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EXPLICIT GALOIS GROUPS OF INFINITE

p-EXTENSIONS UNRAMIFIED AT p

NIGEL BOSTON

ABSTRACT. Galois groups of infinite p-extensions of number fields unramified at p
are a complete mystery. We find by computer a family of pro-p groups that satisfy
everything that such a Galois group must, and give evidence for the conjecture that
these are the only such groups. This suggests that these mysterious Galois groups
indeed have a specific form of presentation. There are surprising connections with
knot theory and quantum field theory. Finally, the Fontaine-Mazur conjecture here
reduces to a purely group-theoretic conjecture, and evidence for this conjecture and
an extension of it is given.

0. Introduction.

Whereas much is now known about Galois groups of p-extensions of number
fields when the extension is ramified at the primes above p and these extensions
have been successfully related to the theory of p-adic Galois representations, not
one Galois group of an infinite p-extension unramified at the primes above p has
been written down. Wingberg [14] calls them amongst the most mysterious objects
in algebraic number theory. In this paper we gather together the properties that
such a Galois group must satisfy and observe that there is just one family of such
groups.

These groups are then studied as abstract groups and some links with other
areas of mathematics surprisingly arise. The conjecture of Fontaine-Mazur [8] then
simply says that no subgroup of finite index has an infinite, analytic quotient.
This appears to be true of all groups in the family. Moreover, all these groups
are conjecturally just-infinite, and it is shown that in that case they are branch,
confirming the author’s proposed extension [5] of the Fontaine-Mazur conjecture.
This is apparently a new collection of just-infinite branch groups, not among those
introduced in section 8 of [11], unusually having such a simple, finite presentation.

1. Galois Pro-p Groups Unramified at p.

We shall focus on the simplest, most concrete situation available to us. Namely,
let S be a finite set of odd primes, Qg denote the maximal 2-extension of Q un-
ramified outside S (allowing ramification at o), and Gg = Gal(Qs/Q). Then Gg
is a pro-2 group with the following properties:

(a) (Shafarevich) d(Ggs) = r(Gg) = |S|, and in fact the generators can be taken
as the tame inertia generators {7, : p € S} and the relations of the form 7,7 =

TP(p € 5), where the 7, are as yet unknown [9];
(b) (Class Field Theory) every finite-index subgroup H of Gg has |H/H'| < oc;
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(c) conjecturally (Fontaine-Mazur [8]), every finite-index subgroup H of Gg has
no infinite analytic quotient.

Remarks. d(H) and r(H) denote the generator and relation ranks of H respec-
tively. By (a), Gg is finite if |S| = 1 and is infinite (thanks to Golod-Shafarevich
[10]) if |S| > 4. It can go either way if |S| = 2 or 3 (see [6],[12]). Property (b)
follows from the finiteness of certain ray class groups.

In property (c), “analytic” means a closed subgroup of GL,(Zz) for some n.
Extensions [3], [5] of (c¢) conjecture that H has no infinite quotient embeddable in
GL,(R), where R is any complete, Noetherian local ring with finite residue field,
and that the just-infinite quotients of H are all branch groups [11]. Just-infinite
groups are ones all of whose proper quotients are finite.

Our objective now is to find all abstract presentations of infinite pro-2 groups
that satisfy properties (a) and (b) above, and test whether (c) and its extensions
hold for such groups.

2. A Computer Experiment.

If S = {p,q}, then Gg is a sometimes infinite pro-2 group with presentation of
the form < x,y|z" = aP,y® = y? >, where r and s are certain (unknown) elements
of the free pro-2 group on z and y. Here, 2" stands for r~!zr. Since in [6] every case
with p = 3(mod 4),¢ = 5(mod 8), i.e. Gg having abelianization Cy x Cy, denoted
[2,4] for short, leads to a finite Gg, we focus on the next simplest case, namely
p,q = 5(mod 8), i.e. Gg/Gs = [4,4]. In the group (Z/2")*, any n, the subgroup
generated by 5 is the same as that generated by any integer that is 5(mod 8), and
so Gg actually has presentation < z,y|r® = 2% y* = y° > for certain a,b in the
free pro-2 group on x and y.

Given a finitely presented group G, let P,(G) = [P,_1(G), G]P,—1(G)?, where
Py(G) = G. We say that G has 2-class ¢ if P.(G) = {1} but P._1(G) # {1}. Let
Q,, denote the maximal 2-class n 2-group quotient of G.

The computer algebra system MAGMA [2] allows us to start with an abstract
group presentation G =< z,y|r® = z°,3* = y° >, where a, b are randomly chosen
words of the free group in z,y, and to check and see if

(1) |Qn| # |Qn+1] for fairly large n (up to 63, if desired);

(ii) |H/H'| < oo for all subgroups H of index < 16 with core of 2-power index
(these subgroups arise in the pro-2 completion of G).

The reason for conducting such an experiment is that by the properties of section
1, if S = {p,q}, then Gg is a sometimes infinite pro-2 group that, if it is the pro-2
completion of G, satisfies these conditions (and more).

This was tried for 15,000 choices of a, b, producing 92 presentations. The out-
come of the experiment is that we obtained just one class C of very similar groups.
If we let |Q,| = 27", then the sequence (f(n)) was always:

(%) :2,5,8,11, 14, 16, 20, 24, 30, 36, 44, 52, 64, 76, 93, 110, 135, 160, 196, 232, 286,

340,419,498,617,736,913,1090, 1357, 1634, ...

What is ¥? Consider the derived sequence Af(n) := f(n + 1) — f(n) =
logs| P, (G)/Py41(G)|. This is:
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3,3,3,3,2,4,4,6,6,8,8,12,12, 17,17, 25, 25, 36, 36, 54, 54,79,79,119,119, 177,177,
267,267, ...

Plugging this sequence (ignoring repetitions) into Neal Sloane’s On-Line Encyclo-
pedia of Integer Sequences http: //www.research.att.com/~ njas/sequences/Seis.html
yields A001461, arising in the paper [7] concerning knot theory and quantum field
theory. If so, Af(2n—2) = Af(2n—1)=>"" _ (1/m) > djm M/ d)(Fa—1+ Faq1).
Each term in the inner sum counts aperiodic binary necklaces with no subsequence
00, excluding the necklace “0”. Here pu is the usual Mo6bius function and F,, the
nth Fibonacci number.

Note that, for the free pro-2 group F' on k generators, Witt’s formula [15] gives
that logs| P, (F) /P11 (F)| =30 _ (1/m) > dlm p(m/d)k?® and so since Fy_1+Fy11

m=1
is approximately ¢? for large d, where ¢ is the golden ratio (1++/5)/2, this suggests
that G is something like a free pro-2 group on ¢ generators.
Moreover, in each case, a change of variable made the presentation G =<
z,y|lz® = 2% y* = 1 > for some word a in = and y. This extensive evidence
leads to the conjecture:

Conjecture 1. Let G be an infinite pro-2 group with presentation of the form
< xz,ylz® = 2°,y® = y> > such that every subgroup of finite index has finite
abelianization. Then G is isomorphic to < z,ylz* = 2°,y* =1 > fora € F, a
certain subset of the free pro-2 group on z,y, and logs|G/P.(G)| (¢ = 1,2,...) is
the sequence Y. Here F consists of ...

The shortest elements in F have length 6 and there are 48 of them, for instance
yv2xyzry, y?xyr 'y~ .... There are 256 elements in F of length 7, 960 of length 8,
2880 of length 9, 8960 of length 10, and so on.

Group-Theoretic Consequences of Conjecture 1. If G is as in conjecture
1, then its three subgroups of index 2 have abelianization [2,4,4]|. For the 13104
elements of F just listed, the abelianizations of its index 4 subgroups are always
the same except that one subgroup H, normal with cyclic quotient, has H/H' =
[2,4,4,8] for some groups G, [4,4,4,4] for others, and [2,2,8,16] for yet others.
These subgroups, which we shall denote critical, always have 4 generators and
4 relations. The collection of abelianizations of the index 8 subgroups come in 8
flavors, of which 5 correspond to there being a critical subgroup with abelianization
[4,4,4,4].

3. Number-Theoretical Evidence and Consequences.

All the groups G in our class C satisfy G/G’' = [4,4]. If this is isomorphic to
some Gg with S = {p,q}, then both p and ¢ are 5(mod 8). Suppose this is the
case. We find the following possibilities for H/H' for the three subgroups of Gg of
index 2 (from computing ray class groups):

(i) If p is not a square mod ¢, then [2, 8] twice and [4, 4].

Suppose p is a square mod ¢ (so by quadratic reciprocity ¢ is a square mod p).

(ii) If p is not a 4th power mod ¢ and ¢ not a 4th power mod p, then [2,4, 4]
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twice and [2, 2, 8].

(iii) If p is a 4th power mod ¢ but ¢ not a 4th power mod p, then [2,4,4] three
times.

(iv) If p is a 4th power mod ¢ and ¢ is a 4th power mod p, then (2,4, 4] twice
and [2,2,2"] for some n > 4.

Case (i) forces (by my method with Leedham-Green [5]) Gg to be finite. I believe
that cases (ii) and (iv) will lead to the same conclusion (but the computations are
prohibitive - there is combinatorial explosion with thousands of candidate groups
produced). Since the groups in C all have abelianizations of index 2 subgroups

of type (iii), we focus on that case. The examples of such S with p,q < 61 are
{13,29},{29, 53}, {37,53},{5,61}.

Corollary to Conjecture 1. If p,q = 5(mod 8), then Gg is infinite and =<
z,y|z® = 25,y* > for a € F if p is a 4th power modulo ¢ but not vice versa, and
(s is finite otherwise.

Proof. By a modified Golod-Shafarevich inequality, due to Thomas Kuhnt (to
appear), applied to the quartic subfield of the cyclotomic field Q((,), it follows that
G g is infinite.

In the other cases, if Gg were infinite, then its abelianizations of index 2 sub-
groups would have to be all [2,4, 4], but as noted above the corresponding ray class
groups are not this.

Note that the quartic subfield used is the fixed field of the critical subgroup.
Next, we look at subgroups of index 4 of Gg of type (iii). We find that their
abelianizations match those of G in C exactly, which is strong evidence for conjecture
1, since one set of abelianizations is computed by number theory, the other by group
theory, by completely different algorithms. Since the quartic subfield of Q((,)
always has 2-part of its pg-ray class group isomorphic to [4,4,4,4], we thereby
exclude some groups in C.

Looking further at ray class groups of degree 8 fields, we find exact matching of
abelianizations again, yielding further strong evidence for conjecture 1. The Galois
group Gg with S = {13,29} has such subgroups with abelianization [2,4,4, 16],
corresponding to the root field of z® 4 104425 + 2737022* — 9839722 + 142129,
which matches one of the five flavors. Again, this excludes some groups in C. Ray
class computations suggest that it is unlikely that all Galois groups in (iii) have
this same behavior.

4. Fontaine-Mazur by Group Theory.

Proof of the Fontaine-Mazur conjecture and related conjectures now amounts
to proving purely group-theoretical properties of groups in C. Let G be such a
group and p : G — GL,(Z2) a continuous representation. Since p(z) is conjugate
to p(x)?, its eigenvalues are a permutation of their 5th powers. In the semisimple
case, where all these eigenvalues are distinct, this implies that p(x) has finite order
and now Fontaine-Mazur follows from the conjecture that if a € F, then < z, y|z® =
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2, y*, 2* > is finite for every 2-power k.

A lot more, however, appears to be true. Namely, 200,000 times I added a
random relation s of length < 16 to the relations of various GG in C and each time
either got back G or a finite group. This suggests:

Conjecture 2. Each group in C is just-infinite.

The classification of just-infinite pro-p groups is a major topic, and as noted
in [11], they come in two flavors, namely those which are branch and those which
have a normal open subgroup which is a direct product of hereditarily just-infinite
groups.

Corollary to Conjecture 2. Each group in C is a branch just-infinite group.

Proof This follows from the last comment, together with the observation that
these groups have a subgroup H of index 4 with 4 generators and 4 relations. Since
H thereby fails the Golod-Shafarevich test, it is not just-infinite, and so G is not
hereditarily just-infinite. A modification of this argument shows that G can have
no open subgroup that is a direct product of herditarily just-infinite groups.

In particular, this confirms my extension of the Fontaine-Mazur conjecture [2],[4].
It should be possible to construct G in C explicitly as a branch group, but note that
G cannot be one of the special groups G, constructed in section 8 of [11], since those
groups are generated by torsion elements (rooted and directed automorphisms),
whereas (see below) our groups are not. This is therefore a new construction,
surprising because the nicest branch groups have so far not been finitely presented
[1]. The techniques of [11] then show that G is just-infinite.

Note that in the introduction to [11] Grigorchuk suggests that his construction
might produce all branch groups. The above suggests not (and in fact since [11],
articles have found new more general constructions - see e.g. [13]). In particular,
Grigorchuk’s special branch groups are all torsion-generated, whereas as noted be-
low ours are not, although the (closed) subgroup generated by torsion is of finite
index.

Let T be the rooted tree with 4 vertices above each vertex, so having 4™ vertices
at level n. Let W, be the iterated wreath product given by Wi, = Cy,W,, =
Wyn-11Cs. Then W, acts on the subtree of T, consisting of vertices up to and
including level n and their inverse limit W acts on Ty, i.e. W < Aut(Ty). Wo =
Cy1Cy =2 G/H', where G is a typical group in C and H its critical subgroup. Wj
is of order 242 and I have found subgroups K of it generated by elements z,y such
that x is conjugate to ° and y has order 4 and such that the abelianizations of their
index 2 subgroups are all [2,4,4]. The abelianizations of their index 4 subgroups
do not always match the data for groups in C. In particular, many of them have
non-normal subgroups of index 4 with abelianization [2, 8, 8], too large for K to be
a quotient of a group in C. If, however, we take certain x of order 64 such that
K =< x,y > has order 2'8, then the abelianizations of index 4 subgroups are small
enough.
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For certain groups in C, the critical subgroup of index 4 can be nicely de-
scribed. For instance, suppose a = y?xyzy. Then H =< z,u, v, w|z"" = 25, 4%’ =
u®, v = v, w¥ = w® > and it embeds in G by having u = z¥,v = myQ,w =¥,
Note that then vu = a and the relations are obtained by conjugating the first re-
lation by the powers of y. G is the semidirect product of H by < y >. On the
number-theoretic side, H is generated by the inertia groups at p, four conjugate
ones since p splits completely in the critical quartic field.

Apparently, the sequence loga| P, (H)/Pyy1(H)| =230 _(1/m) > djm w(m/d)2,
so by Witt’s formula [15] grows like that of F' x F', where F' is the free pro-2 group
on 2 generators.

As for Fontaine-Mazur holding for open subgroups of GG, rather than just G itself,
the following might be true:

Question 3. If H is an open subgroup of a group in C, then is the closed
subgroup T'(H) generated by all its torsion elements also open?

This has been checked for various groups in C and their subgroups. For instance,
T(G) is always of index 4 in G. Since T(G) # G, we obtain that G is not itself
torsion-generated. A positive answer to question 3 implies that G is torsion-riddled,
as proposed in [4], but is stronger. Note, however, that it is still unknown as to
whether the critical subgroups have torsion, an important case for question 3 and
the conjecture of [4]. We have:

Corollary to Positive Answer to Question 3. If GG is in C, then no open
subgroup of G has a 2-adic representation with infinite image, i.e. the Fontaine-
Mazur conjecture.

Proof The point is that if H is an open subgroup with such a representation, then
it has an open subgroup with an infinite torsion-free quotient, which is forbidden
by an affirmative answer to question 3.

5. Speculation.

Let Gg be of type (iii), with S = {p,q}. Let T = {2,p, q}. Consider G acting
on 7, the algebraic fundamental pro-2 group of P! minus three points 0,p, ¢ in
the usual way. 7 is isomorphic to the free pro-2 group F' on 2 generators. The
normal subgroup N generated by inertia at 2 acts wildly on the F,-Lie algebra
L(F)=>_P,(F)/P,y1(F), but the suggestion is that the subgroup H fixed by N
is large enough to provide the indicated action of Gg on a necklace algebra, namely
that provided by conjecture 1.

More generally, note that the groups Gg are interrelated - if T = S U {p}, then
there is a natural surjection Gy — Gg. The kernel of this map can be studied.
For instance, for our situation, with S = {q},T = {p, ¢}, the kernel is the critical
subgroup. Note that since this is not just-infinite, there are many quotients of G
mapping onto Gg.
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