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Abstract

An (n; k)-sequence has been studied. A permutation a1; a2; : : : ; akn of 0; 1; : : : ; kn − 1 is an
(n; k)-sequence if as+d−as 6≡ at+d−at (mod n) whenever bas+d=nc=bas=nc and bat+d=nc=bat=nc
for every s; t and d with 16s¡ t¡ t+d6kn, where bxc is the integer part of x. We recall the
“prime construction” of an (n; k)-sequence using a primitive root modulo p whenever kn+1=p is
an odd prime. In this paper we show that (n; k)-sequences from the prime construction for a given
p are “essentially the same” with each other regardless of the choice of primitive roots modulo
p. Further, we study some interesting properties of (n; k)-sequences, especially those from prime
construction. Finally, we present an updated table of essentially distinct (n; 2)-sequences for
n613. The smallest n for which the existence of an (n; 2)-sequences is open now becomes 16.
? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the sequence 0, 3, 4, 6, 7, 1, 5, 2 of length 8 (ai for 16i68) and its di�er-
ence (mod 4) triangle in Fig. 1, where the di�erence aj−ai (mod 4) for 16i¡ j68 is
calculated whenever ai; aj ¡ 4 or ai; aj¿4. We designate such a pair (ai; aj) as “com-
parable”. The asterisk ∗ in the triangle represents an incomparable situation. Observe
that in any row of this triangle the di�erences are all distinct modulo 4. We call this
sequence a1; a2; : : : ; a8 a “(4,2)-sequence”.
More generally, we can de�ne “comparability” of a pair (ai; aj) to mean that the

integer parts of both ai=n and aj=n are the same [10].
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Fig. 1. Di�erence triangle (mod 4) of a (4,2)-sequence 0; 3; 4; 6; 7; 1; 5; 2.

Fig. 2. A 4× 8 Vatican array having cyclic columns.

De�nition 1. Let a1; a2; : : : ; akn be a permutation of 0; 1; 2; : : : ; kn − 1. Let (ai; aj) be
called a “comparable pair” if bai=nc= baj=nc, where bxc is the integer part of x. Then,
a1; a2; : : : ; akn is called an “(n; k)-sequence” if

as+d − as 6≡ at+d − at (mod n)
whenever (as; as+d) and (at; at+d) are comparable pairs for every s; t and d with
16s¡ t¡ t + d6kn.

From the (4,2)-sequence shown in Fig. 1, one can construct the following 4×8 array
V of 8 symbols in which the top row is a1; a2; : : : ; a8 and the columns are cyclic shifts
of either 0; 1; 2; 3 or 4; 5; 6; 7, as shown in Fig. 2. The array V has the two properties
that (1) each row is a permutation of 0; 1; 2; : : : ; 7 and (2) for any two symbols a
and b and for any integer m from 1 to 7 there exists at most one row in which b
is m steps to the right of a. A k × n array which satis�es these properties is known
as a “Florentine array” [4]. Further, the array V is actually a “Vatican array”, which
is de�ned to be a Florentine array such that no two symbols are the same in any
column [4].
The original motivation for (n; k)-sequences [10] was to construct Vatican arrays

(and hence, Florentine arrays) of size k × nk as illustrated above, and this paper is to
report any further results after [8,10,11].
Florentine and=or Vatican arrays (or squares) were extensively studied in [4,1,2,8,

13,9]. These combinatorial structures have a wide range of applications in commu-
nications engineering: design of frequency hopping patterns for multiple-access com-
munications environments [5,9,12,13], design of radar and sonar arrays for improved
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range-Doppler measurements [3], and design of modulation signals for optical PPM
modulations [6]. They also �nd applications in the area of design of experiments [4,8]
and in extremal graph theory such as edge-decompositions of complete directed graphs
[1,2,14].
In [1,2], the polygonal-path construction for Florentine squares is introduced, in

which the columns are cyclic shifts of each other. It was also proved that a polygonal-
path Florentine square of size n× n exists if and only if there exists a “singly periodic
Costas array” of size n×n, or equivalently, a singly periodic Costas sequence of length
n (which is an (n; 1)-sequence in our terminology). Similarly, it was proved in [10]
that if there exists an (n; k)-sequence of length kn then we can construct an n × kn
Vatican array and hence an n× (kn+ 1) Florentine array.
This paper is organized as follows. In Section 2, we recall the main construction [10]

of (n; k)-sequences whenever nk +1=p is an odd prime, and now prove that all such
sequences of length nk are equivalent without regard to the choice of primitive roots
modp. In Section 3, we will investigate some futher properties of (n; k)-sequences,
especially, those from the “prime construction.” We were able to solve some of open
problems posed in [10]. Finally, we present an updated table of (n; 2)-sequences for
n613 in Section 4.

2. Main construction and equivalence

Let {ai | 16i6nk} be an (n; k)-sequence. For each j = 0; 1; : : : ; k − 1, let Sj =
{ai | nj6ai6n(j + 1) − 1}. Then, Sj is a set of comparable pairs each other and
a partition of the (n; k)-sequence. We will call Sj the jth comparable part of the
(n; k)-sequence. For each j = 0; 1; : : : ; k − 1 any member ai of Sj can be written as
ai = nj + t; t = 0; 1; : : : ; n− 1. Given an (n; k)-sequence {ai | 16i6nk} we can obtain
another (n; k)-sequence {bi | 16i6nk} by the following transformations [10]:
(A) For some Sj, bi is obtained by adding some constant c to all the ai ∈ Sj so that

bi = nj + di where di ≡ ai + c (mod n), 06di6n− 1.
(M) Let m be a constant which is relatively prime to n. For all Sj, bi is obtained by

multiplying m to all the ai ∈ Sj so that bi = nj + di where di ≡ aim (mod n),
06di6n− 1.

(P) For each j; l with 06j¡ l6k−1 we replace ai=nj+di ∈ Sj by bi=nl+di ∈ Sl
and replace ai = nl+ di ∈ Sl by bi = nj + di ∈ Sj.

(R) bi is obtained by the reverse order of ai, namely bi=ank−i+1 for all i=1; 2; : : : ; nk.
It is easy to check that {bi | 16i6nk} which is obtained by the above transforma-

tions is an (n; k)-sequence. We say that these two (n; k)-sequences {ai} and {bi} are
“essentially the same”.

Theorem 2 (Main construction and equivalence). Let g be a primitive root modulo
p = kn + 1¿ 2 where p is a prime. For i = 1; 2; : : : ; kn; let Indg i be the index of i
with repect to g namely; Indg i = j i� i = gj for some j = 0; : : : ; kn − 1. Let qi and
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ri be integers such that Indg i = kqi + ri; where 06ri6k − 1. Then; ai = qi + nri for
i = 1; 2; : : : ; kn is an (n; k)-sequence. Further; if h is another primitive root modulo p
and {bi} is the (n; k)-sequence constructed likewise then; two (n; k)-sequences {ai}
and {bi} are “essentially the same”.

Proof. See [10] for proof of the construction. Brie
y, if (ai; aj) is a comparable pair
then ri= bai=nc= baj=nc= rj and thus gkai =gkaj ≡ i=j (modp). Therefore, if as+d− as ≡
at+d − at (mod n), we have k(as+d − as) ≡ k(at+d − at) (mod kn); and hence we obtain
gk(as+d−as) ≡ gk(at+d−at) (modp). This implies that d ≡ 0 or s ≡ t (modp).
Now, if h is another primitive root modulo p then, we have an (n; k)-sequence {bi}

where bi=q′i+nr
′
i for which Indh i= kq

′
i+ r

′
i with 06r

′
i6k−1. Since h is a primitive

root, h= gl for some l which is relatively prime to p− 1 = kn and 16l¡kn. Since
Indh i = Indgl i = kq′i + r

′
i we have that

lkq′i + lr
′
i ≡ kqi + ri (mod kn):

Then, there are some integers e and f such that ri = lr′i − ek and qi = lq′i + e − fn.
Hence,

ai = qi + nri = (lq′i + e − fn) + n(lr′i − ek) = l(q′i + nr′i ) + e − fn− enk:
This implies that ai is obtained from bi by multiplying l and adding e − fn − enk.
Since l is relatively prime to kn, (n; k)-sequence {ai} is obtained from (n; k)-sequence
{bi} by transformations (A), (M), and (P). Thus two (n; k)-sequences {ai} and {bi}
are “essentially the same”.

Example 3. For the prime p=13 one can construct (n; k)-sequences of the parameters
(12,1), (6,2), (4,3), (3,4), (2,6), and (1,12) using primitive roots 2, 25, 27, and 211.
Fig. 3 shows that (4,3) and (3,4)-sequences using primitive roots 2 and 25. Consider
the (4,3)-sequence using a primitive root 25. Take a partition with S0 = {0; 3; 1; 2},
S1 = {7; 4; 6; 5}, and S2 = {9; 10; 8; 11} and multiply this sequence by 5 modulo 4 and
add 0 modulo 4 in S0, 1 modulo 4 in S1, and 3 modulo 4 in S2 and then using
transformation (P) we replace ai ∈ S1 by bi ∈ S2 and ai ∈ S2 by bi ∈ S1 so that
we can obtain an (4; 3)-sequence {bi}={0; 4; 5; 8; 3; 9; 11; 1; 10; 7; 6; 2} which is already
obtained by using a primitive root 2.

3. Other properties of (n; k)-sequences

Now, we study some properties of the (n; k)-sequences determined by the construc-
tion in Theorem 2.
For l= 1; 2; : : : ; n− 1 let Nl be the number of l’s in the di�erence (mod n) triangle

of an (n; k)-sequence {ai}, and let N =
∑n−1

l=1 Nl. For each j= 0; 1; : : : ; k − 1 let Sj be
the jth comparable part of {ai | 16i6nk} i.e., Sj= {ai | ai= nj+ t; t=0; 1; : : : ; n− 1}.
Then, for each l= 1; 2; : : : ; n− 1, since Sj contains every residue mod n exactly once,
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Fig. 3. Examples of (n; k)-sequences for p = 13.

the residue t + 1 occurs either to the right of t or to the left of t (not both) exactly
once for all t = 0; 1; : : : ; n− 1. This shows that for each l= 1; 2; : : : ; n− 1

Nl + Nn−l = kn and hence N = kn(n− 1)=2:
Note that the sequence {ai} does not have to be an (n; k)-sequence in order to obtain

the above result. That is, it is su�cient that {ai} is a permutation of 0; 1; 2; : : : ; nk − 1.

Theorem 4. Let p=nk+1 be a prime; and {ai} be an (n; k)-sequence determined by
the construction in Theorem 2. In the di�erence (mod n) triangle we have Nl = kn=2
for l = 1; 2; : : : ; n − 1. Further; if n is even then the middle column in the di�erence
(mod n) triangle contains n=2 exactly nk=2 times and if n is odd then the middle
column in the di�erence (mod n) triangle does not contain any number.

Proof. For each i and d with 16i¡ i + d6kn, let i = gj, i + d = gj1 , p − i = gj′
and p− (i+d)= gj′1 where g is a primitive root modulo p and 06j; j1; j′; j′16nk − 1.
From i = gj and p− i = gj′ we have that

gj
′
= p− i =−gj = g(p−1)=2gj = g(p−1)=2+j = gnk=2+j

and hence
nk
2
+ j ≡ j′ (mod nk): (1)

Similarly, gj
′
1 = p− (i + d) = gnk=2+j1 implies that

nk
2
+ j1 ≡ j′1 (mod nk): (2)

Hence, ai and ai+d are comparable if and only if j ≡ j1 (mod k) i� j′ ≡ j′1 (mod k) i�
ap−i and ap−i−d are comparable. Thus, if (ai; ai+d) is a comparable pair then we have
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Fig. 4. Di�erence triangle of (4,3)-sequence.

Fig. 5. Di�erence triangle of (3,4)-sequence.

that

ai+d − ai ≡ 1
k
Indg

i + d
i
(mod n);

ap−i − ap−i−d ≡ 1
k
Indg

p− i
p− i − d ≡ 1

k
Indg

i
i + d

(mod n):

Therefore, (ai+d − ai) + (ap−i − ap−i−d) = n. Since Nl + Nn−l = kn, we have that
Nl = Nn−l = kn=2 for l= 1; 2; : : : ; n− 1. Now if n is even then from (1) we have that
j ≡ j′ (mod k) and thus ai and ap−i are comparable for all i = 1; 2; : : : ; nk. Thus, the
middle column in the di�erence (mod n) triangle contains the number

ap−i − ai = 1
k
Indg(−1) = n2 :

exactly nk=2 times. On the other hand, if n is odd then (1) shows that ai and ap−i
are not comparable for all i = 1; 2; : : : ; nk. Thus, the middle column in the di�erence
(mod n) triangle does not contain any number.

We have (4; 3), and (3; 4)-sequences in Fig. 3. Using these two sequences we obtain
the di�erence triangles of (4; 3)-, and (3; 4)-sequences (Figs. 4–6) which explain the
results in Theorem 4.



H.-Y. Song, J.B. Lee /Discrete Applied Mathematics 105 (2000) 183–192 189

Fig. 6. Di�erence triangle of (6,2)-sequence.

However, Theorem 4 does not hold for some (n; k)-sequences which are not con-
structed by using a primitive root modulo p. For instance, a (6; 2)-sequence in Fig. 6
shows that N1 = 6; N2 = 5; N3 = 6; N4 = 7, and N5 = 6.
Given an (n; k)-sequence {ai} of length nk, let {ci} be the k-ary sequence of length

nk determined by the rule ci = j for some j= 0; 1; : : : ; k − 1 if ai ∈ Sj where Sj is the
jth comparable part of the (n; k)-sequence {ai}. In this k-ary sequence t consecutive
i’s surrounded by symbols other than i on the left and right is called a “run” of length
t. Now, (ai; aj) is a comparable pair if and only if ci = cj, and in this case we also
call (ci; cj) comparable. In this sequence of cj’s, let R be the total number of runs, Ri
the number of runs of length i, and Ci the number of comparable pairs of the form
(cs; cs+i).

Theorem 5. Let {ai} be an (n; k)-sequence and {ci} be the corresponding k-ary se-
quence. Then; in the sequence of ci’s; the total number R of runs is at least n(k−1)+1
and at most ((k + 1)=2)n + ((R1 − 1)=2). Further; we have ((k − 1)=2)n − ((R1 −
1)=2)6C16n− 1 and n(k − 1) + 1− (R1 + R2)6C26n− 1.

Proof. Since there are R runs in the sequence {ci} if and only if there are R − 1
incomparable adjacent pairs, we have that C1 = (nk − 1) − (R − 1) = nk − R. But
obviously C16n− 1 and hence R¿n(k − 1) + 1. To obtain the upper bound on R we
compute the following:

nk − R=
∑

i¿1

iRi −
∑

i¿1

Ri =
∑

i¿2

(i − 1)Ri¿R2

and hence we obtain R6nk − R2, also from the following inequality:

n− 1¿C2¿
∑

i¿3

(i − 2)Ri

= R+
∑

i¿4

(i − 3)Ri − (R1 + R2)

¿ R− (R1 + R2);
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we obtain that R6(n−1)+R1+R2. Thus, we have that R6((k+1)=2)n+((R1−1)=2).
Further, ((k − 1)=2)n− ((R1 − 1)=2)6C16n− 1 since C1 = nk − R and we have that

n− 1¿C2¿R− (R1 + R2)¿n(k − 1) + 1− (R1 + R2):
Thus, the proof is completed.

Theorem 6. Let p= nk + 1 be an odd prime; {ai} be an (n; k)-sequence constructed
using a primitive root modulo p; and {ci} be the corresponding k-ary sequence. Then
we have that
(1) Ci6n− 1 for i = 1; 2; : : : ; p− 2.
(2) C1 = n− 1 and hence R= n(k − 1) + 1.
(3) C2 = n− 1 if n is odd and C2 = n− 2 if n is even.

Proof. Statement (1) is obvious. For (2) and (3), we proceed as follows. An (n; k)-
sequence {ai} can be partitioned into comparable parts

Sj = {jn; jn+ 1; jn+ 2; : : : ; jn+ (n− 1)} for j = 0; 1; : : : ; k − 1:
Let g be a primitive root modulo p. If {ai} is constructed from g as in Theorem 2,
then we have ai = qi + nri ∈ Sj i� j = ri and (qi; ri) ∈ {(0; j); (1; j); : : : ; (n − 1; j)} i�
Indg(i) ∈ {j; k + j; 2k + j; : : : ; (n − 1)k + j} i� i ∈ {gj; gk+j; : : : ; g(n−1)k+j}. Therefore,
the partition S0; S1; : : : ; Sk−1 of {0; 1; 2; : : : ; kn − 1} induces a partition E0; E1; : : : ; Ek−1
of {1; 2; : : : ; kn} as follows: ai ∈ Sj i� i ∈ Ej = {gj; gk+j; : : : ; g(n−1)k+j}.
Now, since ai and ai+d are comparable i� both ai and ai+d belong to Sj for some

j i� both i and i + d belong to Ej for some j, we need to compute the number of
disjoint pairs (m; t) satisfying gt − gt+mk = ±1 where 06t6nk − 1, 16m6n − 1.
Obviously, for each m(16m6n− 1), there exists unique integer t(06t6nk − 1) for
which gt(1− gmk) = 1. However, we have that

gt(1− gmk) = 1 = gnk=2+t+mk(1− g(n−m)k):
Thus we have at most bn=2c solutions for which gt(1 − gmk) = 1. Similarly, we have
at most bn=2c solutions for which gt(1− gmk)=−1. If n is even, then gt(1− gnk=2)=1
implies that gt+nk=2(1− gnk=2) =−1. Therefore, we have at most n− 1 solutions (m; t)
to gt(1 − gmk) = ±1 with 16m6bn=2c. It is easy to check that each one of n − 1
solutions (m; t) contributes to a comparable pair of length 1. Thus, C1=n−1 and hence
R=n(k−1)+1. This proves (2). Similarly, we have n−1 solutions to gt(1−gmk)=±2.
However, in this case we counted the pair (a1; ank) since nk−1=−2 (modp). Of course,
it is not a pair of length 2. But, we know that (a1; ank) is a comparable pair if and
only if n is even. Thus we have proved (3).

4. Number of (n; 2)-sequences

Finally, we present an updated table of essentially distinct (n; 2)-sequences for n up to
13 in Table 1. The number w2(n) is the number of essentially distinct (n; 2)-sequences
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Table 1
The number w2(n) of essentially distinct (n; 2)-sequences

n 2n w2(n) CPU time (n; 2)-sequences {ai}
1 2 1 01a

2 4 1 0231a

3 6 2 013254a

035124

4 8 2b 01465372
04217563

5 10 5 0159738246
0513476928
0514367928a

0589173246
0596184237

6 12 4 ∼ 0:0 s 026B831A4957
06218A7B4593
0621A8B74593a

061BA8452793

7 14 8 ∼ 2:0 s 017B24D5CA3698
017B64C3D825A9
07148AB6539D2C
071CA524D986B3
07A124958DC63B
07B1395A48D62C
0791AB8365D42C
079A14D28C653B

8 16 6b ∼ 1:6 min 0182AFD379BE6C54
0182E9B37FDA6C54a

018AD3B26F79EC54
018EB3D2697FAC54
089F27E51A36BDC4
089F61E37A52BDC4

9 18 1 ∼ 5 min 2n + 1 = 19 is prime
10 20 0 ∼ 140 min NONE
11 22 1b ∼ 7 h 2n + 1 = 23 is prime
12 24 0b ∼ 14 days NONE
13 26 0b ∼ 130 days NONE
14 28 ¿1 ? 2n + 1 = 29 is prime
15 30 ¿1 ? 2n + 1 = 31 is prime
16 32 ? ? ?
aIndicates that it is from the prime construction in Theorem 2.
bTwo corrections, w2(4) and w2(8), three more terms based on some extensive computations.

[10] and appears also in [7] with ID number A007281 for n up to 10. Table 1 shows
two corrections, w2(4) and w2(8), and three more terms based on some extensive
computations. These are represented by footnote b. The horizontal lines between the
sequences inside the same n signi�es distinct binary sequences induced from {ai}.
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The footnote a indicates that it is from the prime construction in Theorem 2. For
n¿10, the symbol A, B, C, : : : are used to denote 10; 11; 12; : : : ; etc. CPU time is
based on DEC-Alpha PC with 533 MHz clock speed. The smallest n for which the
existence is open now becomes 16, and the smallest n for which the exact value of
w2(n) is not yet determined becomes 14.
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