Symbolic Computation in Nonlinear Dynamics

Robert M. Corless
Department of Applied Mathematics,
The University of Western Ontario,
London, CANADA NG6A 5B7

rcorless@uwo.ca

This paper is dedicated to the memory of
M. A. H. Nerenberg (1936-1993).

February 28, 1994

Abstract

This paper gives examples of how computer algebra systems can help
us to understand nonlinear dynamical systems and their numerical sim-
ulations. We caution against naive use of exact arithmetic, but we give
examples where elementary use is helpful. We also look at the use of poly-
nomial computations—such as factoring, computation of discriminants,
and Grobner bases—in bifurcation studies.

1 Introduction

This paper investigates the role symbolic computation can play in the under-
standing of nonlinear dynamical systems. Symbolic computation does not mean
‘symbolic dynamics’, where the dynamics of the iteration of a map is understood
by converting the problem to a shift map on a sequence of ‘symbols’. It means,
instead, the use of a computer to perform mathematical operations such as
exact arithmetic, polynomial manipulations, taking derivatives, and evaluating
integrals. We use these facilities here to try to understand certain features of
nonlinear systems.

For a representative sample of works using symbolic computation to study
nonlinear dynamical systems, see various papers in [2, 14, 18, 21, 23]. This is
by no means an exhaustive list.

Overall, symbolic computation can be very useful in symbolic dynamics, but
as the first section will show, sometimes it is not helpful at all.

2 Naive Use

The following cautionary tale is included here because I have seen people actu-
ally advocate the use of symbolic computation in the following way for nonlinear
dynamical systems.

Suppose that we are worried about the effects of floating-point arithmetic
on the iteration of a map: say the tent map

| pa ifr<1/2
Tx) = { u(l—x) otherwise

or the discrete logistic map
L(z) = ax(l —x). (1)

This is a reasonable thing to worry about: for certain parameter values, these
maps are chaotic, which means they are exponentially sensitive to changes in the
initial conditions or to changes in the map, such as are produced by rounding
errors. If you iterate these maps using floating-point arithmetic, in a very short
time (say 10 or 15 iterations) the computed orbits will be completely different
from the true orbits.

By ‘orbits’ we mean the set of numbers you get by starting with some given
zg, and producing #1 = T(#g), #2 = T(x1), x3 = T(x2), and so on.

It turns out that for many maps, and in particular for these maps, (for
certain parameter values) one can prove that a property called ‘shadowing’
holds: if your floating-point arithmetic is sufficiently precise, then there is a
true orbit which is uniformly close to the computed one (in which case we say
the true orbit shadows the computed one). This may or may not actually help,
however. See [11, 15, 22] for a deeper discussion. For now, assume that we want
to use exact arithmetic to try to avoid these somewhat problematic issues.

Let us begin with the tent map, and pick g = 3. For this value of p it is
known from ‘symbolic dynamics’ that there exists an uncountable (but measure
zero) set of initial points @y for which the orbits do not leave the interval 0 <
x < 1; that there are periodic orbits of every period; and that the map is
chaotic. Numerical simulation of this map using floating-point arithmetic does
not confirm these results. In fact, I could not find any periodic points by using
floating-point arithmetic. Instead, all the orbits ‘escaped’—i.e. became bigger
than 1 and thence went to infinity.

Interval arithmetic (which guarantees that the correct result of any floating-
point operation is contained in the resulting interval [24]) is more reliable, but
but still not illuminating; after a very short number of iterations, the interval
containing the point in the orbit is just [0, 1]—the expansiveness of the map
defeats the purpose of doing correct interval arithmetic. Let us try instead
using exact arithmetic.

T := proc(x:numeric)
if x < 1/2 then
3*x
else
3% (1-x)
fi
end:

vV V V VV V V VYV

T(1/10);
3/10

> T(M);
9/10

> T(M);
3/10

So we have, relatively easily, found a periodic orbit. We now look at a vector
of 1nitial conditions to see if we can find any more.

>V :=n -> vector(n, (i-> i)/(n+1));
i=->1i
V :=n -> vector(n, ---——-)
> V(19);
[1/20, 1/10, 3/20, 1/5, 1/4, 3/10, 7/20,

11 13

2/5, 9/20, 1/2, -——-, 3/5, -———,
20 20
17 19

7/10, 3/4, 4/5, --——, 9/10, ——— 1
20 20

> map(T,");
21
[3/20, 3/10, 9/20, 3/5, 3/4, 9/10, ——-—,
20
27 27 21
6/5, -—--, 3/2, -———, 6/5, -——-,
20 20 20

9/10, 3/4, 3/5, 9/20, 3/10, 3/20 1]

What we see is encouraging: we have found, with very little effort, one of
the periodic orbits, and several true trajectories which end up on this periodic
orbit. Further investigations uncover other periodic orbits; at very little cost.

Consider now the discrete logistic map, with @ = 3.6 = 36/10 = 18/5. The
results here are very different.

v
=
i

36/10;
h := 18/5

>L:

t -> h*t*(1-t);
L:=t->ht (1-1%)

Because of floating-point calculations, we think that chaos occurs in this map
for h near 3.6.
> x :=1/2;

x = 1/2

> nsteps := 14;
nsteps := 14

> times := array(l..nsteps):

> d_sizes := array(l..nsteps):

> for i to nsteps do

> st := time(): x := L(x); times[i] := time()-st;
> d_sizes[i] := ilogl0(denom(x));

> od:

> print(times);

[0, 0, 1.000, O, 0, O, O, O, O, O,
2.000, 6.000, 22.000, 91.000]

> print(d_sizes);

[1, 2, 5, 10, 21, 44, 89, 178,
357, 715, 1431, 2862, 5725, 11451]

The array d_sizes contains the number of digits in the denominator of the iter-
ates. We see that the number of digits more than doubles with each iteration—
that is, there is exponential growth in the size of the exact rational number used
to represent the iterate. This leads to exponential growth in computing time,
and indeed we see that the time to compute each iterate basically quadruples
with each increment of n. Thus we can expect that it will take nearly 400 sec-
onds to compute the next iteration, nearly 1600 for the one after that, and so
on.

This shows that exact arithmetic is useless for this problem—at least, this
naive attempt is useless.

We return now to the tent map, to see if we were just lucky with it the first
time. If we change the 3 to 31/10, we see that indeed this was so—we now get
exponential growth in the size of the rational numbers used to represent the
iterate.

3 Elementary Use

However, if we are not so naive, we can use exact or ‘arbitrary precision’ floating-
point arithmetic for (some) nonlinear maps. For example, consider exact com-
putation of the first 8192 elements of the Gauss Map starting at « = = — 3 [12].
The Gauss map is defined as

0 ifz=0
G(z) = { z7'mod 1 otherwise
and maps [0,1) to itself. This map is used in the computation of continued
fractions; putting ng = [z], the integer part of @, and vy = & — ng, the fractional
part of z, and yz+1 = G(y1), then the integer parts of 1/4; are the entries ny
in the continued fraction expansion

1

r=ng+——
1
n1+n2+;

If we start with 8500 digits of &, then a theorem of Khintchin’s [12, 19]
says that we may expect that the first 8192 4+ 25 partial quotients nj of the
computed continued fraction will be correct (this is easy to check afterwards).
Then we can give uniformly accurate approximations to the orbit of ¢ starting
at # — 3 by using the fact that the Gauss map 1s just the ‘shift map’ on the

continued fraction representation of yo: if v = [n1,n9,n3,...] then G(y) =
[n2, ns, na,..]. Using some approximation theory of simple continued fractions,
Y% = [k, Rk41, .- ., NEyas] + € where |¢| < 107°; this enables us to (relatively)

cheaply follow the orbit of 7g.

This example is not quite as ad hoc and special-purpose as it seems. What
we have really used here 1s the ‘Markov partition’ representation of the orbit
to give uniformly accurate floating-point approximations to the elements of the
orbit.

Further, one can extend this idea to the case where we do not know a priori
the initial condition to such accuracy—instead, we can compute as we go along
the initial conditions that correspond to the computed orbit [22]. This topic
will not be pursued here, except to note that this is the idea behind the strong
shadowing result for the Gauss Map [11].

For an example of the use of the networks package in Maple to analyze the
effectiveness of shadowing for this map, see [9].

4 Symbolic Algebra and the Logistic Map.

If, instead of a numerical value of a, we use a symbol in equation (1), it turns out
that we can gain valuable algebraic insight into the bifurcations of the logistic

map. We begin with the Maple syntax for the logistic map operator, which is
the following.

> f = x -> a*x*(1-x);

f=r—ax(l—2)

This tells Maple that f(u) = au(l—u), with a being a variable. In the following,
the phrase (£0@3)(x) is the Maple syntax for f)(z) = f(f(f(x))).

> fn := (x,n) -> expand((f@0n)(x));

fn :=(x,n) — expand(f(")(x))

First, let us look at the fixed points of f, or the roots of — f(z).
> factor(x - £(x));

z(l—a+4ax)

The solutions are # = 0 and # = 1 — 1/a, which is positive if a is bigger than 1.
We ignore the trivial solution x = 0.

> nontrivial := 1 - 1/a;

nontrivial =1 — 1

a
These roots will be stable if the derivative is less than 1 in magnitude. Thus
we investigate the locations where the derivative is equal to 1, and the locations
where the derivative is equal to —1. We can simply evaluate f'(z*) where
z* = 1 —1/a is the nontrivial steady state. This evaluates to 2 — a, and we can
very simply see that f'(z*) = 1 if a = 1 and f/(¢*) = —1 if a« = 3, and thus
|f'(z*)] < 1if 1 < @ < 3. This gives us all the stability information that we

need. We now investigate the period-two points.

> £2 := fn(x,2);
R=d’r—a®2’+2a%> —ad®2* - 32
> factor(x - £2);

2

z(ar+1l—a)(a xz—azx—ax—l—a—l—l)

Notice that the period-1 points are also period-2 points. Only the last factor
describes the true period-2 points.

> period_2 := op(3,");

period 2 :=a?2? —d’r—ax+a+1

We use Maple to find the discriminant of that polynomial. This algebraic quan-
tity i1s very useful in this analytic context: the roots of the discriminant tell
us which parameter values ¢ may give rise to multiple roots in a polynomial.
See [1] for an introduction to the theory of discriminants.

> factor(discrim(",x));

a*(a+1)(a—3)
This discriminant will be zero precisely when there are multiple period-two
points; the only positive root is at a = 3.
> solve(period_2,x):
>rl :="[1]: r2 := ""[2]:

> rl := map(factor,rl);

1 a2—|—a+\/a2(a—|—1)(a—3)
T2 a?

T

>r2 :

map(factor,r2);

_laz—i—a—\/az(a—l—l)(a—iﬁ)
T2 a?

g @

> plot ({nontrivial,rl,r2},a=2..4,0..2);

A slightly modified version of this plot—including stability information—ap-
pears in Figure 1. We knew from before that the period-one solution loses
stability at (3,2/3), which is precisely where the two new period-two points are
‘born’. We now look at stability of these points. As before, we simply evaluate
the derivative (of %) this time) at the period-2 points. Tt turns out that we
can do this economically in Maple by handling both roots at once, using the
Root0f construct, as follows.

> alias(alpha=Root0f (period_2,x));

I«

bl

This tells Maple that « is one of the period-2 points. Maple has no way of
telling which one, so it will apply only simplification rules valid for both, such

as a’z® —a’r —ax +a+1= 0. We now evaluate the derivative of f(*) at 2 = a.
> df2 := diff(£2,x):

> subs(x=alpha,'");

0.8

0.71

0.6

0.5+

0.3

0.2

0.1r

Figure 1: The nontrivial fixed-point and the period-2 points. The points are
stable where the line is solid.

> —2aa®+6aa’? -2 —4a®a?

That looks rather complicated, but we will see if Maple can simplify it a bit:
> simplify(");

—a’+2a+1

This 1s independent of a—that is, the value of the derivative depends only on a,
not on which period-2 point we are on. This allows very simple determination
of the stability.

> student [completesquare] (",a);

—(a—1)*+5

This is between 1 and —1 if and only if 3 < a < 1 + V6 = 3.449 Thus both
period-2 points lose their stability at @ = 1 + v/6. To determine just how they
lose their stability, we can investigate the period-4 points, where we see that
there are multiple period-4 points at a = 14+/6 by a discriminant analysis. We
do not continue this investigation here, for space reasons. Consult the worksheet
logmap.ms in the Maple Share Library for a continuation of this analysis. The
worksheet explores the period-4 and the period-8 points. For this map still more
can be said, and indeed the use of symbolic manipulation can go quite far [4].

5 Derivatives

Computation of derivatives is probably the simplest yet most effective use of
symbolic computation for nonlinear dynamics. This facility is much more useful
for larger problems. Computation of Jacobian derivatives of vector functions by
hand is tedious and error-prone, although a good human differentiator can still
beat most computer algebra systems on special problems [16].

Computation of Taylor series or Lie series for use in a numerical method for
solving differential equations is also extremely helpful in understanding the be-
haviour (e.g. for analysis of the singularity structure of the solution) of nonlinear
initial-value problems.

6 Perturbation Expansions

Perturbation is one of the principal techniques by which nonlinear problems are
attacked, and a comprehensive bibliography of computer-algebra implementa-
tions of perturbation techniques would be much longer than this paper itself.
Hence I will confine myself to general remarks.

The computation of normal forms is a perturbation expansion that is par-
ticularly useful for bifurcation studies, as is the method of multiple scales [8].
These usually involve perturbation from linear, typically oscillatory, systems.

It is also possible to perturb from solvable nonlinear problems—in [5] a very
good perturbation analysis of the forced Duffing equation was made by using
elliptic functions.

The computation of Lyapunov exponents is essentially a perturbation cal-
culation—just the first term, and hence only one (Jacobian) derivative need
be taken, followed by the solution of a linear system of ordinary differential
equations. Likewise Melnikov’s method uses a clever perturbation scheme to
arrive at an integral, the properties of which can tell us if the original system is
chaotic. Computer algebra can sometimes help with the analysis of the integral.

7 A Problem in Flow-Induced Vibration

In [8], bifurcation of a mathematical model of flow-induced vibration was studied
using computer algebra. The Macsyma program TWOVAR [25] was used to con-
vert the differential equations to a simpler set by the method of multiple scales,
and the (several parameter families of) equilibria of the resulting equations were
found with Maple by use of Grobner bases. The stability of these equilibria were
studied in the usual fashion by finding the characteristic polynomial of the Jaco-
bian matrix (which was also computed using Maple). The conditions for which
the equilibria are stable were derived using the Hurwitz code from the Maple
share library [10]. These conditions were then analyzed for bifurcations—that
18, qualitative change in the nature or stability of the equilibria—Dby extensive

use of polynomial factorization, discriminants, and graphics. Independent use of
Matlab at selected points in the bifurcation diagram confirmed the symbolic re-
sults, which could not have been obtained by hand or numerically (the regions of
qualitative change vary too widely in size to be completely found numerically).

One remarkable feature of this problem was the number of high-degree mul-
tivariate polynomials which happened to factor usefully. For example, the fol-
lowing discriminant was obtained in [8].

Ag, = —11—61;10 s5d° (4v +vs?d? — 52d2)2
x(4v — sd) (4v + sd) (1024 v* — 27 5°d%) .

The above factored form allowed simple and useful curves to be drawn in the
bifurcation diagram in the sd—wv plane, separating regions of qualitatively dif-
ferent behaviour. Ultimately, from all three stability conditions, nine different
regions were identified in parameter space, giving a complete characterisation
of the simple behaviour of the solutions to the flow-induced vibration model.
The behaviour discovered included stable and unstable limit cycles, and regions
in parameter space where two Hopf bifurcation points were joined by unstable
limit cycles (this condition is often seen in period-doubling sequences leading to
chaos).

8 The Method of Modified Equations

We give here a brief example of the method of modified equations [17], which
is a technique used to examine the reliability of numerical methods for solving
differential equations. This particular example is pursued further in [6] and [7].

In 3, p. 221] W.-J. Beyn gives the following didactic example to show that
it is impossible in general to embed an arbitrary discrete dynamical system
into a continuous one. Consider Euler’s method, with fixed stepsize h, ap-
plied to the simple nonlinear problem y' = y?. Then the resulting discrete
dynamical system is u — u + hu?, which is not a diffeomorphism (the deriva-
tive is zero at hu = —1/2, and the inverse map is not unique), whereas the
h-flow of any continuous dynamical system must be a diffeomorphism. Hence
in some sense 1t is impossible to embed this discrete system in a continuous
one. Beyn [3] then remarks that this proof relies on the global behaviour of the
discrete flow, and conjectures that even locally this would be impossible (i.e. in
some u-neighbourhood of 0).

We start our analysis here by computing a few terms in the h-series for the
modified equation. As usual [17], we expand the local error of Euler’s method
applied to this problem in a Taylor series and set it to zero:

(u(t+ h) —u(t)) /h —u?(t) =

W(t) — u(t) + Lhu(t) + Lh2(t) + -

10

Differentiating once to eliminate uv”, and again to eliminate "/, and so on, we
find that a fourth-order modified equation 1is

u' = (1—hu+ %(hu)2 — %(hu)?’)u2 .

This leads us to suspect a very simple form for the infinite-order modified equa-
tion that we wish to find, viz

u = B(hu)u2) (2)

We now simplify by nondimensionalizing. Put v = hu and 7 = t/h, and then

dv 9
= B(v)v (3)
and
v(r+1)=v(r)+ 02(7')) (4)

A simple Maple program was written to compute more terms in the series for
B(v). Once a few more terms in the series were computed, the series was
recognized [26, 27]. Tt turns out that this problem has already been solved,
in [20], in the domain of formal power series.

The series for B(v) can be constructed recursively as follows. If

B(v) = ¢y + v 4 cav? 4 - - (5)
(in a purely formal sense), then ¢; = 1 and

n—1 .
1 n—t+1
n = - n—it 6
¢ n—12< it 1)c (6)

i=

forn > 1,

where (7) is the binomial coefficient [20]. This enables efficient calculation of
any desired number of terms in the series for B(v).

It is unclear just how much use the series (5) is at this point, so we use
an alternate approach to get more information about B(v). Differentiation of
equation (4) and using (3) gives us the following functional equation for B(v):

(1+v)°

PO =

B(v + v?) . (7)
This equation allows us to describe B(v) completely, and, together with the
series, to compute it efficiently and accurately.

We take B(0) = 1, as we expect from the series and from consistency of
Fuler’s method as A — 0. Now consider B(—1/4), for example. If B(—1/4)

11

exists, then

B(—3/16)

9
< B(=
i 8() (19) s

ot (L+w)?
-]H)(l—l—?vk) (8)

= 1.4266762676859975. ..

9
8

where v 41 = vp + v,% with vg = —1/4 and the penultimate equality is tentative
at this moment—pending proof that the product converges to a function which
satisfies (7)—and where we have used the fact that vz — 07 as k — oo if
vg = —1/4 and hence assumed that B(v) — 1.

Convergence of the infinite product in (8) is established by discovering that
the asymptotic behaviour of v; is vy & —1/(k — 1/vg), for initial values wvg
n (—1,0), and hence the terms in the product are asymptotic to 1 4+ O(1/k?)
and so the product converges absolutely. Note that 142v; # 0 unless vg = —1/2.

Now consider vy near —1/2. Equation (7) gives

(1 + Uo)2
1—|—21}0

and since v; = vo+v2 will be near —1/4 if vg is near —1/2 we see that B(v) has a
pole at v = —1/2. Note that this is exactly the place where the map u — u-+hu?
fails to be diffeomorphic: hu = v = —1/2. This is not a coincidence.

We now consider pre-images of —1/2 under v — v + v?; these, too, will be
poles (we cannot cancel out a pole with a zero unless (1 + v;) = 0 which only
happens if v, = —1; but all the forward images of —1 are 0). We graph the first
2000 pre-images of the pole at v = —1/2 in Figure 2. These pre-images were
computed using Matlab. This set of preimages approaches (and densely fills
out) the Julia set of the quadratic map v — v + v? since it approaches the a-
limit set of the unstable fixed point v = 0 [13, p. 287]. One sees that there is an
infinite number of poles of B, and as a consequence of the arbitrary approach of
the Julia set of this map to the origin [13] we see that there are poles arbitrarily
close to the point of expansion for the series 5. Thus the radius of convergence
of the series 5 is zero. Further, there is a natural boundary preventing analytic
continuation of the function defined by the infinite product 8 to the region
outside the Julia set.

We are mainly interested in B(v) for positive v, which is outside the Julia
set. This means that v; — co as k — co. If we run the iteration (7) backwards,
then we can get a convergent product. Define

B(vo) = B(vo +v5)

2uk

_ o fuw 9
YT T T T dun)

12

15

0.5f

-0.5f

Figure 2: The first 2000 pre-images of v = —1/2 under the map v — v + v2.
These are locations of poles of B(v), and as the number of pre-images increases,
we see the poles approach the Julia set of the quadratic map v — v+ v?. In fact
the poles are dense on that Julia set and form a natural boundary to analytic
continuation of the function B(v). The poles of B(v) thus also come arbitrarily
close to the origin.

|

B(v)
o

% 15 1 o5 0 05 1 15 2

Figure 3: The graph of B(v) for real v. The infinite-order modified equation
is ¥ = B(hy)y?, whose solution interpolates the Euler solution to y' = y? for
initial conditions yy > —1/(2k). B(v) can be evaluated by use of two convergent
infinite products, away from the only real pole at v = —1/2.

13

and, for ug = v > 0,
(o]

B(v) = kli[l % (10)

Note that the product starts at & = 1 this time, and that we have chosen a
particular pre-image for each uj by choosing uy41 to be the root of u+ u? = uy,
closest to zero. Note also that a numerically stable formula for this root has
been used in (9). A similar analysis to that for the product (8) shows that this
product converges for v = up outside the Julia set, and by construction satisfies
B(0) =1 and the functional equation (7).

We can solve (3) up to quadrature by separation of variables (this provides
a check for the product formulas for B(v)):

/v:kB(Ci“)UZ:/Okdt:k. (11)

It is an easy matter to verify by the change of variables v = u + u? (which can
be done for real u and v so long as v > —1/4 and hence u > —1/2) that as a
consequence of the functional identity (7),

Uk dv /v’“rl du
= = constant . (12)
/vk , Bv)er . Bwu?

Using the asymptotics of v and of uy as & — co we can show this constant is 1.
This is easily confirmed by numerical quadrature in Maple.

To evaluate B(v) in practice it turns out that the divergent series (5) is useful.
We can use the Maple evalf/Sum program, which uses Levin’s u-transform [28]
for convergence acceleration; as well, this method will sum certain divergent
series. For this example, Levin’s u-transform is successful for real v in [—0.1,0.1]
(for settings of Digits < 30) and this is precisely the region where convergence
of the infinite products (8) and (10) is slowest.

We have thus found a differential equation (2) whose solution interpolates the
Euler’s method solution of the original problem, for initial conditions vy > —1/2.
The singularity at v = —1/2 shows that this is not a dynamical system in the
ordinary sense, and thus supports Beyn’s original observation [3].

More importantly, the differential equation (2) is a large perturbation of
v = y?, no matter how small h is, once y gets large enough. However, on
compact y-sets, we see that by taking A small enough, we can get the exact
solution of a differential equation arbitrarily close to the original problem.

Generalizations to this are pursued in [7]. In particular, solution of Hamil-
tonian problems by symplectic methods is discussed, and Maple is used to gen-
erate good approximations to the Hamiltonians of the ‘nearby’ problems that
the numerical methods actually solve.

14

9 Concluding Remarks

Symbolic computation can be profitably used in the study of nonlinear dynam-
ical systems, although one must be careful not to expect too much of exact
arithmetic. The facilities for polynomial manipulation, factoring, taking dis-
criminants, and rootfinding are particularly useful. One can use Maple as a
numerical laboratory to examine the effects of floating-point arithmetic, and
one can use series expansions and modified equations to help to understand the
effects of discretization and the reliability of numerical methods.

Acknowledgements

This work was supported by NSERC. Bruno Salvy pointed out the reference [20].
I would like also to thank the students at the 1993 International Summer School
Let’s Face Chaos through Nonlinear Dynamics at the University of Ljubljana,
and my Applied Computer Algebra graduate students.

References

[1] E. J. Barbeau, Polynomials, Springer-Verlag Problem Books in Mathemat-
ics, 1989.

[2] H. H. Bau, T. Herbert, and M. M. Yovanovich, eds; Symbolic Computation
in Fluid Mechanics and Heat Transfer, ASME HTD-vol 105 AMD-vol 97,
1988.

[3] Wolf-Jirgen Beyn, “Numerical Methods for Dynamical Systems” in Ad-
vances in Numerical Analysis, I, Will Light, ed., Oxford Science Publica-
tions, 1991, pp. 175-236.

[4] Keith Briggs, personal communication

[5] Vincent T. Coppola and Richard H. Rand, “Symbolic Computation and
Perturbation Methods Using Elliptic Functions”, Trans. Sixth Army Con-
ference on Applied Mathematics and Computing, 1989, pp. 639-676.

[6] Robert M. Corless, Symbolic Recipes, vol II, Springer-Verlag to appear
1994.

[7] Robert M. Corless, “Error Backward” | in Proceedings of Chaotic Numerics,
Geelong, 1993, Peter E. Kloeden and Ken J. Palmer, eds. to appear.

[8] Robert M. Corless, “Bifurcation in a flow-induced vibration model” | to ap-
pear in Proc. Fields Institute Workshop on Normal Forms and Homoclinic

Chaos, W. Nagata and W. Langford, eds.

15

[9] Robert M. Corless, “What good are numerical solutions of chaotic differ-
ential equations?” | to appear in Computers and Mathematics with Appli-
cations.

[10] Robert M. Corless, “HURWITZ”, Maple share library, 1990.

[11] Robert M. Corless, “Continued Fractions and Chaos”, American Mathe-
matical Monthly, 99 no. 3, March 1992, pp. 203-215.

[12] Robert M. Corless, Gregory W. Frank, and J. Graham Monroe, “Chaos
and Continued Fractions”, Physica D, 46 1990, pp. 241-253.

[13] Robert L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd.
ed.; Addison-Wesley, 1989.

[14] Walter Gander and Jifi Hiebii¢ek, Solving Problems in Scientific Comput-
ing using Maple and MATLAB, Springer-Verlag, 1993.

[15] D. Gavelek & T. Erber, 1992, “Shadowing and Iterative Interpolation for
Cebysev Mixing Transformations”, J. Comp. Phys. 101 pp. 25-50.

[16] E. Katende, A. Jutan, and Robert M. Corless, ‘A problem in automatic
control’, to appear.

[17] D. F. Griffiths and J. M. Sanz-Serna, “On the scope of the Method of
Modified Equations”, STAM J. Sci. Stat. Comput., 7 | No. 3, 1986, pp.
994-1008.

[18] E. Kaltofen and S. M. Watt, eds, Computers and Mathematics, Springer-
Verlag, 1989.

[19] A.Y. Khintchin, Continued Fractions, P. Noordhoff (Groningen) 1963.

[20] G. Labelle, “Sur I'Inversion et I'Ttération Continue des Séries Formelles”,
Europ. J. Combinatorics, 1 , 1980, pp. 113-138.

[21] Thomas Lee, ed., Mathematical Computation with Maple V: Ideas and
Applications, Birkhauser, 1993.

[22] J. L. McCauley, Chaos, Dynamics, and Fractals, Cambridge, 1993.

[23] Kenneth R. Meyer and Dieter S. Schmidt, eds, Computer Aided Proofs in
Analysis, IMA vol. 28, Springer-Verlag, 1991.

[24] Ramon E. Moore, Methods and Applications of Interval Analysis, STAM
Philadelphia, 1979.

[25] Richard H. Rand and Dieter Armbruster, Perturbation Methods, Bifurca-
tion Theory, and Computer Algebra, 65 Applied Mathematical Sciences,
Springer-Verlag , New York, 1987.

16

[26] Bruno Salvy, personal communication
[27] I. Sloane, Handbook of Integer Sequences, 2nd ed.

[28] Ernst Joachim Weniger, Nonlinear Sequence Transformations for the Accel-
eration of Convergence and the Summation of Divergent Series, Computer
Physics Reports 10, North-Holland, 1989.

17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

