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Abstract. This paper presents a new lower bound of 2.414d/\/3 on the
maximal number of Nash equilibria in d X d bimatrix games, a central
concept in game theory. The proof uses an equivalent formulation of the
problem in terms of pairs of polytopes with 2d facets in d-space. It refutes
a recent conjecture that 2¢ — 1 is an upper bound, which was proved for
d < 4. The first counterexample is a 6 x 6 game with 75 equilibria. The
case d = 5 remains open. The result carries the lower bound closer to the

previously known upper bound of 2.6‘1/\/8.

1. Introduction

Consider a polytope P in dimension d with 2d facets which is simple, that is,
each vertex belongs to exactly d facets of P. Two vertices x and y of P form a
complementary pair (x,y) if every facet of P is incident with = or y. The d-cube
has 2¢ complementary vertex pairs. Is this the maximal number among the simple

d-polytopes with 2d facets? This fairly natural question seems to be open.

Here, we do not consider this problem but the following variation. Consider

two simple d-polytopes P and (), each with 2d facets labeled 1,...,2d. A vertex
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of a polytope has the labels of the facets it lies on. A vertex pair (z,y) of (P, Q)
(which is a vertex of the product polytope P x @) is called complementary if every
label 1,...,2d appears as a label of xz or y. If P and () are identical and identically
labeled, then this is the above single-polytope problem. If P and () are equal to the
d-cube and identically labeled, then (P, Q) has 2¢ ordered pairs of vertices that are

complementary.

However, this is not the maximal number. We will show that if P and @) are
equal to the polar of the d-dimensional cyclic polytope and the labels of () are per-
muted relative to the labels of P in a certain way, then (P, Q) has ©((1 + v/2)%/V/d)
complementary vertex pairs, where 1+ /2 ~ 2.414. Polytopes in dimension d with
2d facets have at most O(2.6%/1/d) vertices, according to the Upper Bound Theo-
rem for polytopes [15]. This is also the maximum number of complementary pairs
since every vertex belongs to at most one such pair. Hence, there is still a gap for
the maximum number, but the new lower bound of 2.414%//d offers a substantial

improvement over the previously known bound of 2¢.

The problem of complementary pairs for two polytopes originates from game
theory in the following form: What is the maximal number of Nash equilibria of a
nondegenerate d x d bimatrix game? A bimatrix game is a game for two players
given by two (not necessarily square) matrices of equal dimension. The matrix
entries represent the players’ payoffs if player 1 chooses a row and player 2 a column
as his strategy. A (Nash) equilibrium [19] is a pair of randomized strategies, one
for each player, that are payoff-maximizing against each other. For each player, the
upper envelope of his expected payoffs for his own strategies (against the randomized
strategy of his opponent) defines a polyhedron [27, 8, 10]. After a suitable projective
transformation, this is a polytope, which is simple if the game is nondegenerate.
For the resulting two polytopes, a complementary vertex pair corresponds to an

equilibrium of the game.

In this context, the d-cubes arise if each player’s payoff matrix is the identity
matrix. Quint and Shubik [20] conjectured that these are the d x d games with
a maximal number of equilibria. We refute this conjecture for d > 6 using the
polytope approach. The Quint—Shubik conjecture follows for d < 3 from the Upper
Bound Theorem. For d = 4 it has been shown in [7, 14]. The case d = 5 is

open. The single-polytope problem has no game-theoretic interpretation, not even



for symmetric games, since the construction of the two polytopes (see Proposition 2.1

below) differs for the two players.

The Nash equilibrium is the central solution concept for noncooperative games
[24]. Algorithms for enumerating equilibria are useful when analyzing such games.
The fastest known algorithms [27, 8, 10] use vertex enumeration for polytopes, and
apply even to degenerate games [29, 6]. In the games we construct here, a large
number of vertices define equilibria, which shows that these algorithms cannot be
substantially improved. Other algorithms for finding equilibria are surveyed in [11,
26]. Bounds and distributions for certain kinds of equilibria are considered in [23,
12, 13].

The correspondence between polytope pairs and equilibria of bimatrix games is
explained in Section 2 (for further exposition see [25, 26]). The construction based
on cyclic polytopes is shown in Section 3. An asymptotic expression for the number

of complementary vertex pairs in this class of examples is derived in Section 4.

2. Game equilibria and polytopes

We use the following notation. The transpose of a matrix B is B". All vectors are
column vectors. The zero vector is 0, the vector of all ones is 1, their dimension
depending on the context. Inequalities like > 0 between two vectors hold for all

components. The n x n identity matrix is I,,.

Let (A, B) be a bimatrix game, where A and B are m xn matrices of payoffs to
player 1 and player 2, respectively. The rows are the pure strategies of player 1 and
the columns are the pure strategies of player 2. A mized strategy T for player 1 (or
y for player 2) is a probability distribution on rows (respectively, columns), written
as a vector of probabilities. An equilibrium of the game is a pair (Z,7) of mixed
strategies so that T' Ay > 2" Ay and 7' By > &' By for all other mixed strategies

x and y, respectively.

In equilibrium, player 1 (and similarly player 2) maximizes his expected payoff
7' Ay against §. Equivalently [19], only those rows 4 that have mazimum payoff u
can have positive probability 7;. This combinatorial condition can be expressed

using the following polyhedra. Let
{T,v)eR"xR| >0, B'z2<1v, 1’7 =1},

P
0 (2.1)
Q={@uweR" xR| A< 1u, 520, 1'5=1}.
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In @, for example, the smallest value for u given 7 defines the upper envelope of
the expected payoffs for all pure strategies of player 1, given by the rows of Ay. In
equilibrium, only optimal pure strategies ¢ may have positive probability, so that
either the ith inequality in Ay < 1u in the definition of @ is binding (i is optimal),
or the ith inequality in 7 > 0 in the definition of P is binding (Z; = 0), or both.
Similarly, a pure strategy j of player 2 is optimal or not played, represented by the
jth inequality in BTZ < 1v or in > 0 in the definition of P or @ that holds as
an equality.

For identifying equilibria, it is therefore useful to consider the pure strategies
of the two players as labels 1,...,m + n numbering the m + n inequalities in the
definitions of P and @ in (2.1). The first m of these labels represent the pure
strategies of player 1, the second n those of player 2. Then an equilibrium is a pair
(Z,7) so that (Z,v) € P and (,u) € Q for suitable payoffs v and u, and for each
label 1,...,m + n the corresponding inequality in P or in @ is binding.

The polyhedra in (2.1) can be simplified by normalizing the payoffs to one and

replacing probabilities by arbitrary nonnegative numbers. Let

P={zcR"|2>0 B'vx <1},
(2.2)
Q={yeR"|Ay<1 y=>0}

Then o
P — P, (T,v) — T/v,

Q—Q  (Gu)—7y/lu

are projective transformations [30] if the payoffs v and u are always positive. For

(2.3)

that purpose, we assume
A and BT are nonnegative and have no zero column. (2.4)

This assumption can be made without loss of generality since a constant can be
added to all payoffs without changing the game in a material way. We could simply
assume that A and B are positive but want to admit examples like A = B = [, (if
m = n) where some payoffs are zero. By (2.4), P and @ are polytopes (bounded
polyhedra). The projective transformations (2.3) are one-to-one correspondences
between P and P — {0} and @ and @Q — {0}, respectively, that preserve binding
inequalities (for visualizations see [25, 26]). The extra vertex 0 of P and (@) arises

as projection “from infinity”.



A label of a point in P or () is a number in 1,...,m + n so that the corre-
sponding inequality in (2.2) is binding. A pair (z,y) of points in P X @ is called
complementary if every label 1,..., m+n appears as a label of z or of y. With the
exception of (0,0), complementary pairs define the equilibria of the bimatrix game

(A, B) by renormalizing x and y to be vectors of probabilities.

Any complementary pair is the convex combination of extreme complementary
pairs (z,y) where z is a vertex of P and y is a vertex of @ [10, 29, 6, 26]. We
consider only nondegenerate (or “generic”) games where only pairs of vertices can be
complementary. Otherwise, the game may have infinitely many equilibria (as convex
combinations of extreme equilibria). Furthermore, even the number of extreme
equilibria may trivially be very large, for example if all entries of B are identical
(so all vertices of P except 0 have all but one label) and @ is a polytope with a

maximum number of vertices.

A game is called nondegenerate if against every mixed strategy z of a player,
there are at most |{i | z; > 0}| pure strategies of the opponent that are optimal.
This means that every point in P has at most m labels and every point in () has
at most n labels. It is easy to see that this is equivalent to the following [26]:
A binding inequality for P or ) defines either a facet of that polytope or the
empty set, but no other lower-dimensional face; and P and @) are simple polytopes.
Inequalities that are never binding represent strictly dominated strategies [24] which
are never played in equilibrium, so they can be omitted from the game. Hence, we
assume that P and @ in (2.2) are simple polytopes with facets labeled 1,..., m+n.
For complementary vertex pairs (z,y), only the combinatorial structure of these
polytopes matters. The special structure of the first m inequalities x > 0 of P
and of the second n inequalities y > 0 of () is not a restriction, since this can be

achieved by a suitable affine transformation for each polytope, as follows.

Proposition 2.1. Let P’ be a simple m-polytope and Q' be a simple n-polytope,
both with m + n labeled facets, which have at least one complementary pair (x',y')
of vertices. Then there are m X n matrices A and B defining P and @Q in (2.2), a
permutation of the labels 1,...,m+n of P' and Q' yielding the labels of P and @,
and invertible affine transformations from P' to P and from Q' to @ that map
(«',y") to (0,0). Furthermore, every complementary vertex pair of (P', Q') except

(@', y") represents a Nash equilibrium of the bimatriz game (A, B).



Proof. Permute the labels 1,...,m + n in the same way for P’ and @' such that z’
has labels 1,...,m and gy’ has labels m + 1,...,m + n. This does not change the
complementary pairs of (P',Q’). Let

P ={zeR"|Cz<p, Dz<q}

where C'z < p represents the m inequalities for the facets 1,...,m and Dz < ¢ the
remaining n inequalities. For the vertex z/, we have Cz’ = p and Dz’ < ¢ since P’
is simple. The m binding inequalities for x' are linearly independent since z’ is a
vertex, so C is invertible and 2z — x = —Cz + p is an affine transformation with
inverse z = —C '(z —p). Let P ={z € R™ | —C'(x — p) € P'}. Then, with
r=q— DC™p,

P={rcR"|-2<0, -DC 'z <r}.

Corresponding points of P and P’ have the same labels. Since the vertex 0 of
P corresponds to 2’ in P', 0 < r. Thus, the jth row of —DC~'z < r can be
normalized by multiplication with the scalar 1/7;, so we can assume r = 1. Then
P is defined as in (2.2) with the n x m transposed payoff matrix BT = —DC !,
Similarly, we can find an m x n matrix A so that @ in (2.2) is an affine transform
of @'. The complementary vertex pairs of (P', Q") except (z2',y") correspond to the
Nash equilibria of (A, B) by construction. If desired, a constant can be to the entries
of A and B to obtain (2.4), which does not change the combinatorial structure of
P and Q. L]

Polytopes P’ and ()’ with general labeling may have no complementary pairs at
all, so this case is explicitly excluded in Proposition 2.1. Interestingly, the number of
complementary pairs of (P, Q) in Proposition 2.1 is always even, since the algorithm
by Lemke and Howson [9, 21, 28] connects complementary pairs in P x () by paths
where a given label is missing. It computes one Nash equilibrium of the game when
started from (0, 0).

3. Cyclic polytopes and a lower bound

We specialize the problem of finding nondegenerate m xn games with a large number
of equilibria to square games where m = n = d. Then (2.2) defines two simple d-
polytopes P and () with 2d facets. For the d x d game with A = B = I, both
polytopes P and @Q are equal to the d-cube [0,1]¢ which has 2¢ vertices, each of
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which is part of a complementary pair. The Quint—Shubik conjecture [20] states

that this is the maximum number.

We will refute this conjecture for d > 6. Any counterexample yields a coun-
terexample in higher dimensions, as follows. If the polytope pair (P, @) in dimension
d has E complementary pairs, then (P', Q') with P' = P x[0,1] and Q" = Q x [0, 1]

is a polytope pair in dimension d + 1 with 2EF complementary pairs. Namely,
P'={(z,z411) ER*XR |2 >0, 2g11 >0, B'w <1, 2441 <1},

(3.1)
Q,:{(yayd+1) ERd XR|Ay§ ]-7 Yd+1 S 17 yZOa Yda+1 20}7

so that any complementary vertex pair (z,y) of (P, Q) yields the two complementary
pairs ((z,0), (y,0)) and ((z,1),(y,1)) of (P',Q").
Our counterexamples are based on the polars of cyclic polytopes, which have

a maximum number of vertices. The polar [30] of a polytope P that is the convex

hull of the d-vectors ¢y, ...,cy is given by
PY={recR|¢/x<1,1<i<N}, (3.2)

provided P (and then also P*) has 0 in its interior, which can always be achieved
by translating P. Any face of P® of dimension d — k is defined by k binding
inequalities in (3.2), and corresponds to a face of dimension k& — 1 of P, given by

the convex hull of the corresponding k vertices of P.

A cyclic polytope Cy(N) [3, 30] in dimension d with N vertices is defined as
the convex hull of any N points on the moment curve {u(t) | t € R} in R,
w(t) = (t,12,...,tY)". Any d + 1 points on this curve are affinely independent, so
Cq(N) is simplicial (no facet contains more than d vertices). The particular choice
of the points p(t1), ..., u(tx) on the moment curve does not affect the combinatorial
structure of Cy(N). Assume t; < --- < ty. A set S of d vertices corresponds to
a 0-1 string s = s18y...sy with s; = 1 if p(t;) € S and s; = 0 otherwise. The
hyperplane H through the points in S defines a facet of Cy(V) if and only if the
string s fulfills the Gale evenness condition [3], that is, it contains no substring
Si...s; = 01---10 with an odd number ¢ — j — 1 of I’s (like 01110). Otherwise,
the two vertices u(t;) and p(t;) would be on opposite sides of H, since the moment
curve changes from one side of H to the other at the points p(t;), i € S. The Gale
evenness condition is symmetric with respect to a cyclic shift of the string s if d is

evel.



The number ®(d, N) of facets of Cy(NN) is the number of the 0-1-strings s
fulfilling the Gale evenness condition. If d is even, d = 2[, then either s starts and
ends with an even number of 1’s, and is composed of [ substrings 11 and N —d 0’s,

or s is such a string with [ — 1 substrings 11 and an additional 1 put at each end.

<1>(21,N):<Nl_l>+<Nl__ll_1>:¥<Nl__ll_1>. (3.3)

Similarly, one can show ®(20 + 1, N) = 2(N_ll_1).

Hence,

No d-polytope with IV vertices has more facets than the cyclic polytope Cy(N),
according to the Upper Bound Theorem for polytopes [15, 18]. Applied to the polars,
this implies that no d-polytope with N facets has more than ®(d, N) vertices.
Hence, the polytopes P and @ in (2.2) have at most ®(m,m +n) and ®(n,m + n)
vertices, respectively. The bound is stricter for the polytope of smaller dimension
since ®(d, N) < ®(d+ 1,N) if d < N/2. This implies the following bound on the

number of equilibria [7]:

Proposition 3.1. A nondegenerate m x n bimatriz game, m < n, has at most
®(m,m +n) — 1 Nash equilibria.

For m = n, ®(n, 2n) grows asymptotically from n to n+1 by an average factor
of 1/27/4 = 2.598..., much faster than 2". We consider more precise asymptotics in

Section 4.

In our construction, we let P = Q = C,4(2d)®, which are simple polytopes
since Cy(2d) is simplicial. We consider only even dimensions d. In odd dimension,
the polytopes P’ and @' in (3.1) constructed from P and @) in the next lower even
dimension d have a larger number of complementary vertex pairs than those based

on the cyclic polytopes in dimension d + 1.

So, in the following, observe that d = 2[ is even, there are N = 2d = 4]
points on the moment curve, whose convex hull defines Cy(N), and which after
translation so that O is in the interior of that polytope represent the normal vectors
of the facets of its polar Cy(N)® as in (3.2), which have to be suitably labeled.
Furthermore, the facets of Cy(N) define the vertices of P and @), among which we

look for complementary pairs.

It suffices to look at the representation of these vertices of P and (), the facets
of C4(N), by 0-1-strings s = s153... sy, for example s = 01101100 if d = 4, N = 8.
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These strings are balanced, that is, contain the same number of 0’s and 1’s, and
fulfill the Gale evenness condition. We can assume that the labeling of the N facets
of P is in the order of the positions in this string. The labeling of the facets of () is
given by a certain permutation v of {1,..., N}, such that s defining a vertex of P

is part of a complementary pair if and only if the complementary permuted string

defines a vertex of @, that is, fulfills the Gale evenness condition, where 0 = 1
and 1 = 0. For example, suppose that v is the identity permutation. Then for
s =01101100, 5, = 10010011 which does not fulfill Gale evenness, whereas 5, does
for s = 00011110. For these two strings s, the opposite holds when considering the

permutation

. 1—1 1if7is even .
_ <i<
v(7) {¢+1 ifiisodd, L=!SN (3-4)

With the identity permutation v, the polytopes P and @ do not have more than 2¢
complementary vertex pairs, since only the strings s that are composed of substrings
00 and 11, except at the ends, have the property that both s and 5, fulfill Gale
evenness. However, the permutation v in (3.4) leads to a number of complementary

vertex pairs that exceeds 2¢ for all even d > 6.

Proposition 3.2. Let S(I) be the set of balanced 0-1 strings of length 41 composed of
the substrings 00, 11, and 0110. Let s be any balanced 0-1 string of length N = 2d,
and let d = 2l. Then for the permutation v in (3.4), s and 5, fulfill the Gale
evenness condition if and only if s € S(I) or s =10s'01 for some s" € S(l —1).

Proof. Clearly, any string s as described fulfills the Gale evenness condition. The
substrings 00, 11, and 0110 in s are complemented to 11, 00, and 1001, respectively,
and permuted by v to substrings 11, 00, and 0110, respectively, in 5,. Similarly, an
initial or terminal substring 10 or 01 is left as it is, so 5, also fulfills Gale evenness.
Conversely, suppose s is not of the described form. If s starts with the substring
10, remove it. Then, remove repeatedly all initial substrings 00, 11, or 0110 from s.
If the remainder starts with 10, 0100, or 0101, the Gale evenness condition fails
for s. If it starts with 0111 (the only possibility left), it becomes 0100 in 5, so the

condition fails there. [l

Let E(d) be the number of complementary vertex pairs of (P, Q) in our con-
struction, where P = @ = (4(2d)® and the labels of @ are permuted by v. By

9



Proposition 3.2, E(d) is determined by the number o(l) := |S(I)| of balanced 00-
11-0110 strings of length 41 = 2d, namely

EQl) =o(l) + ol — 1). (3.5)

l)

Proposition 3.2 can be extended to odd dimension showing E(2[ + 1) = 20(
but as mentioned, this number is smaller than 2 - F(2[) for the polytopes (P',Q

)
constructed in (3.1).

If a string in S(I) contains k substrings 00, 0 < k < [, then it contains
the same number of substrings 11 since it is balanced, and [ — £ substrings 0110.
These substrings may be arranged in any manner, with (I+k)!/(k! k! (I — k)!) many

possibilities. Hence,

-3 B s (19 (1), 5

The first values of o(l) are given as follows. The numbers () are an asymptotic

approximation that we will prove in the next section.

[ 0 1 2 3 4 5 6 7 8
ol)] 1T 3 13 63 321 1683 8989 48639 265729 (3.7)
a(l) 3.4 13.8 65.5 330.4 1722.6 9165.3 49456.6 269636.8

Our construction produces the first counterexample to the Quint—Shubik conjecture
for d = 6 since E(6) = 76 > 2° (already E(4) = 16 = 2%, where the equilibria
are quite different from the game where A = B = I;). A specific 6 x 6 bimatrix
game with 75 Nash equilibria using the points u(t) and u(—t) for t = 1,2,...,6
on the moment curve, a translation so that the barycenter of these points is 0 (for

polarity), and Proposition 2.1, is described in [25].

Does the permutation (3.4) yield the maximum number of complementary pairs
for the cyclic polytopes? Trying out all (2d)! permutations shows that it does for
d = 6, where the permutation is unique up to the symmetry (cyclic shift and reversal)
of the strings fulfilling the Gale evenness condition. This computation takes hours
for d = 6 and therefore was not attempted for d = 8. We sketch a proof that
(3.4) is optimal for d = 6. Any Gale evenness string not in S(3) has a substring
011110 or 01111110 starting on an even position. For example, it may be 011110s
with s = 001100. Consider the strings 011011s and 001111s which belong to S(3)
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and which both differ from 011110s in only one label. Hence, these are vertices
of P forming a triangle or “clique” [14]. The complementary sets of labels for these
vertices share d — 1 labels. The corresponding d — 1 facets of () meet in an edge (if
at all) that contains only two vertices of (). Hence, a face of P that is a triangle
can have at most two vertices that are part of complementary pairs, and the two in
S(3) already are, so 011110s is not unless another complementary pair is sacrificed.
Similarly, replacing a substring 01111110 by its neighbors 01111011, 01101111, and
00111111 defines a simplex as a face of P with again only two vertices that can be
part of complementary pairs. So the 00-11-0110 strings yield indeed the maximum
number of complementary pairs for d = 6. It may be interesting to extend this

argument to higher dimensions.

The question for general polytopes remains open, already for d = 5. For d = 4,
the d-polytopes characterized in [5] and their triangles show that no polytope pair

has more complementary vertex pairs than the cubes [7].

4. Asymptotics of upper and lower bounds

In dimension d, the maximal number of complementary vertex pairs is bounded
from above by ®(d,2d) by the Upper Bound Theorem and from below by E(d) as
defined by (3.5) and (3.6). In order to compare these functions better with 2¢, we
will find asymptotically equal expressions. Functions f, g are called asymptotically
equal, denoted f(n) ~ g(n) as n — oo, if f(n)/g(n) — 1, that is, the relative error
goes to zero [4]. We apply Stirling’s formula

n
n! ~\V2mn (E)
e

to the upper bound U(d) := ®(d, 2d) in (3.3) for even d, which yields

3—1 20 (31\ 2 [3 (27’
20) = 2 Y ~ Sy 22
u@) ( [ ) 3l<l> 3 7rl<4>’
d
2 27/4 2.5981¢
U(d) ~ 2= YZUL g 23981 (4.1)
3 Vd Vd
for even d, where .921 is replaced by /2/7 ~ .798 if d is odd.

or

Finding a similar asymptotic expression for o(l) in (3.6) is more interesting.

This integer sequence has been studied before, as (3.7) looked up in [22] (and its
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electronic server, described there) reveal. The number o(n) is the number of “King
paths on a chessboard” [16], that is, the number of paths in a two-dimensional
integer lattice from (0,0) to (n,n) where the allowed steps are one unit right, up, or
diagonal (each such step corresponding to a substring 00, 11, or 0110, respectively).
According to [1, p. 81], o(n) = P,(3) for the nth Legendre polynomial P, defined

explicitly by ) )
oS00 e

k=0

[17] or recursively by Py(z) =1, Pi(z) = = and
P,(z) = z(2—1/n)Pyr_1(x) — (1 —1/n) P,_s(z). (4.3)

The recurrence (4.3) can be verified by (4.2). For x = 3, o(n) = P,(3), it can
— with some effort — also be given a combinatorial interpretation in terms of the

lattice paths with diagonal steps. Using the generating function

9y) = oln)y", (4.4)

n>0

the recurrence (4.3) for x = 3 is equivalent to the differential equation

9 )1 —6y+y*) +9(y)(y—3) =0

which, with ¢(0) = ¢(0) = 1, has the unique solution

9(y) = S — (4.5)

V1-6y+y?

Regarded as a function on the complex plane C, the function g is analytic around
the origin with Taylor coefficients o(n) as in (4.4). We use a theorem of [2] that
shows how to obtain information about these coefficients from the behavior of ¢ at
its dominant singularity (the one with smallest absolute value). For simplicity, we
state this theorem with overly strong assumptions concerning the domain A of the

function which we define here as

A=C—-{zeR|z>1}.

Theorem 4.1. [2, Corollary 2] Assume that f(2) is analytic in A and that as z — 1
in A,
f(z) ~ K (1= 2)

12



where K and « are real constants, « not a nonnegative integer. Then, as n — 00,

M/ (2) ~ %

In (4.6), [2"|f(2) is the Taylor coefficient of 2" in the expansion of f(z), and
' is the Gamma function, where I'(1/2) = y/m. We use Theorem 4.1 for o = —1/2

but have to normalize the dominant singularity of g(y) to one. It is given by the

n~*t (4.6)

smaller root 7 of the roots r and R of the polynomial 1 — 6y + 32,
r=3—-2v2, R=3+2V2,
so that
o) = ((r =) (R =y) " = (- (R=p)—y/r) ",
Let z =y/r, y =rz, so that g(rz) is defined for z € A and
f(2) = g(rz) = (r(R—r2)(1—2)) "~ (r(R= 7)) P (1 = 2)2
as z — 1. Using 1/r = R = (14+/2)%, (4.6) yields

1) ~ e

as m — oo and, since g(y) = f(y/r),

C1HV2 1+ V2
b0V Sy

The relative error of this approximation is for n > 6 less than two percent, as

o(n) ~a(n)

(3.7) shows. A better approximation [2] would introduce factors like (1 + ¢/n) for a
constant ¢ so that the relative error is of order O(n~?) rather than O(n™!), as it is

known for Stirling’s formula [4]. We have not investigated this further.

The asymptotic expression becomes simpler when used for the number E(d) of
complementary vertex pairs in (3.5) since 1 + /2 appears in the denominator and

cancels. Expressed in terms of d, as d — oo,

231 (14 v/2)4 2.414¢

PRV g g2l (4.7)
Vi Vd Vi

if d is even, with .949 replaced by (2°/4 — 27/4)/\/7 ~ .786 if d is odd, using the

construction in (3.1).

E(d)

As (4.1) and (4.7) show, the number E(d) of complementary vertex pairs in
our construction is not that far away from the upper bound U(d), at least compared
with the previously known lower bound 2¢. We summarize our result, where the

upper bound is due to [7].
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Theorem 4.2. The maximal number of Nash equilibria in a nondegenerate d X d
bimatriz game is bounded from above by U(d) — 1 and from below by E(d) — 1. As
d — 00, asymptotic expressions for U(d) and E(d) for even d are (4.1) and (4.7),

respectively.
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