphabet of the language� The coe�cient of a term

xp�� �xp�� � � � xpii is the number of words in the speci�ed language that have pi letters xi�

����� Context�free Grammars

Most of the structure we have looked at have recurrent grammars that are not regular� For

example� rooted plane trees� with de�nition RPT � z�Seq�RPT� � RPT � z�T� T � � �

RPT�T � is not regular because of the non�regular recursive Seq �which gives the concatenation

of two variables�� If we consider context�free grammars �CFGs�� many more of our structures

can be encoded� Without loss of generality� we can assume that our grammar is in Chomsky

normal form �CNF� where all productions are from V � �T � V �V ��� Grammars in this form

can also be represented as a matrix equation�

�x � A��x ��b

where the xi are the sets being de�ned� Aij a constant set of strings Aij �
P
xk � xk � V such

that there is a rule xi � xjxk� and the bi are �nite sets of strings of length one corresponding

to the rule xi � t� t � T � Note that only the bi are constants in the semiring�

�Note the notational ambiguity� the class of CFGs is be speci�ed by a regular language

�




Following Salomaa and Soittola ����� this system of equations also has a solution by closure�

It is not necessarily terminating as for regular languages� but it is convergent and so can

be computed up to an arbitrary precision� i�e� to an arbitrary word length� Here again� a

polynomial interpretation is just a homomorphism of letters to variables� the coe�cients being

positive integers that count the number of derivations�

�	



Chapter �

Conclusion

��� Previous Work and Implementations

Most other work in construction of combinatorial objects �Reingold� Nievergelt� and Deo ��	�

and Nijenhuis and Wilf ��
�� concentrates on the optimal algorithms for sequential construc�

tion of permutations� gray codes� and integer partitions� Joyal ��� gave a general method for

constructions� and both Bergeron �
� and Zimmermann ���� expanded upon them�

Several systems have been developed� Nijenhuis and Wilf ��
� in Fortran� Skiena ���� in

Mathematica� and Bergeron �
�� Paul Zimmermann ���� has written a Maple package for random

generation according to the grammar of construction which in e�ect gives algorithms for ordered

generation� His work forms the starting point for the work reported here�

The above operations for enumeration of combinatorial objects ��� �� �� Seq� Cyc� Dih� Set�

Bag� In� Cn� Dn� An� Sn� S��	� S���� S�� Conn� UGrf� DSGrf� and DGrf� and for construction

��� �� �� Seq� have been implemented as a library of C�� classes and is available by contacting

the author at e�mail address maharri�cs�uiuc�edu�

��



��� Uses

Sequential construction of combinatorial objects has many uses� Many algorithms act over all

possible arrangements or con�gurations� Listing combinations� n�tuples� partitions� words over

a language� these are all common subroutines needed in systems� The construction algorithms

make all these combinations easy to implement�

Given a particular class of combinatorial objects� we often want to submit them to new

algorithms to test their e�ciency� With full enumeration and construction� we can produce

data for the whole distribution or from a uniform sampling� This will allow one to make

conjectures about properties of an algorithm�

Experimental mathematics or the use of natural scienti�c methods to aid in discovering

mathematical knowledge is becoming more feasible with better hardware� The algorithms above

will allow perfect knowledge of smaller sets and probabilistic knowledge for sets intractably

large� Of course� this makes no replacement for the discovery of proofs of properties of these

sets� only it may make conjectures easier to corroborate and thereby give more hope to the

search for proof�

Unranking is essentially a function from N to a set of objects� The object corresponding

to a particular number can then be thought of as an encoding of the number� The traditional

digital system encodes numbers as n�tuples of ten distinct atoms� All the bijections support

old� and give new� numbering schemes� Factorials and Fibonacci numbers are two classical

examples of sequential encodings of numbers�

��



��� Future Work

Many combinatorial objects have been left out of the above catalog� Young tableaux� block

designs and Latin squares� groups� orders� and other algebras� and many various extensions and

restrictions of previously mentioned objects� Either suitable constructions for these objects out

of the above operations may be discovered� or new operations for them may be formulated that

will �t into this framework�

Nijenhuis and Wilf ��
� considered the set of useful tasks in combinatorial construction on

an ordered set of objects to be�

� ranking � given an object in the set� determine the integer �the rank� specifying that

object�

� unranking � given an integer� construct the corresponding object�

� sequencing � given an object� construct the �next� object in the order�

� randomization � select an object uniformly at random from the set�

Unranking was the subject here� Given an unranking algorithm for a set� randomization can

be thought of as a trivial extension by using a random generator of integers over the number

of items in the set�

Ranking is not necessarily a simple reversal of the unranking algorithms� If we can assume

that an object presented to be ranked has an identical encoding as the object constructed with

the corresponding rank� then such an inverse operation would not be di�cult to formulate�

Barring that assumption� which is most likely false in real applications� there needs to be

preprocessing for the objects to normalize them to a form appropriate to the particular class

to which it belongs� This normalization is certainly nontrivial�

��



Sequencing could be considered trivial� for an object x� Unrank�Rank�x���� su�ces� Often

this is all we want to do� However for constructing large sets in sequence� we may be able to

speed up construction of the whole set with smaller amortized running time for single objects by

having a clever �next� operation� The canonical example might be the simplest� the construction

of the binary representation of integers� The canonical unranking algorithm takes time � �logn�

for each number in the set � n� for a total � �n logn�� By incrementing in a ripple�carry

counter� the amortized cost is � �n�� E�cient next algorithms could be made for all the above

objects� Nijenhuis and Wilf ��
� give a number of examples for this� notably the Trotter

algorithm for permutations� For an exhaustive survey of permutation algorithms� see Sedgewick

�����

The following are a number of unsolved problems posed here which would be desirable to

solve�

� Converting an enumerator for an arbitrary permutation group and operations on such

generating functions to e�cient constructors�

� E�cient computation of cycle indices for speci�c classes of groups or operations on groups�

� Solving the graph isomorphism problem� This means �nding the polynomial equivalence

class to which it belongs� If it is found to be a proper subset� which it appears to be� then

such a solution would show that P �� NP�

� Determining a combinatorial interpretation of unrestricted grammars� and solutions of

systems in terms of generating functions and constructions�

� Finding grammatical rules corresponding to the cycle and set constructions�

��



� Enumerating and constructing classes with other de�nitions� Transitive relations �posets�

lattices� etc�� and non�isomorphic algebras� Finding a general method for complement

construction�

The main results achieved are the derivations of the generating functions of the basic combi�

natorial operators through P�olya enumeration� a general method for using generating functions

as constructors� an algorithm for constructing graphs� an algebraic interpretation of generating

functions as semirings� and a solution of systems of combinatorial equations�
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Appendix A

Running Time for Number

Theoretic Functions

The following number theoretic functions

� ��n� � the number of positive integers less than �or equal� and relatively prime to n�

� ��n� � the number of positive divisors of n�

� ��n� � � if n has an even number of unique prime divisors� �� if odd� and  otherwise �n

is not square�free� i�e� has multiple prime factors��

are all multiplicative� that is� for f multiplicative� f�a�b� � f�a��f�b�� This leads to a sim�

ple method for computation for such functions based on the prime factorization� if n �

pr�� p
r�
� � � � prkk � then�

f�n� �
nY
i
�

f�prii �

��



For each of these functions there is a simple method for calculating f�pr�� p a prime�

��pr� � �p� ��pr��

��pr� � � � r

��pr� � ��r � �����r � ��� �r 	 ��

For arbitrary n� these can all be computed in time linear in the number of factors� given such

a factorization� The number of factors is O �logn�� To factor� we use a naive trial division

algorithm� attempting 
 through
p
n� for an �

	
n���



run time�

The size of the values from these functions is in Table A��

function computation value

� �
	
n���



O �n�

� �
	
n���



O �logn�

� �
	
n���



� ���

Table A��� Running time of number theory functions

Any algorithm that uses
P

jji iterating over all divisors has a factor of O ��� � �
	
n���



in

its running time�

Note that it is commonly understood that integer factorization has exponential running

time� contrary to what we claim here� Running time is calculated according to the size of the

input� With integer factorization �and other operations like addition and multiplication� the

input size is the length of the bit encoding� which is logn of the value� Turned around� the value

is exponential in the length of the encoding� yielding the �slowness� of factorization� However�

we are not factoring the coe�cients of these enumerating polynomials� we factor the indices of

�



the polynomial elements� So we are taking the input size interpretation as being the length of

the polynomial which is the maximum degree for which a coe�cient is calculated�

��
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