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Abstract
Let C(d,n) denote the set of d-dimensional lattice paths using the steps X; :=
(1,0,...,0), Xo:=(0,1,...,0), ..., X4:=(0,0,...,1), running from (0,0,...,0) to
(n,n,...,n), and lying in {(z1,z2,... ,24) : 0 < 21 < 29 < ... < z4}. On any path

P :=pip2...pan € C(d,n), define the statistics ascs(P) :=|{i : pipis1 = X;Xp, 5 < £}
and des(P) :=|{i : pipi+1 = X;X¢,j > ¢}|. Define the generalized Narayana number
N(d,n,k) to count the paths in C(d,n) with ascs(P) = k. We derive a formula for
N(d,n, k), implicit in MacMahon’s work. We use Wegschaider’s algorithm, extending
the Wilf-Zeilberger method to multiple summation, to obtain recurrences for N (3,n, k).
We examine other statistics for N(d,n,k) and show ascs and des —d + 1 to be equi-
distributed. We then introduce the generalized Schréder numbers (3°,, N(d, n, k)2%),>1
to count constrained paths using various step sets which include diagonal steps.

Key phases: Lattice paths, Catalan numbers, Narayana numbers, Schroder num-

bers, Wilf-Zeilberger method.

1 Introduction
In d-dimensional coordinate space consider lattice paths that use the unit steps
X;:=(1,0,...,0),X5:=(0,1,...,0),...,X4:=(0,0,...,1).

Let C(d, n) denote the set of lattice paths running from (0,0, ... ,0) to (n,n,... ,n) and lying
in the region {(x1,22,...,24) : 0 < 21 < 29 < ... < x4}. On any path P := pips...Dan,
we call any step pair p;p;+1 an ascent (respectively, a descent ) if pipiy1 = X; X, for j </
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(respectively, for j > ¢). Such paths are also called ballot paths for d candidates or lattice
permutations (as in MacMahon [10]). Synonyms for “ascent” and “descent”, respectively,
are “minor contact” and “major contact” in [10]; often they are called “valley” and “peak”
when d = 2.

To denote the statistics for the number of ascents and the number of descents, we put

ascs(P) = |{i : pipiv1 = X; X, for j </},

des(P) = |{i: pipis1 = X; X, for j > (}].
For convenience when d < 3, put X := X, Y := X5, and Z := Xj3. See Table 1.

P €C(3,2) | ascs(P)
ZZYY XX 0
Z2Y XY X 1
2YZY XX 1
2
1

) | des(P) — ascs(P)

2YZXYX
2YXZY X

QL
Q
AW W w |2

W NN NN

Table 1: For d =3 and n = 2.

For d = 2, it is well known that, for 0 < k <n — 1,

(P eC(2n): ases(P) = k| :%(Z)( n ) (1)

E+1

where the right side is called a Narayana number. See Remark 1.1.
For any dimension d > 2 and for 0 < k < (d — 1)(n — 1), we define the d-Narayana
distribution, as

b (dn+1\ 57 (nt+i+g\ (n+i)
S (. e e KA
We will derive this formula while proving
Proposition 1 For any dimension d > 2 and for 0 < k < (d —1)(n —1),
{P €C(d,n) : ascs(P) = k}| = N(d,n, k). (3)

For d > 2 and n > 1, we define the n-th d-Narayana polynomial to be

(d—1)(n—1)
Nyn(t) = N(d,n, k)t*,

k=0
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with Ngo(t) := 1. The sequence (Ngy,(1))n,>o has been called the d-dimensional Catalan
numbers. For n > 0, we have the known formula (See [10, art. 93-103][26]; sequence A005789
in [15].):

d—1

Nan(1) = () ]|

1=0

7!
(n+14)l
which we will reconsider for d = 3 in Proposition 6. Further,

Nio(t) =1
Ngyl(t) =1
N;3o(t) = 14 3t + ¢
N;3(t) = 1+ 10t + 20¢% + 10¢® + ¢*
N3 4(t) =1+ 22¢ + 113¢% + 19083 + 113¢* + 22¢° + ¢°
N3 5(t) = 1+ 40t + 400¢* 4 1456¢° + 2212¢* + 1456¢° + 400t° + 40t" + ¢

In Section 2 we will prove Proposition 1 as a consequence of a bijection relating d-tuples
of nonintersecting paths to constrained paths together with an application of the Gessel-
Viennot method. One can obtain Proposition 1 from a more general g-analogue result of
MacMahon [9][10, art. 443, 451, 495]. One can also obtain it from a fundamental theorem
on order polynomials on posets developed by Stanley [16][18, Theorem 4.5.14].

In Section 3 we will use an algorithm of Wegschaider [24], which extends the Wilf-
Zeilberger methodology to multiple summation, to obtain some recurrences for N(d,n, k)
and Nj,(t).

In Section 4 we will examine the statistic des and other statistics which are also dis-
tributed by the d-Narayana distribution. When d = 2, since the locations of the descents
and the ascents alternate on any P € C(2,n), certainly des(P) = ascs(P) + 1. However,
when d = 3, a relationship between these two statistics is not apparent as Table 1 should
show. We will prove

Proposition 2 For d > 2 and n > 1, the statistics ascs and des — d + 1 are identically
distributed on C(d,n). Hence,

Z tascs(P) — Z tdeS(P)_d‘H = Nd,n(t)'

PeC(dn) Pec(dn)

In Section 5 we will introduce a d-dimensional analogue of the large Schroder numbers
as the sequence (297" Ny,,(2)),>1. It will follow from Proposition 2 that this sequence counts
paths running from (0,0,...,0) to (n,n,...,n), lying in {(z1,22,...,2,) : 0 < 27 <29 <

. < z,}, and using positive steps of the form (&,&,...,&,) where & € {0,1}. It will
also follow that 29*""2N,,(2) counts the paths running from (0,0,...,0) to (n,n,...,n),
lying in {(z1,29,...,2,) : 0 < 1 < 29 < ... < x,}, and using positive steps of the form
(&1,&9, ... ,&,) where & is a nonnegative integer.
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Remarks: 1.1: The right side of (1) is named for Narayana who introduced the formula
in 1955 [11]. However, this formula is immediately a special case of an earlier formula of
MacMahon [10, art. 495, 5th formula]. Proposition 1 shows that the right side of (1) indeed
agrees with (2) for d = 2. See [21, 22| for studies of N(2,n, k).

1.2: In 1910 MacMahon [9, 10] introduced the sub-lattice function of order k, denoted
Li(n,d;00), which is a g-analogue of N(d,n,k). This might be the earliest appearance of
the “d-Narayana numbers”.

1.3: One can express our results in terms of a many candidate ballot problem [10, art. 93]
where candidate ¢ never leads candidate j, 1 < i < j < n throughout the balloting: N(d, n, k)
then counts ballot paths having length dn and ending in a tie where there are k instances
of a vote for a weaker candidate being followed immediately by a vote for a stronger one.
Equivalently, one can express our results in terms of the number linear extensions of the poset
d x n having k descents or in terms of the less common terminology used by MacMahon
[10]. However, by expressing our results in terms of lattice paths, our proof of Proposition 1,
by way of Proposition 3, will intentionally display a relationship between counting restricted
d-dimensional paths with respect to ascents and counting nonintersecting d-tuples of paths.
The terminology of lattice paths also facilitates considering results admitting diagonal steps
and hence the generalization of the Schroder numbers to higher dimensions.

1.4 In [23] the author studies counting C(3, n) with respect to the statistic des and obtains
a formula for 3-Narayana numbers which is quite different from the formula of (2).

2 Counting with respect to ascents on paths

Let NZ(m,n,d) denote the set of d-tuples of nonintersecting planar lattice paths, (P, ...,
P;, ..., P,), wherepath P;, 1 < j <d, uses the steps (1,0) and (0, —1) and runs from (j, n+j)
to (m + 7,7). E.g., the triple of paths on the right side of Figure 1 belongs to NZ(4,5,3).
For positive integer n, let [n] := {1,2,...,n}. Let n denote the chain 1 <2 < --- < n, and
let J(d, m,n) denote the set of order ideals of the partially ordered set (poset) d x m X n.
One can find other definitions of this section in Stanley [18].

Proposition 3 Ford>2, m>1, andn > 1,

wz(m,n,dnzz(d”*m"“

dn
k>0

>N(d, n, k). (4)

Proof. It is convenient to place the product poset d x n in the coordinate plane so that
each element (z,y) of the poset is identified with a unit square having opposing vertices
(x =1,y — 1) and (z,y). The values of a function on d x n will label the unit squares of a
rectangle with d columns and n rows. We do the same for m x n.

4



We will show that |J(d,n,m)| is equal to the right side of (4) and then to its left side.
One can check that the correspondences defined the proof are bijective.

Observe that each order ideal I € J(d,n, m) corresponds to a uniquely determined order
reversing function f :d x n — m+1: specifically,

(z,y,2) € I if and only if 0 < z < f(x,y).
For any order reversing function f:d x n — m+1, let
(a1s-- 50, Qigr, -y aan) o= (F(x,01), - F (@0 30), (@i, Yisa), - [ (@ans Yan)
be that nonincreasing sequence of the entries of the array (f(z,¥)).y)c[dxn S0 that
if f(zi,y:i) = [(@ig1, Yir1) then z; < 244, (5)

Let g:d xn— {X1,...,X,} be that “step assignment” function where g(x,y) := Xy11 4.
Hence each order reversing function f : d X n — m+1 corresponds uniquely to a matrix

|:A:| _: |:CL1 e @ Qiyr e adn:| (6)
P Pr ... DPi Pi+t1 --- DPdn
where p; := ¢g(z;,y;) and P € C(d,n) by (5).

Notice that when there is an ascent in P of (6), say, pipiy1 = X; X, where j < ¢, then we

. Al . . .
have a; > a;.;. Thus, given a matrix [P] with k ascents in P, there corresponds a unique

{B} _ {bl b b bdn}

matrix

P pr ... DPi Pit+1 --- Pdn

where b; is equal to a; minus the number of ascents in the subpath p; 1p; 19 pgn. Since B
is an unrestricted nonincreasing sequence with values in [m — k], elementary counting shows
that the number of B sequences for which P € C(d,n) has k ascents is (d"fjs*k). Hence,
summing over all possibilities yields

7(d,nym)| = 3

<dn+m—k
i

n ) N(k,n, k).

Now, for the left side of (4), let the order ideal I' € .J(m,n,d) be the reflection of
I € J(d,n,m), and hence, |J(d,n,m)| = |J(m,n,d)|. Each I' € J(m,n,d) corresponds
to a uniquely determined order reversing function A : m x n — d+1 where (z,y,2) €
I'if and only if 0 < z < h(x,y) for (z,y). Each function h corresponds uniquely to a rect-
angle having opposing vertices (0,0) and (m, n) and consisting of unit squares with labels in
[d + 1] that are nonincreasing along the rows and columns in the positive directions of the
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coordinate plane. (One could re-express these ideas in terms of plane partitions.) Equivalent
to each rectangle with such a labeling, there is a d-tuple of noncrossing lattice paths on the
rectangle such that the paths use the steps (1,0) and (0,—1), run from (0,0) to (m,n),
and separate the regions of squares of differing labels. We can then translate each path
north-eastwardly so that the d-tuple of such noncrossing paths corresponds to a d-tuple of
nonintersecting paths in NZ(m,n,d). O

Example: Take d := 3, m := 4, and n:=5. Take I € J(d,n,m) to be

= {(1,1,1),(1,1,2),(1,1,3), (1,1,4), (1,2,1),(1,2,2), (1,2,3), (1, 2,4),
(1 1) (17 )7(17471) (17 )7(17571)7(17572) (27 ) )7(27 ? )7(27173)7
(2,1,4),(2,2,1),(2,2,2),(2,3,1),(3,1,1),(3,1,2), (3, 1,3), (3,2, 1)} (7)

The corresponding function f : d x n — m+1, augmented by the step assignment g, is
represented as

3.7 LY | 1,X

3.7 LY | 1,X

3712,V |1,X

5,72 | 3,Y | 2,X

57 15Y | 4,X

Hence
(Al 5 5 5 4 3 3 3 3 2 2 1 1 1 1 1
Pl |\Z ZY X Z Z ZYY XY YY X X]
and
Bl [3 3 3 2 2 2 2 2 1 1 1 1 1 1 1
Pl |\Z ZY X Z Z ZYY XYYY X X]|

A reflection of the order ideal I of (7) is the ideal I' € J(m,n,d):

= {(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2), (1,2,3), (1,3,1), (1,3,2),
(1,4,1),(1,5,1),(2,1,1),(2,1,2), (2,1,3), (2,2, 1), (2,2, ),(2 3,1),(2,4,1),
(2,5,1),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(4,1,1), (4,1,2), (4,2,1)}



The corresponding function A : m x n — d+1 is given in the left rectangle of Figure 1
together with the noncrossing paths separating regions with different labels. The right side
of Figure 1 shows the corresponding nonintersecting triple of paths belonging to ZA (m, n, d).
OJ

Figure 1: Noncrossing paths and nonintersecting paths for A

Lemma 1 The cardinality of NZ(m,n,d) is equal to the determinant of a d by d matriz

D(d) := det [( meen )]
n+j—1 1<ij<d

() ()

=0

which simplifies to

<.

Proof. The well-known Gessel-Viennot method [3, 6, 7] (also known as the Karlin-
Lindstrom-Gessel-Viennot method) yields the first part. Elementary techniques for simpli-
fying determinants, Pascal’s rule, and a straight forward induction can establish the second
part. [

Proposition 3 and this lemma yield the next proposition which then yields Proposition 1
by a straight forward inversion.

Proposition 4 Ford > 2, m>1, andn > 1,

Z(dn+d7:—k> (d.n. k) d1<m+n+j><nzj>1. )

k>0 =0

<.



Corollary 1 Ford > 2 andn > 1, Ny,(t) is a reciprocal polynomial of degree (d—1)(n—1).
Le., the sequence of coefficients of Ny, (t) is symmetric.

Proof. Recall that for real r, the binomial coefficient is defined so (l’;) :

(ITj=o 7= 4)/!

r
0

() =co (") )

We observe that the degree of Ny, (t) cannot exceed (dn—1) —(d—2)—n = (d—1)(n—1)
since there are dn — 1 step pairs on any path, since each of the final occurrences of the steps
Xy,...,X4 1 on a path of C(d,n) cannot immediately precede an ascent, and since every
X, step cannot immediately precede an ascent.

if k is a positive integer and so ( ) := 1. It is then easily seen that

Since the equation (8) is a polynomial equation in m which is valid for all positive integer
values of m, it is valid for all real m. Indeed, replacing m by —d — m — n in (8) yields

d—1 . N —1
dn—d—m—n—k B —d—m+7\[(n+]
(" e =L (1)
k>0 j=0
Upon applying (9) to each factor of the numerator of the right side and commuting factors,
we find
“ (—d—m+j> (n—irj)_l B (_1)dnd1 <m—|—n+j> <n+j>_1
, n n B , n n ’
Jj=0 7=0
Hence,

Z((d—l)(n_ZL_m_l_k>N(dnk Z:(dr“rm k) (d,n, k). (10)

k>0

Recalling that the degree of N, (t) cannot exceed (d — 1)(n — 1) and setting m := 0, we
find that the only nonzero terms in (10) correspond to k = (d — 1)(n — 1) on the left side
and to k = 0 on the right side. Hence, N(d,n, (d—1)(n—1)) = N(d,n,0). Next, repeatedly,
set m := 1,2,... and solve. One finds that N(d,n,(d — 1)(n — 1) — k) = N(d,n, k) for
0<k<(d-1)(n—-1). 0O

An identity for the 2-Narayana distribution: For d = 2, Proposition 1 shows that (1) is
indeed equal to N(2,n, k) defined in (2). Moreover, the determinant D(2) of Lemma 1 easily
simplifies to m+1n+1 (mt;”rl) (m;’ﬁd) Thus, Lemma 1 gives a natural analogue of the well-
known enumeration of parallelogram polyominoes by Narayana numbers, and Proposition 3

yields the following identity for the common Narayana numbers:

N(2,n+m+1,m):zm:<

§=0

2n+j
J

)N(Z,n,n—j).
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Remarks: 2.1: We acknowledge that initially our derivation of (2) was motivated by a
study of Kreweras and Niederhausen [8]. Recently Brindén [2] used an approach similar to
that in the proof of Proposition 3 in studying the Narayana distribution for d = 2. As noted
previously, one can deduce the results of this section from the works of MacMahon and of
Stanley. However, their results do not consider d-tuples of nonintersecting paths.

2.2: The proof of Corollary 1 is similar to that of [9, art. 29]; the argument in [10, art. 449]
seems incomplete. It can also be derived from the results of [16, sect. 18].

3 Recurrences
For d = 2 and n > 3, it is known, with bijective proofs appearing in [20, 22|, that
(n+1)Noy(t) = (20— 1)(1 + ) Noy_1(t) — (n — 2)(1 — £)>Noy_o(2). (11)

For d > 2, we are interested in finding the recurrences for the d-Narayana polynomial and
distribution. Perhaps they are amenable to bijective interpretation.

To find and prove recurrences for the 3-Narayana polynomial, we will apply the algorithm
MurTtiSuM of Wegschaider [24] which advances the method of Wilf and Zeilberger [25] for
handling multiple summations. We will follow the procedure clearly documented in [24].
Currently the Mathematica algorithm MULTISUM is being enhanced by, and is available
from, Axel Riese [13].

Proposition 5 Forn > 4, the 3-Narayana polynomial satisfies

(3n—4)(n+2)(n+1)2N3,(t) =
Bn—=2)(n+1)(4(1+t+t*) =51+ Tt + t*)n + 3(1 + 7t + t*)n*) N3 ;1 (1)
—(n —2)(—12+ 29n — 30n? 4+ 9n®)(1 — 1)* N3 _»(?)
+(Bn—1)(n—2)(n—3)(n —4)(1 — )Nz _3(¢)

Proof. Once MULTISUM is installed in a Mathematica session, we find and prove this
recurrence by executing the following commands, which returns a certificate recurrence,
which when summed and then simplified, yields the above recurrence:

In[1]:= <<MultiSum.m

In[2]:= summand = 2 (-1)~(k-j) Binomial[3 n + 1, k-j] Binomial[n+j, n]
Binomial [n+j+1, n] Binomial[n+j+2, n]/(n+1)/(n+2)/(n+1)

In[3]:= certificatel = FindRecurrence[ summand t“k, n, {j, k} ]

In[4]:= SumCertificatel[certificatel]



(These commands returned a certificate in approximately 10 minutes on a 667MHz Pen-
tium III cpu. For d = 2 and for d = 4, similar commands returned certificates in approxi-
mately 4 seconds and 24 hours, respectively.) [J

Corollary 2 Forn > 1, N3,(t) is a reciprocal polynomial.

Proof. This follows from the proposition by induction. This is also a special case of
Corollary 1. [

Proposition 6 A formula for the 3-dimensional Catalan numbers is

2(3n)!
Naall) = e Din + 2)

Proof. First we find a recurrence for the 3-Narayana polynomial evaluated at ¢ = 1.

In[5]:= certificate2 = FindRecurrence[ summand, n, {j, k} 1;

It is then not difficult to guess a simplified formula for Nj,(1) based on the following
output:

In[6]:= rec = SumCertificatel[certificate2] [[1]]

OQut[6]:= -3 (-2 + 3 n) (-1+3 n) SUM[-1+n] + (1+n) (2+n) SUM[n] ==

We use

In[7]:= guess = 2 (3 n)!/n!/(n+1)!/(n+2)!

In[8]:= CheckRecurrence[rec, guess]

in order to check that our guess satisfies the recurrence. We complete the proof by
checking that the initial value for the guess is correct. (These commands returned a certificate
in approximately 6 minutes; for the case d = 4, similar commands returned a certificate in

approximately 95 minutes.) [
Proposition 7 For n > 2, the numbers N(3,n, k) satisfy

nn+1)(n+2)NB,nk) = (n+k+2)(n+k+1)(n+k)N(@3,n—1,k)
+32n—k—-1)(n+k+1)(n+k)NB,n—1,k—1)
+32n—k—-1)2n—k)(n+ k)N3,n— 1,k —2)
+@2n—k—-1)2n—k)2n—k+1)N(3,n— 1,k — 3).

Proof. To prove this using MULTISUM, we execute the following, obtaining a certificate
(in just a few seconds) which reduces to the above recurrence:

In[9]:= certificate3 = FindRecurrence[ summand, {n, k}, j ]

In[10]:= SumCertificatel[certificate3]

O

As a generalization, we have the following conjecture, proven for 2 < d < 5 using
MULTISUM:

10



Conjecture 1 For any d > 2 and for n > 2,

d—1 d ) d—i—1

[[(n+i)N(d,n, k) = Z (f) [[(d=1)(n—1)—k+j) [] (n+k+H)N(dn—1,k—i).

i=0 j=1 J=0
4 Other statistics having the d-Narayana distribution

4.1 The case for d =3

This subsection serves to motivate the following subsection. Its main result is the proof that
the number of descents less two and the number of ascents are equi-distributed on C(3,n).
We will consider 24 statistics for C(3,n), each of which is expressed in terms of a 3 by 3 0-1
matrix M. Here (M);, denotes the entry in row j and column ¢ of M, while M;; denotes a
specific matrix identified by the subscripts. Let ©,; denote a statistic on C(3,n) defined so
that, for each path P := pipy...p3n,

On(P) ==Y (M)jl{i : pipip1 = X;Xp,i € [3n — 1]}].

3
j=1 ¢=1

The statistic ascs corresponds to the matrix V My = My = [

[elen}en)
oo

1] .

11, sice
0
(ZSCS(P) = |{’L L PiPi+1 € {XlXQ,Xng,XQXg}H.

(We explain the “V” momentarily and the “22” in the next section.) Similarly, the statistic

des corresponds to the matrix Mp := H (?) §] . A simple search over C(3,n) for small n shows

that any statistic having the form ©,; and being distributed by N(3,n,k — ¢) for some
c € {0, 1,2} must be one of the 24 matrices of Table 2. A series of lemmas will prove

Proposition 8 For d = 3 and n > 1, each matriz M in the first two columns of Table 2
yields a statistic Oy — (M )91 — (M)s2 having the 3-Narayana distribution. In particular (as
stated in Proposition 2), des — 2 and ascs are equi-distributed. (The sum (M)a + (M)s2
adjusts the statistic so |[{P € C(3,n): Oy (P) — (M) — (M)3s = k}| = N(3,n,k).)

Conjecture 2 For d = 3 and n > 1, each matrix M in the last two columns of Table 2
yields a statistic © p — (M )91 — (M) 32 having the 3-Narayana distribution. Consequently, the
statistic des—ascs—1 has the 3-Narayana distribution in agreement with Mo+ V Mos+ Mg =

111
111].
111
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T 1
[e)enYen]

T 1
——O

T 1
OO

T 1
oO—HO

T 1
—O—

T 1
[efeYen)

O i
L 1

[elelen)
L 1

[elenlen)
L 1

—O
L 1

oO—O
L 1

—— O [e>enJen] [ev]enJen] O —OoO OO
OO —OoOo O [} e Jen] [} e Jen] —O
L | L | L | L | L ' L |
r 1 r 1 r 1 r 1 r 1 r 1
[evlen)en) O —OoOO oO—HO — O~ [} enYen]
O [e>enJen] [ev]enJen] —— O oSO —OoO
oO—O [l —— O [} e Jen] [} e Jen] —O
L | L | L | L | L ' L |
r 1 r 1 r 1 r 1 r 1 r 1
— O oO—O OO~ —— O [} e Jen] [} e Jen]
[evfenlen) [ecfenlen] O —~Oo O oO—O —O
—Oo O O [e=enJen] [} e Jen] —— O oSO
L i L 1 L 1 L 1 L 1 L i
— — N N [2e]
s § § = =
r 1 r 1 r 1 r 1 r 1 r 1
[elel) O —Ooo oSO —— O oo
OO oO—O — O [} e Jen] [} e Jen] —— O

—OoO
L 1

MD =

My, =

VMII =

M12 =

Table 2: Candidate matrices

hdes(P)

GME (P)

@MA (P)

GMD (P)

2
3
3
3
4

22YYXX
22Y XY X
2YZY XX
2YZXYX
2YXZYX

Table 3: Statistical values
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If one considers any two statistics ©; and ©, on C(3,n) to be equivalent when either
O14+ 06, or ©; — O, is a constant statistic for each n, then Table 3 shows the non-equivalency
of Opr,,, O4, Op, and Oyy,.. The statistic hdes counting the high descents of subsection
4.3 requires n = 3 to see that it is not equivalent to the others. Lemma 2 shows that each
column of Table 2 corresponds to an equivalence class.

For this and the next subsection, for each matrix M being considered, we define the
horizontal complement, HM , and the vertical complement, V M, to be matrices defined so

o 0 if j is a zero row of M
(HM)je = { 1 — (M);; if otherwise,
0 if £ is a zero column of M
(VM)je = { 1 — (M), if otherwise.

(E.g., see Table 2, where My, = HMp.)
We express the following lemma in a general form which will be defined in the next
subsection. Presently, we read the next lemma for d = 3.

Lemma 2 For d by d matrices M having exactly one row and one column of 0’s,

B n if row 1 of M is a zero row
Ou(P)+Onm(P) = { n—1 if otherwise,

n if column 1 of M s a zero column

Ou(P)+0vu(P) = { n—1 if otherwise.

Proof. We note that each path begins with X, ends with X, and has a total of dn — 1
consecutive step pairs. If row 1 of M is a zero row, then the n — 1 non-final X steps, all of
which immediately precede some other step on P, do not contribute to ©;(P) + O g (P).
Hence, ©,/(P) + Opn(P) = (dn — 1) — (n — 1). If row 2 of M is a zero row, then only the
n Xy steps, which must immediately precede some other step on P, do not contribute to
Om(P) +Opy(P) = (dn — 1) — n. Similarly, the other instances of the lemma are valid. O

We notice that all matrices in Table 2 have exactly one row and one column of 0’s. As a
consequence of Lemma 2 one can check that

Lemma 3 For all M in Table 2,

@M(P) — (M)23 — (M)32 + @VM(P) — (VM)23 — (VM)32 = 2n-—2.
Lemma 4 For any d > 2, suppose that ©, is distributed by a reciprocal polynomial of degree

(d—=1)(n—1) onC(d,n). If ©,(P) + ©3(P) = (d — 1)(n — 1) for all P € C(d,n), then they
are equi-distributed.

13



Mp 2 My vy My D My VM My YV MG, = My,
Figure 2: The schema for proving that des — 2 and ascs are equi-distributed.

Proof.

Z 402(P Z Hd=1)(n—1)-01(P) _ Z ©1P)

PeC(d,n) PeC(d,n) PeC(d,n)

Lemma 5 For M5 and My, defined in Table 2 and for 1 < k < 2n — 2, there is an explicit
bijection

Ba:{P €C(3,n): O, (P)=Fk} - {P €C(3,n): Op, (P) =k},
and hence Oy, and Oy, are equi-distributed.

Proof. For any P € C(3,n), we split P into maximal blocks (i.e., maximal subpaths)
which either contain only Y steps or contain no Y step. In each block of the second type, we
exchange the initial maximal subblock (perhaps empty) of X steps with the final maximal
subblock (perhaps empty) of X steps. [5(P) is the resulting path. We note that 5y(P) €
C(3,n) since the condition 0 < z < y < z for any point (z,y, z) on a path holds during the
exchanges. The action of 35 leaves the number of XX and ZZ pairs fixed and transforms
the number of ZX pairs to the number of X Z pairs. Since My, = T'M;5, where T denotes
the usual transpose operator, the proof is complete. [

Proof of Proposition 8: This is a consequence of Lemmas 3, 4, 5, and Corollary 1. See
Figure 2 where 7' denotes the transpose operator. In particular, for any P € C(3,n),

@MD(P)+@M11(P) :2n7 @Mu( )+@VM11(P):277’_17
Ovan, (P) + O, (P) =2n — 1, Ot (B2(P)) + Ovar, (B2(P)) = 2n — 1,
@VM21 (BZ(P)) + @M22 (BZ(P)) = 2n, @Mzz (BZ(P)) + @VMzz (52(P)) =2n—1,

together with Oz, (P) = Oap, (B2(P)), yield Ou, (P) = 2 = Ovan, (B2(P)) = Ou, (B2(P)).
Il

4.2 The case for arbitrary d

Here we prove that des—d+1 and ascs are equi-distributed. We encode the relevant statistics
in terms of d by d 0-1 matrices so that, for P := pips...pa, € C(d,n),

d d
ZZ )iel{i s pipiv1 = XX, 1 € [dn — 1]}

j=1 ¢=1

14



My VM M
My VMo May V May Mo
Msi VI Mz Msy VMzy Mz V Mz Msy

My VMy My VM ... VMg My VM M

Mgy VMg1g Mg1o VMg_1o ... VMg_14-2 M1 491 VMg_149-1 Mg_14.

Table 4: The trapezoidal array of matrices.

Table 5: The zero intersections for d = 5.

Define the matrices M4 and Mp so

(Ma)je = 1ifj </, and = 0 if otherwise,
(Mp)je = 1ifj>{, and = 0 if otherwise.

Hence, ascs(P) = Oy, (P) and des(P) = Oy, (P).
Our proof will establish a transition O, to ©y;, similar to that in Figure 2, but more
extensive, and account for the difference d — 1. Keeping the definitions of the complement

operators H and V from section 4.1, we will define a trapezoidal array of matrices appearing
in Table 4. Specifically for 1 <1 < d — 1, we define M;; so that

(Mi)se = 1 if¢<j<iorj<i<lori<j<{,
AL 0 if otherwise.

(E.g., M7 in Figure 3.) Moreover, for 1 < j < i < d — 1, define M;;,, := HVM, ;. (E.g.,
M3 and Mz, in Figure 3.)

Given each matrix in the trapezoidal array, it is useful to determine the indices of the
intersection of its zero row and zero column, called its zero intersection. One can check that
the array of Table 5 gives the zero intersections corresponding to the the trapezoidal array
of matrices for d = 5. More generally we state a lemma.

Lemma 6 Let d > 3. For1 < j <1 < d— 1, the zero intersection of M;; has indices
(i+1—7j,94+1—7) and the zero intersection of V M, ; has indices (i — j,i+1—j). The zero
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intersection of M, ; has indices (1,1), the zero intersection of V.M, ,; has indices (1 + 1,1),
and the zero intersection of M; ;1 has indices (i + 1,7+ 1).

Proof. Without introducing awkward notation, one can check the validity of this lemma
by working through the example of Figure 3 which is sufficiently general to explain the
actions of V' and H on M;;. Starting with the second matrix, M7, at each stage one should
pay particular attention to how the submatrix lying below the zero row and to the right of
the zero column is transformed. [J.

Lemma 7 For1 <j;<:<d-1,

@Mij(P)+@VMij(P) = (d—l)n—l

(P) = {(d—Dn ifj=i—1

Ovar,; (P) + Oy (d—1)n—1 if otherwise

i,j+1

Consequently, for 2 <i:<d-—1,

0 ifi=1

Oy, (P) + Oy (P) :{ 1 if2<i<d-1

Proof. Use the above lemma and Lemma 2 whose proof is valid for any d > 2. The
second part relies on telescopic cancellation. []

Lemma 8 For any d > 2, since HMp = My, and My = HMy_ 4,
des(P) + Oy, (P) = (d—1)n
ascs(P) + Oy, ,(P) = (d—1)n—-1 O

For any d by d matrix M and for 2 < i < d — 1, we define a “restricted transpose”,
denoted by T;M, so that

M)y ife<i<jorj<i<(
(T:M)je := { (M);o if otherwise.

Observe that T;M;_;; = M;;. (E.g., see the top row of Figure 3.)
Also, for 2 <7 < d — 1, we define a bijection

Bi: C(d,n) — C(d,n)

as follows: For any P € C(d,n), break P into maximal blocks which either contain only X;
steps or contain no X; step. In each block of the second type, we exchange the initial max-
imal subblock (perhaps empty) of steps belonging to {X;...X; 1} with the final maximal
subblock (perhaps empty) of steps belonging to {X;...X; 1}. Bi(P) is the resulting path.
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Figure 3: This illustrates the action of 7%, H, and V.

Example. For d = 4, one can check that, if

Xa Xy Xo Xy Xg X Xy Xy Xo X X3 Xo Xy X3 Xo Xy

P =

then

Xy X3 Xy Xo X3 Xo X Xy X X X3 X X X3 X X

Ps(P) =
One can also check that © s, (P)

4 where

®T2M23 (63(P))

—.— O
[=felenYen]
oO—HOO
—,—OO

:| and T3M23 = M31 = |:

OO~
[efesYenYen]
OO
—.— O

Myz =

1 <k<(d—1)(n—1), the restriction of f3;,

Lemma 9 For2<:<d-—1 and

k} = {Pe€C(d,n): Oy, (P)=Fk},

Bi : {P € C(da TL) : @szlz(P)

is a bijection with Oy, (P)

O, (Bi(P)). Hence Oy, and Oy, are equi-distributed.
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Proof. We note that 5;(P) € C(d,n) since the condition z; < x9 < --- < x4 holds for
any point (z1,xs,...,x4) on P during the exchanging. The action of f; leaves the number
of X;X;, for j # ¢, fixed and exchanges the total number of X}, X; pairs, for all h, j where
h <i < j, with an equal total number of X; X}, pairs. Hence, Oy,_, ,(P) = Orn,_, , (5i(P)),
which equals ©, , (6;(P)). O

Proof of Proposition 2: This uses Lemmas 7, 8, and 9. Specifically, the identities

des(P) = (d—1)n— Oy, (P)
O, (P) = Owm,,(P)
@Mlz(P) = O, (52(13))
Oy (B2(P)) = Oun,(Ba(P)) +1
@M23(52(P)) = Oy (53(52(13)))
On (B3(B2(P))) = Onru(B3(B2(P))) +1

OMyosgos (Baa( - (B2(P)))) = Onty_y s (Ba1(Baa(- -+ (52(P)))))

Ortyr s (Bar(Baa(---(B2(P))) = Ontyyy(Ba1(Baa(--- (52(P)))) +1
Onty14(Ba1(Baz(---(52(P))))) = (d—1)n—1—ascs(Byg-1(Ba2(---(P2(P))))
yield
des(P) = ascs(By_1(Baz(- -+ (B2(P)))) +d — 1.
U

4.3 High descents

For d := 2, on any path a high peak is any Y X pair whose intermediate vertex (x,y) satisfies
y—x > 1. If hpeaks(P) denotes the number of high peaks on the path P, Deutsch [4] found
that hpeaks has the Narayana distribution on C(2,n). Now, for arbitrary d > 2, on any
path P = pips...pan € C(d,n), call any step pair p;p;11 a high descent if p;p;11 = X;X, for
j > { and its intermediate vertex (x,s,...,%4) satisfies ; —z, > 1. Let hdes(P) denote
the number of high descents on the path P.

Counting with respect to high descents seems much closer to counting with respect to
ascents than with respect to descents. Specifically, if we simply change the requirement of
(5) to

if f(xi,vi) = f(®it1,Yit1) then either y; =y and @41 = 2 + 1 or y; < yip

in the proof of Proposition 3, then we can modify section 2 to show

18



Proposition 9 Foranyd>2 and 0 <k < (d—1)(n—1),

{P € C(d,n) : P has k high descents}| = N(d,n, k).

5 d-Schroder numbers and a “2"! result”

During the past decade the Schroder numbers have received considerable attention, for in-
stance in [1, 12, 14, 19, 17]. For arbitrary d > 2, we generalize the definitions of the small
and large Schréder numbers (as seen in [22]): Let the small and large d-Schréder num-
bers, respectively, be the sequences (Ng,(2))n>1 and (247" Ny, (2)),>1, respectively. In each
sequence we will set the term for n = 0 to be 1. For d = 3 we have

(N3 (2))nso = 1,1,11,197, 4593, 126289, 3888343, 130016393, 4629617873, . . .

(4N3,(2))n>1 = 4,44, 788, 18372, 505156, 15553372, 520065572, 18518471492, . . .

Consider d-dimensional lattice paths that use the nonzero steps of the form (&1, &, ... , &q)
where &; € {0,1} for 1 <i < d. Let D(n) denote the set of paths running from (0,0, ... ,0)
to (n,n,...,n), using these steps, and lying in the region {(x1,29,...,24): 0 <2y <29 <

... < z4}. For d = 2, such paths are known as (large) Schroder paths, and it is well known
that |D(n)| = 2N2,(2) for n > 1.

Proposition 10 For any d > 2 and n > 1, |D(n)| = 297 Ny, (2).

Proof. This proof for d = 3 can easily be generalized. Let C'(n) denote the set of
replicated paths formed from the paths of C(3,n) by independently coloring with B or R the
intermediate vertices of Y X, ZX, and ZY, i.e., intermediate vertices of descents. Color all
other vertices with R. Define

p:D(n) — C'(n)

to be the bijection that first sequentially applies the following replacement rules to the
diagonal steps of each path:

(1,1,0) — YBX
(1,0,1) — ZBX
(0,1,1) —s ZBY
(1,1,1) —s ZBYBX,

and then leaves the steps (1,0, 0),(0,1,0), and (0,0, 1) unaltered, and finally assigns the color
R to all non-B vertices on the resulting path. Since [D(n)| = [C'(n)] = 3 pee(zn 27 =
22N3 ,(2) the result follows. O



Next we relate the d-Schroder numbers to constrained paths using steps of arbitrary
length. Consider those d-dimensional lattice paths that use the nonzero steps of the form
(&1,&9, ... ,&4) where &; is a nonnegative integer. Let S(n) denote the set of paths running
from (0,0,...,0) to (n,n,...,n), using these steps, and lying in the region {(z1, za,... ,x4) :
0<z <z < ... <24}

1
0.
1

Lemma 10 For d = 3 and the notation for ©,; of the previous section, let M* = [

Z 9O+ (P

PeC(3,n)

———

0
1
1

This result generalizes to any d > 2 where matriz M* is the d by d matriz where (M*);; := 1
if 7 >4, and = 0 if otherwise.

Proof. This proof for d = 3 can easily be generalized. Let C"(n) denote the set of
replicated paths formed from the paths of C(3,n) by independently coloring with B or R the
intermediate vertices of XX, Y X, YY, 6 ZX, 7Y, and ZZ. Color all other vertices with R.
We define

v:8(n) —C"(n)
to be the bijection that first sequentially applies the following replacement rules to the steps
of each path: for x > 0, ¥y > 0, and z > 0,

(,0,0) — X(BX)™!

(0,49,0) —s Y(BY)¥!

(0,0,2) — Z(BZ)*!

(z,9,0) — Y(BY)"1(BX)®
(2,0,2) — Z(BZ)*~'(BX)®
0,y,2) — Z(BZ)* Y{(BY)Y
(z,y,2) — Z(BZ)* '(BY)"(BX)",

and then assigns color R to all non-B vertices on the resulting path. Here the exponents

indicate multiple factors in a concatenation; the color B marks intermediate vertices. Since
S(n)] = [C"(n)| = X pecm 2947 the result follows. O

Proposition 11 For any d > 2 and n > 1, [S(n)| = 277" 2Ny,.(2).

Proof. This proof for d = 3 can easily be generalized. Since M* + M4 = [
O+ (P) + ases(P) = 3n — 1. This fact and Corollary 1 show

Z ZGM* — ontl Z 92n—2-— ases( — ontl Z 2ascs

PeC(3,n) PeC(3,n) PeC(3,n)

=
=

= —
—_

Using the Lemma 10 completes the proof. [J
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Corollary 3 [A 27! result.] For any d > 2 and n > 1, |S(n)| = 2" 1{D(n)].

Proof. This is a consequence of Propositions 10 and 11. [

Remarks:

3.1: We observe that D(n) is counted using the statistic des while S(n) is counted using
the statistic ascs together with the reciprocity of the d-Narayana polynomial.

3.2: The classic “2"~! result” is for d = 1: one can easily see that |S(n)| = 2"7!|D(n)| =
2"=! (See [10, art. 123].) Our interest in such results, which relate paths using “super
steps” (perhaps diagonal) to those using “short steps” (perhaps diagonal), originated from
Stanley’s exercise [19, ex. 6.16]. For d = 2 and n > 1, paper [21] gives a bijection showing
that |S(n)| = 2"7'|D(n)| = 2"N,,,(2). Duchi and Sulanke [5] give a bijective proof indicating
that for any d, |S(n)| = 2"~ D(n)| is true when the constraint 0 < z; < 1y < ... < 24 is
absent. Remarkably, the formula of the “2"~! result” is independent of d.

3.3: Our encoding of the paths of D(n) in the proof of Proposition 10 and paths of S(n)
in the proof of Lemma 10 in terms of paths of C(3,n) with colored vertices is consistent with
the encoding of such steps by MacMahon [10, sect. IV].

Acknowledgments: The author is grateful to Axel Riese for his support in using the
algorithm MuULTISUM.
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