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Before discussing multiplication, let us speak about addition. The number A(k)
of distinct sums i+ j ≤ k such that 1 ≤ i ≤ k/2, 1 ≤ j ≤ k/2 is clearly 2 �k/2� − 1.
Hence the number A(2n) of distinct elements in the n × n addition table involving
{1, 2, . . . , n} satisfies limn→∞A(2n)/n = 2, as expected.

We turn to multiplication. Let M(k) be the number of distinct products ij ≤ k
such that 1 ≤ i ≤ √

k, 1 ≤ j ≤ √k. One might expect that the number M(n2) of dis-
tinct elements in the n×nmultiplication table to be approximately n2/2; for example,
M(102) = 42. In a surprising result, Erdös [1, 2, 3] proved that limn→∞M (n2)/n2 = 0.
More precisely, we have [4]

lim
k→∞

ln(M(k)/k)

ln(ln(k))
= −δ

where

δ = 1 − 1 + ln(ln(2))

ln(2)
= 0.0860713320...

In spite of good estimates for M (k), an asymptotic formula for M(k) as k → ∞
remains unknown [5].

Given a positive integer n, define

ρ1(n) = max
d|n,
d≤√n

d, ρ2(n) = min
d|n,
d≥√n

d;

thus ρ1(n) and ρ2(n) are the two divisors of n closest to
√
n. Let

R1(N) =
N∑

n=1

ρ1(n), R2(N) =
N∑

n=1

ρ2(n).

It is not difficult to prove that

lim
N→∞

ln(N)

N2
R2(N) =

π2

12
.
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An analogous asymptotic expression for R1(N) is still open, but Tenenbaum [6, 7, 8]
proved that

lim
N→∞

ln(R1(N)/N3/2)

ln(ln(N ))
= −δ

where δ is exactly as before. It is curious that one limit is so much harder than the
other, and that the same constant δ appears as with the multiplication table problem.

Erdös conjectured long ago that almost all integers n have two divisors d, d′ such
that d < d′ ≤ 2d. By “almost all”, we mean all integers n in a sequence of asymptotic
density 1, abbreviated as “p.p.” Given n, select divisors an < bn for which bn/an is
minimal. To prove the conjecture, it is sufficient to show that bn/an → 1+ as n→∞
p.p.; that is, ln(ln(bn/an))→ −∞ p.p. Maier & Tenenbaum [9, 10, 11] succeeded in
doing this and, further, demonstrated that

lim
n→∞

ln(ln(bn/an))

ln(ln(n))
= −(ln(3)− 1) = −0.0986122886... p.p.

Another way of viewing this problem is by counting those integers n up to N
without such divisors d and d′. If ε(N) is the number of these exceptional integers,
then [4]

lim
N→∞

ln(ε(N)/N )

ln(ln(ln(N)))
≤ −β

where

β = 1−
1 + ln(ln(3))

ln(3)
= 0.0041547514....

As the inequality suggests, we don’t know if this constant is necessarily optimal.
Yet another way of viewing this problem is via the Hooley function

∆(n) = max
x≥0

∑

d|n,
ex<d≤ex+1

1,

that is, the greatest number of divisors of n contained in any interval of logarithmic
length 1. More interesting constants emerge here, but their optimality is questionable.
In fact, it is conjectured [4] that ∆(n)/ ln(ln(n)) accumulates not at a single point,
but over an entire subinterval (u, v) ⊆ (0,∞). Estimates of u and v would be good
to see someday.

Ramanujan [12] studied the asymptotics of
∑N

n=1 1/d(n) as N → ∞, where [13]
d(n) is the number of distinct divisors of n. See [14] for more details. This is a special
case of a result in [4, 15], which is used to prove the following arcsine distributional
law for random divisors d of n:

lim
N→∞

1

N

N∑
n=1

P

(
ln(d)

ln(n)
< x

)
=

2

π
arcsin

(√
x
)
.
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Consequently, an integer has (on average) many small divisors and many large divi-
sors.

Sita Ramaiah & Suryanarayana [16] found a corresponding formula for
∑N

n=1 1/σ(n),
where [17] σ(n) is the sum of all divisors of n. DeKoninck & Ivić [18] had asserted
that constants appearing in such a formula would be complicated; they were right!
[14] It turns out that the Riemann hypothesis [19] is true if and only if [20, 21]

σ(n) < eγn ln(ln(n)) for all sufficiently large n,

where γ is the Euler-Mascheroni constant [22].
An integer n is highly composite if d(m) < d(n) for allm < n. Let Q(N) denote

the number of highly composite integers n ≤ N . It is known that [11, 23, 24, 25, 26]

1.136 ≤ liminf
N→∞

ln(Q(N))

ln(N )
≤ 1.44, limsup

N→∞

ln(Q(N))

ln(N)
≤ 1.71,

based on Diophantine approximations of the quantity ln(3/2)/ ln(2) = 0.5849625007....
It is conjectured that the limit exists and

lim
N→∞

ln(Q(N))

ln(N)
=

ln(2) + ln(3) + ln(5)

4 ln(2)
= 1.2267226489....

but this appears to be difficult.
Let us return to the constant δ, which appears in several other places in the

literature [27, 28, 29, 30, 31, 32]. We mention only three. With regard to Erdös’
conjecture, Roesler [33] added a further constraint that anbn = n when minimizing
bn/an; he proved that

lim
N→∞

ln

(
1
N

N∑
n=1

an
bn

)

ln(ln(N))
= −δ.

Hence the integers are fairly quadratic, in the sense that bn − an is quite small on
average. We wonder what happens to the limiting ratio if an/bn is replaced in the
summation by bn/an.

An odd prime p is said to be symmetric [34, 35] if there exists an odd prime q
such that |p− q| = gcd(p− 1, q − 1). For example, any twin prime is symmetric. It
is known that the reciprocal sum of symmetric primes is finite (like Brun’s constant
[36]). If the twin prime conjecture is true, then there are infinitely many symmetric
primes. Let S(n) denote the number of symmetric primes ≤ n. It is conjectured that

lim
n→∞

ln(S(n)/n)

ln(ln(n))
= −1 − δ



Multiples and Divisors 4

and a heuristic argument supporting this formula appears in [34].
Finally, let T (N) denote the number of integers n ≤ N satisfying the inequality

d(n) ≥ ln(N). Norton [37], responding to a question raised by Steinig, proved that
there are positive constants ξ < η with

ξ ≤ ρ(N) =
T (N )

N ln(N)−δ ln(ln(N))−1/2
≤ η

for all large N . Balazard, Nicolas, Pomerance & Tenenbaum [38] proved that the
ratio ρ(N ) does not tend to a limit as N →∞, and that

ρ(N) ∼ f
(
ln(ln(N))

ln(2)

)
as N →∞

where f(x) is an explicit left-continuous function of period 1 with only countably
many jump discontinuities. Deléglise & Nicolas [39] further computed that

ξ = lim
x→0+

f(x) = 0.9382786811..., η = f(0) = 1.1481267734...

are the best possible asymptotic bounds on ρ(N). We have seen such oscillatory
functions on numerous occasions elsewhere in number theory and combinatorics [40,
41]. The quantities

χ =
1

Γ(1 + λ)

∏
p prime

(
1−

1

p

)λ (
1 +

λ

p

)
= 0.3495143728...

χ

1− ln(2)

√
ln(2)

2π
= 0.3783186209... =

ξ

2.4801282017...
=

η

3.0348143331...

also play an intermediate role [39], where λ = ln(2)−1.
In a late-breaking development, Ford [42] proved that there exist positive con-

stants c < C such that

c
N

ln(N)δ ln(ln(N))3/2
≤M (N) ≤ C

N

ln(N )δ ln(ln(N))3/2

for large N , and positive constants c′ < C ′ such that

c′
N3/2

ln(N)δ ln(ln(N))3/2
≤ R1(N) ≤ C ′

N3/2

ln(N)δ ln(ln(N ))3/2
.

for large N . Thus, for the first time, the true order of magnitude of M(N) and of
R1(N) is known.
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[5] L. Babai, C. Pomerance, and P. Vértesi, The mathematics of Paul Erdös, Notices
Amer. Math. Soc. 45 (1998) 19—31; MR1490536 (98m:01025).

[6] G. Tenenbaum, Sur deux fonctions de diviseurs, J. London Math. Soc. 14 (1976)
521—526; MR0432569 (55 #5557).

[7] G. Tenenbaum, 1105: first steps in a mysterious quest, The Mathematics of
Paul Erdös, v. 1, ed. R. L. Graham and J. Nesetril, Springer-Verlag, 1997, pp.
268—275; MR1425191 (98d:11115).

[8] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A033676 and
A033677.

[9] P. Erdös and R. R. Hall, The propinquity of divisors, Bull. London Math. Soc.
11 (1979) 304—307; MR0554398 (81m:10102).

[10] H. Maier and G. Tenenbaum, On the set of divisors of an integer, Invent. Math.
76 (1984) 121—128; MR0739628 (86b:11057).

[11] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A002182 and
A090196.

[12] S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of
Math. 45 (1916) 81-84; also in Collected Papers, ed. G. H. Hardy, P. V. Seshu
Aiyar, and B. M. Wilson, Cambridge Univ. Press, 1927, pp. 133-135, 339-340.

[13] S. R. Finch, Sierpinski’s constant: Circle and divisor problems, Mathematical
Constants, Cambridge Univ. Press, 2003, pp. 123—125.

[14] S. R. Finch, Unitarism and infinitarism, unpublished note (2004).



Multiples and Divisors 6

[15] J.-M. Deshouillers, F. Dress, and G. Tenenbaum, Lois de répartition des di-
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Riemann, J. Math. Pures Appl. 63 (1984) 187—213; MR0774171 (86f:11069).

[21] J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis,
Amer. Math. Monthly 109 (2002) 534—543; MR1908008 (2003d:11129).

[22] S. R. Finch, Euler-Mascheroni constant, Mathematical Constants, Cambridge
Univ. Press, 2003, pp. 28—40.

[23] P. Erdös, On highly composite numbers, J. London Math. Soc. 19 (1944) 130—
133; MR0013381 (7,145d).
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