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Summing over T � Bn gives

nX
m�jRj

X
�m���jRj��R

����m�jRj P����� � � � � �jRj�P
���m� �m��� � � � � �jRj��� � ��m��

����
where � ��m� � jfT � Bn � �m � �m�T �gj�

It is easily seen that � ��m� depends only on the unordered set ��m� and
equals

� ��m� �
mY
i��

�gi���m��� ����

Therefore ���� equals

nX
m�jRj

����m�jRj X
U�R
jU j�m

� �U� �
X
U�R

����jU j�jRj� �U�� ����

But � �U� is� by ����� precisely the number of trees that �x at least the
points in U � By M�obius inversion� ���� reduces to �n�R��

Remarks�
�� For n � �� the second largest eigenvalue is the sum which leaves out

the consecutive pair fi� i��g with the smallest total weight� Its multiplicity
�assuming no ties� is �	 � ��

�� As in the case of MTF� when the weights are uniform the eigenvalues
of MTR are the numbers

�� ��n� ��n� � � � � �n� ���n� ��

The multiplicity of the eigenvalue m�n is the number of trees which �x
exactly m points�

� References

Aho� A� V� and Sloane� N� J� A� ������ Some doubly exponential se	
quences� Fibonacci Quarterly� �� �������

Allen� B� and Munro� I� ����
�� Self	organizing binary search trees�
J� ACM � �� �������

��



short� �n is the number of admissible closeness relations �in Fine�s terminol	
ogy� on �n�� Fine gave a method of calculating �n but did not produce an
explicit formula like our �����

� It is easy to show that �n satis�es the following recursive relationship
with respect to �n�

�n �
�

�
��n � �n���� n � �� ����

furthermore� �n satis�es

�n �
���n � ��

n� �
�n��� n � �� ��
�

We feel that the simplest method for calculating �n is to calculate �n itera	
tively and then use ���� iteratively to get �n�

�� Combining ���� and ��
� gives a simple recurrence relation satis�ed
by ��n��

��n � ���n � ��n � ���n�� � ���n � ���n�	� n � ��

We now give a tree	based description of the spectral structure of MTR�

Theorem � The transition matrix for MTR is diagonalizable� The eigen�
values of Q are those values

�R �� p�R� �
X
j�R

pj

for which R has no gaps of size �� The multiplicity �R of �R is the number
of n�node trees which �x exactly those points in R� That is�

�R � �n�R��

which can be computed directly from ���� and the formula for the number of
derangement trees�

Proof We identify the eigenvalues and their multiplicities by calculating
the trace of Qk� Consider formula ���� When S � T � d�S� T �R�� � � for all
R� � �n� and the coe�cient of �p�R��k simpli�es to

nX
m�jRj

X
�m�
m�T ��
��jRj��R

����m�jRj P����� � � � � �jRj�P
���m� �m��� � � � � �jRj����
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It now follows by iteration that

�n�R� �
jRjY
i��

�gi�R�� ���

Similarly� with the conventions �� � �� � ��

Lemma ��� Let �n �
�
	n
n

�
��n��� denote the number of binary search trees

on n nodes� Then ��n� satis�es the following recursive relationship with
respect to ��n��

�n � �n �
nX

j��

�j���n�j� n � �� ����

Corollary ��� The following formula gives the number of derangement trees
on n nodes�

�n �
�

�

�
����

�

�n
�

nX
j��

�
��

�

�j
�n�j

�
� � n � �� ����

Proof Recall that the generating function for the nth Catalan number �n
is

B�z� � � �p� � �z

�z
�

From ���� it follows that the generating function for the number of derange	
ment trees is

A�z� � B�z�
� � zB�z� �

� � B�z�
� � z

� ����

and the result follows by computing the coe�cient of zn�

Remarks�
�� Values of �n up through n � �� can be found in Sloane ������

sequence number ��� The �rst �� numbers� starting with ��� are� �� �� ��
�� �
� ��� �
�� ���� ����� �
�

�� The sequence ��n� has arisen in the context of Fine�s ������ work on
closeness relations� We shall not go into detail about the connections� In
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Phatarfod ������ derived the eigenvalues and multiplicities for MTF� Sup	
pose for simplicity throughout this section that sums of distinct collections
of weights are distinct� Then the eigenvalues are all the partial sums of the
weights� excluding the n cases where the summation is over n � � weights�
The multiplicity of each eigenvalue �R �

P
j�R pj corresponding to a sum of

jRj � m weights is the number of permutations in Sn �xing exactly those
points in R� namely� the number of derangements �permutations with no
�xed points� in Sn�m�

Our results for MTR exhibit an interesting parallelism to those for MTF�
In brief� we shall de�ne the notions of unit gap and �xed point of a tree
and show �i� that the eigenvalues for MTR are the partial sums of weights
excluding sets which have unit gaps� and �ii� that the multiplicity of the
eigenvalue �R is the number of trees in Bn �xing exactly those points in R�

For R � �n�� write r� 	 r	 	 � � � 	 rm for the elements of R� De�ne
r� �� � and rm�� �� n� �� Let

gi�R� �� ri�� � ri � �� i � �� � � � �m�

denote the number of integers in the interval �ri� ri���� Then gi�R� is called
the i�th gap of R�

We say that a tree T �xes a record j if the records j � �� � � � � n are all in
the right subtree of j and the left subtree of j is empty� Equivalently� T �xes
j if there exists 
 � ��T � such that 
�j� � j and 
 maps f�� � � � � j � �g to
itself and fj � �� � � � � ng to itself�

We say that a tree �xes a set of records R if the tree �xes each of the
records in R� Denote the number of trees which �x exactly R by �n�R��
We call a tree which �xes none of its records a derangement tree� Write
�n �� �n��� for the number of n	node derangement trees�

Note that if a tree T �xes exactly one record j� then the nodes of T
which contain records �� � � � � j � � form a derangement tree� Similarly� the
nodes of T which contain records j � �� � � � � n also form a derangement tree�
Conversely� any derangement tree on f�� � � � � j � �g can be joined with any
derangement tree on fj��� � � � � ng to obtain a tree with j as its unique �xed
point�
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Remarks�
�� When T is �long and skinny��that is� when T is �close� to the tree

obtained by the identity or reversal permutation�Qk�S� T � can be computed
in time polynomial in n using any of the methods we have discussed� For
example� one can use ��� and the formula from Fill ����� for the MTF
transition probability P k�
� ��� The latter can be computed in polynomial
time for �xed � � Sn� and it is not hard to show that if T � Bn has height
n� �� k� then N�T � � j��T �j � nk�

�� Let u�T � denote the number of uptrees for tree T � Thus u�T � is the
number of terms in the sum in �
�� Then u satis�es the recursion

u�T � � � � u�L�T ��u�R�T ��� ����

For example� for the perfect binary tree on n � �m � � nodes let um
denote the number of uptrees� Then

um�� � u	m � �� m � �� ����

which generates the sequence �� �� �� ��� ���� ��
�� ������

���� � � � �
Note that um is the number of binary search trees with height at most

m�� and ���� has been studied from this point of view� While no closed form
solution to ���� is known� one can show that um � bK	mc � bKn��c where
K is approximately �����
�� �See Aho and Sloane ����� for a discussion
of this and other nonlinear recurrences of the form xn�� � x	n� gn� where gn
is a slowly growing function of n��

� One approach to computing D�S� T � �� begins by constructing tables
of ancestry relations for S and T � It is easy to see how to construct such
tables in time�and space�O�n	�� By constructing an ancestry table as a
hash table� a single ancestry relation can be checked in constant time and
thus D�S� T �R� computed in time O��n � jRj�	� � O�n	� for �xed S� T�R�

� Eigenanalysis of MTR

The fact that MTF is lumpable gives us little to go on in trying to determine
the eigenstructure of MTR� From lumpability it follows that the eigenvalues
for MTR are some subset of those for MTF� But determining which subset
and the corresponding multiplicities requires more detailed analysis�
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programming approach� Beginning with Q��z� � �� ��� yields Qfxg�z� �
ewxz � � for a tree fxg of height �� Having computed QU for all trees U with
height at most h � �� the recursion ��� can be used to �nd QU for trees U
with height h� In each instance� ��� is a �rst	order linear di erential equation
involving only linear combinations of exponentials�

For �xed n and T � Bn� the process of solving forQU for all U � U�T � can
be less tedious� As an illustration� let T be the tree of  nodes corresponding
to the reversal permutation� �In the notation of Figure �� T � T��� The
uptrees of T are the empty tree� the singleton tree T � storing � the tree T ��

induced by records � and � and T itself� We have

Q��z� � ��

QT ��z� � ep�z � ��

QT ���z� �
p�

p	 � p�
�e�p��p��z � ��� �ep�z � ���

QT �z� �
p	p�

p� � p	
�ez � ��� p�

p	 � p�
�e�p��p��z � �� �

p�
p� � p	

�ep�z � ���

Solving for the coe�cients in the generating functions gives� for k � ��

Qk��� � ��k�

Qk�T
�� � pk� � ��k�

Qk�T
��� �

p�
p	 � p�

��p	 � p��
k � ��k�� �pk� � ��k��

Qk�T � �
p	p�

p� � p	
��� ��k�� p�

p	 � p�
��p	 � p��

k � ��k� �
p�

p� � p	
�pk� � ��k��

where �ij equals � if i � j and � otherwise�
Now suppose S � B� corresponds to the identity permutation� �In terms

of Figure �� S � T��� Then

D�S� T � �� � D�S� T � fg� � � and

D�S� T � f�� g� � D�S� T � f�� �� g� � ��

and so

Qk�S� T � � Qk�T
��� �Qk�T �

�

�
p�p�
p��p�

�� � pk��� � if k � �

� if k � ��
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exactly jU j distinct records to the root� with these jU j records forming the
tree U as a result�

We will derive a recursive �in U� functional relationship for the expo	
nential generating function QU �z� ��

P�
k��Qk�U�zk�k!� Its solution will give

a straightforward method for computing the k	step probabilities simultane	
ously for all k� In the remarks at the end of this section we will discuss issues
related to the complexity of the calculations�

Theorem 	 Let U be a binary search tree� Let QU�z� ��
P�

k��Qk�U�zk�k!
be the exponential generating function of the sequence �Qk�U��k��� De�ne
Q��z� �� �� Then

Q�
U�z� � wroot�U�e

wroot�U�
zQL�U��z�QR�U��z�� ���

with the initial condition

QU ��� �

�
� if U � �
� otherwise�

Proof For k � �� Qk�U� is the probability that in k requests� �a� the last
request is for root�U�� �b� the request for records in L�U� are such that after
the k steps they form L�U�� and �c� the request for records in R�U� are such
that after the k steps they form R�U�� Thus� for k � ��

Qk�U� � wroot�U�

X
j��j��j�

	
k � �

j�� j	� j�



wj�
root�U�Qj��L�U��Qj��R�U��� ����

where the sum is over all non	negative triples which sum to k� �� For k � �
it is clear that

Q��U� �

�
� if U � �
� otherwise�

Multiplying both sides of ���� by zk����k � ��! and summing from � to
� gives the result�

We do not know a tree	based closed	form solution to ��� �except in the
case of equal weights�� The process of solving ��� for QU�z� for all trees U
with height at most h is best implemented using a �bottom	up� dynamic
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Remarks�
�� From ��� and rearrangement� ��� can alternatively be written as

Qk�S� T �

�
X
R��n�

�p�R��k
nX

m�jRj

X
�m�
m�T ��
��jRj��R

D�S� T � ��m��

� ����m�jRj P����� � � � � �jRj�P
���m� �m��� � � � � �jRj���� ���

where p�R� ��
P

i�R pi� This form of Qk will be useful for the spectral analysis
of MTR given in Section ��

�� From ��� we can derive the stationary distribution as given in ���� Let
k 	 � and note that the only term in the outer sum which doesn�t vanish
is the one corresponding to R � �n�� This gives Q��T � �

P
��
�T � P

�����

� In the case of equal weights �pi 
 ��n��

P k��m� �
mX
i��

�
i

n

�k ����m�i
i!�m� i�!

�� P k�m��

Thus

Qk�S� T � �
nX

m��

P k�m�Cm�S� T ��

where Cm�S� T � �� jf�m � �m�T � � D�S� T � ��m�� � �gj�

��� Computation of k�step probabilities

While formula ��� is useful for deriving certain characteristics of the MTR
chain� we next consider a version that seems better suited for numerical
computations� For any tree T � let rec�T � be the set of records stored at the
nodes of T � By rearranging ��� we �nd that for S� T � Bn�

Qk�S� T � �
X

U�U�T �

D�S� T � rec�U��Qk�U�� �
�

where U�T � is the collection of uptrees of T and Qk�U� ��
P

��
�U�P
k�� ��

Observe that Qk�U� is the probability that k requests using MTR move
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P k��m� � w�
m

mX
i��

�w�
i �

kwm�i�

where� for � � i � m � n�

w�
i ��

iX
h��

wh� w�
i ��

iY
h��

wh� and wm�i �� ��
Y
j 	�i

�
j
m

�w�
i � w�

j ��

with the natural conventions w�
� �� �� w�

� �� �� and w��� �� ��

Proof Noting that the top m records must have their last requests occur in
the order �m� �m��� � � � � ��� and conditioning on the times of these requests�
we �nd

P k��m� �
X
jm

�w�
m�

jmwm�w
�
m���

jm��wm�� � � � �w�
� �

j�w� � w�
m

X
jm

mY
r��

�w�
r �

jr �

where the sum is over all m	tuples of nonnegative integers summing to k�m�
The result follows from an algebraic identity derived in the Appendix of Fill
������

As discussed in Remark ����a� of Fill ������ P k��m� can also be written
in the form

P k��m� �
mX
i��

�w�
i �

k ����m�i P����� � � � � �i�P
���m� �m��� � � � � �i���� ���

where P����� � � � � �i� is the probability that sampling without replacement
from �n� selects the elements of f��� � � � � �ig in the relative order ���� � � � � �i��
similarly for P���m� �m��� � � � � �i����

The main Theorem  now follows directly�

Theorem � Let S� T � Bn� Then

Qk�S� T � �
nX

m��

X
�m�
m�T �

D�S� T � ��m��P
k��m�� ���

where

D�S� T � ��m�� �
mY
j��

d�S� T � ���j�� ��j������

��



of the event that the ancestry relations of the two trees agree for the records
in R� That is� d�S� T �R� � � if i 	T

a j exactly when i 	S
a j for all i� j � R�

and d�S� T �R� � � otherwise�
For a permutation � � Sn� let �m �� ���� � � � � �m� for � � m � n� Thus

�m is the projection of � onto its �rst m coordinates� Recall the de�nition
of ��T � given in Section �� Let �m�T � be the projection of the elements of
��T � onto their �rst m coordinates� Thus �n�T � � ��T � and ���T � is the
singleton froot�T �g� Finally� let ��m� denote the unordered set f��� � � � � �mg
and ���� 	 � � � 	 ��m� the corresponding order statistics with ���� �� � and
��m��� �� n� ��

An upset in a tree T � Bn is a set U of nodes with the property that if
j � U � then the parent �equivalently� all ancestors� of j is in U � Note that the
graph in T induced by an upset in T is itself a tree containing �if nonempty�
the root of T � We shall refer to this induced tree as the uptree U �

It follows from the discussion of the tree	building operation in Section �
that the uptrees of T consisting of m elements are precisely the trees t��m�
with �m � �m�T �� The discussion in Sections � and � especially the proof
of Lemma ��� also yields the following lemma� We leave the simple proof to
the reader�

Lemma ��� Consider a sequence " of k record requests that contains m
distinct records� Suppose that application of " to the list ��� � � � � n� using
MTF results in �m � ���� � � � � �m� as the m�tuple of frontmost elements�
Then application of " to a given tree S � Bn using MTR results in the tree
T � Bn characterized by the following two statements�

�a� The tree t��m� is an uptree of T �
�b� For each j � �� � � � �m� the T �ancestry relations among the records in

���j�� ��j���� are the same as in S�

Here we use the notation �a� b� for integers a and b to mean the interval of
integers strictly between a and b� Note that we take the initial list in Lemma
��� to be ��� � � � � n� only for de�niteness� The same result clearly holds for
any initial permutation 
�

Next we reproduce a result from Fill ����� concerning MTF�

Lemma ��� Let P k��m� denote the probability� starting in the list ��� � � � � n��
that k requests using MTF move exactly m distinct records to the front and
result in �m as the m�tuple of frontmost elements� Then

�



and partial product for a node after these quantities have been calculated for
its children�

� The distribution ��� arises in the study of random trees� It is the
distribution of t���� where � � Sn is uniformly distributed� See Mahmoud
������� The distribution �� is the distribution of t���� where � � Sn has
the weighted	sampling	without	replacement stationary distribution of MTF�
and so is a generalization of the random permutation model�

�� Unlike the uniform distribution on Bn� the distribution ��� favors trees
which are �short and fat�� Suppose for ease of di scussion that n � �m � �
for integer m� The perfect binary tree is the tree for which all nodes� except
for leaves� have � children� Call this tree Tm� We can show that the mode
of ��� is Tm� It is not hard to derive the asymptotic behavior of Q��Tm��
In particular� the rate of decay for Q��Tm� is exponential in n� In contrast�
minT�BnQ

��T � � Q��t��� � � � � n�� � ��n! decays at a superexponential rate�

� Transition probabilities

��� A tree�based approach

Our goal in this section is to derive a formula for the k	step transition prob	
abilities Qk�S� T �� where S� T � Bn� The k	step probabilities for MTF were
derived by Fill ������ Thus in light of Corollary �� it would seem that we
are done�

Fill�s formula� however� is necessarily permutation	based� It depends�
for instance� on permutation statistics which are not invariant under the
mapping �� And while the MTF probabilities can be computed in polynomial
time� the number of summands in ��� is N�T �� which by the pigeonhole
principle is� for some T � at least n!�jBnj � 


p
� nn�	��e��n�

The formulas ��� and �
� below have the advantage that they are� at least
partially� �tree	based� and can be used to derive numerous characteristics of
the chain� including �see Section �� the eigenvalues and their multiplicities�

Before proceeding to the main theorem of this section �Theorem � we
establish some notation and preliminary results� It will be necessary to dis	
tinguish between the nodes in a tree and the records stored there� Let R � �n�
be a subset of records� For S� T � Bn� de�ne d�S� T �R� to be the indicator

��



The stationary distribution for MTF� originally derived by Hendricks
������� is given by

P���� �
nY
i��

wiPn
j�i wj

�

Observe that P� is the distribution of the order obtained by sampling n
items without replacement� It follows from Corollary �� that Q��T � is the
probability of sampling n items without replacement in such a way that the
�rst item is at the root of T and the order of choosing the remaining items
is consistent with the ancestry relations in L�T � and R�T �� Since the root
and the two subtrees partition the n items� �� follows by recursion�

As a corollary� we obtain the number of terms in the sum ����

Corollary 	�� For a tree T � let N�T � � j��T �j� Then

N�T � �

	jT j � �

jL�T �j


N�L�T ��N�R�T �� �

jT j!Q
x�T jTxj

�

where jT j is the number of nodes of T �

Proof The �rst equation follows from the recursive argument in the proof
above� Now iterate to obtain the second equation�

Corollary 	�� Let T be a nonempty binary search tree� Under MTR if
records are accessed uniformly �each with probabily ��jT j�� then

Q��T � �
�Q

x�T jTxj
� ���

Remarks�
�� Another way to think about Corollary ��� is with respect to partial

orderings� The lemma gives the number of linear extensions for a set of ele	
ments in a partial order which satisfy some given relations� These relations�
of course� must be consistent with the relations satis�ed by a binary tree�

�� Computing �� in linear time requires a simple algorithm which starts
at a leaf� working its way up the tree� iteratively computing the partial sum

��



P �
�� ��� � p��
k�
� p�k � By the previous lemma� t���� is identical to the tree

obtained by moving 
�k� � 
k to the root in S� But since 
 � ��S�� it follows
that t��� is identical to the tree obtained by moving 
k to the root in S�
That is� t��� � t����� so �� � ��T � and hence

X
��
�T �

P �
�� � � � P �
�� ��� � P �
� �� � p�k �

It follows from the foregoing that if 
 � ��S� and P �
� �� � � for all
� � ��T �� then for each 
� � ��S�� P �
�� �� � � for all � � ��T ��

� Stationary distribution

While Corollary �� gives an exact formula for the transition probabilities
of MTR� explicit calculation of these numbers for speci�c trees is another
matter� In the case of the stationary distribution Q�� however� exploiting the
recursive character of binary trees and using a simple property of sampling
without replacement gives a result analogous to that for MTF�

For x a node of a given tree� we use the notation wx for the probability
of accessing the record at that node� For i an index of a given permutation
�� we write wi for p�i �

Theorem � For a tree T �

Q��T � �
Y
x�T

	
wxP

y�Tx wy



� ��

where Tx is the subtree of T with root x�

Proof For a binary search tree T let L�T � denote the left subtree of T � For
a permutation � let �L be the subpermutation of � induced by the elements
of L�T �� That is� for k � �� � � � � jL�T �j� �Lk is the kth element of � which is
contained in L�T �� Similarly de�ne R�T � and �R�

A necessary and su�cient condition for � � ��T � is that the following
three conditions hold� �i� �� is the record at the root of T � �ii� �L � ��L�T ���
and �iii� �R � ��R�T ���

��



is obtained by requesting �n� � � � � ��� Thus t���� is obtained from t��� by
moving �k to the root�

The reader may consult Figure  for an illustration of Lemma ��� Note
that we can read o the ancestry relations of a tree from any one of its
associated permutations by looking at the ordering relations� For instance�
for � � �� �� �� �� �� ���  is an ancestor of everyone� � is an ancestor of � and
�� but not of � �� or � �since � is to the left of � and � but not to the left
of �� � is an ancestor of �� but of no others� � is an ancestor of � and of no
others� This will be true for all equivalent permutations� which include� for
instance� �� �� �� �� �� �� and �� �� �� �� �� ���

Figure �

We now prove Theorem ��

Proof De�ne root�T � to be the record at the root of T � Note that for any
�� �� � ��T �� �� � ��� �root�T �� since t��� � t����� Thus for any �xed 

and T � Bn� P �
� �� � � for all but possibly one � � ��T �� If P �
� �� � ��
then � is uniquely determined� In particular� since MTF corresponds to
composition with a cycle� � � 
 � �k � � � ��� where k � 
���root�T ���

Let S� T � Bn and 
 � ��S�� Then

X
��
�T �

P �
� � � �

�
P �
� �� if there exists � � ��T � such that P �
� �� � �
� otherwise�

The theorem will follow if we can show that the righthand side above is the
same for all 
� � ��S��

Suppose there exists � � ��T � such that P �
� �� � �� Let k � 
�������
Thus P �
� �� � p�k � p�� and � is just what results from 
 after moving
record 
k to the front� Let 
� � ��S� and k� � 
����
k�� Put �� � 
���k� � � � ���
Thus �� is just what results from 
� after moving 
�k� � 
k to the front and

�



Corollary ��� Given � � Sn� t��� is the tree obtained from any n�node tree
after making the sequence of requests �n� �n��� � � � � ���

Proof For any k� after deleting records �n� � � � � �k�� from t���� �k will be a
leaf�

This gives a characterization of ��T �� For a set S� we use the notation
a 	 S to mean that a is less than every element of S� i�e�� that a 	 minS�

Lemma ��� For T � Bn�

��T � � f� � i 	T
a j  ����i� 	 f����i� ��� � � � � ����j�g� for i 	 j�

����i� 	 f����j�� � � � � ����i� ��g� for i � jg�

In words� ��T � is the set of all permutations � such that i is a T 	ancestor
of j if and only if i is to the left of i� �� � � � � j when i 	 j and to the left of
j� � � � � i� � when i � j�

Proof The proof� after sorting through the notation� is a direct consequence
of the above lemmas� Call the set on the righthand side ���T �� Let � � ��T ��
Then t��� � T � and so� by Corollary �� T can be obtained from any tree by
requesting �n� � � � � ��� Suppose i 	T

a j� Then� by Lemma ��� i is requested
after i��� � � � � j� so ����i� 	 f����i���� � � � � ����j�g� Similarly� the converse
holds� showing that ��T � is contained in ���T ��

Suppose � �� ��T �� Then there exist some i and j such that i 	T
a j

but i �	t���
a j� Since � � ��t����� by the �rst part of the proof ����i� �	

f����i� ��� � � � � ����j�g� Hence � �� ���T ��

A direct consequence is that MTF for permutations corresponds to MTR
for the associated binary search trees�

Lemma ��	 Fix � � Sn and let �� � Sn be the permutation obtained by
moving �k to the front� Then t���� is the tree obtained from t��� by moving
�k to the root�

Proof By assumption� �� � ��k�� � � � �k���k�� � � � �n�� By Corollary ��
t���� is obtained by requesting �n� � � � � �k��� �k��� � � � � ��� �k� But by Lemma
��� t���� is also gotten by requesting �n� � � � � ��� �k� On the other hand� t���






Lemma ��� Suppose records i and j have been requested at least once each
in a tree modi�ed according to MTR� Let i 	 j� Then i 	a j if and only if
the most recent request for i has occurred since the most recent request for
any of i��� � � � � j� Similarly� j 	a i if and only if the most recent request for
j has occurred since the most recent request for any of i� � � � � j � ��

Proof When either simple exchange or MTR is used� if i is requested then
i is the only record which becomes an ancestor of any records� Also� i will
cease to be an ancestor of j if and only if an element k� where i 	 k � j� is
requested� This gives the �rst part of the lemma� The second part is shown
similarly�

For the remaining proofs in this section� as in the preceding proof� the
condition that i � j can be handled in the same fashion as the case i 	 j� so
we will tacitly restrict ourselves to the latter�

The binary search tree obtained from some permutation � by the tree	
building process is also� as shown by Corollary � below� the tree obtained
from any other binary search tree by successively requesting records in the
reverse order of �� In this regard� note that any binary search tree can be
obtained from any other in at most n operations� �That n steps might be
necessary is shown by considering the �degenerate� trees corresponding to
the identity and reversal permutations��

Lemma ��� Let S� T � Bn� Consider the following sequence of operations�
Choose a leaf in T and within S move the corresponding record to the root�
After the record has been moved in S� delete it from T by eliminating its node
and the incident branch� Continue until T is empty� Then� after any such
sequence of n moves applied to S� the transformed tree will be identical to T
before the operation�

Proof Let S� be the tree obtained from S after the n moves� If i 	T
a j then

any k such that i 	 k 	 j will be in the subtree of T with root i� Thus the
request for i will come after the requests for i � �� � � � � j because only then
will i become a leaf� Thus i 	S�

a j by Lemma ��� The result now follows
from Lemma ����

�



Theorem � Let Q be the jBnj � jBnj transition matrix for MTR and let P
be the n!� n! transition matrix for MTF� Then for S� T � Bn�

Q�S� T � �
X

��
�T �

P �
� ���

where 
 is any permutation in ��S��

The theorem is equivalent to the statement that the Markov chain cor	
responding to P is lumpable �see Kemeny and Snell ������� with respect to
the map t� From the properties of lumpable chains the following corollaries
are immediate�

Corollary ���

Qk�S� T � �
X

��
�T �

P k�
� ��� ���

for each k � �� where 
 is any permutation in ��S��

Corollary ���

Q��T � �
X

��
�T �

P��� �� ���

where P� and Q� are the stationary distributions for the MTF and MTR
chains� respectively�

Remark� It is easily seen �e�g�� from the case n � � that the Markov
chain corresponding to the simple exchange heuristic is not lumpable with
respect to the map t� In addition� for general weights the chain is not time	
reversible� unlike the chain corresponding to the transposition heuristic for
lists� When all the weights are identical �pi 
 ��n�� the SE transition matrix
is symmetric and so the stationary distribution is uniform on Bn� However�
for general weights the stationary distribution�not to mention the k	step
transition probabilities and the spectral structure of the transition matrix�
is unknown�

The proof of Theorem � is based on several observations and lemmas�
which follow� A key result is Lemma �� in Allen and Munro ����
�� which
we reproduce�

�



For i �� j� we say that i is an ancestor of j in T � and write i 	T
a j�

if j is an element of the subtree which has i as its root� We will suppress
the superscript if it is obvious to what tree we are referring� Note that 	a

de�nes a partial order on the nodes of T � A tree is uniquely determined by
its ancestry relations and� as the next lemma implies� among trees with the
same number of nodes the set of ancestry relations for one tree can never be
a proper subset of those for another�

Lemma ��� Let S� T � Bn� Then T � S if and only if i 	T
a j implies i 	S

a j
for all i� j � �n��

Proof Necessity is trivial� su�ciency follows by a simple induction on n
using the recursive de�nition of a tree�

� Main result� lumping

The mappings t and � between Sn and Bn make it easy to translate tree
operations into operations on permutations� In fact we will show �Lemma
��� that MTR for a binary search tree T corresponds to MTF for all of the
permutations in ��T ��

For n	node trees it is easily shown that the sequence of operations gener	
ated by MTR gives an ergodic �aperiodic� irreducible� and positive recurrent�
Markov chain on the space Bn�

In the case n � � the transition matrix for MTR corresponding to the
trees in Figure � is

T�
T	

Q � T�
T
T�

T� T	 T� T T�
p� � p	 p� �
� p� p	 p� �
p� � p	 � p�
� p� p	 p� �
� p� p	 � p�

The correspondence between trees and permutations makes it possible to
read o the exact transition probabilities for the Markov chain for trees from
those for MTF�

�



well	de�ned and onto� and determines an equivalence relation on Sn� We say
that two permutations � and �� are equivalent if t��� � t����� that is� if they
correspond to the same tree in the tree	building operation�

Let � � Bn 	 �Sn be the set	valued inverse of t� That is� ��T � � f� �
Sn � t��� � Tg� The ��T ��s are the equivalence classes of Sn�

Note that some authors have considered �	to	� mappings between the
symmetric group and the space of binary trees in a way that gives a method
for ordering and ranking trees� See� for instance� Ruskey and Hu ������
and Trojanowski ����
�� By contrast� here we are considering the set of all
permutations which can be identi�ed with a particular tree�

The move�to�root �MTR� operation is de�ned as a series of simple ex	
changes between nodes� A simple exchange �SE� for a requested record j is
as follows�

�i� Do nothing if j is the root�
�ii� If j is the left child of its parent m� the resulting tree will be the

same as the original except for the subtree whose root was m� Record j
is �rotated� up to m so that j becomes the root of this subtree� The old
left subtree of j doesn�t change in relation to j� The old right subtree of j
becomes the left subtree of m� The old right subtree of m keeps its relation
to m� The transformation is best understood by examining Figure �	L�

�iii� If j is the right child of m� perform the analogous transformation�
�See Figure �	R��

The MTR operation performs a sequence of simple exchanges until the
requested record is moved to the root of the tree�

Thus MTR and SE are natural analogues of the move	to	front �MTF�
and transposition �TR� rules for linear lists� In MTF� an accessed record is
brought to the top of the list� In TR� it is transposed with its immediate
predecessor�

Figure ��
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The move	to	root heuristic�described in Section ��is one self	organizing
method which has been studied by several authors� Allen and Munro ����
�
introduced the heuristic and gave an exact formula for stationary expected
search cost �the asymptotic average cost of retrieving a record�� Other treat	
ments of self	organizing trees include Bitner ������� who considers various
search rules� and Sleator and Tarjan ���
��� who introduce splay trees and
develop �non	probabilistic� amortized analysis of search cost�

This paper is organized as follows� In Section � we set notation and
describe a many	to	� mapping between the set of permutations and the set
of binary search trees which permits tree operations to be expressed in terms
of operations on permutations� We show in Section  that the Markov chain
for MTR can be obtained by lumping the MTF chain� In Section �� by
exploiting the recursive de�nition of binary trees and using a simple property
of sampling without replacement� we derive the stationary distribution for
MTR in a form that is intrinsically tree	based and computationally simple�
In Section � we give formulas for the k	step transition probabilities� and
in Section � we analyze the eigenstructure of MTR� In so doing we note
interesting parallels with the spectral structure of MTF�

We will treat rates of convergence to stationarity in future work�

� Notation and preliminaries

Consider an ordered� indexed set of n records� For ease of notation and
exposition we identify the records with their indices and just consider �n� ��
f�� �� � � � � ng as the set of records�

Let Bn be the set of all labeled binary search trees on n nodes� It can be
shown� by exploiting the recursive de�nition and using generating functions�
that jBnj �

�
	n
n

�
��n� ��� In what follows we use the term �tree� for binary

search tree�
Let � � ���� � � � � �n� � Sn be a permutation of �n�� We will consider �k

to be the record at the kth position of �� De�ne a �tree	building� function
t � Sn 	 Bn as follows� t��� is the tree obtained by inserting ��� � � � � �n
successively into an empty tree� While technically the function t depends on
n� notationally there is no need to distinguish among t for various n�

The function t corresponds to inserting new records into a tree� It is





� Introduction and Summary

There has been much interest in recent years in self	organizing search meth	
ods� Hester and Hirschberg ���
�� survey the �eld� Hendricks ���
�� is a
good introduction with numerous applications and open problems�

While most research in this area has been devoted to sequential search
techniques for linear lists� a growing body of work addresses heuristics for
other data structures� In particular� the binary search tree is a very common
and important structure which exploits the ordering of records to achieve
faster search time� Records are stored at the nodes of a tree in such a way
that a traversal of the tree produces the records in their linear order�

A binary tree is a �nite tree with at most two �children� for each node
and in which each child is distinguished as either a left or right child� By
de�ning an empty binary tree as a binary tree with no nodes we can give a
useful recursive de�nition� a binary tree either is empty or is a node with
left and right subtrees� each of which is a binary tree�

Consider a binary tree in which the nodes are labeled with elements of
some linearly ordered set� Inorder traversal is a common method for travers	
ing the tree� visit the root after visiting the left subtree and before visiting
the right subtree� If this traversal yields the labels in order� the tree is called
a binary search tree� For example� the set of all binary search trees on 
nodes is given by�

Figure ��

Consider a set of n records stored at the nodes of a binary search tree�
Assume that record i is accessed with unknown probability pi and indepen	
dently of past requests� For simplicity� assume that all the pi�s are strictly
positive� As records are accessed we would like to alter the tree dynamically
so that the average search cost is made small� where the search cost of a
record is de�ned as one more than the length of the unique path from the
root to the node containing the record�

�



On the Markov chain for the

move�to�root rule for binary search trees

�short title� Move�to�root rule for binary search trees�
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The Johns Hopkins University
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Abstract

The move�to�root �MTR� heuristic is a self�organizing rule which at�
tempts to keep a binary search tree in near�optimal form� It is a tree
analogue of the move�to�front �MTF� scheme for self�organizing lists�
Both heuristics can be modeled as Markov chains� We show that the
MTR chain can be derived by lumping the MTF chain and give exact
formulas for the transition probabilities and stationary distribution
for MTR� We also derive the eigenvalues and their multiplicities for
MTR�
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