ROBERT P. DOBROW

DEPARTMENT OF MATHEMATICAL SCIENCES
THE JOHNS HOPKINS UNIVERSITY
BALTIMORE, MD 21218-2689

JAMES ALLEN FILL

DEPARTMENT OF MATHEMATICAL SCIENCES
THE JOHNS HOPKINS UNIVERSITY
BALTIMORE, MD 21218-2689

24



Bitner, J. R. (1979). Heuristics that dynamically organize data struc-
tures. SIAM J. Comp., 8 82-110.

Fill, J. A. (1993). An exact formula for the move-to-front rule for self-
organizing lists. Technical Report #529, Department of Mathematical Sci-
ences, The Johns Hopkins University.

Fine, T. (1970). Extrapolation when very little is known about the source.
Info. and Control., 16 331-359.

Hendricks, W. J. (1972). The stationary distribution of an interesting
Markov chain. J. Appl. Probab., 9 231-233.

Hendricks, W. J. (1989). Self-organizing Markov Chains. MITRE Corp.,
McLean, Va.

Hester, J. H. and Hirschberg, D. S. (1985). Self-organizing linear search.
Comp. Surveys, 17 295-311.

Kemeny, J. G. and Snell, J. L. (1965). Finite Markov Chains. D. Van
Nostrand Co., Princeton, N.J.

Knuth, D. E. (1973). The Art of Computer Programming. Vols. 1, 3.
Addison-Wesley, Reading, Mass.

Mahmoud, H. M. (1992). FEwvolution of Random Search Trees.  John
Wiley & Sons, Inc., New York.

Phatarfod, R. M. (1991). On the matrix occurring in a linear search
problem. J. Appl. Prob., 28 336-346.

Ruskey, F., and Hu, T. C. (1977). Generating binary trees lexicographi-
cally. SIAM J. Comp., 6 7T45-T5H8.

Sleator, D. D., and Tarjan, R. E. (1985). Self-adjusting binary search
trees. J. ACM, 32 652-686.

Sloane, N. J. A. (1973). A Handbook of Integer Sequences, Academic
Press, New York.

Trojanowski, A. E. (1978). Ranking and listing algorithms for k-ary trees.
SIAM J. Comp., T 492-509.

23



Summing over T' € B,, gives

Z Z (—1)m_|R| P>(o1,...,0R) P7(0m, Om-1,- -, OlR1+1) T(0 ),
m=|R| O n:[0|g]=R

(19)
where 7(0,) = {T € B, : o, € IL,(T)}].
It is easily seen that 7(o,,) depends only on the unordered set [o,,] and
equals

T(on) = l:[ Bai(10m))- (20)

Therefore (19) equals

n

> (=T () = Y (=), (21)

m=|R)| UDR UDR
U|=m

But 7(U) is, by (20), precisely the number of trees that fix at least the
points in U. By Mobius inversion, (21) reduces to a,(R). ]

Remarks:

1. For n > 2, the second largest eigenvalue is the sum which leaves out
the consecutive pair {7,741} with the smallest total weight. Its multiplicity
(assuming no ties) is ay = 1.

2. As in the case of MTF, when the weights are uniform the eigenvalues

of MTR are the numbers
0, 1/n, 2/n,...,(n —2)/n, 1.

The multiplicity of the eigenvalue m/n is the number of trees which fix
exactly m points.

7 References

Aho, A. V. and Sloane, N. J. A. (1973). Some doubly exponential se-
quences. Fibonacci Quarterly, 11 429-437.

Allen, B. and Munro, I. (1978). Self-organizing binary search trees.
J. ACM, 25 526-535.

22



short, a, is the number of admissible closeness relations (in Fine’s terminol-
ogy) on [n]. Fine gave a method of calculating «,, but did not produce an
explicit formula like our (15).

3. It is easy to show that «,, satisfies the following recursive relationship
with respect to 3,:

1
a, = §(ﬂn — Qp_1), > 1; (17)
furthermore, (3, satisfies
2(2n — 1)
= ———— 8,1, n>1. 18
g n+1 Lo (18)

We feel that the simplest method for calculating v, is to calculate /3, itera-
tively and then use (17) iteratively to get .

4. Combining (17) and (18) gives a simple recurrence relation satisfied
by (en):
2(n 4+ Doy, = (Th = 5)an—1 + 2(2n — Day—a, n > 2.

We now give a tree-based description of the spectral structure of MTR.

Theorem 5 The transition matriz for MTR s diagonalizable. The eigen-
values of () are those values

Ar = p(R) = ij
JjER
for which R has no gaps of size 1. The multiplicity pr of Ar is the number
of n-node trees which fir exactly those points in R. That is,

tr = a,(R),

which can be computed directly from (13) and the formula for the number of
derangement trees.

Proof We identify the eigenvalues and their multiplicities by calculating
the trace of Q*. Consider formula (7). When S = T, d(S,T; R') = 1 for all
R’ C [n] and the coefficient of (p(R))* simplifies to

> > (—1)m_|R| P=(o1,...,0R]) P (0m, Om-1,. ., O|R|41)-
[O|r|]=R

21



It now follows by iteration that
IR
an(R) =] Qgi(R)- (13)
=0

Similarly, with the conventions ay = fy = 1,

Lemma 6.1 Let 3, = (2:)/(71 +1) denote the number of binary search trees

on n nodes. Then (f3,) satisfies the following recursive relationship with
respect to (o ):

671 =, + Zaj—lﬂn—jv n > 1. (14)
7=1

Corollary 6.1 The following formula gives the number of derangement trees

on n nodes:
1 (G R ) BT Y

7=0
Proof Recall that the generating function for the nth Catalan number 3,

is
1 —+/1—4z
2z '

From (14) it follows that the generating function for the number of derange-
ment trees is

B(z) =

B(z) B 1+ B(z)

= = 16

Az) 1+ zB(z) 24z 7 (16)

and the result follows by computing the coefficient of 2". [
Remarks:

1. Values of «, up through n = 21 can be found in Sloane (1973),

sequence number 635. The first 10 numbers, starting with «4, are: 0, 1, 2,

6, 18, 57, 186, 622, 2120, 7338.

2. The sequence (o) has arisen in the context of Fine’s (1970) work on
closeness relations. We shall not go into detail about the connections. In

20



Phatarfod (1991) derived the eigenvalues and multiplicities for MTF. Sup-
pose for simplicity throughout this section that sums of distinct collections
of weights are distinct. Then the eigenvalues are all the partial sums of the
weights, excluding the n cases where the summation is over n — 1 weights.
The multiplicity of each eigenvalue Ar = 3, p; corresponding to a sum of
|R| = m weights is the number of permutations in 5, fixing exactly those
points in R, namely, the number of derangements (permutations with no
fixed points) in S,_p,.

Our results for MTR exhibit an interesting parallelism to those for MTF.
In brief, we shall define the notions of unit gap and fixed point of a tree
and show (i) that the eigenvalues for MTR are the partial sums of weights
excluding sets which have unit gaps, and (ii) that the multiplicity of the
eigenvalue Ag is the number of trees in B, fixing exactly those points in R.

For R C [n], write 1y < ry < -+- < 1, for the elements of R. Define
ro:=0and r,41 :=n+ 1. Let

g(R):=ripn—r—1, i=0,...,m,

denote the number of integers in the interval (r;,r;41). Then g¢;(R) is called
the ¢-th gap of R.

We say that a tree T' fizes a record j if the records j 4+ 1,...,n are all in
the right subtree of j and the left subtree of j is empty. Equivalently, T' fixes
J if there exists © € II(T) such that #(j) = j and # maps {1,...,5 — 1} to
itself and {j + 1,...,n} to itself.

We say that a tree fixes a set of records R if the tree fixes each of the
records in R. Denote the number of trees which fix exactly R by a,(R).
We call a tree which fixes none of its records a derangement tree. Write
ay, := a,(0) for the number of n-node derangement trees.

Note that if a tree T fixes exactly one record j, then the nodes of T'
which contain records 1,...,5 — 1 form a derangement tree. Similarly, the
nodes of T" which contain records j 4+ 1,...,n also form a derangement tree.
Conversely, any derangement tree on {1,...,j7 — 1} can be joined with any
derangement tree on {j+1,...,n} to obtain a tree with j as its unique fixed
point.

19



Remarks:

1. When T is “long and skinny”—that is, when 7" is “close” to the tree
obtained by the identity or reversal permutation—Q*(S,T) can be computed
in time polynomial in n using any of the methods we have discussed. For
example, one can use (1) and the formula from Fill (1993) for the MTF
transition probability P¥(r, ). The latter can be computed in polynomial
time for fixed o € S,,, and it is not hard to show that if T € B, has height
n—1—k, then N(T) = [II(T)| < n*.

2. Let u(T') denote the number of uptrees for tree T'. Thus u(T') is the
number of terms in the sum in (8). Then u satisfies the recursion

u(T) =1+ w(L(T))u(R(T)). (11)

For example, for the perfect binary tree on n = 2™ — 1 nodes let u,,
denote the number of uptrees. Then

Upgr = u>, + 1, m >0, 12
+ m

which generates the sequence 1,2,5,26,677,458330,210066388901, ... .

Note that w,, is the number of binary search trees with height at most
m—1 and (12) has been studied from this point of view. While no closed form
solution to (12) is known, one can show that u,, = |K?"| = |K""!] where
K is approximately 1.502837. (See Aho and Sloane (1973) for a discussion
of this and other nonlinear recurrences of the form x, 1, = 22 + ¢,,, where ¢,
is a slowly growing function of n.)

3. One approach to computing D(S5,T;-) begins by constructing tables
of ancestry relations for S and T'. It is easy to see how to construct such
tables in time—and space—O(n?). By constructing an ancestry table as a
hash table, a single ancestry relation can be checked in constant time and

thus D(S,T; R) computed in time O((n — |R|)?) = O(n?) for fixed S, T, R.

6 Eigenanalysis of MTR

The fact that MTF is lumpable gives us little to go on in trying to determine
the eigenstructure of MTR. From lumpability it follows that the eigenvalues
for MTR are some subset of those for MTF. But determining which subset
and the corresponding multiplicities requires more detailed analysis.

18



programming approach. Beginning with Qp(z) = 1, (9) yields Q1 (2) =
e=* — 1 for a tree {x} of height 0. Having computed Qy for all trees U with
height at most h — 1, the recursion (9) can be used to find Qp for trees U
with height h. In each instance, (9) is a first-order linear differential equation
involving only linear combinations of exponentials.

For fixed n and T' € B,,, the process of solving for Qs for all U € U(T') can
be less tedious. As an illustration, let T be the tree of 3 nodes corresponding
to the reversal permutation. (In the notation of Figure 1, T' = T5.) The
uptrees of T" are the empty tree, the singleton tree 7" storing 3, the tree T
induced by records 2 and 3, and T' itself. We have

Q(z) = 1,
QT'(Z) — P32 17
P3
Qri(z) = ——=—(elr2Fpa)z _ 1) _ (P22 — 1),
7(2) P2 -|-p3( )= )
P2p3 P3 1
Q z = eF—-1) - —— e(p2+p3)2 -1 + eP2? _ 1),
(2) Pt P2 pz-l-pg( ) p1—|—p2( )

Solving for the coefficients in the generating functions gives, for & > 0,

Qe(0) = box,
Qr(T) = ps— bon,

QT = —L5((pa+ ps)* — Sor) — (9 — don),
P2+ p3
QuT) = (15— (P2 + po)* — bor) + —2—(p} — dr)

p1+ p2 P2+ p3 p1+ p2

where ¢;; equals 1 if + = j and 0 otherwise.
Now suppose S € Bs corresponds to the identity permutation. (In terms

of Figure 1, S = T7.) Then

D(S,T;0) = D(S,7;{3}) =0 and
D(S,T;{2,3}) = D(S5,T;{1,2,3}) =1,

and so

QUS.T) = Qu(T") + Qu(T)
e (] — pi=t) ik > 1
0 if k=0.

17



exactly |U| distinct records to the root, with these |U| records forming the
tree U as a result.

We will derive a recursive (in U) functional relationship for the expo-
nential generating function Qrr(z) := 332, Qr(U)z"/k!. Tts solution will give
a straightforward method for computing the k-step probabilities simultane-
ously for all k. In the remarks at the end of this section we will discuss issues
related to the complexity of the calculations.

Theorem 4 Let U be a binary search tree. Let Qu(z) := 352, Qr(U)z" /!
be the exponential generating function of the sequence (Qi(U))p>o0. Define
Qu(z):=1. Then

Qu(z) = wroot(U)eerOt(U)ZQL(U)(Z)QR(U)(Z)v (9)
with the initial condition

QU(O):{ (1) yU =1

otherwise.

Proof For k > 1, Qx(U) is the probability that in k requests: (a) the last
request is for root(U); (b) the request for records in L(U) are such that after
the k steps they form L(U); and (¢) the request for records in R(U) are such
that after the k steps they form R(U). Thus, for & > 1,

Q) = wrooiir X (1 Yoo @B, (10

J1,J2,J3 J1:J2:]

where the sum is over all non-negative triples which sum to £k — 1. For k =0
it is clear that
1 ifU=10

0 otherwise.

QO(U):{

Multiplying both sides of (10) by 2*=!/(k — 1)! and summing from 1 to
oo gives the result. [

We do not know a tree-based closed-form solution to (9) (except in the
case of equal weights). The process of solving (9) for Qu(z) for all trees U
with height at most h is best implemented using a “bottom-up” dynamic

16



Remarks:
1. From (5) and rearrangement, (6) can alternatively be written as

QY(S,T)
= > (p(R)" X >, DS Tien))

RC[n] m=IR| O €l (T):
[0 |r|]=R
(=) P (o 0) P (st opsn)s (7)

where p(R) := ¥ ;cp pi- This form of Q¥ will be useful for the spectral analysis
of MTR given in Section 6.

2. From (7) we can derive the stationary distribution as given in (2). Let
k — oo and note that the only term in the outer sum which doesn’t vanish
is the one corresponding to R = [n]. This gives Q*(T) = ¥, e P> (0).

3. In the case of equal weights (p; = 1/n),

PHa,,) = Zj:o (%)k % _. P*(m).

Thus

n

Q(S,T) = 3 PH(m)Cn(S.T),

m=0

where C,,(S,T) := |[{o, € I1,,(T) : D(S,T;[0,,]) = 1}].

5.2 Computation of k-step probabilities

While formula (6) is useful for deriving certain characteristics of the MTR
chain, we next consider a version that seems better suited for numerical
computations. For any tree T', let rec(T') be the set of records stored at the
nodes of T'. By rearranging (6) we find that for 5,7 € B,,

Qk(S,T): Z D(SvT;reC(U))Qk(U)v (8)

UeU(T)

where U(T) is the collection of uptrees of T and Q(U) := ¥ cnu) P¥(7).
Observe that @Qx(U) is the probability that k requests using MTR move

15



where, for 0 < <m < n,

i i
whi= wp, wii=[[wn, and wei:=1/ ] (wf—w)),
h=1 h=1

JF
0<g<m
with the natural conventions wg :=0, wy =1, and wgo := 1.

Proof Noting that the top m records must have their last requests occur in

the order o,,,0,,_1,...,01, and conditioning on the times of these requests,
we find
PHoy) = D _(wh ) wa(wih_y )" gy - (wf) o = ), Y0 [T (wf)
im jm =1

where the sum is over all m-tuples of nonnegative integers summing to k—m.
The result follows from an algebraic identity derived in the Appendix of Fill
(1993). ]

As discussed in Remark 2.2(a) of Fill (1993), P*(e,,) can also be written

in the form
Pk(am) = Z(w;")k (—1)m_i P=(o1,...,00) P (0m,Om-1y- s 0i41), (D)

where P*(oy,...,0;) is the probability that sampling without replacement
from [n] selects the elements of {oq,...,0,} in the relative order (o4, ..., 0;);
similarly for P (0, Om_1,...,0i41)-

The main Theorem 3 now follows directly:

Theorem 3 Let S,T € B,,. Then

n

QNS TY=3. X DS Tifen))Pi(on). (6)

where



of the event that the ancestry relations of the two trees agree for the records
in R. That is, d(S,T; R) = 1 if : < j exactly when ¢ <7 j for all 7,5 € R,
and d(S,T; R) = 0 otherwise.

For a permutation o € S, let o, := (01,...,0,) for 1 < m < n. Thus
0., 1s the projection of ¢ onto its first m coordinates. Recall the definition
of II(T') given in Section 2. Let IL,,(T") be the projection of the elements of
II(T') onto their first m coordinates. Thus IL,(7T") = II(T') and 1;(T) is the
singleton {root(7')}. Finally, let [o,,,] denote the unordered set {o1,...,0,}
and o1y < -+ < 0(y) the corresponding order statistics with o(g) := 0 and
O(my1) = n+ L.

An upset in a tree T' € B,, is a set U of nodes with the property that if
J € U, then the parent (equivalently, all ancestors) of j is in U. Note that the
graph in T induced by an upset in T is itself a tree containing (if nonempty)
the root of T'. We shall refer to this induced tree as the uptree U.

It follows from the discussion of the tree-building operation in Section 2
that the uptrees of T' consisting of m elements are precisely the trees (o)
with o, € I1,,,(T). The discussion in Sections 2 and 3, especially the proof
of Lemma 3.1, also yields the following lemma. We leave the simple proof to
the reader.

Lemma 5.1 Consider a sequence Y of k record requests that contains m
distinct records. Suppose that application of ¥ to the list (1,...,n) using
MTE results in o, = (01,...,0,) as the m-tuple of frontmost elements.
Then application of ¥ to a given tree S € B, using MTR results in the tree
T € B, characterized by the following two statements:

(a) The tree t(o,) is an uptree of T.

(b) For each j =0,...,m, the T-ancestry relations among the records in
(0(G), 0(j41)) are the same as in S.

Here we use the notation («, b) for integers a and b to mean the interval of
integers strictly between a and b. Note that we take the initial list in Lemma
5.1 to be (1,...,n) only for definiteness. The same result clearly holds for
any initial permutation 7.

Next we reproduce a result from Fill (1993) concerning MTF:

Lemma 5.2 Let P*(o,,) denote the probability, starting in the list (1,...,n),
that k requests using MTF move exactly m distinct records to the front and
result in o, as the m-tuple of frontmost elements. Then

13



and partial product for a node after these quantities have been calculated for
its children.

3. The distribution (4) arises in the study of random trees. It is the
distribution of (o), where o € S, is uniformly distributed. See Mahmoud
(1992). The distribution (3) is the distribution of ¢(¢), where o € S, has
the weighted-sampling-without-replacement stationary distribution of MTF,
and so is a generalization of the random permutation model.

4. Unlike the uniform distribution on B,,, the distribution (4) favors trees
which are “short and fat.” Suppose for ease of di scussion that n = 2™ — 1
for integer m. The perfect binary tree is the tree for which all nodes, except
for leaves, have 2 children. Call this tree T,,. We can show that the mode
of (4) is Tpn. It is not hard to derive the asymptotic behavior of Q> (7,,).
In particular, the rate of decay for Q°°(T,,) is exponential in n. In contrast,
mingeg, QF(T) = Q>(t(1,...,n)) = 1/n! decays at a superexponential rate.

5 Transition probabilities

5.1 A tree-based approach

Our goal in this section is to derive a formula for the k-step transition prob-
abilities Q*(S,T), where S,T € B,. The k-step probabilities for MTF were
derived by Fill (1993). Thus in light of Corollary 3.1 it would seem that we
are done.

Fill’s formula, however, is necessarily permutation-based. It depends,
for instance, on permutation statistics which are not invariant under the
mapping [I. And while the MTF probabilities can be computed in polynomial
time, the number of summands in (1) is N(T'), which by the pigeonhole
principle is, for some T, at least n!/|B,| ~ 7v/2n"T2(4e)".

The formulas (6) and (8) below have the advantage that they are, at least
partially, “tree-based” and can be used to derive numerous characteristics of
the chain, including (see Section 6) the eigenvalues and their multiplicities.

Before proceeding to the main theorem of this section (Theorem 3) we
establish some notation and preliminary results. It will be necessary to dis-
tinguish between the nodes in a tree and the records stored there. Let R C [n]
be a subset of records. For S,T € B,, define d(5,T; R) to be the indicator

12



The stationary distribution for MTF, originally derived by Hendricks
(1972), is given by

P> (o) = L

) 2:1_[1 2 =i Wj
Observe that P* is the distribution of the order obtained by sampling n
items without replacement. It follows from Corollary 3.2 that Q°°(T') is the
probability of sampling n items without replacement in such a way that the
first item is at the root of T and the order of choosing the remaining items
is consistent with the ancestry relations in L(T) and R(T). Since the root
and the two subtrees partition the n items, (3) follows by recursion. [

As a corollary, we obtain the number of terms in the sum (2).

Corollary 4.1 For a tree T, let N(T') = [II(T)|. Then

Tl =1

M) = (VN ) = T

HxET |CTGL’|7

where |T| is the number of nodes of T.

Proof The first equation follows from the recursive argument in the proof
above. Now iterate to obtain the second equation. [

Corollary 4.2 Let T be a nonempty binary search tree. Under MTR if
records are accessed uniformly (each with probabily 1/|T|), then

Q=(T) = ﬁ (1)

Remarks:
1. Another way to think about Corollary 4.1 is with respect to partial
orderings. The lemma gives the number of linear extensions for a set of ele-

ments in a partial order which satisty some given relations. These relations,
of course, must be consistent with the relations satisfied by a binary tree.

2. Computing (3) in linear time requires a simple algorithm which starts
at a leaf, working its way up the tree, iteratively computing the partial sum

11



P(r',0') = Pr!, = Pr.- By the previous lemma, t(o”) is identical to the tree
obtained by moving 7}, = 7 to the root in S. But since 7 € II(.9), it follows

that #(o) is identical to the tree obtained by moving 7 to the root in S.
That is, t(o) = t(0), so ¢’ € II(T') and hence

Y P(x',7)=P(x',0") = P(r,0) = ps,.

Tell(T)

It follows from the foregoing that if # € II(S) and P(x,0) = 0 for all
o € II(T), then for each #’ € 11(S), P(x’,0) =0 for all o € II(T). |

4 Stationary distribution

While Corollary 3.1 gives an exact formula for the transition probabilities
of MTR, explicit calculation of these numbers for specific trees is another
matter. In the case of the stationary distribution ()*°, however, exploiting the
recursive character of binary trees and using a simple property of sampling
without replacement gives a result analogous to that for MTF.

For z a node of a given tree, we use the notation w, for the probability
of accessing the record at that node. For ¢ an index of a given permutation
o, we write w; for p,..

Theorem 2 For a tree T,

=T (=) )

where T, is the subtree of T' with root x.

Proof For a binary search tree T let L(T') denote the left subtree of T'. For
a permutation 7 let 77 be the subpermutation of 7 induced by the elements
of L(T). That is, for k = 1,...,|L(T)|, 7F is the kth element of 7 which is
contained in L(T'). Similarly define B(T) and 7%,

A necessary and sufficient condition for 7 € II(7T') is that the following
three conditions hold: (i) 7 is the record at the root of T'; (ii) 7% € TI(L(T));
and (iii) 7% € H(R(T)).

10



is obtained by requesting o,,...,01. Thus t(¢’) is obtained from t(o) by
moving oy, to the root. [

The reader may consult Figure 3 for an illustration of Lemma 3.4. Note
that we can read off the ancestry relations of a tree from any one of its
associated permutations by looking at the ordering relations. For instance,
for o0 = (3,6,1,4,2,5), 3 is an ancestor of everyone; 6 is an ancestor of 4 and
5, but not of 3, 2, or 1 (since 6 is to the left of 4 and 5 but not to the left
of 3); 1 is an ancestor of 2, but of no others; 4 is an ancestor of 5 and of no
others. This will be true for all equivalent permutations, which include, for

instance, (3,1,2,6,4,5) and (3,1,6,4,5,2).

Figure 3.

We now prove Theorem 1.

Proof Define root(T) to be the record at the root of T'. Note that for any
o,0" € I(T), o1 = oy =root(T), since t(o) = t(o’). Thus for any fixed =
and T' € B,, P(n,0) =0 for all but possibly one o € II(T). If P(x,0) > 0,
then o is uniquely determined. In particular, since MTF corresponds to
composition with a cycle, 0 = 7o (k---1), where k = 7~ !(root(T)).

Let S, T € B, and © € II(S). Then

S Plr.r) = P(r,0) if there exists o € II(T') such that P(x,0) >0
=T 0 otherwise.

The theorem will follow if we can show that the righthand side above is the
same for all 7’ € 1I(.5).

Suppose there exists o € I[(T') such that P(x,0) > 0. Let k = 77 (oy).
Thus P(x,0) = pr, = ps, and o is just what results from = after moving
record 7 to the front. Let 7' € TI(S) and &' = 7'~ (7x). Put o/ = 7'o(k'-- - 1).
Thus ¢’ is just what results from 7’ after moving 7}, = 7 to the front and



Corollary 3.3 Given o € S, t(o) is the tree obtained from any n-node tree

after making the sequence of requests o,,0,_1,...,071.
Proof For any k, after deleting records o, ..., 0411 from t(o), o will be a
leaf. [

This gives a characterization of II(T"). For a set S, we use the notation
a < S to mean that a is less than every element of S, i.e., that ¢ < min S.

Lemma 3.3 For 1T € B,

NT)y={c:1<l; & o)< {o7(i+1),...,07(5)}, fori<j,
o7 i) < {o7'(y),....,o7 i = 1)}, fori>j}.

In words, II(T) is the set of all permutations ¢ such that 7 is a T-ancestor
of 7 if and only if 7 is to the left of ¢ + 1,...,7 when 72 < j and to the left of
Jyeroyt— 1 when ¢ > j.

Proof The proof, after sorting through the notation, is a direct consequence
of the above lemmas. Call the set on the righthand side II'(T"). Let o € II(T').
Then t(c) = T, and so, by Corollary 3.3, T' can be obtained from any tree by
requesting o,,...,01. Suppose 1 <! j. Then, by Lemma 3.1, 7 is requested
after i4+1,...,7,s0 071 (¢) < {7 (¢+1),...,07j)}. Similarly, the converse
holds, showing that II(7") is contained in II'(T").

Suppose o ¢ II(T). Then there exist some ¢ and j such that ¢+ <l j
but ¢ £47) j. Since o € I(t(c)), by the first part of the proof o='(i) ¢
{e7'(i+1),...,07(j)}. Hence o ¢ I'(T). |

A direct consequence is that MTF for permutations corresponds to MTR
for the associated binary search trees.

Lemma 3.4 Fiz 0 € S5, and let o' € S, be the permutation obtained by
moving oy to the front. Then t(o’) is the tree obtained from t(o) by moving
o to the root.

Proof By assumption, o' = (o401 0%-10k41---0,). By Corollary 3.3,
t(o') is obtained by requesting o, ..., 0511, 0k—1,...,01,0%. But by Lemma
3.1, t(o’) is also gotten by requesting oy, ..., 01,0, On the other hand, (o)



Lemma 3.1 Suppose records v and j have been requested at least once each
in a tree modified according to MTR. Let 1 < 3. Then v <, j if and only if
the most recent request for 1 has occurred since the most recent request for
any of t+1,...,7. Similarly, 7 <, v if and only if the most recent request for
7 has occurred since the most recent request for any of v,...,7 — 1.

Proof When either simple exchange or MTR is used, if 2 is requested then
2 1s the only record which becomes an ancestor of any records. Also, ¢ will
cease to be an ancestor of j if and only if an element k, where 1 < k < j, is
requested. This gives the first part of the lemma. The second part is shown
similarly. [

For the remaining proofs in this section, as in the preceding proof, the
condition that ¢ > j can be handled in the same fashion as the case ¢ < j, so
we will tacitly restrict ourselves to the latter.

The binary search tree obtained from some permutation ¢ by the tree-
building process is also, as shown by Corollary 3.3 below, the tree obtained
from any other binary search tree by successively requesting records in the
reverse order of o. In this regard, note that any binary search tree can be
obtained from any other in at most n operations. (That n steps might be
necessary is shown by considering the “degenerate” trees corresponding to
the identity and reversal permutations.)

Lemma 3.2 Let S, T € B,. Consider the following sequence of operations:
Choose a leaf in T and within S move the corresponding record to the root.
After the record has been moved in S, delete it from T by eliminating its node
and the incident branch. Continue untd T' is empty. Then, after any such
sequence of n moves applied to S, the transformed tree will be identical to T
before the operation.

Proof Let S’ be the tree obtained from S after the n moves. If i <I' j then
any k such that : < & < j will be in the subtree of T" with root . Thus the

request for ¢ will come after the requests for ¢ 4+ 1,...,7 because only then
will 7 become a leaf. Thus ¢ <% j by Lemma 3.1. The result now follows
from Lemma 2.1. [



Theorem 1 Let Q) be the |B,| x |B,| transition matriz for MTR and let P
be the n! x n! transition matriz for MTFE. Then for S,T € B,

Q(SvT): Z P(Tr,a),

c€lIl(T)
where 7 is any permutation in 11(.S).

The theorem is equivalent to the statement that the Markov chain cor-
responding to P is lumpable (see Kemeny and Snell (1965)) with respect to
the map ¢t. From the properties of lumpable chains the following corollaries
are immediate:

Corollary 3.1
Qk(S,T): Z Pk(ﬂ',O'), (1)

c€lIl(T)

for each k > 0, where 7 is any permutation in 11(.5).

Corollary 3.2
Q¥(T)= > P=(r), (2)
Tell(T)
where P* and Q*° are the stationary distributions for the MTF and MTR

chains, respectively.

Remark: It is easily seen (e.g., from the case n = 3) that the Markov
chain corresponding to the simple exchange heuristic is not lumpable with
respect to the map ¢. In addition, for general weights the chain is not time-
reversible, unlike the chain corresponding to the transposition heuristic for
lists. When all the weights are identical (p; = 1/n), the SE transition matrix
is symmetric and so the stationary distribution is uniform on B,. However,
for general weights the stationary distribution—not to mention the k-step
transition probabilities and the spectral structure of the transition matrix—
is unknown.

The proof of Theorem 1 is based on several observations and lemmas,
which follow. A key result is Lemma 3.2 in Allen and Munro (1978), which

we reproduce:



For ¢ # j, we say that ¢ is an ancestor of j in T, and write 1 <1 j,
if 7 is an element of the subtree which has 2 as its root. We will suppress
the superscript if it is obvious to what tree we are referring. Note that <,
defines a partial order on the nodes of T'. A tree is uniquely determined by
its ancestry relations and, as the next lemma implies, among trees with the
same number of nodes the set of ancestry relations for one tree can never be
a proper subset of those for another.

Lemma 2.1 Let S,T € B,. Then T = S if and only if it <T j implies 1 <5 j
for all i,j € [n].

Proof Necessity is trivial; sufficiency follows by a simple induction on n
using the recursive definition of a tree. [

3 Main result: lumping

The mappings ¢ and Il between 5, and B, make it easy to translate tree
operations into operations on permutations. In fact we will show (Lemma
3.4) that MTR for a binary search tree T corresponds to MTF for all of the
permutations in II(7").

For n-node trees it is easily shown that the sequence of operations gener-
ated by MTR gives an ergodic (aperiodic, irreducible, and positive recurrent)
Markov chain on the space B,,.

In the case n = 3, the transition matrix for MTR corresponding to the
trees in Figure 1 is

T T, Ts Ty Ts

Ty pr 0 pp p3 O

T, 0 p1 p2 ps O

Q@ = 15 pr 0 pa 0 ps
Ty 0 p1 p2 ps O

Ts 0 pr p2 0 p3

The correspondence between trees and permutations makes it possible to
read off the exact transition probabilities for the Markov chain for trees from

those for MTF.



well-defined and onto, and determines an equivalence relation on 5,,. We say
that two permutations o and o’ are equivalent if ¢(o) = t(¢’), that is, if they

correspond to the same tree in the tree-building operation.
Let IT : B, — 2 be the set-valued inverse of t. That is, II(T) = {0 €
Sn i t(o) =T}, The II(T)’s are the equivalence classes of 9.

Note that some authors have considered 1-to-1 mappings between the
symmetric group and the space of binary trees in a way that gives a method
for ordering and ranking trees. See, for instance, Ruskey and Hu (1977)
and Trojanowski (1978). By contrast, here we are considering the set of all
permutations which can be identified with a particular tree.

The move-to-root (MTR) operation is defined as a series of simple ex-
changes between nodes. A simple exchange (SE) for a requested record j is
as follows:

(i) Do nothing if j is the root.

(ii) If j is the left child of its parent m, the resulting tree will be the
same as the original except for the subtree whose root was m. Record )
is “rotated” up to m so that j becomes the root of this subtree. The old
left subtree of 57 doesn’t change in relation to j. The old right subtree of j
becomes the left subtree of m. The old right subtree of m keeps its relation
to m. The transformation is best understood by examining Figure 2-L.

(iii) If j is the right child of m, perform the analogous transformation.
(See Figure 2-R.)

The MTR operation performs a sequence of simple exchanges until the
requested record is moved to the root of the tree.

Thus MTR and SE are natural analogues of the move-to-front (MTF)
and transposition (TR) rules for linear lists. In MTF, an accessed record is
brought to the top of the list. In TR, it is transposed with its immediate
predecessor.

Figure 2.



The move-to-root heuristic—described in Section 2—is one self-organizing
method which has been studied by several authors. Allen and Munro (1978)
introduced the heuristic and gave an exact formula for stationary expected
search cost (the asymptotic average cost of retrieving a record). Other treat-
ments of self-organizing trees include Bitner (1979), who considers various
search rules, and Sleator and Tarjan (1985), who introduce splay trees and
develop (non-probabilistic) amortized analysis of search cost.

This paper is organized as follows: In Section 2 we set notation and
describe a many-to-1 mapping between the set of permutations and the set
of binary search trees which permits tree operations to be expressed in terms
of operations on permutations. We show in Section 3 that the Markov chain
for MTR can be obtained by lumping the MTF chain. In Section 4, by
exploiting the recursive definition of binary trees and using a simple property
of sampling without replacement, we derive the stationary distribution for
MTR in a form that is intrinsically tree-based and computationally simple.
In Section 5 we give formulas for the k-step transition probabilities, and
in Section 6 we analyze the eigenstructure of MTR. In so doing we note
interesting parallels with the spectral structure of MTF.

We will treat rates of convergence to stationarity in future work.

2 Notation and preliminaries

Consider an ordered, indexed set of n records. For ease of notation and
exposition we identify the records with their indices and just consider [n] :=
{1,2,...,n} as the set of records.

Let B, be the set of all labeled binary search trees on n nodes. It can be
shown, by exploiting the recursive definition and using generating functions,
that |B,| = 2:) /(n+1). In what follows we use the term “tree” for binary
search tree.

Let 0 = (01,...,0,) € S, be a permutation of [n]. We will consider oy,
to be the record at the kth position of o. Define a “tree-building” function
t: S, — B, as follows: #(o) is the tree obtained by inserting o1,...,0,
successively into an empty tree. While technically the function ¢ depends on
n, notationally there is no need to distinguish among ¢ for various n.

The function ¢ corresponds to inserting new records into a tree. It is



1 Introduction and Summary

There has been much interest in recent years in self-organizing search meth-
ods. Hester and Hirschberg (1985) survey the field. Hendricks (1989) is a
good introduction with numerous applications and open problems.

While most research in this area has been devoted to sequential search
techniques for linear lists, a growing body of work addresses heuristics for
other data structures. In particular, the binary search tree is a very common
and important structure which exploits the ordering of records to achieve
faster search time. Records are stored at the nodes of a tree in such a way
that a traversal of the tree produces the records in their linear order.

A binary tree is a finite tree with at most two “children” for each node
and in which each child is distinguished as either a left or right child. By
defining an empty binary tree as a binary tree with no nodes we can give a
useful recursive definition: a binary tree either is empty or is a node with
left and right subtrees, each of which is a binary tree.

Consider a binary tree in which the nodes are labeled with elements of
some linearly ordered set. Inorder traversal is a common method for travers-
ing the tree: visit the root after visiting the left subtree and before visiting
the right subtree. If this traversal yields the labels in order, the tree is called
a binary search tree. For example, the set of all binary search trees on 3
nodes is given by:

Figure 1.

Consider a set of n records stored at the nodes of a binary search tree.
Assume that record 7 is accessed with unknown probability p; and indepen-
dently of past requests. For simplicity, assume that all the p;’s are strictly
positive. As records are accessed we would like to alter the tree dynamically
so that the average search cost is made small, where the search cost of a
record is defined as one more than the length of the unique path from the
root to the node containing the record.



On the Markov chain for the
move-to-root rule for binary search trees

[short title: Move-to-root rule for binary search trees]

by Robert P. Dobrow and James Allen Fill*
The Johns Hopkins Unwersity

January 4, 1998

Abstract

The move-to-root (MTR) heuristic is a self-organizing rule which at-
tempts to keep a binary search tree in near-optimal form. It is a tree
analogue of the move-to-front (MTF') scheme for self-organizing lists.
Both heuristics can be modeled as Markov chains. We show that the
MTR chain can be derived by lumping the MTF chain and give exact
formulas for the transition probabilities and stationary distribution
for MTR. We also derive the eigenvalues and their multiplicities for

MTR.

!Research for both authors supported by NSF grant DMS-9311367.

ZAMS 1991 subject classifications. Primary 60J10; secondary 68P10, 68P05.

3Keywords and phrases. Markov chains, self-organizing search, binary search trees,
move-to-root rule, lumping, eigenvalues, simple exchange, move-to-front rule.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


