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PREFACE

You never know when you will encounter a binomial coefficient sum.
Doron Zeilberger [120].

This textbook aims to provide a “summa” i.e. a collection of “all” known
algebraic finite sums and a guide to find the sum you need. Of course, the hope is
to find this summa on your desk – like Thomas’ original was found on the altar!

The kinds of sums we consider are often presented as sums of products of bi-
nomial coefficients, rational functions and occasionally harmonic numbers. Closed
forms of such sums are usually called “combinatorial identities” though this term
ought to include identities between sums, double sums and other equations too.

Our favorite tool is to recognize the identity as some sum already known. To
do so we need to write the sum in a standard form and to advice a simple way to
change a given sum to this standard form. The standard has to be unique, hence
we cannot use more than one binomial coefficient, but must replace the others
with factorials. And the standard form must apply to the whole variety of sums
considered, so we cannot use the hypergeometric form which does not apply to the
formulas in chapters 17 and 18.

The ideal formula has the form – as does the fundamental theorem of algebra
– a sum of products equals a product of sums. But we have to weaken this demand;
we want to write a sum of products as a sum with as few terms as possible of
products of sums. The ideal is one term, but if such expressions simply fail to
exist, sums of two or three similar terms may help.

If the wanted sum is unknown, we provide the reader with a variety of tools to
attack the problem. We explain the famous algorithms of Gosper and Zeilberger,
and to assist the latter we include some advice to solve difference equations with
rational coefficients.

In order to classify the formulas we introduce a standard form which deviates
from the recently popular forms. We dislike the hypergeometric form for two rea-
sons, it conceals the important properties: symmetric, balanced and well–balanced,
and it is insufficient in relation to the sums due to Abel, Cauchy, Hagen–Rothe
and Jensen as well as sums containing harmonic numbers. And we dislike the for-
mulations with extensive use of binomial coefficients because they are not uniquely
defined so it seems difficult to prefer one form to another.

We prefer to use descending factorials and have found it convenient also to
have step lengths different from 1. Hence we introduce the notation, cf. chapter
1, formula 1.6,

[x, d]n = x(x− d) · · · (x− (n− 1)d)

which allows powers and ascending factorials to be written as [x, 0]n and [x,−1]n
respectively. In several cases it has been natural to consider d = 2 too. This is a
true generalization to be preferred to the analogy between powers and factorials
usually presented.
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We have added an appendix on the most elementary generalizations to a
q–basic form with their proofs.

I am deeply indepted to my teacher of this field and dear friend, the late
professor, dr. phil. Erik Sparre Andersen.

Furthermore, I want to thank my collegue Professor Jørn Børling Olsson for
improving my language.

Mogens Esrom Larsen
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1. NOTATION 11

CHAPTER 1. NOTATION

N The natural numbers, 1, 2, 3, · · ·
Z The integers, · · · ,−2,−1, 0, 1, 2, 3, · · ·
R The real numbers.
C The complex numbers, z = x+ iy.
For the nearest integers to a real number, x ∈ R, we use the standard

notation for the ceiling and the floor

�x� := min{n ∈ Z|n ≥ x}(1.1)

�x� := max{n ∈ Z|n ≤ x}(1.2)

and the sign, σ(x), of a real number, x ∈ R, is defined by

(1.3) σ(x) :=
{

1 x ≥ 0
−1 x < 0

Furthermore, we denote the maximum and minimum of two numbers, x, y ∈ R,
as

x ∨ y := max{x, y}(1.4)

x ∧ y := min{x, y}(1.5)

The factorial [x, d]n is defined for any number, x ∈ C, any stepsize, d ∈ C,
and any length, n ∈ Z, except for −x ∈ {d, 2d, · · · ,−nd}, by

(1.6) [x, d]n :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n−1∏
j=0

(x− jd) n ∈ N

1 n = 0
−n∏
j=1

1
x+ jd

−n ∈ N, −x /∈ {d, 2d, · · · ,−nd}

As special cases we remark, that

(1.7) [x, 0]n = xn n ∈ Z

and furthermore, we want to apply the shorthands

[x]n := [x, 1]n
(
x(x− 1) · · · (x− n+ 1) for n > 0

)
(1.8)

(x)n := [x,−1]n
(
x(x+ 1) · · · (x+ n− 1) for n > 0

)
(1.9)

The binomial coefficients,
(

x
n

)
, are defined for x ∈ C and n ∈ Z by

(1.10)
(
x

n

)
:=

⎧⎨
⎩

[x]n
[n]n

for n ∈ N0

0 for − n ∈ N

11
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The identity operator is defined for f : Z → C as

(1.11) I(f)(k) := f(k)

and the shift operator is defined as

(1.12) E(f)(k) := f(k + 1)

from which two we get the difference operator, Δ, defined by the expressions

Δ := E− I(1.13)

Δf(k) := f(k + 1) − f(k) .(1.14)

An indefinite sum or anti–difference of a function, g(k), is defined as any
solution, f(k), to the equation

(1.15) g(k) = Δf(k) .

(The anti–difference f(k) is uniquely determined up to a constant (or a periodic
function with period 1) by the function g(k).)

We denote this indefinite sum by

(1.16)
∑

g(k)δk := f(k)

The definite sum of a function, g(k), is defined for any indefinite sum (1.16)

(1.17)
∑b

a
g(k)δk := f(b) − f(a)

and we remark that the connection to the usual step–by–step sum is

(1.18)
∑b

a
g(k)δk =

b−1∑
k=a

g(k)

The harmonic numbers are defined by

(1.19) Hn :=
n∑

k=1

1
k

=
∑n

0
[k]−1δk

The generalized harmonic numbers are for n,m ∈ N and c ∈ C defined by

(1.20) H(m)
c,n :=

n∑
k=1

1
(c+ k)m

12



2. ELEMENTARY PROPERTIES 13

CHAPTER 2. ELEMENTARY PROPERTIES

Factorial formulas. The factorial satisfies some obvious, but very useful rules
of computation. The most important ones are

[x, d]k = [−x+ (k − 1)d, d]k(−1)k x, d ∈ C, k ∈ Z(2.1)

[x, d]k = [x, d]h[x− hd, d]k−h x, d ∈ C, k, h ∈ Z(2.2)

[x, d]k = 1/[x− kd, d]−k x, d ∈ C, k ∈ Z(2.3)

[x, d]k = [x− d, d]k + kd[x− d, d]k−1 x, d ∈ C, k ∈ Z(2.4)

[xd, d]k = dk[x]k x, d ∈ C, k ∈ Z(2.5)

Applying the difference operator, (1.13), we may rewrite (2.4) for d = 1 as

(2.6) Δ[k]n = n[k]n−1 .

For sums this formula gives us by (1.17)

(2.7)
∑m

0
[k]nδk =

{
[m]n+1

n+1
− [0]n+1

n+1
for n �= −1

Hm for n = −1

using the harmonic numbers (1.19).

Binomial coefficient formulas. Similarly, the binomial coefficients (1.10) sa-
tisfy a series of rules.

(
x

k

)
=
(
x− 1
k − 1

)
+
(
x− 1
k

)
x ∈ C, k ∈ N0(2.8) (

x

k

)
[k]m = [x]m

(
x−m

k −m

)
x ∈ C, m ∈ Z, k ∈ N0(2.9) (

x

k

)(
k

m

)
=
(
x

m

)(
x−m

k −m

)
x ∈ C, k,m ∈ Z(2.10) (

x

k

)
[y]k = [x]k

(
y

k

)
x, y ∈ C, k ∈ Z(2.11) (

x

k

)
= (−1)k

(
k − x− 1

k

)
x ∈ C, k ∈ Z(2.12) (

m

k

)
=
(

m

m− k

)
m ∈ N0, k ∈ Z(2.13)

Antidifferences. Applying the difference operator, (1.13), we may rewrite (2.8)
as

(2.14) Δ
(
k

n

)
=
(

k

n− 1

)
13
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equivalent to

(2.15)
∑(

k

n

)
δk =

(
k

n+ 1

)

If we introduce the alternating sign, (2.8) may be written

(2.16) Δ(−1)k

(
x

k

)
= (−1)k+1

(
x+ 1
k + 1

)

which is equivalent to

(2.17)
∑

(−1)k

(
x

k

)
δk = (−1)k+1

(
x− 1
k − 1

)

We omit the proofs, since the formulas (2.8–2.13) are easily proved using
(1.10) and the elementary properties (2.1–2.5) of the factorials.

The binomial coefficient itself has a less “nice” difference, but we may note
that

(2.18) Δ
(
x− 1
k − 1

)
=
(
x

k

)(
1 − 2 k

x

)

Proof. We have

Δ
(
x− 1
k − 1

)
=
(
x− 1
k

)
−
(
x− 1
k − 1

)
=

[x− 1]k − k[x− 1]k−1

[k]k
=

=
[x− 1]k−1

[k]k
(x− 1 − k + 1 − k) =

[x]k
[k]k

1
x

(x− 2k) =

=
(
x

k

)(
1 − 2 k

x

)

using (2.4).

The difference and shift operators in (1.13) and (1.12) commute and satisfy

(2.19) Δ(fg) = fΔg + EgΔf

and

Ek − kE = E(2.20)

Δk − kΔ = E(2.21)

where k is the operator (k → f(k)) → (k → kf(k)). This just means that
(k + 1)f(k+ 1) − kf(k + 1) = f(k + 1), etc.

14



2. ELEMENTARY PROPERTIES 15

The definite sum is by (1.17)

(2.22)
n∑

k=0

g(k) =
∑n+1

0
g(k)δk

Summation by parts is by (2.19) as

∑
f(k)Δg(k)δk = f(k)g(k)−

∑
Eg(k)Δf(k)δk

(2.23)

∑b

a
f(k)Δg(k)δk = f(b)g(b)− f(a)g(a)−

∑b

a
g(k + 1)Δf(k)δk

(2.24)

and is also called Abelian summation.
As we have the identities

Δ = E − I(2.25)

E = Δ + I(2.26)

we get for n ∈ N the obvious relations between their iterations

Δn =
n∑

k=0

(
n

k

)
(−1)kEn−k(2.27)

En =
n∑

k=0

(
n

k

)
Δk(2.28)

Inversion means that the following formulas are equivalent:

(2.29) g(n) =
n∑

k=0

(−1)k

(
n

k

)
f(k) ⇐⇒ f(n) =

n∑
k=0

(−1)k

(
n

k

)
g(k)

Proof. If f is independent of the limit n we get using (2.10)

n∑
k=0

(−1)k

(
n

k

)
g(k) =

n∑
k=0

(−1)k

(
n

k

) k∑
j=0

(−1)j

(
k

j

)
f(j) =

n∑
j=0

n∑
k=j

(−1)k

(
n

k

)
(−1)j

(
k

j

)
f(j) =

n∑
j=0

f(j)
(
n

j

) n∑
k=j

(−1)k−j

(
n− j

k − j

)
=

n∑
j=0

f(j)
(
n

j

)
0n−j = f(n)

(2.30)

If f depends on k the proof doesn’t work.

15
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CHAPTER 3. POLYNOMIALS

Geometric progression.

We have for q �= 1

(3.1)
n∑

k=0

qk =
1 − qn+1

1 − q

or more generally

(3.2)
n∑

k=m

qk = qm 1 − qn−m+1

1 − q

Of course, for q = 1 we get

(3.3)
n∑

k=0

qk =
n∑

k=0

1 = n+ 1

Proof. We have Δqk = qk+1 − qk = (q − 1)qk. So according to (1.18) and (1.17)
we get (3.2)

n∑
k=m

qk =
∑n+1

m
qkδk =

qn+1

q − 1
− qm

q − 1
=
qn+1 − qm

q − 1
= qm 1 − qn−m+1

1 − q

Sums of polynomials.

According to an anecdote, C. F. Gauß (1777–1855) when he went to school in the
age of 7, he annoyed his teacher by counting very fast. To get a rest the teacher
asked him to add the numbers from 1 to 100. Gauß immediately answered 5050.

He added the numbers one by one backwards to obtain the sum 101 for each
pair of 100 pairs and obtained the double of the sum. It could be written like this

100∑
k=1

k =
100∑
k=1

(101 − k) =
1
2

100∑
k=1

(k + 101 − k) =
1
2

100∑
k=1

101 =
1
2
100 × 101 = 5050

We have learned something, the advantage of changing the order of summation
and the formula

(3.4)
n∑

k=1

k =
n(n+ 1)

2

If we have a polynomial, p(k) = a0 +a1k+ · · ·+amk
m, and want to determi-

nate
∑n

k=0 p(k), we need to know the sums
∑n

k=0 k
m for all m ≥ 0. We found the

16



3. POLYNOMIALS 17

formula for m = 1 above. The formulas for small values of m was determinded in
1631 by J. Faulhaber (1580–1635), [82]:

Polynomials to be evaluated with x = n(n+ 1).

n∑
k=1

k0 = n(3.5)

n∑
k=1

k1 =
x

2
(3.6)

n∑
k=1

k2 =
x(2n+ 1)

2 · 3(3.7)

n∑
k=1

k3 =
x2

4
(3.8)

n∑
k=1

k4 =
xp4(x)(2n+ 1)

2 · 3 · 5 p4(x) = 3x− 1(3.9)

n∑
k=1

k5 =
x2p5(x)

2 · 6 p5(x) = 2x− 1(3.10)

n∑
k=1

k6 =
xp6(x)(2n+ 1)

2 · 3 · 7 p6(x) = 3x2 − 3x+ 1(3.11)

n∑
k=1

k7 =
x2p7(x)

3 · 8 p7(x) = 3x2 − 4x+ 2(3.12)

n∑
k=1

k8 =
xp8(x)(2n+ 1)

2 · 5 · 9 p8(x) = 5x3 − 10x2 + 9x− 3(3.13)

n∑
k=1

k9 =
x2p9(x)
2 · 10

p9(x) = 2x3 − 5x2 + 6x− 3(3.14)

n∑
k=1

k10 =
xp10(x)(2n+ 1)

2 · 3 · 11
p10(x) = 3x4 − 10x3 + 17x2 − 15x+ 5(3.15)

n∑
k=1

k11 =
x2p11(x)

2 · 12
p11(x) = 2x4 − 8x3 + 17x2 − 20x+ 10(3.16)

n∑
k=1

k12 =
xp12(x)(2n+ 1)
2 · 3 · 5 · 7 · 13

(3.17)

p12(x) = 105x5 − 525x4 + 1435x3 − 2360x2 + 2073x− 691
n∑

k=1

k13 =
x2p13(x)

2 · 3 · 5 · 14
(3.18)

p13(x) = 30x5 − 175x4 + 574x3 − 1180x2 + 1382x− 691
17
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n∑
k=1

k14 =
xp14(x)(2n+1)

2 · 3 · 15
(3.19)

p14(x) = 3x6−21x5+84x4−220x3+359x2−315x+105
n∑

k=1

k15 =
x2p15(x)

3 · 16
(3.20)

p15(x) = 3x6−24x5+112x4−352x3+718x2−840x+420
n∑

k=1

k16 =
xp16(x)(2n+1)

2 · 3 · 5 · 17
(3.21)

p16(x) = 15x7−140x6+770x5−2930x4+7595x3−12370x2+10851x−3617
n∑

k=1

k17 =
x2p17(x)
2 · 5 · 18

(3.22)

p17(x) = 10x7−105x6+660x5−2930x4+9114x3−18555x2+21702x−10851
n∑

k=1

k18 =
xp18(x)(2n+1)
2 · 3 · 5 · 7 · 19

p18(x) = 105x8−1260x7+9114x6−47418x5(3.23)

+178227x4−460810x3+750167x2−658005x+219335
n∑

k=1

k19 =
x2p19(x)

2 · 3 · 7 · 20
p19(x) = 42x8−560x7+4557x6−27096x5(3.24)

+118818x4−368648x3+750167x2−877340x+438670

In principle, the proofs of all these formulas are trivial. Let’s take (3.7):

n∑
k=1

k2 =
∑n+1

0
k2δk =

x(2n+ 1)
2 · 3 =

n(n+ 1)(2n+ 1)
2 · 3

Taking the difference of the right side, we obtain

Δ
(k − 1)k(2k − 1)

2 · 3 =
k(k + 1)(2k + 1)

2 · 3 − k(k − 1)(2k − 1)
2 · 3

=
k(2k2 + 3k + 1 − 2k2 + 3k − 1)

6
= k2

Sums of polynomials by Bernoulli polynomials.

The Faulhaber formulas are special cases of the much more powerful discovery
of J. Bernoulli (1654–1705), cf. Ars Conjectandi (1713).

The Bernoulli polynomials are the polynomial solutions to the equations,

(3.25) Δfn(k) = nkn−1, n ∈ N

18



3. POLYNOMIALS 19

and are uniquely determined up to the constant term. For any solution to (3.25),
e.g. for the Bernoulli polynomials to be found below, we then from (1.16) get the
formula for the sums:

(3.26)
∑

knδk =
Bn+1(k)
n+1

The solution using Bernoulli numbers goes as follows. Differentiation of
(3.25) with respect to k yields

(3.26) Δf ′
n(k) = n(n−1)kn−2

proving that 1
nf

′
n(k) solves (3.25) for n−1, hence that

(3.27)
1
n
f ′

n(k)−fn−1(k)

is a constant.

The choice of polynomial solutions to (3.25) for which the constant term in
(3.27) is zero, are called the Bernoulli polynomials and are denoted as Bn(k).

Suppose we have written the Bernoulli polynomials on the form

(3.28) Bn(k) =
n∑

j=0

(
n

j

)
Bn

n−jk
j

for suitable constants Bn
n−j .

The index is chosen to have Bn
0 as coefficient to the leading term, kn, and

Bn
n as the constant term.

Differentiation of Bn yields
(3.29)

B′
n(k) =

n∑
j=1

(
n

j

)
Bn

n−jjk
j−1 =

n∑
j=1

n

(
n−1
j−1

)
Bn

n−jk
j−1 = n

n−1∑
j=0

(
n−1
j

)
Bn

n−1−jk
j

From (3.27) this is known to be equal to

nBn−1(k) = n
n−1∑
j=0

(
n−1
j

)
Bn−1

n−1−jk
j

The conclusion from comparing the coefficients is, that

(3.30) Bn
n−1−j = Bn−1

n−1−j , for j = 0, 1, · · · , n−1

The common values in (3.30) are called the Bernoulli numbers, and are
denoted as Bn−1−j , omitting the superfluous superscript.

19
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Hence we may rewrite (3.28) as

(3.31) Bn(k) =
n∑

j=0

(
n

j

)
Bn−jk

j

such that the Bernoulli numbers take their appropriate part of the description
of the Bernoulli polynomials. The fact that they satisfy (3.25) may lead to a
computation of their coefficients. We compute

ΔBn(k) =
n∑

j=0

(
n

j

)
Bn−j((k+1)j−kj) =

n∑
j=0

(
n

j

)
Bn−j

j−1∑
i=0

(
j

i

)
ki

=
n−1∑
i=0

ki
n∑

j=i+1

(
n

j

)(
j

i

)
Bn−j =

n−1∑
i=0

ki
n∑

j=i+1

(
n

i

)(
n−i
j−i
)
Bn−j

=
n−1∑
i=0

(
n

i

)
ki

n∑
j=i+1

(
n−i
j−i
)
Bn−j =

n−1∑
i=0

(
n

n− i

)
ki

n−i∑
j=1

(
n−i
j

)
Bn−i−j

=
n∑

�=1

(
n

�

)
kn−�

�∑
j=1

(
�

j

)
B�−j =

n∑
�=1

(
n

�

)
kn−�

�−1∑
i=0

(
�

i

)
Bi

(3.32)

where we have applied the binomial formula, (7.1), formulas (2.10), (2.13) and
reversed teh direction of summation, e.g., � = n−i and i = �−j.

Now we know from (3.25) that this final polynomial equals nkn−1. This
means that the coefficients are n for � = 1 and 0 else. This gives the formulas for
the Bernoulli numbers:

(3.33)

B0 = 1
�−1∑
i=0

(
�

i

)
Bi = 0 for � > 1

Sometimes people like to confuse the reader by adding the number B� to the last
sum to get the “implicit” recursion formula

(3.34)
�∑

i=0

(
�

i

)
Bi = B�

maybe it looks nicer.
The formulas (3.33) or (3.34) allows the computing of the Bernoulli numbers,

we get for the first few (the odd indexed are 0 from 3 on)

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

B8 = − 1
30
, B10 =

5
66
, B12 = − 691

2730

(3.35)
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As soon as we have the numbers, we get the polynomials straightaway. The
first four of them look like the following graphs:

0.2 0.4 0.6 0.8 1.0

-1

0

1

B1(k)

0.2 0.4 0.6 0.8 1.0

-1

0

1

(3.36)

B0 = 1

B1 = k− 1
2

B2 = k2−k+1
6

B3 = k(k−1)
(
k− 1

2

)
B4 = k4−2k3+k2− 1

30

B5 = k(k−1)
(
k− 1

2

) (
k2−k−1

3

)
B6 = k6−3k5+5

2k
3−1

2k
2+ 1

42

B7 = k(k−1)
(
k− 1

2

) (
k4−2k3+2k+1

3

)
B8 = k8−4k7+14

3 k
6−7

3k
4+ 2

3k
2− 1

30

B9 = k(k−1)
(
k− 1

2

) (
k6 − 3k5 + k4 − 1

5
k2 − 9

5
k − 3

5

)
B10 = k10 − 5k9 + 15

2
k8 − 7k6 + 5k4 − 3

2
k2 + 5

66
21
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0.2 0.4 0.6 0.8 1.0

-1

0

1

B3(k)

0.2 0.4 0.6 0.8 1.0

-1

0

1

Actually, all odd Bernoulli polynomials look like ±B3 and the even ones look
like ±B4, e.g., the odd ones for 3 and up have 3 zeros in the interval, the even
ones have 2 zeros. But they grow fast in absolute values, e.g.,

B20 = −174611
330

, B40 = −261082718496449122051
13530

,

B60 = −1215233140483755572040304994079820246041491
56786730

Actually, they grow like 2(2n)!
(2π)2n .

The fact that

(3.37) B′
n(k) = nBn−1(k)

yields the general formula for the derivatives of the Bernoulli polynomials,

(3.38) B(j)
n (k) = [n]jBn−j(k)

This formula allows the Taylor development of the polynomials as

(3.39) Bn(k+h) =
n∑

j=0

[n]jBn−j(k)
hj

j!
=

n∑
j=0

(
n

j

)
Bn−j(k)hj

22
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With the choice of h = 1 we get from the defining equation, (3.25), that

(3.40) nkn−1 = Bn(k+1)−Bn(k) =
n∑

j=1

(
n

j

)
Bn−j(k)

Consider the function

(3.41) f(k) = (−1)n+1Bn+1(1 − k)

We get immediately

f(k + 1) − f(k) = (−1)n+1 (Bn+1(−k) −Bn+1(1 − k)) =

= −(−1)n+1(n+ 1)(−k)n = (n+ 1)kn

This means that f(k) deviates from Bn+1(k) with a constant. Rather than finding
this we just differentiate the two functions and obtain the formula

(3.42) Bn(1 − k) = (−1)nBn(k)

The equation

(3.43) f(k + 1
2) − f(k) = (n+ 1)kn

has the solutions Bn+1(k) +Bn+1(k + 1
2
) and 2−nBn+1(2k), both polynomials in

k. Their difference is again a polynomial which is periodic and hence constant.
By differentiation of the two functions we get the same function and hence the
formula

(3.44) Bn(2k) = 2n−1
(
Bn(k) +Bn(k + 1

2 )
)

For k = 0 we get the value

(3.45) Bn( 1
2) = − (1 − 21−n

)
Bn

For n even the absolute value in 1
2 is just a little smaller than the absolute value

in 0 and 1.

Sums of polynomials by Stirling numbers.

The sums of a polynomial may be found by writing the polynomial in k in
the basis of [k]m, m = 0, 1, · · · . This may be done by the use of the Stirling
numbers of the second kind, after J. Stirling (1692–1770):

(3.46)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k
k2

k3

k4

k5

k6

k7

k8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 3 1 0 0 0 0 0
1 7 6 1 0 0 0 0
1 15 25 10 1 0 0 0
1 31 90 65 15 1 0 0
1 63 301 350 140 21 1 0
1 127 966 1701 1050 266 28 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[k]1
[k]2
[k]3
[k]4
[k]5
[k]6
[k]7
[k]8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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This matrix can be extended infinitely, see. [1], p. 835. It simply says that e.g.,

k5 = 1 × [k]1 + 15 × [k]2 + 25 × [k]3 + 10 × [k]4 + 1 × [k]5

The Stirling numbers of the second kind are denoted as S
(j)
n and appear as

coefficients in the formula:

(3.47) kn =
n∑

j=1

S(j)
n [k]j

From (3.47) we get by multiplying with k,

kn+1 =
n∑

j=1

S(j)
n k[k]j =

n∑
j=1

S(j)
n (k − j + j)[k]j =

n∑
j=1

S(j)
n [k]j+1 +

n∑
j=1

S(j)
n j[k]j

=
n+1∑
j=1

S(j−1)
n [k]j +

n∑
j=1

S(j)
n j[k]j =

n+1∑
j=1

(
S(j−1)

n + jS(j)
n

)
[k]j

From this we derive the recurrence formula:

(3.48) S
(j)
n+1 = S(j−1)

n + jS(j)
n

This formula proves that the Stirling numbers of the second kind may be inter-
preted as:

S
(j)
n is the number of ways a set of n objects can be divided in j nonempty subsets.

It may also be used to prove the explicit formula,

(3.49) S(j)
n =

1
j!

n∑
k=0

(−1)j−k

(
j

k

)
kn

The Stirling numbers of the first kind are the solutions to the inverse
problem, i.e., the coefficients to the expressions of the factorials, [k]n, in terms of
the monomials, kj , i.e.

(3.50) [k]n =
n∑

j=1

S(j)
n kj

They may conveniently be arranged in a matrix too:
(3.51)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[k]1
[k]2
[k]3
[k]4
[k]5
[k]6
[k]7
[k]8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
2 −3 1 0 0 0 0 0
−6 11 −6 1 0 0 0 0
24 −50 35 −10 1 0 0 0

−120 274 −225 85 −15 1 0 0
720 −1764 1624 −735 175 −21 1 0

−5040 13068 −13132 6769 −1960 322 −28 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k
k2

k3

k4

k5

k6

k7

k8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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3. POLYNOMIALS 25

This matrix just states, that e.g.,

(3.52) [k]5 = k5 − 10k4 + 35k3 − 50k4 + 24k

The matrix is simply the inverse of the matrix in (3.46). These numbers may be
found in [1] p. 833.

If we multiply (3.50) with k − n, we obtain
(3.53)

[k]n+1 =
n∑

j=1

S(j)
n (k−n)kj =

n∑
j=1

S(j)
n kj+1 −

n∑
j=1

S(j)
n nkj =

n+1∑
j=1

(
S(j−1)

n − nS(j)
n

)
kj

From this we derive the recurrence formula:

(3.54) S
(j)
n+1 = S(j−1)

n − nS(j)
n

This formula proves that the absolute value of the Stirling numbers of the first
kind may be interpreted as:

(−1)n−jS
(j)
n is the number of permutations of a set of n objects having j cycles.

It may also be used to prove the explicit formula, which this time depend on
the Stirling numbers of the second kind,

(3.55) S(j)
n =

n−j∑
k=0

(−1)k

(
n− 1 + k

n− j + k

)(
2n− j

n− j − k

)
S

(k)
n−j+k

The solution of (3.25) by Stirling numbers goes

fn(k) = n
∑

kn−1δk = n
∑ n−1∑

j=1

S
(j)
n−1[k]jδk =

= n

n−1∑
j=1

S
(j)
n−1

[k]j+1

j+1
= n

n−1∑
j=1

S
(j)
n−1

1
j+1

j+1∑
i=1

S
(i)
j+1k

i =

=
n∑

i=1

ki · n
n−1∑

j=i−1

1
j+1

S
(j)
n−1S

(i)
j+1 =

n∑
i=1

ki · n
n∑

j=i

1
j
S

(j−1)
n−1 S

(i)
j

(3.56)

Renate Golombek’s problem. In 1994 Renate Golombek, Marburg, [50], posed
the following problem, to determine the sums for r = 1, 2, 3, . . .

P (n, r) =
n∑

j=0

(
n

j

)
jr(3.57)

Q(n, r) =
n∑

j=0

(
n

j

)2

jr(3.58)
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The solution applies the Stirling numbers of the second kind (3.46). We
apply (3.47) to write

(3.59) P (n, r) =
r∑

k=1

S(k)
r

n∑
j=0

(
n

j

)
[j]k

The inner sum is a binomial sum, cf. (7.1), i.e.,

(3.60)
n∑

j=0

(
n

j

)
[j]k = [n]k

n∑
j=k

(
n− k

j − k

)
= [n]k2n−k

hence we obtain the formula

(3.61) P (n, r) =
r∑

k=1

S(k)
r [n]k2n−k

Proceeding the same way with the squares we get

(3.62) Q(n, r) =
r∑

k=1

S(k)
r

n∑
j=0

(
n

j

)2

[j]k

This time we shall evaluate the sums

(3.63)
n∑

j=0

(
n

j

)2

[j]k

The terms less than j = k vanish, so by reversing the direction of summation we
get

(3.64)
n−k∑
j=0

(
n

j

)2

[n− j]k

Now we apply the formula (2.9) to write the sum as

(3.65) [n]k
n−k∑
j=0

(
n

j

)(
n− k

n− k − j

)

which is a Chu–Vandermonde convolution, (8.1), so we get

(3.66) [n]k

(
2n− k

n− k

)
26
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Substitution of (3.66) in (3.62) yields

(3.67) Q(n, r) =
r∑

k=1

S(k)
r [n]k

(
2n− k

n− k

)

This formula is the general solution to the problem. In order to make it easy
to see, how much it coincides with the solutions suggested, we shall appreciate a
reformulation of the factor using (2.2):

(3.68) [n]k

(
2n− k

n− k

)
=
(

2n− r

n− 1

)
[2n− k]r−k[n− 1]k−1

[n− k]r−k−1

With this substituted in (3.67) we get

(3.69) Q(n, r) =
(

2n− r

n− 1

) r∑
k=1

S(k)
r

[2n− k]r−k[n− 1]k−1

[n− k]r−k−1

Application of (3.69) yields for r = 1

(3.70) Q(n, 1) =
(

2n− 1
n− 1

)
[2n− 1]0[n− 1]0

[n− 1]−1
=
(

2n− 1
n− 1

)
(n−1+1) = n

(
2n− 1
n

)

For r = 2 we get

Q(n, 2) =
(

2n− 2
n− 1

)(
[2n− 1]1[n− 1]0

[n− 1]0
+

[2n− 1]0[n− 1]1
[n− 2]−1

)

=
(

2n− 2
n− 1

)(
2n− 1 + (n− 1)2

)
=
(

2n− 2
n− 1

)
n2

(3.71)

And for r = 3 we get

Q(n, 3) =(
2n− 3
n− 1

)(
[2n− 1]2[n− 1]0

[n− 1]1
+ 3

[2n− 2]1[n− 1]1
[n− 2]0

+
[2n− 3]0[n− 1]2

[n− 3]−1

)

=
(

2n− 3
n− 1

)(
(2n− 1)2 + 3(2n− 2)(n− 1) + (n− 1)(n− 2)2

)
=
(

2n− 3
n− 1

)
n2(n+ 1)

(3.72)

But the pattern does not proceed any further. The binomial coefficient in
front is too much to want in general. Already for r = 4 we get a denominator.

Q(n, 4) =(
2n− 4
n− 1

)(
[2n− 1]3
[n− 1]2

+ 7
[2n− 2]2[n− 1]1

[n− 2]1
+ 6[2n− 3]1[n− 1]2 +

[n− 1]3
[n− 4]−1

)

=
(

2n− 4
n− 1

)
n2n

3 + n2 − 3n− 1
n− 2

(3.73)
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If we should rewrite (3.67), we should prefer to replace the binomial coefficient
with factorials and write it

(3.74) Q(n, r) =
r∧n∑
k=1

S(k)
r

[2n− k]n
[n− k]n−k

28



4. LINEAR DIFFERENCE EQUATIONS 29

CHAPTER 4. LINEAR DIFFERENCE EQUATIONS

General linear difference equations. The general linear difference equations
of order m has the form

(4.1) f(n) =
m∑

k=1

ak(n)f(n− k) + g(n)

where ak and g are given functions of n, where am is not identically zero, and f is
wanted. Iteration of (4.1) gives the consecutive values of f(n), n = m+1, m+2, · · ·
for given initial values, f(1), f(2), · · · , f(m). The question is whether it is possible
to find a closed form for f(n).

The complete solution is usually divided in a sum of two, the solution to the
homogeneous equation, i.e., the equation with g(n) = 0, and a particular solution
to the equation (4.1) as given.

The homogeneous equation. A set of m solutions to the homogeneous equa-
tion, (4.1), f1, · · · , fm, is called linearly independent, if any equation of the form

(4.2)
m∑

j=1

cjfj(n) = 0, n ∈ Z

must have coefficients equal to zero, c1 = · · · = cm = 0.
In analogy to the Wronskian we may consider the determinant

(4.3) W (n) =

∣∣∣∣∣∣∣∣
f1(n−m) f2(n−m) · · · fm(n−m)

f1(n−m+ 1) f2(n−m+ 1) · · · fm(n−m+ 1)
... · · · ...

f1(n− 1) f2(n− 1) · · · fm(n− 1)

∣∣∣∣∣∣∣∣
We may easily compute W (n) by the use of (4.1) with g = 0. Row operations
yield

W (n+ 1) =

∣∣∣∣∣∣∣
f1(n−m+ 1) f2(n−m+ 1) · · · fm(n−m+ 1)

... · · · ...
am(n)f1(n−m) am(n)f2(n−m) · · · am(n)fm(n−m)

∣∣∣∣∣∣∣
= (−1)m−1am(n)W (n)

(4.4)

Hence, if am(n) �= 0 for all values of n, then the determinant is either iden-
tically zero or never zero. In the latter case it may be computed as

(4.5) W (n) = (−1)(m−1)nW (0)
n−1∏
j=0

am(j)
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This means that if we start with m independent m–dimensional vectors,
(f1(1), · · · , f1(m)), ..., (fm(1), · · · , fm(m)), the solutions defined by (4.2) will re-
main independent provided am(n) �= 0 for all values of n. Furthermore, any other
solution is uniquely defined by its starting values f(1), · · · , f(m), which are a li-
near combination of the m vectors above. This proves that the space of solutions
to (4.2) is an m–dimensional vector space.

The special case of m = 1,

(4.6) f(n) = a(n)f(n− 1)

We assume that a(n) �= 0, and write the homogeneous equation (4.6) as

(4.7)
f(n)

f(n− 1)
= a(n)

giving the solutions for different choices of initial value f(0),

(4.8) f(n) = f(0)
n∏

k=1

a(k)

The special case of m = 2,

(4.9) f(n) = a1(n)f(n− 1) + a2(n)f(n− 2)

with two solutions, f1(n) and f2(n), giving the determinant

(4.10) W (n) =
∣∣∣∣ f1(n− 2) f2(n− 2)
f1(n− 1) f2(n− 1)

∣∣∣∣ = f1(n− 2)f2(n− 1)− f2(n− 2)f1(n− 1)

computable by (4.5) as

(4.11) W (n) = (−1)nW (0)
n−1∏
j=0

a2(j)

If we know – by guessing perhaps – a solution f1(n) �= 0, then we may
use the determinant to find the other solution, f2(n). If we try the solution
f2(n) = φ(n)f1(n) in (4.10), we get

(4.12) f1(n)φ(n+ 1)f1(n+ 1) − φ(n)f1(n)f1(n+ 1) = W (n+ 2)

from which it is easy to find φ(n) from the form

(4.13) Δφ(n) = φ(n+ 1) − φ(n) =
W (n+ 2)

f1(n)f1(n+ 1)

having the solution by the definition (1.16)

(4.14) φ(n) =
∑ W (n+ 2)

f1(n)f1(n+ 1)
δn

and hence providing us with the second solution to the equation (4.9)

(4.15) f2(n) = φ(n)f1(n) = f1(n)
∑ W (n+ 2)

f1(n)f1(n+ 1)
δn
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First order inhomogeneous equations. If m = 1, we have the form

(4.16) f(n) = a(n)f(n− 1) + g(n)

We assume that a(n) �= 0, and let f �= 0 be any solution of form (4.8) to the
homogeneous equation. Then we consider a solution to (4.16) of the form fφ and
get

(4.17) f(n)φ(n) − a(n)f(n− 1)φ(n− 1) = g(n)

together with (4.6) we obtain

(4.18) φ(n) − φ(n− 1) =
g(n)
f(n)

which by telescoping yields

(4.19) φ(n) =
n∑

k=1

g(k)
f(k)

+ φ(0)

and hence the complete solution to (4.16)

(4.20) f(n)φ(n) = f(n)
n∑

k=1

g(k)
f(k)

+ φ(0)f(n)

where the term φ(0)f(n) is “any” solution to the homogeneous equation.

First order equations with constant coefficients. For m = 1 we choose
a(n) = a independent of n in (4.16), then the solution, f , (4.8), to the homogeneous
equation becomes

(4.21) f(n) = f(0)an

giving the complete solution (4.20) of (4.16)

f(n)φ(n) = an
n∑

k=1

g(k)
ak

+ f(0)φ(0)an =

=
n∑

k=1

g(k)an−k + f(0)φ(0)an

(4.22)

31



32 MOGENS ESROM LARSEN

Arbitrary order equations with constant coefficients. If m > 1, we may
consider the operator polynomial in E from (4.1),

(4.23) Em −
m∑

k=1

akEm−k

with which the equation (4.1) takes the form

(4.24)

(
Em −

m∑
k=1

akEm−k

)
f(n) = g(n)

Now let the characteristic polynomial of (4.23),

(4.25) p(x) = xm −
m∑

k=1

akx
m−k

according to the fundamental theorem of algebra have the different roots in C,
α1, · · ·αq of order respectively ν1, · · · , νq. Then the operator may be split into

(4.26) Em −
m∑

k=1

akEm−k =
q∏

j=1

(E− αjI)
νj

Then the equation (4.24) may be solved successively by use of the solution (4.22).

Theorem 4.1. If the homogeneous equation

(4.27)

(
Em −

m∑
k=1

akEm−k

)
f(n) = 0

may be written in the operator form with different α’s

(4.28)
q∏

j=1

(E− αjI)
νj f(n) = 0

then the complete solution is

(4.29) f(n) =
q∑

j=1

pj(n)αn
j

where pj is any polynomial of degree at most νj − 1.

Proof. By induction after m. For m = 1 (4.29) reduces to (4.21).
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Presume the theorem for m, and consider the equation of form

(4.30)

(
Em −

m∑
k=1

akEm−k

)
(E− αI)f(n) = 0

Then we get the presumed solution

(4.31) (E− αI)f(n) =
q∑

j=1

pj(n)αn
j

By the linearity of the operator it is enough to solve each of the equations

(4.32) (E− αI)f(n) = [n]kαn
j , k = 0, · · · , νj − 1; j = 0, · · · , q

Case 1. α = αj . We put f(n) = [n]k+1α
n−1. This is allowed because the

degree of α = αj is now νj + 1. Then we get by (3.4)

(4.33) (E− αI)f(n) = [n+ 1]k+1α
n − [n]k+1α

n = Δ[n]k+1α
n = (k + 1)[n]kαn

proving that f(n) = [n]k+1αn−1

k+1
solves (4.32).

Case 2. α �= αj . Analogously we try f(n) = [n]kαn
j . Then we get by (3.4)

(E− αI)f(n) = [n+ 1]kαn+1
j − α[n]kαn

j = (([n]k + k[n]k−1)αj − α[n]k)αn
j

= (αj − α)[n]kαn
j + k[n]k−1α

n+1
j

(4.34)

showing that f(n) = [n]kαn
j

αj−α solves the problem for k = 0 and otherwise reduces
the problem from k to k − 1.

Systems of equations with constant coefficients. If we define a vector of
functions by fj(n) = f(n − j + 1), j = 1, · · · , m, then the equation (4.24)
may be written as a first order equation in vectors, f = (f1, · · · , fm), g(n) =
(g(n), 0, · · · , 0),

(4.35) f(n) = Af(n− 1) + g(n)

with matrix of coefficients

(4.36) A =

⎛
⎜⎜⎝
a1 a2 a3 · · · am

1 0 0 · · · 0
0 1 0 · · · 0
... · · · ...

⎞
⎟⎟⎠
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In the form (4.35) the solution in dimension 1 may be copied. The homoge-
neous system has the solution

(4.37) f(n) = Anf(0)

and if a solution to the original system takes the form

(4.38) f(n) = Anφ(n)

with any vector function φ(n), then we may get

(4.39) Anφ(n) − AAn−1φ(n− 1) = g(n)

which may be written for a regular matrix, A, as

(4.40) φ(n) − φ(n− 1) = A−ng(n)

From this follows by summing that

(4.41) φ(n) =
n∑

k=1

A−kg(k) + φ(0)

and hence that the solution (4.38) becomes

(4.42) f(n) =
n∑

k=1

An−kg(k) + φ(0)An

The only problem with this solution is that powers of matrices are cumber-
some to compute. But, we may apply the Cayley–Hamilton theorem, cf. (4.51),
to reduce the computation to the first m− 1 powers of the matrix, A. That is, if
the characteristic polynomial of A is

(4.43) pA(x) = det (xU− A) = xm + am−1x
m−1 + · · ·+ a0

where U is the unit matrix, then we have by the Cayley–Hamilton theorem, that
pA(A) = O, and hence that

(4.44) Am = −am−1Am−1 − · · · − a0U

Furthermore, if we apply this equation to the solution (4.37) then we get

(4.45) Amf(n) = −am−1Am−1f(n) − · · · − a0f(n)

or better,

(4.46) f(n+m) = −am−1f(n+m− 1) − · · · − a0f(n)

which equation simply states that each coordinate function of the vector solution
to the homogeneous system of equations satisfies the higher order equation with
the same characteristic polynomial as the system.
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Proof of the Cayley–Hamilton theorem.

Let A be any n × n–matrix, A = (aij). Then the determinant may be
computed by the development after a column or row, e.g.,

(4.47) detA =
n∑

j=1

aij(−1)i+j detA(i,j)

where A(i,j) is the (i, j)–th complement, i.e., the matrix obtained by omitting the
i–th row and the j–th column from the matrix, A. This means, that if we define
a matrix, B = (bjk), as

(4.48) bjk = (−1)k+j detA(k,j)

then we have traced the inverse of the matrix, A, provided it exists. At least we
may write

(4.49)
n∑

j=1

aijbjk = δik detA

or, in matrix form,

(4.50) AB = (detA)U

The Cayley–Hamilton theorem. If

(4.51) p(ξ) = det (ξU−A) = ξn + an−1ξ
n−1 + · · ·+ a0

is the characteristic polynomial for the matrix A, then the matrix p (A) satisfies

(4.52) p (A) = An + an−1An−1 + · · · + a0U = O

Proof. We shall apply (4.50) to the matrix λU− A to get

(4.53) p(λ)U = (λU− A)B(λ)

where B(λ) = (bij(λ)) is a matrix of polynomials in λ, defined as the (j, i)–th
complement of the matrix λU −A. Hence we may write

(4.54) B(λ) = λn−1Bn−1 + · · · + λB1 + B0

as a polynomial in λ with coefficients which are matrices independent of λ.
For any k ≥ 1 we may write

(4.55) Ak − λkU = (A − λU)
(
Ak−1 + λAk−2 + · · ·+ λk−1U

)
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Hence we can write

p (A) − p(λ)U = An − λnU + an−1

(
An−1 − λn−1U

)
+ · · · + a1

(
A1 − λ1U

)
= (A− λU)C(λ) = (A− λU)

(
λn−1U + λn−2Cn−2 + · · ·+ C0

)
(4.56)

where C(λ) is a polynomial in λ with coefficients which are matrices independent
of λ.

Adding (4.53) and (4.56) we get

p (A) = (A − λU) (C(λ) − B(λ))

= (A − λU)
(
λn−1 (U −Bn−1) + · · · + λ (C1 − B1) + C0 − B0

)
= λk+1 (Bk − Ck) + λk · · ·

(4.57)

where k is the degree of the second factor to the right.
But this polynomial in λ can only be constant, i.e., independent of λ, if the

second factor is zero. But in that case it is all zero, or p (A) = O.

Generating functions. The equation (4.1) with g = 0,

(4.58) f(n+m) =
m−1∑
k=0

akf(n+ k)

may be solved by defining the series

(4.59) F (x) =
∞∑

n=0

xn

n!
f(n)

called the exponential generating function for (4.58). It satisfies that

(4.60) F (k)(x) =
∞∑

n=k

xn−k

(n− k)!
f(n) =

∞∑
n=0

xn

n!
f(n+ k)

Hence we get

(4.61)
m−1∑
k=0

akF
(k)(x) =

∞∑
n=0

xn

n!

m−1∑
k=0

akf(n+ k) =
∞∑

n=0

xn

n!
f(n+m) = F (m)(x)

This is a differential equation we may solve.
Take e.g. the difference equation

(4.62) f(2 + n) = f(1 + n) + f(n)
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The exponential generating function satisfies the equation

(4.63) F” = F ′ + F

With the roots ξ± = 1±√
5

2 so that F becomes a combination of

(4.64) eξ±x =
∞∑

n=0

ξn
±
xn

n!

Even the Bernoulli polynomials have an exponential generating function:

(4.65)
xekx

ex−1
=

∞∑
n=0

Bn(k)xn

n!

Consider the product

ex
∞∑

n=0

Bn(k)xn

n!
=

∞∑
n=0

xn

n!

n∑
j=0

(
n

j

)
Bj(k)

now from (3.40) we have this equal to

∞∑
n=0

xn

n!
(
nkn−1 +Bn(k)

)
= xekx +

∞∑
n=0

Bn(k)xn

n!

Kwang–Wu Chen’s problem. In 1994 Kwang–Wu Chen, Chia–Yi, Taiwan,
Republic of China, [28], posed the following problem, to prove the identity for
Bernoulli polynomials for m ≥ 1,

(4.66)
m∑

k=0

(
m

k

)
Bk(α)Bm−k(β) = −(m−1)Bm(α+β)+m(α+β−1)Bm−1(α+β)

Proof.
Multiplication of two copies of (4.65), taken for t = x, k = α and k = β

respectively, yields

(4.67)
t2e(α+β)t

(et − 1)2
=

∞∑
n=0

tn

n!

n∑
k=0

(
n

k

)
Bk(α)Bn−k(β)

We have also by differentiation of (4.65) with respect to t and then multipli-
cation with t the formula

(4.68)
text

et − 1
+ xt

text

et − 1
− t2e(x+1)t

(et − 1)2
=

∞∑
n=0

nBn(x)tn

n!
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Substitution of the series from (4.65) in this formula for the choice of x = α+β−1
yields

t2e(α+β)t

(et − 1)2
=

= 1+
∞∑

n=1

tn

n!
(−(n− 1)Bn(α+ β − 1) + n(α+ β − 1)Bn−1(α+ β − 1))

(4.69)

From the very difference equation, the Bernoulli polynomials were invented to
solve, cf. (3.25), we get

(4.70) Bm(α+ β − 1) = Bm(α+ β) −m(α+ β − 1)m−1

for m = n and m = n − 1 respectively in (4.69), and the formula (4.66) follows
from comparing the terms in (4.69) and (4.67).

Equations with polynomial coefficients. If in (4.1) the functions ak(n) are
polynomials in n, certain higher order equations may be solved. It is always
possible to transform the equation to a differential equation, not necessarily of the
same order as the difference equation.

The simplest case is the difference equation of order 2 with coefficients of
order 1:

(4.100) (c0 + b0n)f(n) + (c1 + b1(n− 1))f(n− 1) + (c2 + b2(n− 2))f(n− 2) = 0

One attack consists in the introduction of the generating function for the
solution, f(n),

(4.71) F (x) =
∞∑

n=0

f(n)xn

This function obeys two simple rules of our concern, written conveniently at once
as

xkF (j)(x) =
∞∑

n=j

xkf(n)[n]jxn−j

=
∞∑

n=j

[n]jf(n)xn+k−j

=
∞∑

n=k

[n− k + j]jf(n− k + j)xn

(4.72)
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To handle (4.100) it is enough to consider j = 0, 1, hence the differential equation
gets order 1, and to consider k = 0, 1, 2, 3 to obtain the shift of order 2. The
differential equation in F becomes

(4.73)
(
c0 + c1x+ c2x

2
)
F (x) +

(
b0x+ b1x

2 + b2x
3
)
F ′(x) = 0

If we find the zeros of the polynomial b0 + b1x+ b2x
2, say they are a1, a2, then we

may use partial fractions to write the differential equation (4.73) in general as

(4.74)
F ′(x)
F (x)

= − c0 + c1x+ c2x
2

b0x+ b1x2 + b2x3
=
β0

x
+

β1

x− a1
+

β2

x− a2

In the cases of double roots and common zeros the expressions are similar. We
remark that the constant β0 = − b2c0

b0
. This may be solved as

(4.75) F (x) = xβ0(x− a1)β1(x− a2)β2

If β0 is an integer, we may develop the other factors as series in x, cf. (7.2),

(4.76) (x− a)β =
∞∑

k=0

(
β

k

)
(−a)β−kxk

and get their product to find

F (x) = xβ0

∞∑
n=0

xn
n∑

k=0

(
β1

k

)(
β2

n− k

)
(−a1)β1−k(−a2)β2+k−n

=
∞∑

n=0

xn

n−β0∑
k=0

(
β1

k

)(
β2

n− β0 − k

)
(−a1)β1−k(−a2)β2+k−n+β0

(4.77)

yielding the solution to the equation (4.100) as

(4.78) f(n) =
n−β0∑
k=0

(
β1

k

)(
β2

n− β0 − k

)
(−a1)β1−k(−a2)β2+k−n+β0

In order to write this solution in the forms treated in this book we may prefer
to rewrite (4.78) as

(4.79) f(n) = (−a1)β1(−a2)β2−n+β0

n−β0∑
k=0

(
n− β0

k

)
[β1]k[β2]n−β0−k

(
a2

a1

)k
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Shalosh B. Ekhad’s squares. In 1994 Shalosh B. Ekhad, Princeton, NJ, [37]
posed the following problem:

Let Xn be defined by X0 = 0, X1 = 1, X2 = 0, X3 = 1, and for n ≥ 1

(4.80) Xn+3 =

(
n2 + n+ 1

)
(n+ 1)

n
Xn+2 +

(
n2 + n+ 1

)
Xn+1 − n+ 1

n
Xn

Prove that Xn is a square of an integer for every n ≥ 0.
We consider the general second order difference equation,

(4.81) xn+2 = f(n)xn+1 + g(n)xn f, g : N → Z \ {0}

With any integral initial values, x1, x2, this equation will generate a sequence of
integers. We shall see, that with the suitable choice of functions and initial values
the solution to (4.81) shall be the sequence of square roots asked for in the problem.

We consider the equation (4.81) in the two forms:

xn+3 = f(n+ 1)xn+2 + g(n+ 1)xn+1(4.82)

g(n)xn = xn+2 − f(n)xn+1(4.83)

By squaring these two equations and then eliminating the mixed products, xn+2xn+1,
we get a third order difference equations in the squares:

1
f(n+ 1)g(n+ 1)

x2
n+3 =(

f(n+ 1)
g(n+ 1)

+
1

f(n)

)
x2

n+2 +
(
g(n+ 1)
f(n+ 1)

+ f(n)
)
x2

n+1 −
g(n)2

f(n)
x2

n

(4.84)

With the choice of the functions f(n) = n, g(n) = 1 we obtain the equation for
Xn = x2

n, equivalent to the one, posed in the problem:

(4.85)
1

n+ 1
Xn+3 =

(
(n+ 1) +

1
n

)
Xn+2 +

(
1

n+ 1
+ n

)
Xn+1 − 1

n
Xn

With the initial values x1 = 1, x2 = 0 we obtain x3 = 1 and the initial values of
the problem – (the value of X0 is irrelevant, provided it is a square). Hence the
solution to the posed problem consists of integral squares.

David Doster’s problem. In 1994, David Doster, Choate Rosemary Hall, Wal-
lingford, CT, [33], posed the following problem:

Define a sequence < yn > recursively by y0 = 1, y1 = 3 and

(4.86) yn+1 = (2n+ 3)yn − 2nyn−1 + 8n

for n ≥ 1. Find an asymptotic formula for yn.
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A solution is

(4.87) 2n+1n!
√
e

while an exact expression for yn may be

(4.88) yn = 1 + 2n+
n∑

k=2

[n]k2k+1

How to solve it?

We define a new sequence, zn, by the formula

(4.89) yn = 2nn!zn

Then the new sequence is defined by z0 = 1, z1 = 3
2 and for n ≥ 1 the recursion

(4.90) zn+1 = zn +
zn − zn−1

2(n+ 1)
+

4n
2n(n+ 1)!

This is really a difference equation in the difference,

(4.91) xn = Δzn = zn+1 − zn

which sequence is defined by x0 = 1
2

and for n ≥ 1 the recursion

(4.92) xn =
xn−1

2(n+ 1)
+

4n
2n(n+ 1)!

with the straightforward solution for n ≥ 1

(4.93) xn =
1

2n−1(n− 1)!
+

1
2n+1(n+ 1)!

Hence we find

zn = z0 +
n−1∑
k=0

xk = 1 + 1
2 +

n−1∑
k=1

1
2k−1(k − 1)!

+
n−1∑
k=1

1
2k+1(k + 1)!

=
n−2∑
k=0

(
1
2

)k
k!

+ 1 + 1
2

+
n∑

k=2

(
1
2

)k
k!

=
n−2∑
k=0

(
1
2

)k
k!

+
n∑

k=0

(
1
2

)k
k!

(4.94)

It follows that the limit must be

(4.95) lim
n→∞ zn = 2e

1
2

and that we may compute yn as

yn = 2nn!

(
n−2∑
k=0

(
1
2

)k
k!

+
n∑

k=0

(
1
2

)k
k!

)
=

=
n−2∑
k=0

2n−k[n]n−k +
n∑

k=0

2n−k[n]n−k =

= 1 + 2n+
n∑

k=2

2k+1[n]k

(4.96)
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Ira Gessel’s problem. In 1995 Ira Gessel, Brandeis University, Waltham, Mass,
[47], [17], posed the following problem, to evaluate the sum for all n ∈ N,

(4.97) S(n) =
∑
3k≤n

2k n

n− k

(
n− k

2k

)

Solution. For all n ∈ N, we have

(4.98) S(n) =
∑
3k≤n

2k n

n− k

(
n− k

2k

)
= 2n−1 + cos

(
n · π

2

)

Proof. The function S(n) defined by (4.97) satisfies the difference equation,

(4.99) S(n) − 2S(n− 1) + S(n− 2) − 2S(n− 3) = 0

Hence the solution must take the form

(4.100) S(n) = α2n + βin + γ(−i)n

Finding S(1) = 1, S(2) = 1 and S(3) = 4 yields the solution, α = β = γ = 1
2 .

In order to establish (4.99) it is convenient to split the sum of S(n) in two
parts,

S(n) = U(n) + V (n)(4.101)

U(n) =
∑
3k≤n

2k

(
n− k

2k

)
(4.102)

V (n) =
∑

3k≤n−3

2k

(
n− 2 − k

2k + 1

)
(4.103)

These two functions satisfy the simultaneous difference equations,

U(n+ 1) − U(n) = 2V (n+ 1)(4.104)

V (n+ 1) − V (n) = U(n− 2)(4.105)

obviously from splitting the binomial coefficients in the sums.
From these follows that both U(n) and V (n) satisfy the difference equation

(4.99), and hence does their sum, S(n).

Remark 1: The solution for U(n) is as ugly as

(4.106) U(n) = 1
5

(
2n+1 + 3 cos

(
n · π

2

)
+ sin

(
n · π

2

))
while it for V (n) is similar

(4.107) V (n) = 1
5

(
2n−1 + 2 cos

(
n · π

2

)− sin
(
n · π

2

))
It is seen that adding the two gives the simpler form (4.98).
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Emre Alkan’s problem. In 1995 Emre Alkan, Bosphorus University, Istanbul,
Turkey, [3], posed the problem:

Prove that there are infinitely many positive integers, m, such that

1
5 · 2m

m∑
k=0

(
2m+ 1

2k

)
3k

is an odd integer.
This expression is not an integer for all non–negative arguments, m ∈ N0, so

we shall consider the function of m,

(4.108) f(m) =
1

2m

m∑
k=0

(
2m+ 1

2k

)
3k

which function shall be proved to be a sequence of odd integers, sometimes divisible
by 5.

The sum in (4.108) is the half of a binomial sum, so let us add and subtract
the remaining terms and write

(4.109) f(m) =
1

2m+1

2m+1∑
k=0

(
2m+ 1
k

)((√
3
)k

+
(
−
√

3
)k
)

then we may apply the binomial theorem twice to (2) and get

(4.110) f(m) =
1

2m+1

((
1 +

√
3
)2m+1

+
(
1 −

√
3
)2m+1

)

Now we distribute the 2’s to get a sum of two plain powers:

(4.111) f(m) =
1 +

√
3

2

((
1 +

√
3
)2

2

)m

+
1 −√

3
2

((
1 −√

3
)2

2

)m

hence the function f must satisfy a difference equation with the two roots, (1±
√

3)2

2
,

i.e. the characteristic polynomial

(4.112) x2 − 4x+ 1

giving the difference equation

(4.113) f(m+ 2) = 4f(m+ 1) − f(m)

As we have easily f(0) = 1, f(1) = 5 which are odd integers, all of the values
of f must be odd integers. Hence, if there are some divisible by 5, the quotient
must be odd for each of them.

Rather than finding other values divisible by 5, we shall prove the following
property, from which it follows that there are infinitely many such values:
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Theorem. For any integer, z ∈ Z, the sums of integers for m ∈ N0,

(4.114) Sm(z) =
m∑

k=0

(
2m+ 1

2k

)
zk

satisfies for all m ∈ N0, that Sm(z) divides S3m+1(z).

Proof. For any real or complex square root of z we have

Sm(z) =
1
2

2m+1∑
k=0

(
2m+ 1
k

)((√
z
)k +

(−√
z
)k) =

=
1
2

((
1 +

√
z
)2m+1 +

(
1 −√

z
)2m+1

)
(4.115)

Using the identity

(4.116) x3 + y3 = (x+ y)
(
x2 − xy + y2

)
we get from (4.115) that

S3m+1(z) =
1
2

((
1 +

√
z
)6m+3 +

(
1 −√

z
)6m+3

)
=

=
1
2

((
1 +

√
z
)2m+1 +

(
1 −√

z
)2m+1

)
·

·
((

1 +
√
z
)4m+2 − (1 +

√
z
)2m+1 (1 −√

z
)2m+1 +

(
1 −√

z
)4m+2

)
=

= Sm(z) ·
((

1 +
√
z
)4m+2 − (1 − z)2m+1 +

(
1 −√

z
)4m+2

)

(4.117)

where the second factor in (4.116) is an integer since the odd powers of the square
roots must cancel.

From this theorem we get that 5 = f(1) is a divisor in f(4), which divides
f(13), etc.

Comments. For any j ∈ N the sequence (4.114) satisfies the difference
equation

(4.118) Sm+2j(z) = 2
∑

i

(
j

2i

)
(z + 1)j−2i(4z)i Sm+j(z) − (z − 1)2j Sm(z)

From this follows with j = 2m+1 that each term of the sequence Sm(z), S3m+1(z),
S5m+2(z) etc. is divisible by the first term, Sm(z).

From this result with z = 3 follows that 5 is divisor in f(7), f(10), etc.
The divisor 5 may be replaced by any divisor in any term of the sequence,

but what about 3 in 3k? Of course, it may be replaced by any integer, z ∈ Z, and
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for odd integers the sum (4.114) becomes divisible by a power of 2. We actually
get three cases, z even, z ≡ 3 (4) and z ≡ 1 (4).

The first result is that for z even we have that all values are odd integers and
the sequence satisfies the difference equation

(4.119) Sm+2(z) = 2(z + 1)Sm+1(z) − (z − 1)2Sm(z)

easily derived from (4.115), and the start values S0(z) = 1 and S2(z) = 1 + 3z,
easily derived from (4.114).

The second that we for 3 + 4z get that the sum

(4.120) Um(z) =
1

2m

m∑
k=0

(
2m+ 1

2k

)
(3 + 4z)k

satisfies the difference equation

(4.121) Um+2(z) = 4(z + 1)Um+1(z) − (2z + 1)2Um(z)

and the start values are U0(z) = 1 and U1(z) = 5 + 6z. So, in this case we get
only odd integers.

And the third result is that we for 1 + 4z get that the sum

(4.122) Tm(z) =
1

4m

m∑
k=0

(
2m+ 1

2k

)
(1 + 4z)k

satisfies the difference equation

(4.123) Tm+2(z) = (1 + 2z)Tm+1(z) − z2Tm(z)

and the start values are T0(z) = 1 and T1(z) = 1 + 3z. If z is even then the terms
are all odd, but if z is odd, they must alternate with a period of length 3.

In the binomial coefficients
(
2m+1

2k

)
we may replace 2m+ 1 with 2m or 2k by

2k + 1, e.g.,
(

2m
2k+1

)
, and obtain similar results.
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CHAPTER 5. CLASSIFICATION OF SUMS

Introduction. This classification is due to the late Erik Sparre Andersen (1919–
2003), (1989) [7]. We consider sums of the form

(5.1) T (c, n) =
n∑

k=0

t(c, n, k)

with n ∈ N0 the limit of summation, c ∈ C�, an argument–vector, and k ∈ N0 the
summation variable.

We may assume the lower limit to be equal to zero, because it is otherwise
trivial to translate the formula to obtain this limit.

The question is, do we know a formula, which by a trivial transformation gives
us the value of the sum, (5.1)? By “trivial” we mean obtained by the following
three operations:
1) Multiplying with a non–zero constant which may depend on c and n.
2) Special choice of the arguments and limits.
3) Reversing the direction of summation.

The way to treat the first triviality is to consider the formal quotient

(5.2) qt(c, n, k) :=
t(c, n, k+ 1)
t(c, n, k)

which characterizes the expressions up to proportionality, because of the formula:

(5.3) T (c, n) = t(c, n, 0)
n∑

k=0

k−1∏
i=0

qt(c, n, i)

Hence it is tempting to classify mainly according to the character of the
quotient, (5.2).

Classification. We shall classify the sums (5.1) according to the nature of the
terms and the quotient (5.3) in five types numbered I–V.

If the quotients are independent of the limit, n, we shall call the sum indefi-
nite, otherwise it is called definite.

We shall apply the main classification as follows:
I) The terms take the form

(5.4) t(c, n, k) = r(c, n, k) · zk

where r(c, n, k) is a rational function of k. Typical examples are the quotient
series, (3.1),

(5.5)
n∑

k=0

zk =

{
zn+1−1

z−1 (z �= 1)

n+ 1 (z = 1)
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and the sum of polynomials, e.g., (2.7),

(5.6)
∑n

0
[k]mδk =

{
[n]m+1
m+1 for m �= −1

Hn for m = −1

II) Not of type I, but the quotients (5.2) are rational functions of k. Typical
example is the binomial formula, cf. (7.1),

(5.7)
n∑

k=0

(
n

k

)
· zk = (1 + z)n

with quotient equal to

(5.8) q(x, n, k) =
n− k

−1 − k
· (−z)

III) Not of types I or II, but the terms are products or quotients of terms, which
might be of types I or II, and factors or divisors of the form [x+ ky]k, where
0 �= y �= ±1. The typical example is the Hagen–Rothe formula, cf. (16.17),

(5.9)
n∑

k=0

(
n

k

)
[x+kz−1]k−1[y+(n−k)z−1]n−k−1 =

x+ y

xy
[x+y+nz−1]n−1

IV) Not of types I or II, but the terms are products or quotients of terms, which
might be of types I or II, and factors or divisors of the form (x+ky)k, where
y �= 0. The typical example is the Abel formula, cf. (16.18),

(5.10)
n∑

k=0

(
n

k

)
(x+ kz)k−1(y − kz)n−k−1 =

x+ y − nz

x(y − nz)
(x+ y)n−1

V) Not of types I or II, but the terms are products of factors, one as if it was a
term of types I or II, and a harmonic number, Hk or H(m)

c,k , cf. (1.19–20). A
typical example is the formula

(5.11)
n∑

k=0

(−1)k−1

(
n

k

)
Hk =

1
n

Canonical forms of sums of types I–II. In order to recognize a sum it is
convenient to write it in a standard form. By definition the quotients (5.2) are
rational functions of k, so they must take the form

(5.12) qt(c, n, k) =
(α1 − k) · · · (αp − k)
(β1 − k) · · · (βq − k)

· z
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with z �= 0 and αi �= βj independent of k, but dependent of c and n.
The type of the sum is said to have the parameters (p, q, z). So, we shall say,

a sum is of type II(p, q, z), if the quotient is as in (5.12), but provided it is not of
type I.

The products of quotients in (5.3) may by use of (5.12) be written as

(5.13) r(k) :=

∏p
j=1[αj]k∏q
j=1[βj ]k

zk

The function r(k) in (5.13) may vanish for certain values of k, if αj ∈ N0 or
−βj ∈ N. Similarly, it may be undefined or infinity, if −αj ∈ N or βj ∈ N0.

Definition. We shall call a sum (5.3) with quotient of the form (5.12) a sum
of natural limits, if the function, t(c, n, k), is defined for all 0 ≤ k ≤ n and
βj = −1, αi = n for some (i, j).

In this case we shall write

(5.14)
[αi]k
[βj ]k

=
[n]k

[−1]k
=
(
n

k

)
(−1)k

Without loss of generality we may assume that i = j = 1. If we further have the
situation, that βj < 0 or n ≤ βj for j = 1, 2, · · ·q, then we may apply

(5.15)
1

[βj ]k
=

[βj − k]n−k

[βj ]n
=

[n− 1 − βj ]n−k(−1)n−k

[βj ]n
=

[bj ]n−k(−1)n−k

[βj ]n

to replace the denominator [βj ]k by the numerator [bj ]n−k(−1)n−k, where we have
set bj = n− 1 − βj .

With the replacements aj = αj and x = (−1)qz we may define:

Definition. The canonical form of a sum of natural limits (5.3) with quotient
of the form (5.12) is

(5.16) S(c, n) =
n∑

k=0

s(c, n, k) =
n∑

k=0

(
n

k

) p∏
j=2

[aj]k
q∏

j=2

[bj ]n−k x
k

From the knowledge of (5.16) it is easy to find the wanted sum from (5.3) as

(5.17) T (c, n) =
t(c, n, 0)
s(c, n, 0)

S(c, n)

If the difference between a pair of roots equals one, say β2 − α2 = 1, i.e.,
a2 + b2 = n− 2, we may replace the corresponding product by

[a2]k [b2]n−k = [a2]k−1 (a2 − k + 1) [n− a2 − 2]n−k =

= (a2 + 1 − k) [a2]k−1 [a2 − k + 1]n−k (−1)n−k =

= [a2]n−1 (−1)n (a2 + 1 − k) (−1)k

(5.18)

The constant terms may be ignored, so we shall define
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5. CLASSIFICATION OF SUMS 49

Definition. The special canonical form of a sum with a pair of roots with
difference one, i.e, a2 + b2 = n− 2 or β2 − α2 = 1 is

(5.19) S(c, n) =
n∑

k=0

s(c, n, k) =
n∑

k=0

(
n

k

) p∏
j=3

[aj ]k
q∏

j=3

[bj]n−k (a2 + 1 − k) (−x)k

Remark. In the form (5.17) it is particularly easy to change the direction of
summation, as the sum must be equal to

(5.20) S(c, n) =
n∑

k=0

(
n

k

) q∏
j=2

[bj ]k
p∏

j=2

[aj]n−k

(
1
x

)k

while the roots are interchanged between numerator and denominator, with the bj’s
in the numerator and the n− 1 − aj’s in the denominator.

Sums of arbitrary limits. We may try to reconstruct the sums of form (5.12)
from the quotients (5.12) for all possible limits, n ∈ N. The problem is that we
have difficulties summing past the integral roots of the rational function (5.12).

The obvious idea is to sum the products for the different situations of no
roots in the interval, [0, n[. But does it really matter? Suppose we have two
integral roots, say α and β, satisfying

(5.21) 0 ≤ α < β < n

and that we have either of the two cases

(5.22) t((α, β), n, k) =
{

[β − k]β−α

[k − α− 1]β−α

Then the term factor becomes in both cases

(5.23)
t((α, β), n, k)
t((α, β), n, 0)

= g(k) =
[β − k]β−α

[β]β−α

gives the quotient

(5.24) qg(k) =
[β − k − 1]β−α

[β − k]β−α
=
α− k

β − k

But, we must admit that

(5.25) g(k) = 0 for α < k ≤ β

The natural question is, are there other non–vanishing term factors giving
the same quotient inside the interval ]α, β]?
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The answer is yes, we may consider

(5.26) h(k) =
(−1)k(
β−α−1
k−α−1

)
which is defined for α < k ≤ β and gives the quotient wanted,
(5.27)

qh(k) = −
(
β−α−1
k−α−1

)
(
β−α−1

k−α

) = − [β − α− 1]k−α−1[k − α]k−α

[β − α− 1]k−α[k − α− 1]k−α−1
= −k − α

β − k
=
α− k

β − k

Similarly, if β < α, either of the two term factors

(5.28) g(k) =

{
1

[α−k]α−β
= [β − k]β−α

[k − α− 1]β−α

gives the quotient as above, and is defined for k ≤ β and for α < k.
For the interval ]β, α] we may choose the term factor

(5.29) h(k) = (−1)k

(
α− β − 1
k − β − 1

)
which has the quotient

(5.30) qh(k) = −
(
α−β−1

k−β

)
(
α−β−1
k−β−1

) =
α− k

β − k

and is defined for β < k ≤ α.

Hypergeometric form. Sums of types I–II may be written as hypergeometric
sums as well. To do that it is only necessary to use (5.15) and the ascending
factorial from (1.8) and (2.5), possibly (2.1). As an example consider the Gaußian
hypergeometric function,

(5.31) 2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!

With this we may write a canonical sum of type II(2, 2, z) as

(5.32)
n∑

k=0

(
n

k

)
[α]k[β]n−kz

k = [β]n2F1(−n,−α; β − n+ 1; z)

In general, the transformations are
(5.33)

pFq(−n, a1, · · · ; b1, · · · ; z) =
(−1)nq

[−b1]n · · ·
n∑

k=0

(
n

k

)
[−a1]k · · · [b1+n−1]n−k · · · ((−1)pz)k

and
(5.34)

n∑
k=0

(
n

k

)
[α1]k · · · [β1]n−k · · · zk = [β1]n · · · pFq(−n,−α1, · · · ; β1−n+1, · · · ; (−1)pz)
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The classification recipe. Given the formula (5.1), we first check whether the
terms, t(c, n, k) are rational functions in k, in which case the sum is of type I.
Next, if this is not the case, we extract factors of the form of harmonic numbers,
H

(m)
c,k , or the form (where we assume 0 �= y �= ±d)

(5.35) [x+ yk, d]k

to see, if the types III–V may apply. Then we take the quotients of the rest of the
terms, and if they are rational functions in k, we find the roots of the numerator
and denominator. Now we know the possible type, II–V.

Eventually we compare the roots with the limits to figure out, if the limits
are natural, or if it is convenient to divide the sum as sums over several different
intervals. This might be the case, if there are several integral roots of the quotient
in the original interval of summation.

Then we look in the table under the heading X(p, q, z) to see, if the sum is
known. If not, we may, in the case of type II(p, q, z) try the Zeilberger algorithm,
and in the case of type I, the Gosper algorithm.

Symmetric and balanced sums. The majority of know sums with several fac-
tors are either symmetric or balanced. To recognize these cases the canonical form
(5.16) is most convenient. But remark, that the binomial coefficient corresponds
to a pair of factors by the transformation

(5.36)
(
n

k

)
=

[n]k
[k]k

=
[n]k[n]n−k

[n]n

So, in the canonical form we may have the arguments a1 = n, a2, . . . for k and
b1 = n, b2, . . . for n− k.

Definition. A sum of type II(p, p,±x) is called symmetric if we may write it in
a canonical form (5.16) with aj = bj, j = 2, . . . , p.

This means that the canonical form of a symmetric sum becomes

(5.37) S(c, n) =
n∑

k=0

(
n

k

) p∏
j=2

[aj ]k[aj ]n−kx
k

Remark. Symmetric sums of form II(p, p, (−1)p−1) share the property, that the
sums for n odd are zero, because of the change of sign by reversing the direction
of summation.

Definition. A sum of type II(p, p,±x) is called balanced if we may write it in
a canonical form (5.16) with aj − bj = 2a, j = 1, . . . , p for some constant a.
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Remark. In the case of balanced sums we have to let a1 = n and b2 = n, such
that we get b1 = n− 2a and a2 = n+ 2a, while the rest of the arguments may be
written as aj = cj + a and bj = cj − a.

This means that the canonical form of a balanced sum becomes

(5.38) S(c, n) =
n∑

k=0

(
n

k

)
[n+ 2a]k[n− 2a]n−k

p∏
j=3

[cj + a]k[cj − a]n−k x
k

Definition. A sum is called well–balanced if it is balanced and may be written
in a canonical form (5.38) for some constant a, and such that for some j > 2 we
further have aj + bj = n− 2.

If we have the canonical form and want to find out whether the sum is
symmetric or balanced, the symmetric case is easy enough, and in the balanced
case we shall have, that the roots of the quotient, (5.12), must satisfy, that the
pairs have the constant sum, n − 1 + 2a, so a may be found from the sum of all
the roots divided by 2p.

The well–balanced case means that for one pair of corresponding roots the
difference is one, βj − αj = 1, which gives the strange expressions, aj = αj =
n
2
− 1 + a, and therefore βj = n

2
+ a and bj = n

2
− 1 − a.

Remark. In the case of well–balanced sums we may let a2 = n
2 − 1 + a and

b2 = n
2 − 1 − a. Hence we may write the product

[a2]k [b2]n−k =
[

n
2
− 1 + a

]
k

[
n
2
− 1 − a

]
n−k

=

=
[

n
2 − 1 + a

]
k

[
n
2 + a− k

]
n−k

(−1)n−k =

= (−1)n 1
2

[
n
2 − 1 + a

]
n−1

· (n+ 2a− 2k) (−1)k

(5.39)

Dividing the constants out we may get the special canonical form for well–balanced
sums,
(5.40)

S(c, n) =
n∑

k=0

(
n

k

)
[n+2a]k[n−2a]n−k

⎛
⎝ p∏

j=3

[cj + a]k[cj − a]n−k

⎞
⎠ (n+ 2a− 2k)xk

Sometimes it is interesting and possible to find small deviations from these
two basic demands. If we have the condition fulfilled except for a1 = b1 + p or
a1−b1 = 2a+p for some integers p ∈ Z, we shall denote these sums as quasi-, i.e.,
we shall talk about quasisymmetric, quasibalanced and quasiwell–balanced
sums.

Useful transformation. In order to write a given sum in the canonical form, it
is often convenient to make one of the following transformations.
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Lemma. The products of constant length may be transformed to the canonical
form for a sum of limits 0 and n by

(5.41)

[a− k]p = [a− p]k[n− 1 − a]n−k(−1)k · (−1)n

[a− p]n−p
a /∈ {p, p+ 1, . . . , n− 1}

(5.42)

[a+ k]p = [−a− 1]k[n− p+ a]n−k(−1)k · (−1)n+p

[−a− 1]n−p
− a /∈ {1, 2, . . . , n− p}

Proof. Trivial.

Some formulas seems occasionally very useful

[2n]n = 2[2n− 1]n(5.43)

[2n]n = 4n
[
n− 1

2

]
n

= (−4)n
[−1

2

]
n

(5.44) (
2n
n

)
= (−4)n

(−1
2

n

)
(5.45)

Other times it is convenient to extract consecutive binomial coefficients from a
sequence of every second such,

(
2n
2k

)
=

1[
n− 1

2

]
n

(
n

k

)[
n− 1

2

]
k

[
n− 1

2

]
n−k

(5.46)

(
2n+ 1

2k

)
=

1[
n− 1

2

]
n

(
n

k

)[
n+ 1

2

]
k

[
n− 1

2

]
n−k

(5.47)

(
2n+ 1
2k + 1

)
=

1[
n− 1

2

]
n

(
n

k

)[
n− 1

2

]
k

[
n+ 1

2

]
n−k

(5.48)

(
2n+ 2
2k + 1

)
=

n+ 1[
n+ 1

2

]
n+1

(
n

k

)[
n+ 1

2

]
k

[
n+ 1

2

]
n−k

(5.49)

The formulas (5.46) and (5.47) may be united and the formulas (5.48) and (5.49)
united in two ways as

(
n

2k

)
=

1[�n
2 � − 1

2

]
�n

2 	

(�n
2 �
k

)[�n
2 � − 1

2

]
k

[�n
2 � − 1

2

]
�n

2 	−k

(5.50)

(
n

2k + 1

)
=

n

2
[�n−1

2
� + 1

2

]
�n−1

2 	+1

(�n−1
2 �
k

)[�n−1
2 � − 1

2

]
k

[�n−1
2 � + 1

2

]
�n−1

2 	−k

(5.51)
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(
n+ 1
2k + 1

)
=

n+ 1
2
[�n

2 � + 1
2

]
�n

2 	+1

(�n
2 �
k

)[�n
2
� − 1

2

]
k

[�n
2
� + 1

2

]
�n

2 	−k

(5.52)

Another useful transformation is the following

(5.53)
(
n− k

k

)
=

(−1)�
n
2 	

[n]�n
2 	

(�n
2 �
k

)[�n
2
� − 1

2

]
k

[−�n
2
� − 1

]
�n

2 	−k
(−4)k

Or, if we divide in the even and the odd case, we get(
2n− k

k

)
=

(−1)n

[2n]n

(
n

k

)[
n− 1

2

]
k
[−n− 1]n−k(−4)k(5.54)

(
2n+ 1 − k

k

)
=

(−1)n

[2n+ 1]n

(
n

k

)[
n+ 1

2

]
k
[−n− 2]n−k(−4)k

(5.55)

It is furthermore convenient to have computed form ∈ Z andm∨0 ≤ k ≤ �n
2
�

the binomial of (5.53) with a factorial,

[k]m

(
n− k

k

)
=

(−1)�
n
2 	−m

[n− 2m]�n
2 	−2m

(�n
2 � −m

k −m

)[�n
2
� −m− 1

2

]
k−m

[−�n
2
� − 1

]
�n

2 	−k
(−4)k−m

(5.56)

Or, if we decide to split in even and odd cases,

[k +m]m

(
2n+m− k

k +m

)
=

(−1)n

[2n]n−m

(
n

k

)[
n− 1

2

]
k
[−n−m− 1]n−k(−4)k

(5.57)

[k +m]m

(
2n+m+ 1 − k

k +m

)
=

(−1)n

[2n+ 1]n−m

(
n

k

)[
n+ 1

2

]
k
[−n−m− 2]n−k(−4)k

(5.58)

The similar formulas for k added are much simpler, valid for k, n ∈ N, m ∈ Z,
−n ≤ m (

n+ k

k

)
=
(−n− 1

k

)
(−1)k(5.59)

[k]m

(
n+ k

k

)
= [−n− 1]m

(−n− 1 −m

k −m

)
(−1)k(5.60)

Polynomial factors. We may get rid of a polynomial factor in k by writing the
polynomial as a sum of factorials, cf. (3.47), and then change the expression using
(2.9) and (2.2) as follows:

(5.61)
(
n

k

)
[k]m[a]k[b]n−k = [n]m[a]m

(
n−m

k −m

)
[a−m]k−m[b]n−m−(k−m)
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CHAPTER 6. GOSPER’S ALGORITHM

Gosper’s algorithm. In 1978 R. William Gosper in [49] gave a beautiful algo-
rithm to establish possible indefinite sums of the types I and II.

Assume we have a sum of the form

(6.1) T (a, k) =
∑

t(a, k)δk

with quotient function of the form

(6.2) qt(a, k) =
(α1 − k) · · · (αp − k)
(β1 − k) · · · (βq − k)

· χ

If it is possible, we shall choose the indices such that βi − αi ∈ N, i = 1, · · · , j,
and βi − α� /∈ N, i, � > j. For each of the pairs with integral difference we shall
write with α = β −m the quotient as

(6.3)
α− k

β − k
=
β −m− k

β − k
=

(β − k −m)[β − k − 1]m−1

(β − k)[β − k − 1]m−1
=

[β − k − 1]m
[β − k]m

Using (6.3) we may define the polynomial f(k) of degree m1 + · · ·+mj as

(6.4) f(k) = [β1 − k]m1 · · · [βj − k]mj

If we further define the polynomials of the rest of the factors,

g(k) = (αj+1 − k) · · · (αp − k) · χ(6.5)

h(k) = (βj+1 + 1 − k) · · · (βq + 1 − k)(6.6)

then they satisfy, that for no pair of roots do we have

(6.7) βi − α� ∈ N

and we may write the quotient (6.2) as

(6.8) qt(a, k) =
f(k + 1)
f(k)

g(k)
h(k + 1)

With the quotient given in this form, we shall write the candidate for a
solution to the sum, (6.1), as

(6.9) T (a, k) =
h(k)s(k)t(a, k)

f(k)

where s(k) is an unknown function, we shall find, if it is possible.
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If the function defined by (6.9) solves the equation (6.1), then we must have
using the equation (6.8)

t(a, k) = ΔT (a, k) =

=
h(k + 1)s(k + 1)t(a, k + 1)

f(k + 1)
− h(k)s(k)t(a, k)

f(k)
=

=
s(k + 1)t(a, k)g(k)

f(k)
− h(k)s(k)t(a, k)

f(k)
=

= t(a, k)
s(k+ 1)g(k)− h(k)s(k)

f(k)

(6.10)

This means that if s(k) shall solve the problem, it must satisfy the difference
equation

(6.11) f(k) = s(k + 1)g(k)− s(k)h(k)

Now, it is obvious that the function s(k) must be rational, i.e., we have
polynomials, P and Q, without common roots, such that

(6.12) s(k) =
P (k)
Q(k)

We want to prove that s(k) is a polynomial, so we assume, that Q is not constant.
Then we may consider a non–root, β, such that β + 1 is a root of Q, and there
exists a greatest integer, N ∈ N, such that β +N is a root of Q.

If we substitute (6.12) in (6.11) and multiply with Q, we get

(6.13) f(k)Q(k+ 1)Q(k) = g(k)P (k+ 1)Q(k) − h(k)P (k)Q(k + 1)

Now we apply this equation for k = β and k = β +N to obtain

0 = g(β)P (β + 1)Q(β)(6.14)

0 = h(β +N)P (β +N)Q(β +N + 1)(6.15)

Neither P nor Q are zeros in the chosen points, hence we have

0 = g(β)(6.16)

0 = h(β +N)(6.17)

contradicting the property of g and h, that no pair of roots may have an integral
difference of this sign. Hence s is a polynomial. Assume it looks like

(6.18) s(k) = αdk
d + αd−1k

d−1 + · · · + α0, αd �= 0

In order to solve (6.11) in s, we shall estimate the size of d.
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We shall introduce the polynomials

G(k) = g(k) − h(k)(6.19)

H(k) = g(k) + h(k)(6.20)

Then we rewrite (6.11) as

(6.21) 2f(k) = G(k)(s(k + 1) + s(k)) +H(k)(s(k+ 1) − s(k))

and appreciate that

s(k + 1) + s(k) = 2αdk
d + · · · of degree d(6.22)

s(k + 1) − s(k) = dαdk
d−1 + · · · of degree d− 1(6.23)

With deg meaning “degree” we then have three possibilities.
1) If deg(G) ≥ deg(H), then we simply conclude that

(6.24) d = deg(f) − deg(G)

2) If d′ = deg(H) > deg(G), then we consider

G(k) = λ′kd′−1 + · · ·(6.25)

H(k) = λkd′
+ · · · λ �= 0(6.26)

Hence the right hand side of (6.21) begins

(6.27) (2λ′αd + λdαd)kd+d′−1

This means that we in general, namely if further 2λ′ + λd �= 0, have the
formula

(6.28) d = deg(f) − deg(H) + 1

3) The last case is the exceptional, that deg(H) > deg(G) and 2λ′ + λd = 0.
But then the latter equation yields

(6.29) d = −2
λ′

λ

This tells us that in the case of deg(H) > deg(G) we may try one or two
values for d, according to the integrability of the solution (6.29).
As soon as d is established, one may try to solve (6.11) in the d+1 coefficients.
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An example of Gosper’s algorithm. Let us consider the following indefinite
sum of the type II(2,2,1) for a, b, c and d any complex numbers,

(6.30) T (a, b, c, d, k) =
∑ [a]k[b]k

[c− 1]k[d− 1]k
δk

with quotient

(6.31) q(k) =
(a− k)(b− k)

(c− 1 − k)(d− 1 − k)

We shall apply the Gosper’s algorithm to prove the following formula,

Theorem 6.1. For any complex numbers, a, b, c, d ∈ C satisfying the condition
that p = a+ b− c− d ∈ N0, we have the indefinite summation formula

(6.32)
∑ [a]k[b]k

[c− 1]k[d− 1]k
δk =

[a]k[b]k
[c− 1]k−1[d− 1]k−1

p∑
j=0

[p]j [k − c− 1]j
[a− c]j+1[b− c]j+1

Proof. As we in general shall have the differences (6.7) not as positive integers, we
have immediately the polynomial, f(k) = 1. The others are

g(k) = k2 − (a+ b)k + ab(6.33)

h(k) = k2 − (c+ d)k + cd(6.34)

Hence sum and difference becomes

G(k) = (c+ d− a− b)k + ab− cd(6.35)

H(k) = 2k2 − (a+ b+ c+ d)k + ab+ cd(6.36)

So we are in cases 2)–3) with deg(G) < deg(H), and after (6.28) we compute
deg(f) − deg(H) + 1 = 0 − 2 + 1 = −1, leaving us with the case 3) as the only
possibility. Hence we may have

(6.37) deg(s) = −2
c+ d− a− b

2
= a+ b− c− d

So we get the restriction on the parameters, that

(6.38) p = a+ b− c− d ∈ N0

If p = 0, we have s(k) = α to be found by (6.11), i.e. from

(6.39) 1 = α (g(k)− h(k)) = αG(k) = α(ab− cd)
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So we have using p = a+ b− c− d = 0

(6.40) α =
1

ab− cd
=

1
(a− c)(b− c)

According to (6.9) we get the indefinite sum

T (a, b, c, d, k) =
(c− k)(d− k)
(a− c)(b− c)

· [a]k[b]k
[c− 1]k[d− 1]k

=

=
1

(a− c)(b− c)
· [a]k[b]k
[c− 1]k−1[d− 1]k−1

(6.41)

If p = 1, we have s(k) = α1k + α0 to be found by (6.11), i.e. from

1 = (α1k + α1 + α0)g(k)− (α1k + α0)h(k)

= (α1(ab− cd− a− b) − α0)k + α1ab+ α0(ab− cd)

(6.42)

yielding us two equations in (α1, α0),

0 = α1(ab− cd− a− b) − α0(6.43)

1 = α1ab+ α0(ab− cd)(6.44)

with the solutions

α0 =
ab− cd− a− b

ab+ (ab− cd)(ab− cd− a− b)
(6.45)

α1 =
1

ab+ (ab− cd)(ab− cd− a− b)
(6.46)

To make it look nicer, we shall write the denominator as

ab+ (ab− cd)(ab− cd− a− b) =

=ab+ (ab− cd)2 − (ab− cd)(a+ b) =

=ab+ (ab− cd)2 − (ab− cd)(1 + c+ d) =

=(ab− cd)2 − (ab− cd)(c+ d) + cd =

=(ab− cd− c)(ab− cd− d) =

=(ab− c(a+ b− c− 1) − c)(ab− (c+ 1)(a+ b− c− 1) =

=(a− c)(b− c)(a− b− 1)(b− c− 1) =

=[a− c]2[b− c]2

(6.47)

and the numerator similarly as

(6.48) ab− cd−a− b = ab− c(a+ b− c−1)−a− b = (a− c−1)(b− c−1)− c−1
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According to (6.9) we get the indefinite sum

T (a, b, c, d, k) =

=
k + (a− c− 1)(b− c− 1) − c− 1

[a− c]2[b− c]2
· [a]k[b]k
[c− 1]k−1[d− 1]k−1

=

=
(

1
(a− c)(b− c)

+
k − c− 1

[a− c]2[b− c]2

)
· [a]k[b]k
[c− 1]k−1[d− 1]k−1

(6.49)

We may in principle continue for each positive integral value of p to end up
with the formula for p = a+ b− c− d

(6.50)
∑ [a]k[b]k

[c− 1]k[d− 1]k
δk =

[a]k[b]k
[c− 1]k−1[d− 1]k−1

p∑
j=0

[p]j [k − c− 1]j
[a− c]j+1[b− c]j+1

but it is easier to proceed with guessing (6.50) and prove it by induction.

Corollary 6.1. For any complex numbers, a, b, c, d ∈ C satisfying the condition
that a+ b− c− d = 0, we have the indefinite summation formula

(6.51)
∑ [a]k[b]k

[c− 1]k[d− 1]k
δk =

1
(a− c)(b− c)

· [a]k[b]k
[c− 1]k−1[d− 1]k−1

Proof. Obvious.
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CHAPTER 7. SUMS OF TYPE II(1, 1, z)

The binomial theorem. The most important, famous and oldest formula is the
binomial theorem,

(7.1)
n∑

k=0

(
n

k

)
xkyn−k = (x+ y)n

discovered around year 1000 by Al–Karāji in Baghdad, [36]. This formula is of
type II(1, 1, z) with z = x

y . (For proof see theorem 8.1.)

Remark. The binomial formula generalizes to n ∈ C in the form of an infinite
series, the Taylor series, applying the general binomial coefficients, defined by
(1.10)

(7.2)
∞∑

k=0

(
n

k

)
xkyn−k = (x+ y)n for |x| < |y|

The formula (7.1) is of type II(1, 1, z) with natural limits and quotient

(7.3) qbinom((x, y), n, k) =
n− k

−1 − k

(
−x
y

)

An indefinite formula of type II(1, 1, 1) is

(7.4)
∑ [α]k

[β]k
δk =

1
α− β − 1

[α]k
[β]k−1

with quotient

(7.5) q(α, β, k) =
α− k

β − k

Proof.

Δ
[α]k

[β]k−1
=

[α]k+1

[β]k
− [α]k

[β]k−1
=

[α]k(α− k − β + k − 1)
[β]k

We have a formula of type II(1,1,−1) due to Tor B. Staver, cf. [110],

(7.6)
n∑

k=0

1(
n
k

) = (n+ 1) · 2−n−1
n+1∑
k=1

2k

k

with quotient

(7.7) qt(k) =
−1 − k

n− k
(−1)

61



62 MOGENS ESROM LARSEN

Proof of (7.6), Staver’s formula. Define

(7.8) S(n, p) =
n∑

k=0

kp(
n
k

)
Then we get

(7.9) S(n, 0) =
1
n

(
n∑

k=0

n− k(
n
k

) +
n∑

k=0

k(
n
k

)
)

=
2
n
S(n, 1)

On the other hand we also get

S(n, 0) = 1 +
n∑

k=1

k

n
(
n−1
k−1

) = 1 +
1
n

n−1∑
k=0

k(
n−1

k

) +
1
n

n−1∑
k=0

1(
n−1

k

) =

= 1 +
1
n
S(n− 1, 1) +

1
n
S(n− 1, 0)

(7.10)

When we apply (7.9) for n− 1, we get

(7.11) S(n, 0) = 1 +
1
n

n− 1
2

S(n− 1, 0) +
1
n
S(n− 1, 0) =

n+ 1
2n

S(n− 1, 0) + 1

The homogeneous equation has the solution n+1
2n , so we are looking for a solution

of the form φ(n)n+1
2n , i.e., we look at the equation

(7.12) φ(n)
n+ 1
2n

= φ(n− 1)
n+ 1
2n

n

2n−1
+ 1

or

(7.13) φ(n) − φ(n− 1) =
2n

n+ 1

which solves the problem on the form

(7.14) S(n, 0) =
n+ 1
2n

n∑
k=0

2k

k + 1
= (n+ 1) · 2−n−1

n+1∑
k=1

2k

k

Gregory Galperin’s and Hillel Gauchman’s problem. In 2004 Gregory Gal-
perin and Hillel Gauchman, Eastern Illinois University, Charleston, posed in Am.
Math. Monthly, 111 as no. 11103, [43], the problem to prove the identity:

(7.15)
n∑

k=1

1
k
(
n
k

) =
1

2n−1

n∑
k=1,k odd

(
n
k

)
k
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The left side is

(7.16)
n∑

k=1

1
k
(
n
k

) =
1
n

n∑
k=1

1(
n−1
k−1

) = 2−n
n∑

k=1

2k

k
=

1
2n−1

n∑
k=1

2k−1

k

by (7.6).
Now consider the sum on the right side of (7.15). The difference in n is

(7.17)
∑

k odd

(
n
k

)
k

−
∑

k odd

(
n−1

k

)
k

=
∑

k odd

(
n−1
k−1

)
k

=
1
n

∑
k odd

(
n

k

)

As we have

∑
k odd

(
n

k

)
+
∑

k even

(
n

k

)
=
∑

k

(
n

k

)
= 2n(7.18)

∑
k even

(
n

k

)
−
∑

k odd

(
n

k

)
=
∑

k

(
n

k

)
(−1)k = 0(7.19)

We get the wanted result from (7.16)

(7.20)
∑

k odd

(
n
k

)
k

=
n∑

k=1

2k−1

k
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CHAPTER 8. SUMS OF TYPE II(2, 2, z)

The Chu–Vandermonde convolution. The most important sum at all is the
generalization of one of the oldest formulas at all, the Chu–Vandermonde convo-
lution,

(8.1)
n∑

k=0

(
x

k

)(
y

n− k

)
=
(
x+ y

n

)

with quotient

(8.2) qCV =
(n− k)(x− k)

(−1 − k)(n− 1 − y − k)

which appeared in the famous Chinese algebra text by Shih–Chieh Chu, Precious
Mirror of the Four Elements, in 1303, [29,77], while its discovery in Europe was
much later. (This is the usual title, the translation should rather be: Textbook
on four variables.) As variables or unknowns he uses the four directions, north,
east, south, west. It was discovered in 1772 of A. T. Vandermonde, [112]. The
combinatorial interpretation is to consider an urn with x red and y blue balls.
Now we may take n balls in n + 1 ways, k red and n − k blue. Together these
numbers add up to the number of ways to take n out of x + y balls ignoring the
color. The generalization we appreciate here is to allow x, y ∈ C and the general
step size, d, which for d = 0 includes the binomial theorem of type II(1, 1, z), (7.1)

Rather than considering the expression (8.1) with generalized binomial coef-
ficients, it becomes nice if we multiply the equation with the integral denominator,
[n]n. Then (8.1) may be written as:

(8.3)
n∑

k=0

(
n

k

)
[x]k[y]n−k = [x+ y]n

But this expression allows a generalization with arbitrary stepsize, i.e.,

Theorem 8.1. For n ∈ N0, x, y ∈ C and d ∈ C, we have

(8.4)
n∑

k=0

(
n

k

)
[x, d]k[y, d]n−k = [x+ y, d]n

Proof. Let

S(n) :=
∑

k

(
n

k

)
[x, d]k[y, d]n−k

We replace using (2.8)
(
n
k

)
by
(
n−1
k−1

)
+
(
n−1

k

)
and split the sum in two sums. In the

sum with
(
n−1
k−1

)
we substitute k + 1 for k. Corresponding terms in the two sums

now have
(
n−1

k

)
[x, d]k[y, d]n−k−1 as common factor. Using this we obtain

∑
k

(
n− 1
k

)
[x, d]k[y, d]n−k−1(x−k·d+y−(n−k−1)·d) = S(n−1)·(x+y−(n−1)·d)
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Recursion now yields

S(n) = S(n− k) · [x+ y − (n− k) · d, d]k
Since S(0) = 1 we obtain (8.4).

The quotient becomes in the case of d �= 0

(8.5) qt(a, b, d, n, k) =
(n− k)(a

d − k)
(−1 − k)(n− 1 − b

d − k)

This means that we may always compare with a formula with d = 1, provided
we have d �= 0. Hence, if we come across a formula,

(8.6) T (a, b, n) =
n∑

k=0

t(a, b, n, k)

with quotient

(8.7) qt(a, b, n, k) =
t(a, b, n, k+ 1)
t(a, b, n, k)

=
(n− k)(a− k)
(−1 − k)(b− k)

Then the formula has the type II(2,2,1) and is equivalent to the Chu–Vandermonde
above, (8.4), and hence the sum must be

(8.8) T (a, b, n) =
t(a, b, n, 0)
[n− 1 − b]n

[a+ n− 1 − b]n

As an example consider the formulas

n∑
k=0

(
n

k

)
(−1)n−k[c+ kd, d]m = [c, d]m−nd

n[m]n(8.9)

n∑
k=0

(
n

k

)
(−1)k[c− kd, d]m = [c− nd, d]m−nd

n[m]n(8.10)

The quotient in (8.9) is

(8.11) −
(

n
k+1

)
(
n
k

) · [c+ (k + 1)d, d]m
[c+ kd, d]m

=
n− k

−1 − k
· − c

d − 1 − k

m− c
d − 1 − k

Hence we get from (8.8) that the sum must be
(8.12)

(−1)n[c, d]m[
n− 1 −m+ 1 + c

d

]
n

[
− c
d
− 1 + n− 1 −m+ 1 +

c

d

]
n

= [c, d]m−nd
n[m]n
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where we have used formulas (2.1), (2.2), (2.3) and (2.5). The formula (8.10)
follows from (8.9) be reversing the direction of summation.

With d = 1 the formulas (8.9–8.10) are very frequently used in the forms:

n∑
k=0

(
n

k

)
(−1)n−k[c+ k]m = [c]m−n[m]n(8.13)

n∑
k=0

(
n

k

)
(−1)k[c− k]m = [c− n]m−n[m]n(8.14)

First remark. For 0 ≤ m < n the right side becomes 0.

Second remark. For c = 0 the right side becomes 0, except for m = n. Hence

(8.15)
n∑

k=0

(
n

k

)
(−1)n−k[k]m = δmn · [n]n = δmn · [m]m

Third remark. As we may write

(8.16) km =
m∑

j=1

S(j)
m [k]j

where S
(j)
m are the Stirling numbers of the second kind as defined in chapter 3, cf.

formula (3.47), we get the general formula

(8.17)
n∑

k=0

(
n

k

)
(−1)n−kkm =

{ 0 for 0 ≤ m < n

S
(n)
m · [n]n for n ≤ m

Fourth remark. For m = −1 we may apply (2.3) to get (with c replaced by c−d)

(8.18)
n∑

k=0

(
n

k

)
(−1)n−k 1

c+ kd
=

dn[−1]n
[c+ nd, d]n+1

=
dn(−1)n[n]n
[c+ nd, d]n+1

or

(8.19)
1

c(c+ d) · · · (c+ nd)
=

1
dn[n]n

n∑
k=0

(−1)k
(
n
k

)
c+ kd

i.e., the partial fraction for a polynomial with equidistant roots; for d = 1 we even
get

(8.20)
1

(c)n+1
=

1
[c+ n]n+1

=
1

[n]n

n∑
k=0

(−1)k
(
n
k

)
c+ k

i.e., the partial fraction for a polynomial with consecutive integral roots.
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A simple example. Consider the formula

(8.21)
n∑

k=0

(−1)k

(
n− k

k

)(
n− 2k
m− k

)
= 1 m ≤ n

In order to analyze such a formula we may find the quotients, we find

q(k) = − [n− k − 1]k+1

[n− k]k
· [k]k
[k + 1]k+1

· [n− 2k − 2]m−k−1

[n− 2k]m−k
· [m− k]m−k

[m− k − 1]m−k−1

= − [n− 2k]2
n− k

· 1
k + 1

· n−m− k

[n− 2k]2
· m− k

1
=

(m− k)(n−m− k)
(−1 − k)(n− k)

(8.22)

This is a quotient of type II(2, 2, 1), i.e. of the Chu–Vandermonde convolution, cf.
(8.3), if the limits are right. Now, it is obvious that terms for k > m do vanish,
so we may compute the value of (8.21) as

m∑
k=0

(−1)k

(
n− k

k

)(
n− 2k
m− k

)
=

=

(
n
m

)
[m− n− 1]m

m∑
k=0

(
m

k

)
[n−m]k[m− n− 1]m−k =

=
[n]m[−1]m

[m]m[m− n− 1]m
= 1

(8.23)

After realizing that the sum is just a plain Chu–Vandermonde, one may look
for a shortcut to this formula. First, we may assume m ≤ n

2 , as otherwise the
terms vanish for k > n−m. Then we may multiply and divide by m! to write

m∑
k=0

(−1)k

(
n− k

k

)(
n− 2k
m− k

)
=

=
1
m!

m∑
k=0

(−1)k

(
m

k

)
[n− k]k[n− 2k]m−k =

=
1
m!

m∑
k=0

(
m

k

)
[n− k]m(−1)k =

=
1
m!

[n−m]m−m[m]m = 1

(8.24)

according to (8.14).

The Laguerre Polynomials. When we learn some smart formula like the exp-
ressions for the Laguerre polynomials,

(8.25) Ln(x) = ex dn

dxn
(xne−x) = n!

n∑
j=0

(
n

j

)
(−x)j

j!
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none of the equalities are immediately verified. The proof of the second equality
goes like the following

(8.26)

ex · d
n

dxn
(xne−x) =

⎛
⎝ ∞∑

j=0

xj

j!

⎞
⎠ · d

n

dxn

(
xn

∞∑
k=0

(−x)k

k!

)

=

⎛
⎝ ∞∑

j=0

xj

j!

⎞
⎠ ·
( ∞∑

k=0

(−1)k[n+ k]nxk

k!

)
=

∞∑
k=0

xk
k∑

j=0

(−1)j [n+ j]n
j!(k − j)!

=
∞∑

k=0

xk

k!

k∑
j=0

(
k

j

)
(−1)j [n+ j]n =

∞∑
k=0

xk

k!
(−1)k[n]k[n]n−k

=n!
n∑

k=0

(
n

k

)
(−x)k

k!

The crucial point was of course the step

(8.27)
k∑

j=0

(
k

j

)
(−1)j [n+ j]n = (−1)k[n]k[n]n−k

which is just (8.14).
The systematic way of recognizing the relevant form is to consider the quo-

tient of two consecutive terms as a rational function of j,

(8.28) q(j) =
(k − j) · (−k − 1 − j)
(−1 − j) · (−1 − j)

and then recognize this as the special case with m = 0, c = p = k of

(8.29) q(j) =
(k − j) · (m− c− 1 − j)

(m− 1 − j) · (m− 1 + p− c− j)

the quotient of the Chu–Vandermonde, (8.3), translated to

(8.30)
k∑

j=m

(
k −m

j −m

)
(−1)k−j [c−m+ j]p = [p]k−m[c]p−k+m

Moriarty’s formulas. The so–called Moriarty formulas are as given in H. W.
Gould’s table, [64], formulas 3.177 and 3.178:

n−p∑
k=0

(
2n+ 1

2p+ 2k + 1

)(
p+ k

k

)
=
(

2n− p

p

)
22n−2p(8.31)

n−p∑
k=0

(
2n+ 1
2p+ 2k

)(
p+ k

k

)
=

n

2n− p

(
2n− p

p

)
22n−2p(8.32)
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These formulas were coined after professor Moriarty of H. T. Davis in 1962, cf.
[31] because of their ugliness with reference to the short story by A. Conan Doyle,
The adventure of the final problem from 1883, where he writes about the professor:
“At the age of twenty–one he wrote a treatise upon the Binomial Theorem which
had a European vogue. On the strength of it, he won the Mathematical Chair at
one of our smaller Universities.”

As pointed out by H. W. Gould, cf. [67, 65, 66], Moriarty was a master
of disguise, and these formulas are nothing but disguises of the formulas for the
coefficients to the Chebysheff polynomials. Furthermore, eventually they prove to
be the Chu–Vandermonde formula, (8.3), in disguise.

The relation to the Chebysheff polynomials comes straightforward from the
binomial theorem (7.1). Let c = cosx and s = sinx, then we compute the real
and imaginary parts of

(c+ is)n =
n∑

k=0

(
n

k

)
cn−k(is)k =

=
∑

k

(
n

2k

)
cn−2k

(−s2)k + is
∑

k

(
n

2k + 1

)
cn−1−2k

(−s2)k =

=
∑

k

(
n

2k

)
cn−2k

(
c2 − 1

)k
+ is
∑

k

(
n

2k + 1

)
cn−1−2k

(
c2 − 1

)k
=

=
∑

k

(
n

2k

)
cn−2k

∑
j

(
k

j

)
c2(k−j)(−1)j+

+ is
∑

k

(
n

2k + 1

)
cn−1−2k

∑
j

(
k

j

)
c2(k−j)(−1)j =

=
∑

j

(−1)jcn−2j
∑

k

(
n

2k

)(
k

j

)
+ is
∑

j

(−1)jcn−1−2j
∑

k

(
n

2k + 1

)(
k

j

)

(8.33)

Rectifying the limits of summation yields the left sides of the formulas (8.31) and
(8.32).

Rather than working on the cumbersome expressions, we just compute the
quotients. Of (8.32) it is
(8.34)

q(k) =
(2n− 2p− 2k)(2n− 2p− 2k + 1)(p+ k + 1)

(2p+ 2k + 2)(2p+ 2k + 1)(k + 1)
=

(n− p− k)
(
n− p+ 1

2 − k
)

(−1 − k)
(−p− 1

2
− k
)

Hence it is a Chu–Vandermonde with limit n − p and arguments n − p + 1
2

and
n− 1

2 . So, the sum must be equal to

(8.35)
(

2n+ 1
2p

)
· [2n− p]n−p[
n− 1

2

]
n−p

=
2n+ 1

2n+ 1 − 2p

(
2n− p

p

)
4n−p
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The quotient of (8.31) is
(8.36)

q(k) =
(2n− 2p− 2k)(2n− 2p− 2k − 1)(p+ k + 1)

(2p+ 2k + 2)(2p+ 2k + 3)(k + 1)
=

(n− p− k)
(
n− p− 1

2 − k
)

(−1 − k)
(−p− 3

2
− k
)

Hence it is a Chu–Vandermonde with limit n − p and arguments n − p − 1
2 and

n+ 1
2 . So, the sum must be equal to

(8.37)
(

2n+ 1
2p+ 1

)
· [2n− p]n−p[
n+ 1

2

]
n−p

=
(

2n− p

p

)
4n−p

An example of matrices as arguments. The solution to a difference equa-
tion is essentially the computation of the powers of some matrix, An, for n ∈ N.

(8.38) A =
(
a b
c d

)

We shall need the half trace and the determinant of the matrix, and the
discriminant for the characteristic equation too,

Θ =
a+ d

2
(8.39)

D = ad− bc(8.40)

Δ = Θ2 −D(8.41)

With these notations we may write the Cayley–Hamilton formula, cf. (4.52),
for A as

(8.42) A2 − 2ΘA +DE = O

or more convenient for us,

(8.43) (A − ΘE)2 = ΔE

For this reason we shall appreciate to write

(8.44) A = ΘE + (A − ΘE)

Because E commutes with any matrix, we may apply the binomial formula,
cf. (7.1), on the sum (8.44).
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An = (ΘE + (A− ΘE))n =

=
∑

k

(
n

2k

)
Θn−2k(A − ΘE)2k +

∑
k

(
n

2k + 1

)
Θn−2k−1(A− ΘE)2k+1 =

=
∑

k

(
n

2k

)
Θn−2kΔkE +

∑
k

(
n

2k + 1

)
Θn−1−2kΔk(A− ΘE)

(8.45)

In the case of Δ = 0 we shall only get the terms for k = 0, i.e.,

(8.46) An = ΘnE + nΘn−1(A− ΘE) = Θn
(
E +

n

Θ
(A − ΘE)

)

If D = 0, we have Δ = Θ2 and hence the whole sum reduces to

An =
∑

k

(
n

2k

)
ΘnE +

∑
k

(
n

2k + 1

)
Θn−1(A− ΘE) =

= 2n−1ΘnE + 2n−1Θn−1(A − ΘE) =

= (2Θ)n−1A

(8.47)

In the case of Δ > 0 we shall remark, that

(8.48)
(
Θ ±

√
Δ
)n

=
∑

k

(
n

2k

)
Θn−2kΔk ±

√
Δ
∑

k

(
n

2k + 1

)
Θn−1−2kΔk

Solving these two equations we get

∑
k

(
n

2k

)
Θn−2kΔk =

(
Θ +

√
Δ
)n

+
(
Θ −√

Δ
)n

2
(8.49)

∑
k

(
n

2k + 1

)
Θn−1−2kΔk =

(
Θ +

√
Δ
)n

−
(
Θ −√

Δ
)n

2
√

Δ
(8.50)

So we get the formula:
(8.51)

An =

(
Θ +

√
Δ
)n

+
(
Θ −√

Δ
)n

2
E +

(
Θ +

√
Δ
)n

−
(
Θ −√

Δ
)n

2
√

Δ
(A − ΘE)

In the case of Δ < 0 we shall remark, that from (8.41) we have Δ = Θ2 −D,
and hence

(8.52) Δk =
(
Θ2 −D

)k
=
∑

j

(
k

j

)
Θ2k−2j(−D)j
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Substituting (8.52) in (8.45) allows us to proceed as follows:

An =
∑

k

(
n

2k

)
Θn−2k

∑
j

(
k

j

)
Θ2k−2j(−D)jE+

+
∑

k

(
n

2k + 1

)
Θn−1−2k

∑
j

(
k

j

)
Θ2k−2j(−D)j(A − ΘE) =

=
∑

j

Θn−2j(−D)j
∑

k

(
n

2k

)(
k

j

)
E+

+
∑

j

Θn−1−2j(−D)j
∑

k

(
n

2k + 1

)(
k

j

)
(A − ΘE) =

=
∑

j

Θn−2j(−D)j n

2

(
n− j

j

)
2n−2j

n− j
E+

+
∑

j

Θn−1−2j(−D)j

(
n− 1 − j

j

)
2n−1−2j(A− ΘE)

(8.53)

In the case of Δ < 0 we always have D > 0, hence we may proceed

An =
(√

D
)n n

2

∑
j

(
n− j

j

)
(−1)j

n− j

(
2Θ√
D

)n−2j

E+

+
(√

D
)n−1∑

j

(
n− 1 − j

j

)
(−1)j

(
2Θ√
D

)n−1−2j

(A− ΘE)

(8.54)

The sums may be recognized as the Chebysheff polynomials, cf. (8.33), so using
the rewriting

(8.55) sin
(

arccos
(

Θ√
D

))
=

√
1 −
(

Θ√
D

)2

=

√
D − Θ2

D
=

√
−Δ
D

we go on to

An =
(√

D
)n
(
Tn

(
Θ√
D

)
E +

1√
D
Un−1

(
Θ√
D

)
(A− ΘE)

)
=

=
(√

D
)n

⎛
⎝cos

(
n arccos

(
Θ√
D

))
E +

sin
(
n arccos

(
Θ√
D

))
√−Δ

(A − ΘE)

⎞
⎠

(8.56)
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Joseph M. Santmyer’s problem. In 1994 Joseph M. Santmyer, [103], Califor-
nia University of Pennsylvania, California PA, posed the following problem:

If M , N are integers satisfying 1 ≤ m ≤ n− 1, prove that

(8.57)
(

2n−m− 1
2n− 2m− 1

)
−
(
n− 1
m

)
=
∑

k

∑
j

(
k + j

k

)(
2n−m− 2k − j − 3

2(n−m− k − 1)

)
.

We have nonzero terms only for 0 ≤ k ≤ n − m − 1 and 0 ≤ j ≤ m − 1.
Hence the sum is finite.

We write the sum as

S =
n−m−1∑

k=0

m−1∑
j=0

[k + j]k
[k]k

· [2n−m− 2k − j − 3]m−1−j

[m− 1 − j]m−1−j

=
n−m−1∑

k=0

1
[k]k

m−1∑
j=0

[k + j]k · [2n−m− 2k − 3]m−1[m− 1]j
[2n−m− 2k − 3]j[m− 1]m−1

=
1

[m− 1]m−1

n−m−1∑
k=0

[2n−m− 2k − 3]m−1

[k]k

m−1∑
j=0

[k + j]k[m− 1]j
[2n−m− 2k − 3]j

(8.58)

In this form the inner sum is recognizable. We need to compute the quotient of
two consecutive terms. It is

(8.59) q(j) =
(m− 1 − j)(−k − 1 − j)

(−1 − j)(2n−m− 2k − 3 − j)

This quotient is the quotient of the Chu–Vandermonde formula with parameters
−k − 1 and 2m− 2n+ 2k + 1. Hence the sum is easily computed as
(8.60)

[k]k
[2m− 2n+ 2k + 1]m−1

· [2m− 2n+ k]m−1 =
[k]k[2n− 2m− k +m− 2]m−1

[2n− 2m− 2k − 1 +m− 2]m−1

Substitution of this result in the sum gives

S =
1

[m− 1]m−1

n−m−1∑
k=0

[2n−m− 2k − 3]m−1[k]k[2n−m− 2 − k]m−1

[k]k[2n−m− 2k − 3]m−1
=

=
1

[m− 1]m−1

n−m−1∑
k=0

[2n−m− 2 − k]m−1

(8.61)

This sum is easily calculated, but in order to get the wanted result we shall apply
the reversing of the order of summation,

(8.62) S =
1

[m− 1]m−1

n−m−1∑
k=0

[n− 1 + k]m−1
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The quotient of this sum becomes

(8.63) q(k) =
n+ k

n−m+ 1 + k
=

−n− k

−n+m− 1 − k

so that the sum is equivalent to the sum (7.4) with a = −n and b = −n+m− 1,
with arbitrary limits,

n−m−1∑
k=0

[−n]k
[m− n− 1]k

=
1

−m
(

[−n]n−m

[m− n− 1]n−m−1
− 1

[m− n− 1]−1

)

=
1

−m
(

(−1)n−m[n+ n−m− 1]n−m

(−1)n−m−1[n−m+ 1 + (n−m− 2)]n−m−1
−m+ n

)

=
1
m

(
[2n−m− 1]n−m

[2n− 2m− 1]n−m−1
− (n−m)

)

=
1
m

(
[2n−m− 1]m

[n− 1]m−1
− (n−m)

)

(8.64)

Hence we get for the very sum, S,

S =
1

[m− 1]m−1
· [n− 1]m−1

1
· 1
m

(
[2n−m− 1]m

[n− 1]m−1
− (n−m)

)
=

=
1

[m]m
([2n−m− 1]m − [n− 1]m) =

=
[2n−m− 1]m

[m]m
− [n− 1]m

[m]m
=

=
(

2n−m− 1
2n− 2m− 1

)
−
(
n− 1
m

)

(8.65)

The number of parenthesis. Let Pn denote the number of ways we can place
parentheses legally between n objects. We want to prove the formula

(8.66) Pn =
1
n

(
2n− 2
n− 1

)

from the obvious recursion

(8.67) Pn+1 =
n∑

k=1

PkPn+1−k

Substitution means that we shall prove the formula

(8.68)
1

n+ 1

(
2n
n

)
=

n∑
k=1

1
k

(
2k − 2
k − 1

)
1

n+ 1 − k

(
2n− 2k
n− k

)
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Using the quotient we find that the sum is proportional to the sum

(8.69)
n∑

k=1

(
n+ 1
k

)[
1
2

]
k

[
1
2

]
n+1−k

Now, Chu–Vandermonde says the sum from 0 to n+ 1 is 0, so we must have that

(8.70)
n∑

k=1

(
n+ 1
k

)[
1
2

]
k

[
1
2

]
n+1−k

= −2
[

1
2

]
n+1

Hence we get
(8.71)

n∑
k=1

1
k

(
2k − 2
k − 1

)
1

n+ 1 − k

(
2n− 2k
n− k

)
= − [2n− 2]n−1

(n+ 1)! 1
2

[
1
2

]
n

· 2 [12]n+1
=

1
n+ 1

(
2n
n

)

An indefinite sum of type II(2, 2, 1).
For any complex numbers, a, b, c, d ∈ C satisfying the condition that a+ b−

c− d = 0, we have the indefinite summation formula

(8.72)
∑ [a]k[b]k

[c− 1]k[d− 1]k
δk =

1
(a− c)(b− c)

· [a]k[b]k
[c− 1]k−1[d− 1]k−1

with the excess generalization: For any complex numbers, a, b, c, d ∈ C satisfying
the condition that p = a+b−c−d ∈ N0, we have the indefinite summation formula

(8.73)
∑ [a]k[b]k

[c− 1]k[d− 1]k
δk =

[a]k[b]k
[c− 1]k−1[d− 1]k−1

p∑
j=0

[p]j [k − c− 1]j
[a− c]j+1[b− c]j+1

We proved these formulas as corollary 6.1 and theorem 6.1, formulas (6.51) and
(6.32).

Transformations of sums of type II(2, 2, z). The standard form of a sum of
type II(2, 2, z) with natural limits is

(8.74) T (a, b, n, z) =
n∑

k=0

(
n

k

)
[a]k[b]n−kz

k

with quotient

(8.75) qt(a, b, n, k) =
(n− k)(a− k)

(−1 − k)(n− b− 1 − k)
z

Explicit forms of the sum in (8.74) are in general not known. But for certain
values of z, formulas exist with some restraints on the parameters, (a, b). Fur-
thermore, the possible values of z appear in groups in general of order 6. This is
due to the following transformations:
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Transformation theorem. The sums of the form (8.74) allows the following
identities:

T (a, b, n, z) = znT (b, a, n, 1/z)(8.76)

= (−1)nT (a, n− a− b− 1, n, 1− z)(8.77)

= (z − 1)nT (n− a− b− 1, a, n, 1/(1− z))(8.78)

= (1 − z)nT (n− a− b− 1, b, n, z/(z − 1))(8.79)

= (−z)nT (b, n− a− b− 1, n, 1− 1/z)(8.80)

Proof. The formulas follow from repetition of the two of them, (8.76) and (8.77).
The former is obtained by reversing the direction of summation in (8.74). We only
need to consider the formula (8.77), the right side becomes:

(−1)nT (a, n− a− b− 1, n, 1− z) =

=(−1)n
n∑

k=0

(
n

k

)
[a]k[n− a− b− 1]n−k(1 − z)k =

=(−1)n
n∑

k=0

(
n

k

)
[a]k[n− a− b− 1]n−k

k∑
j=0

(
k

j

)
(−z)j =

=(−1)n
n∑

j=0

(
n

j

)
(−z)j

n∑
k=j

(
n− j

k − j

)
[a]k[n− a− b− 1]n−k =

=(−1)n
n∑

j=0

(
n

j

)
(−z)j [a]j

n−j∑
k=0

(
n− j

k

)
[a− j]k[n− a− b− 1]n−j−k =

=(−1)n
n∑

j=0

(
n

j

)
(−z)j [a]j[n− j − b− 1]n−j =

=(−1)n
n∑

j=0

(
n

j

)
(−z)j [a]j[−n+ j + b+ 1 + (n− j) − 1]n−j(−1)n−j =

=
n∑

j=0

(
n

j

)
zj [a]j[b]n−j =

=T (a, b, n, z)

where we have interchanged the order of summation, applied (2.10), (2.2), (2.1)
and eventually the Chu–Vandermonde formula, (8.3).

This theorem tells us, that with each possible value of z, there are up to five
other formulas easily obtainable giving the six values

(8.81) z, 1/z, 1 − z, 1/(1 − z), z/(z − 1), 1 − 1/z
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The exceptions giving less than six different possibilities are z = 1, giving
at most 1 − z = 0, and z = 1/z = −1 related to 1 − z = 1 − 1/z = 2 and
1/(1 − z) = z/(z − 1) = 1

2 , giving a group of 3, and the sixth root of unit,
z = 1/(1 − z) = ei π

3 = 1 − 1/z = 1
2

+ i
√

3
2

related to 1/z = 1 − z = z/(z − 1) =
e−i π

3 = 1
2 − i

√
3

2 , giving a group of 2 complex conjugates.

The factor −1 or 2; Kummer’s, Gauß’ and Bailey’s formulas. The for-
mulas of types II(2, 2,−1) and II(2, 2, 2) are due to E. E. Kummer, [85], 1836,
C. F. Gauß, [45], 1813, and W. N. Bailey, [20], 1935. As may be seen from the
transformations (8.76–79), these formulas are closely related.

Consider a sum of the form

(8.82) S(a, b, n, d) =
n∑

k=0

(
n

k

)
[a, d]k[b, d]n−k(−1)k

with the quotient

(8.83) qk =
(n− k)(a

d − k)
(−1 − k)(n− 1 − b

d − k)
· (−1)

It reduces to the binomial theorem for d = 0, and otherwise we may reduce
the sum to the form of d = 1 due to (4.13). The factor (−1) makes the sum
alternating, therefore, for a = b and n odd we must have S(a, a, 2n + 1, d) =
−S(a, a, 2n+ 1, d) = 0.

Theorem 8.3. The general Kummer formula for a, b ∈ C is

(8.84) S(a, b, n) =
�n

2 	∑
j=0

(
b− a

n− 2j

)
[n]n−j [a]j(−1)j

Proof. Let us define

S =
n∑

k=0

(
n

k

)
[a]k[b]n−k(−1)k

Then we apply (8.4) to the second factorial as

[b]n−k =
∑

j

(
n− k

j − k

)
[a− k]j−k[b− a+ k]n−j

Hence we obtain

S =
∑

k

∑
j

(
n

k

)(
n− k

j − k

)
(−1)k[a]k[a− k]j−k[b− a+ k]n−j
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We apply (2.10) and (2.2) and we interchange the order of summation to get

S =
∑

j

∑
k

(
n

j

)(
j

k

)
(−1)k[a]j[b− a+ k]n−j =

=
∑

j

(
n

j

)
[a]j
∑

k

(
j

k

)
[b− a+ k]n−j(−1)k

Now (8.12) implies that this is zero for 0 ≤ n− j < j, but for j ≤ n
2 we get

S =
∑

j

(
n

j

)
[a]j(−1)j [b− a]n−2j[n− j]j

We apply (2.11) and (2.13) to write(
n

j

)
[n− j]j =

(
n− j

j

)
[n]j =

(
n− j

n− 2j

)
[n]j

and then (2.11) again to write(
n− j

n− 2j

)
[b− a]n−2j =

(
b− a

n− 2j

)
[n− j]n−2j

and finally (2.2) to write

[n]j[n− j]n−2j = [n]n−j

The result is then

S =
∑

j

(
b− a

n− 2j

)
[n]n−j [a]j(−1)j

In general this theorem is the only formula known, but for two special cases
there are improvements. If either b− a or b+ a are integers, we can shorten the
sum.

In the first case we have the quasi–symmetric Kummer formula with p =
b− a ∈ Z:

Theorem 8.4. The quasi–symmetric Kummer formula for a ∈ C and p ∈ Z is

(8.85) S(a, a+ p, n) = σ(p)n

�n
2 	∑

j=
n−|p|
2 �

( |p|
n− 2j

)
[n]n−j[a+ (p ∧ 0)]j(−1)j

Proof. Let p ≥ 0. Then the change to the natural limits gives the formula (8.85).
The general formula is obtained by reversing the order of summation.

The special case of difference zero is the symmetric Kummer identity
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Corollary 8.1. The symmetric Kummer identity for a ∈ C:

(8.86)
n∑

k=0

(
n

k

)
[a]k[a]n−k(−1)k =

{
[n]m[a]m(−1)m for n = 2m
0 for n odd

By division with [n]n = [n]m[m]m we may rewrite the formula (8.85) to look
analogous to (8.1):

Corollary 8.2. The quasi–symmetric Kummer formula

(8.87)
n∑

k=0

(
x

k

)(
x+ p

n− k

)
(−1)k = σ(p)n

�n
2 	∑

j=
n−|p|
2 �

( |p|
n− 2j

)(
x+ (p ∧ 0)

j

)
(−1)j

In the second case, a + b ∈ Z, we have the different quasi–balanced and the
balanced Kummer formulas. To prove these we need the following

Theorem 8.5. The first quasi–balanced Kummer formula for a ∈ C and 0 ≤ n ≥
p ∈ Z

n∑
k=0

(
n

k

)
[n− p+ a]k[n− a]n−k(−1)k =

2n−(p∨0)

[n− p]−(p∧0)

|p|∑
j=0

(|p|
j

)
(−σ(p))p+j · [n− a]j[n− p+ a]|p|−j[n− j − 1 − a, 2]n−(p∨0)

(8.88)

Proof. We apply (2.1) to the first factorial to obtain

S =
n∑

k=0

(
n

k

)
[n− p+ a]k[n− a]n−k(−1)k =

∑
k

(
n

k

)
[n− a]n−k[p− n− a+ k− 1]k

The product runs from n− a to p− n− a with the exception of the factors in the
factorial [k − a]n−p+1. Therefore we may write using (2.2) twice

S =
∑

k

(
n

k

)
[n− a]n−k[k − a]n−p+1[p− n− a+ k − 1]k

[k − a]n−p+1

=
∑

k

(
n

k

)
[n− a]2n−p+1

[k − a+ p− n+ (n− p)]n−p+1

We shall now apply (8.20) to the denominator with c = k−a+p−n and n = n−p
to get

S = [n− a]2n−p+1

∑
k

(
n

k

)
1

[n− p]n−p

∑
j

(
n− p

j

)
(−1)j

k − a+ p− n+ j
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We substitute i = k + j as summation variable in the second sum and get

S =
[n− a]2n−p+1

[n− p]n−p

∑
k

(
n

k

)∑
i

(
n− p

i− k

)
(−1)i−k

p− n− a+ i

Then we interchange the order of summation and receive

S =
[n− a]2n−p+1

[n− p]n−p

∑
i

(−1)i

p− n− a+ i

∑
k

(
n

k

)(
n− p

i− k

)
(−1)k

Now the integral quasi–symmetric Kummer formula (8.87) applies to the second
sum (with the sign of p changed). Hence we get

S =
[n− a]2n−p+1

[n− p]n−p

∑
i

(−1)i

p− n− a+ i
(−σ(p))i

∑
j

( |p|
i− 2j

)(
n− (p ∨ 0)

j

)
(−1)j

Next we interchange the order of summation and get

S =
[n− a]2n−p+1

[n− p]n−p

∑
j

(
n− (p ∨ 0)

j

)
(−1)j

∑
i

( |p|
i− 2j

)
(σ(p))i

p− n− a+ i

Now we substitute k = i− 2j as summation variable in the second sum and get

S =
[n− a]2n−p+1

[n− p]n−p

∑
j

(
n− (p ∨ 0)

j

)
(−1)j

∑
k

(|p|
k

)
(σ(p))k

p− n− a+ k + 2j

Again we interchange the order of summation while we divide the denominator by
2

S =
[n− a]2n−p+1

[n− p]n−p

∑
k

(|p|
k

)
(σ(p))k

2

∑
j

(
n− (p ∨ 0)

j

)
(−1)j

p−n−a+k
2 + j

Now we may again apply (8.20) with c = p−n−a+k
2 , n = n − (p ∨ 0) on the inner

sum. It becomes

S =
[n− a]2n−p+1

[n− p]n−p

∑
k

(|p|
k

)
(σ(p))k

2
· [n− (p ∨ 0)]n−(p∨0)[

p−n−a+k
2

+ n− (p ∨ 0)
]
n−(p∨0)+1

Next step is to double each factor in the factorial of the denominator, which also
doubles the stepsize, and we cancel common factors of the factorials before the
sum, and finally we get

S =
2n−(p∨0)

[n− p]−(p∧0)
[n− a]2n−p+1

∑
k

(|p|
k

)
(σ(p))k

[n− a+ k − |p|, 2]n−(p∨0)+1
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We reverse the direction of summation and get

S =
2n−(p∨0)

[n− p]−(p∧0)

∑
k

(|p|
k

)
(σ(p))p−k [n− a]2n−p+1

[n− a− k, 2]n−(p∨0)+1

We use (2.2) to split the numerator as

[n− a]2n−p+1 =

[n− a]k[n− a− k]2n−2(p∨0)+1[−a− n− k + 2(p ∨ 0) − 1]2(p∨0)−p−k

and (2.8) to split

[n− a− k]2n−2(p∨0)+1 = [n− a− k, 2]n−(p∨0)+1[n− a− k − 1, 2]n−(p∨0)

and finally (2.1) to write the last factorial as

[−a− n− k + 2(p ∨ 0) − 1]2(p∨0)−p−k = (−1)p−k[a+ n− p]|p|−k

Then the result follows.

Theorem 8.6. The balanced Kummer identity for a ∈ C:

(8.89)
n∑

k=0

(
n

k

)
[n+ a]k[n− a]n−k(−1)k = 2n[n− 1 − a, 2]n

Proof. We just have to apply (8.88) for p = 0.

Theorem 8.7. The second quasi–balanced Kummer formula for a ∈ C and p ∈ Z

n∑
k=0

(
n

k

)
[n− p+ a]k[n− a]n−k(−1)k =

=
2n−(p∨0)

[n− p]−(p∧0)

|p|∑
j=0

(|p|
j

)
σ(p)p+j[−a+ n+ j − 1, 2]n−(p∧0)

(8.90)

Proof. We shall define

S(n, a, p) :=
n∑

k=0

(
n

k

)
[n− p+ a]k[n− a]n−k(−1)k
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We shall apply (2.4) to the second factorial to split the sum in two, and then the
formula (2.8) to the second sum to get

S(n, a, p) =
n∑

k=0

(
n

k

)
[(n− (p+ 1)) + (a+ 1)]k[n− 1 − a]n−k(−1)k

+ n

n−1∑
k=0

(
n− 1
k

)
[((n− 1) − (p− 1)) + a]k[n− 1 − a]n−1−k(−1)k =

= S(n, a+ 1, p+ 1) + nS(n− 1, a, p− 1)

Next we shall apply (2.4) to the first factorial to split the sum in two, and then
the formula (2.8) to the second sum to get

S(n, a, p) =
n∑

k=0

(
n

k

)
[(n− (p+ 1)) + a]k[n− a]n−k(−1)k

+ n

n∑
k=1

(
n− 1
k − 1

)
[((n− 1) − (p− 1)) + (a− 1)]k−1·

· [n− 1 − (a− 1)]n−1−(k−1)(−1)k =

= S(n, a, p+ 1) − nS(n− 1, a− 1, p− 1)

By eliminating respectively the second and the first terms of the right sides of the
two formulas, we obtain two useful recursions

2S(n, a, p) = S(n, a− 1, p− 1) + S(n, a, p− 1)

2(n+ 1)S(n, a, p) = S(n+ 1, a, p+ 1) − S(n+ 1, a+ 1, p+ 1)

Repeating the first formula p times or the second −p times and then using the
formula (8.89) valid for p = 0 and cancelling common powers of 2 yields the form
(8.90) after reversing the direction of summation.

Corollary 8.3. For arbitrary c and arbitrary n, p ∈ N0 and δ = ±1 we have

p∑
j=0

(
p

j

)
(δ)p+j [c+ j, 2]n+p =

p∑
j=0

(
p

j

)
(−δ)p+j [c− 1]j[2n+ p− 1 − c]p−j [c− j, 2]n

(8.91)

Proof. We compare the right sides of (8.88) and (8.90) and cancel the common
factors.

Related to the factor z = −1 is the factor 2, which appears in known formulas.
E.g., the formulas of Gauß from 1813, [9], and Bailey from 1935, [6], which are the
following formulas for the choice p = 0.
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Theorem 8.8. The generalized Gauß identity for a ∈ C, p ∈ Z and n ∈ N0

n∑
k=0

(
n

k

)
[a]k[n− p− 1 − 2a]n−k2k =

= (−σ(p))n

�n
2 	∑

j=
n−|p|
2 �

( |p|
n− 2j

)
[n]n−j[a+ (p ∧ 0)]j(−1)j

(8.92)

The quotient of Gauß is

(8.93) qg =
(n− k)(a− k)

(−1 − k)(2a− p− k)
· 2

making it of type II(2, 2, 2).

Theorem 8.9. The generalized Bailey identity for a ∈ C, p ∈ Z and n ∈ N0

2(p−n)∨0[n− p]−(p∧0)

n∑
k=0

(
n

k

)
[a]k[(p− n− 1)]n−k2k =

(−1)n2(n−(p∨0))∨0

|p|∑
j=0

(|p|
j

)
σ(p)p+j[−a+ 2n− p+ j − 1, 2]n−(p∧0)

(8.94)

The quotient of Bailey is

(8.95) qb =
(n− k)(a− k)

(−1 − k)(2n− p− k)
· 2

making it of type II(2, 2, 2).

Proof. We apply (8.77) to (8.85) to obtain the generalized Gauß formula, (8.92).
We replace a by a+ p− n in (8.90) to obtain as the left side

(8.96)
n∑

k=0

(
n

k

)
[a]k[2n+ p− a]n−k(−1)k

When we apply (8.77) to (8.96), we obtain the generalized Bailey formula, (8.94).
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The factor 1
2

+ i
√

3
2

. If we choose the three parameters in the transformation
formulas (8.76–79) equal, i.e., a = b = n − a − b − 1, or precisely, a = b = n−1

3 ,
then the transformation (8.78) yields with ρ = 1

2 + i
√

3
2

(8.97) T (n−1
3 , n−1

3 , n, ρ) = (ρ− 1)nT (n−1
3 , n−1

3 , n, ρ) = ρ2nT (n−1
3 , n−1

3 , n, ρ)

This means that we get 0, except if n = 3m, because ρ6 = 1. Furthermore, for m
even the sum must be real, while it is purely imaginary for m odd.

Actually we have the formula

(8.98)
n∑

k=0

(
n

k

)[
n−1

3

]
k

[
n−1

3

]
n−k

ρk =

{ 0 3|/n
[3m]2m[− 2

3 ]mim

(
√

27)m
n = 3m

This formula is a special case of no. 15.1.31 in [2], see p. 557, which has as
other special cases with the factor mentioned the following 3 forms.

n∑
k=0

(
n

k

)
[3n+ 1]k[−n− 1]n−kρ

k =
[−2

3

]
n

(
−i

√
27
)n

(8.99)

n∑
k=0

(
n

k

)
[−n− 1]k[3n+ 1]n−kρ

k =
[−2

3

]
n

(
−i

√
27ρ
)n

(8.100)

n∑
k=0

(
n

k

)
[−n− 1]k[−n− 1]n−kρ

k =
[−2

3

]
n

(
i
√

27ρ̄
)n

(8.101)

Sums of types II(2, 2, z). From chapter 15, formulas (15.1–5), we know the sum
for the four values of the constants in the factorial, n± 1

2
, and any choice of z.

n∑
k=0

(
n

k

)[
n− 1

2

]
k

[
n− 1

2

]
n−k

zk = [2n− 1]n

((√
z+1
2

)2n

+
(√

z−1
2

)2n
)(8.102)

n∑
k=0

(
n

k

)[
n+ 1

2

]
k

[
n− 1

2

]
n−k

zk = [2n]n

((√
z+1
2

)2n+1

−
(√

z−1
2

)2n+1
)(8.103)

n∑
k=0

(
n

k

)[
n+ 1

2

]
k

[
n+ 1

2

]
n−k

zk =
[2n+ 1]n√

z

((√
z+1
2

)2n+2

−
(√

z−1
2

)2n+2
)(8.104)

The formulas (8.102–8.104) are in Gould’s table, [64], no. 1.38–39, 1.70–71. Some
of the formulas above for the choice of z = 5, 9, 25 are repeated in Gould’s table
as no’s 1.74, 1.77 and 1.69, respectively. To recognize them it may be necessary
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to apply some of the transformations (8.23–8.24). For completeness we shall give
the formulas obtained by these transformations in the nine other forms possible.
The first one, (8.105), appears in Gould’s table, [64], as no. 1.64.

n∑
k=0

(
n

k

)[
n− 1

2

]
k
[−n]n−k z

k = [−n]n

((√
1−z+1

2

)2n

+
(√

1−z−1
2

)2n
)(8.105)

n∑
k=0

(
n

k

)
[−n]k

[
n− 1

2

]
n−k

zk = [−n]n

((√
z+

√
z−1

2

)2n

+
(√

z−√
z−1

2

)2n
)(8.106)

n∑
k=0

(
n

k

)[
n+ 1

2

]
k
[−n− 1]n−k z

k = [−n− 1]n

((√
1−z+1

2

)2n+1

−
(√

1−z−1
2

)2n+1
)(8.107)

n∑
k=0

(
n

k

)
[−n− 1]k

[
n+ 1

2

]
n−k

zk = [−n−1]n√
z

((√
z−1+

√
z

2

)2n+1

−
(√

z−1−√
z

2

)2n+1
)(8.108)

n∑
k=0

(
n

k

)[
n− 1

2

]
k
[−n− 1]n−k z

k = [−n−1]n√
1−z

((
1+

√
1−z

2

)2n+1

−
(

1−√
1−z

2

)2n+1
)(8.109)

n∑
k=0

(
n

k

)
[−n− 1]k

[
n− 1

2

]
n−k

zk = [−n−1]n√
z−1

((√
z+

√
z−1

2

)2n+1

−
(√

z−√
z−1

2

)2n+1
)(8.110)

n∑
k=0

(
n

k

)[
n− 1

2

]
k

[
n+ 1

2

]
n−k

zk = [2n]n√
z

((
1+

√
z

2

)2n+1

−
(

1−√
z

2

)2n+1
)(8.111)

n∑
k=0

(
n

k

)[
n+ 1

2

]
k
[−n− 2]n−k z

k = [−n−2]n√
1−z

((√
1−z+1

2

)2n+2

−
(√

1−z−1
2

)2n+2
)(8.112)

n∑
k=0

(
n

k

)
[−n− 2]k

[
n+ 1

2

]
n−k

zk = [−n−2]n√
z
√

z−1

((√
z−1+

√
z

2

)2n+2

−
(√

z−1−√
z

2

)2n+2
)(8.113)

Remark. In the formulas the choice of the square roots shall be consistent thro-
ughout the right side.

It is possible to generalize these formulas introducing a parameter, m ∈ Z, to
add to one of or both of the arguments. For m < 0 we only know some recurrence
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formulas, but for m ∈ N0 we may give exact expressions. We have with the
arbitrary z replace by different convenient expressions in the resulting variable, r,
e.g.

n∑
k=0

(
n

k

)[
n− 1

2

]
k

[
n+m+ 1

2

]
n−k

(
1 + r

1 − r

)2k

=

(8.114)

=
[2n]n−m

(r − 1)2n

m∑
k=0

[2n+ 2m]k[−m]m−k

(1 + r)2m+1−k
·

(((
m

k

)
r −
(
m− 1
k

))
r2n+2m−k +

(
m

k

)
− r

(
m− 1
k

))

n∑
k=0

(
n

k

)[
n+ 1

2

]
k

[
n+m+ 1

2

]
n−k

(
1 + r

1 − r

)2k

=

(8.115)

=
[2n+ 1]n−m

(r − 1)2n+1

m∑
k=0

[2n+ 2m+ 1]k[−m]m−k

(1 + r)2m+1−k
·

(((
m

k

)
r −
(
m− 1
k

))
r2n+2m+1−k +

(
m

k

)
− r

(
m− 1
k

))

n∑
k=0

(
n

k

)[
n− 1

2

]
k
[−n−m− 1]n−k

( −4r
(1 − r)2

)k

=

(8.116)

=
[2n]n−m(−1)n

(r − 1)2n

m∑
k=0

[2n+ 2m]k[−m]m−k

(1 + r)2m+1−k
·

(((
m

k

)
r −
(
m− 1
k

))
r2n+2m−k +

(
m

k

)
− r

(
m− 1
k

))

n∑
k=0

(
n

k

)[
n+ 1

2

]
k
[−n−m− 2]n−k

( −4r
(1 − r)2

)k

=

(8.117)

=
[2n+ 1]n−m(−1)n

(r − 1)2n+1

m∑
k=0

[2n+ 2m+ 1]k[−m]m−k

(1 + r)2m+1−k
·

(((
m

k

)
r −
(
m− 1
k

))
r2n+2m+1−k +

(
m

k

)
− r

(
m− 1
k

))
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n∑
k=0

(
n

k

)[
n+m+ 1

2

]
k
[−n−m− 1]n−k

( −4r
(1 + r)2

)k

=

(8.118)

=
[2n]n−m(−1)n

(r + 1)2n

m∑
k=0

[2n+ 2m]k[−m]m−k

(1 + r)2m+1−k
·

(((
m

k

)
r −
(
m− 1
k

))
r2n+2m−k +

(
m

k

)
− r

(
m− 1
k

))

n∑
k=0

(
n

k

)[
n+m+ 1

2

]
k
[−n−m− 2]n−k

( −4r
(1 + r)2

)k

=

(8.119)

=
[2n+ 1]n−m(−1)n

(r + 1)2n(r − 1)

m∑
k=0

[2n+ 2m+ 1]k[−m]m−k

(1 + r)2m+1−k
·

(((
m

k

)
r −
(
m− 1
k

))
r2n+2m+1−k +

(
m

k

)
− r

(
m− 1
k

))

We prove these formulas by using the transformations (8.23–8.24) and in the forms
of (8.116–8.117) the transformations (5.57) and (5.58). These formulas are then
joint by the formula (5.56), so all there remains to be proven is the following:

Theorem 8.10. For r = 1 and any m ∈ N0 we have the formula

(8.120)
�n

2 	∑
j=0

[j]m

(
n− j

j

)
(−1)j2n−2j = (−1)mm!

(
n+ 1

2m+ 1

)

For any r ∈ C \ {1} and any m ∈ N0 we have the formula

�n
2 	∑

j=0

[j]m

(
n− j

j

)
(−r)j(1 + r)n−2j = (−r)m

m∑
k=0

[n]k[−m]m−k

(1 − r)2m+1−k
·

((
m

k

)
+ r

(
m− 1
k

)
−
((

m

k

)
r +
(
m− 1
k

))
(−1)krn−k

)

(8.121)

To prove this formula we shall appreciate a more general lemma, valid for
m ∈ Z, establishing a recursion for the kind of sums we consider.

Lemma. The function defined for n ∈ N0, m ∈ Z and r ∈ C as

(8.122) f(n,m, r) =
�n

2 	∑
j=0

[j]m

(
n− j

j

)
(−r)j(1 + r)n−2j
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satisfies the recursion in n and m,

(8.123) f(n+ 2, m, r) − (1 + r)f(n+ 1, m, r) + rf(n,m, r) = −mrf(n,m− 1, r)

Proof. We split the binomial coefficient with (2.8) in two to write

f(n+ 2, m, r) =
�n

2 	+1∑
j=0

[j]m

(
n+ 1 − j

j

)
(−r)j(1 + r)n+2−2j+

+
�n

2 	+1∑
j=1

[j]m

(
n+ 1 − j

j − 1

)
(−r)j(1 + r)n+2−2j =

= (1 + r)f(n+ 1, m, r) +
�n

2 	∑
j=0

[j + 1]m

(
n− j

j

)
(−r)j+1(1 + r)n−2j

Now we apply (2.4) to split the factorial to establish the formula (8.123).

Proof of theorem 8.10. The difference equation (8.123) has the characteristic roots
r and 1. Hence the homogeneous equation is solved by theorem 4.1 of the functions

αrn + β for r �= 1
αn+ β for r = 1

In particular this means that the solutions for m = 0 follows from the equations
f(0, 0, r) = 1 and f(1, 0, r) = 1 + r to be

f(n, 0, r) =
rn+1 − 1
r − 1

for r �= 1

f(n, 0, 1) = n+ 1

The solutions may now be found by splitting the operator and applying (4.20)
successively. This procedure must give the solutions in the form

f(n,m, r) = pm(n, r)rn + qm(n, r) for r �= 1(8.124)

f(n,m, 1) = sm(n)(8.125)

where pm, qm and sm are polynomials in n of degree respectively m and 2m+ 1.
Let us consider the special case r = 1. Then we may write

sm(n) =
2m+1∑
k=0

γm
k [n]k

for which the lemma tells us that
2m+1∑
k=2

γm
k [k]2[n]k−2 = −m

2m−1∑
k=0

γm−1
k [n]k
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This gives the recursion in the coefficients

γm
k = −mγm−1

k−2

[k]2
for k > 1

Hence we get e.g., γ1
2 = −1

2 and γ1
3 = −1

6 so that we find

f(n, 1, 1) = −1
6
[n]3 − 1

2
[n]2 + γ1

1n+ γ1
0

The last two terms must vanish, so the final formula is

f(n, 1, 1) = −
(
n+ 1

3

)

Induction now proves (8.120), but this case also follows from Chu–Vandermonde,
(8.3).

Substitution of (8.124) in (8.123) yields after division with the appropriate
power of r �= 0,

rpm(n+ 2, r) − (1 + r)pm(n+ 1, r) + pm(n, r) = −mpm−1(n, r)
(8.126)

1
r
qm(n+ 2, r)− (1 + 1

r
)qm(n+ 1, r) + qm(n, r) = −mqm−1(n, r)

(8.127)

We may write the two polynomials as

pm(n, r) =
m∑

k=0

αm
k (r)[n]k(8.128)

qm(n, r) =
m∑

k=0

βm
k (r)[n]k(8.129)

and denote we already know that

p0(n, r) =
r

r − 1
q0(n, r) =

1
r − 1

= p0

(
n, 1

r

)
Now substitution of (8.128) in (8.126) gives

(8.130) αm
k (r) =

1
1 − r

(m
k
αm−1

k−1 (r) + r(k + 1)αm
k+1(r)

)

For m > 0 we have the equations

αm
0 (r) + βm

0 (r) = 0(8.131)

(αm
1 (r) + αm

0 (r)) r + βm
1 (r) + βm

0 (r) = 0(8.132)
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If we assume that
βm

1 (r) = −αm
1

(
1
r

)
then the solution of the simultaneous equations (8.131) and (8.132) proves that

βm
0 (r) = −αm

0

(
1
r

)
The similarity of the equations (8.126) and (8.127) insures that we have the general
identities

βm
k (r) = −αm

k

(
1
r

)
qm(n, r) = −pm

(
n, 1

r

)
The recursion (8.130) proves that

αm
m(r) =

1
1 − r

αm−1
m−1(r) =

r

(1 − r)m+1

Now we define

σm
k (r) =

(1 − r)2m+1−k

[m]m−k
αm

k (r)

Substitution in (8.130) gives the recursion for this new function,

(8.133) σm
k (r) = σm−1

k−1 (r) + rσm
k+1(r)

In particular, we have σm
m(r) = r. Induction proves that σm

k (r) is a polynomial in
r with only two term, namely

(8.134) σm
k (r) = φm

k r
m−k+1 + ψm

k r
m−k

Substation of (8.134) in (8.133) yields for the coefficients the very same recurrence,
namely

φm
k = φm−1

k−1 + φm
k+1

which has as solution some kind of binomial coefficients. We find the solutions to
be

φm
k =

(
2m− k − 1

m

)

ψm
k =

(
2m− k − 1
m− 1

)
Substitution backwards eventually yields

pm(n, r) = −
m∑

k=0

((
m

k

)
r +
(
m− 1
k

))
[−m]m−k(−r)m−k

(1 − r)2m+1−k
[n]k

(8.135)

qm(n, r) =
m∑

k=0

((
m

k

)
+ r

(
m− 1
k

))
[−m]m−k(−r)m

(1 − r)2m+1−k
[n]k

(8.136)

Substitution of the formulas (8.135) and (8.136) in (8.124) gives the formula in
the theorem, (8.121).
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Remark. That the theorem in particular gives the formula for m = 0, gives an
easy way to find the formula for m = −1,

(8.137) f(n,−1, r) =
1

(n+ 2)r
((1 + r)n − rn − 1)

The recursion in the lemma, (8.122), allows the computation of formulas for
m < −1 as soon as the formula for m = −1 is known.

Proof of (8.137). Consider the formula for m = 0,

f(n, 0, r) =
�n

2 	∑
j=0

(
n− j

j

)
(−r)j(1 + r)n−2j =

rn+1 − 1
r − 1

Take the first term of the sum, and then remove the two highest factors of the
binomial coefficient to get

f(n, 0, r) = (1 + r)n +
�n

2 	∑
j=1

n− j

j

(
n− j − 1
j − 1

)
(−r)j(1 + r)n−2j

In the sum, change the variable to j − 1,

f(n, 0, r) = (1 + r)n − r

�n
2 	−1∑
j=0

(
n

j + 1
− 1
)(

n− 2 − j

j

)
(−r)j(1 + r)n−2−2j

which may be written as

f(n, 0, r) = (1 + r)n − rf(n− 2,−1, r) + rf(n− 2, 0, r)

This proves the formula (8.137), which remains valid for r = 1.

The general difference equation. The only general result about sums of the
form (8.109) is, that the function T (a, b, n, z) must satisfy the second order diffe-
rence equation in the variable n,
(8.138)(

E2 + ((1 + z)(n+ 1) − za− b)E + z(n− a− b)(n+ 1)I
)
T (a, b, n, z) = 0

For fixed a, b, z the equation has coefficients which are polynomials in n of degree
two. So, no general solution is obtainable, but for special choices of a, b and z it
is of course possible to solve the equation, but for all such choices, we have been
able to figure out, we get some of the formulas mentioned above.

This formula is derived by the Zeilberger algorithm, cf. (16,24).
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CHAPTER 9. SUMS OF TYPE II(3, 3, z)

The Pfaff–Saalschütz and Dixon formulas. The most famous of these iden-
tities are the Pfaff–Sallschütz identity, first discovered of J. F. Pfaff (1797) and
later reformulated by L. Saalschütz (1890) [97,102] and the two Dixon identities
(1903) due to A. C. Dixon, [32], all of type II(3, 3, 1).

Theorem 9.1. If the numbers satisfy a1 + a2 + b1 + b2 = n − 1 we have the
Pfaff-Saalschütz formula

n∑
k=0

(
n

k

)
[a1]k [a2]k [b1]n−k [b2]n−k (−1)k = [a1 + b1]n [a1 + b2]n

= [b1 + a1]n [b1 + a2]n (−1)n

(9.1)

The quotient is

(9.2) qps =
(n− k) (a1 − k) (a2 − k)

(−1 − k) (n− 1 − b1 − k) (n− 1 − b2 − k)

Remark. The formula is reflexive. If we reverse the order of summation, the
condition repeats itself. But the sign will change for odd n.

Theorem 9.2. The symmetric Dixon formula is
(9.3)

n∑
k=0

(
n

k

)
[a]k[b]k[a]n−k[b]n−k(−1)k =

{
0 for n odd
[a]m[b]m[n− a− b− 1]m[n]m for n = 2m

Theorem 9.3. The balanced Dixon formula is

(9.4)
n∑

k=0

(
n

k

)
[n+2a]k[b+a]k[b−a]n−k[n−2a]n−k(−1)k = [n−2a−1, 2]n[n+2b, 2]n

Besides these formulas there are formulas due to G. N. Watson (1925), [115],
and F. J. W. Whipple (1925), [116], but both are transformations of the formulas
due to Dixon above.

Transformations of sums of type II(3, 3, 1). The sums of form

(9.5) Sn (a1, a2, b1, b2) =
n∑

k=0

(
n

k

)
[a1]k [a2]k [b1]n−k [b2]n−k (−1)k
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are independent of interchanging of a1 and a2, of b1 and b2, and by reversing the
direction of summation, only by the factor (−1)n depending on the interchanging
of the pair of sets, {a1, a2} and {b1, b2}.

Let us define the function of two variables,

(9.6) fn(x, y) = n− 1 − x− y

and the transformation of the set of four variables,

(9.7) τn (a1, a2, b1, b2) = (fn (a1, b1) , b2, a1, fn (a2, b2))

With these notation we have the

Transformation theorem. For S defined by (9.5) and the transformation of
indices τn defined by (9.7), we have

(9.8) Sn (τn (a1, a2, b1, b2)) = Sn (a1, a2, b1, b2)

or, written out

(9.9) Sn (n− 1 − a1 − b1, b2, a1, n− 1 − a2 − b2) = Sn (a1, a2, b1, b2)

Proof. By Chu–Vandermonde, (8.3) we have using (2.1)

[b1]n−k = (−1)n−k [−b1 + n− k − 1]n−k =

(−1)n−k
n∑

j=k

(
n− k

j − k

)
[a1 − k]j−k [n− a1 − b1 − 1]n−j

Applied to the definition (9.5) it gives the form

Sn (a1, a2, b1, b2) =
n∑

k=0

n∑
j=k

(
n

k

)(
n− k

j − k

)
[a1]k [a1 − k]j−k [a2]k [n− a1 − b1 − 1]n−j [b2]n−k (−1)n

Now we apply (2.10) and (2.2), and interchange the order of summation

Sn (a1, a2, b1, b2) =

(−1)n
n∑

j=0

(
n

j

)
[a1]j [n− a1 − b1 − 1]n−j

j∑
k=0

(
j

k

)
[a2]k [b2]n−k

Then we apply (2.1) to write [b2]n−k = [b2]n−j [b2 − n+ j]j−k, so we get

Sn (a1, a2, b1, b2) =

(−1)n
n∑

j=0

(
n

j

)
[a1]j [n− a1 − b1 − 1]n−j [b2]n−j

j∑
k=0

(
j

k

)
[a2]k [b2 − n+ j]j−k
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Now we can apply Chu–Vandermonde, (8.3), to the inner sum and get

Sn (a1, a2, b1, b2) =

(−1)n
n∑

j=0

(
n

j

)
[a1]j [n− a1 − b1 − 1]n−j [b2]n−j [a2 + b2 − n+ j]j

When we apply (2.1) to the last term, we get

[a2 + b2 − n+ j]j = (−1)j [n− a2 − b2 − 1]j
and the proof is finished after changing the direction of summation.

A simple consequence of the transformation theorem is the following formula.

Theorem. For any a, b, c ∈ C and n, p ∈ N0 we have

n∑
k=0

(
n

k

)
[a]k[b]n−k[c− k]p =

[a+ b− p]n−p

p∑
j=0

(
p

j

)
[n]j[b]j[c− n]p−j [p− 1 − a− b]p−j(−1)p−j

(9.10)

Proof. We apply the lemma in chapter 4 to, formula (4.35), to write

[c− k]p = [c− p]k[n− 1 − c]n−k(−1)k · (−1)n

[c− p]n−p

Then the transformation (9.8) yields

[a+ b− p]n−p

n∑
j=0

(
n

j

)
[p]j [b]j[c− n]p−j [p− 1 − a− b]p−j(−1)p−j

And we only have to remark, that
(
n
j

)
[p]j =

(
p
j

)
[n]j.

By interchanging the a’s or b’s or both we may get this transformation in
four different forms, all looking like

(9.11) (a1, a2, b1, b2) →
(
b, fn

(
a, b̂
)
, a, fn (â, b)

)
, â �= a, b̂ �= b

Furthermore, by iteration of the transformation, τn, one gets another four formu-
las, where we remark that

(9.12) fn

(
fn (a, b) , fn

(
â, b̂
))

= a1 + a2 + b1 + b2 − n+ 1

is independent of interchanges, hence we get the forms for a ∈ {a1, a2} and b ∈
{b1, b2}
(9.13) (a1, a2, b1, b2) → (a, a1 + a2 + b1 + b2 − n+ 1, fn (a, b1) , fn (a, b2))

or

(9.14) (a1, a2, b1, b2) → (fn (a1, b) , fn (a2, b) , a1 + a2 + b1 + b2 − n+ 1, b)

Not only is the Pfaff–Saalschütz theorem a simple consequence of the trans-
formations (9.13) or (9.14), but they give us a generalization,
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The generalized Pfaff-Saalschütz formula. If the number

(9.15) p = a1 + a2 + b1 + b2 − n+ 1

satisfies p ∈ N0, then we have

n∑
k=0

(
n

k

)
[a1]k [a2]k [b1]n−k [b2]n−k (−1)k =

(9.16)

p∑
k=0

(
p

k

)
[n]k [a2]k [a1 + b1 − p]n−k [a1 + b2 − p]n−k (−1)k =

[a1 + b1 − p]n−p [a1 + b2 − p]n−p ·
p∑

k=0

(
p

k

)
[n]k [a2]k [a1 + b1 − n]p−k [a1 + b2 − n]p−k (−1)k

Proof. From (9.13) we get immediately

n∑
k=0

(
n

k

)
[a1]k [a2]k [b1]n−k [b2]n−k (−1)k =

n∑
k=0

(
n

k

)
[p]k [a2]k [n− 1 − a2 − b1]n−k [n− 1 − a2 − b2]n−k (−1)k

(9.17)

Now we apply the condition to write n−1−a2 − b2 = a1 + b1 −p, and the formula
(2.11) to write

(
n
k

)
[p]k =

(
p
k

)
[n]k. Then we use (2.2) to write [a+ b− p]n−k =

[a+ b− p]n−p [a+ b− n]p−k. The limit of summation may be changed to p because
of the binomial coefficient. This establishes (9.16).

A special case of this formula for p = 1 appears in Slater, [105], formula
(III.16).

We do not know of any general formulas for p of (9.15) a negative integer,
but the special case of p = −2 has a two argument family of formulas found by I.
M. Gessel and D. Stanton as a generalization of a one argument family due to R.
W. Gosper, see [46], formula 1.9.

n∑
k=0

(
n

k

)
[a− b− ab]k[−na− ab− 1]k[ab− a− 1]n−k[n+ na+ b+ ab− 1]n−k(−1)k

=(n+ 1)[n+ b− 1]n[−na− a− 1]n

(9.18)
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The formula (9.18) has excess (9.15), p = −2. This is a transformation by τn,
(9.7), of the formula mentioned, which looks in our writing

n∑
k=0

(
n

k

)
[ab− a− 1]k[1 − b]k[n+ b]n−k[−na− ab− 1]n−k(−1)k

=(n+ 1)[n+ b− 1]n[−na− a− 1]n

(9.19)

Proof. From (2.2) and (2.1) we have

[n+ b]n+2 = [n+ b]n−k[b+ k]2[1 − b]k(−1)k

dividing both sides of (9.19) with this factor, we get the equivalent identity

n∑
k=0

(
n

k

)
[ab− a− 1]k[−na− ab− 1]n−k

[b+ k]2
=

(n+ 1)[−na− a− 1]n
(n+ b)(b− 1)

Splitting the denominator as 1
[b+k]2

= 1
b+k−1

− 1
b+k

we may split the sum in two,
change the summation variable in one of them and join them again:

n∑
k=0

(
n

k

)
[ab− a− 1]k[−na− ab− 1]n−k

[b+ k]2

=
n∑

k=0

(
n

k

)
[ab− a− 1]k[−na− ab− 1]n−k

b+ k − 1
−

−
n∑

k=0

(
n

k

)
[ab− a− 1]k[−na− ab− 1]n−k

b+ k

=
n∑

k=0

(
n

k

)
[ab− a− 1]k[−na− ab− 1]n−k

b+ k − 1
−

−
n+1∑
k=1

(
n

k − 1

)
[ab− a− 1]k−1[−na− ab− 1]n+1−k

b+ k − 1

=
n+1∑
k=1

(
n

k − 1

)
[ab− a− 1]k−1[−na− ab− 1]n−k

b+ k − 1
· (n+ 1)a(b+ k − 1)

k
+

+
[−na− ab− 1]n

b− 1

=a
n+1∑
k=1

(
n+ 1
k

)
[ab− a− 1]k−1[−na− ab− 1]n−k + a[ab− a− 1]−1[−na− ab− 1]n

=
−1

a(b− 1)(n+ b)

n+1∑
k=0

(
n+ 1
k

)
[ab− a]k[−na− ab]n+1−k
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Now we may apply the Chu–Vandermonde formula, (8.3), to obtain

−1
a(b− 1)(n+ b)

· [−na− a]n+1 =
(n+ 1)[−na− a− 1]n

(b− 1)(n+ b)

as we wanted.

Generalizations of Dixon’s formulas. We want to consider a family of sums,
similar to the symmetric Dixon, so let us define for n ∈ N0 and p, q ∈ Z

(9.20) Sn(a+ p, b+ q, a, b) =
n∑

k=0

(
n

k

)
[a+ p]k[b+ q]k[a]n−k[b]n−k(−1)k

For p = q = 0 we get the sum in the symmetric Dixon formula, (9.3).
We can find expressions for such sums for p = q. We shall claim

Theorem 9.4. The quasi–symmetric Dixon formulas for p ∈ N0 are

(9.21) Sn(a+p, b+p, a, b) =
�n+p

2 	∑
j=
n

2 �

(
p

2j − n

)
[n]j [n− p− a− b− 1]j [a]n−j [b]n−j

and

Sn(a− p, b− p, a, b) =

(−1)n

�n+p
2 	∑

j=
n
2 �

(
p

2j − n

)
[n]j [n+ p− a− b− 1]j [a− p]n−j [b− p]n−j

(9.22)

Proof. We prove (9.21). The Pfaff–Saalschütz formula (9.1) yields

(9.23) [a+ p]k[b+ p]k =
k∑

j=0

(
k

j

)
[α]j[β]j [a+ p− α]k−j [b+ p− α]k−j(−1)j

provided β = α+ k− 2p− a− b− 1. When we substitute (9.23) in the sum (9.20)
with q = p, we get

Sn(a+ p, b+ p, a, b) =
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
[α]j [β]j [a+ p− α]k−j [b+ p− α]k−j [a]n−k[b]n−k(−1)j+k

(9.24)

Now we apply (2.10) to write
(
n
k

)(
k
j

)
=
(
n
j

)(
n−j
k−j

)
. Then we choose α = n +

p − k, so that we may apply (2.2) to write [a]n−k[a + p − α]k−j = [a]n−j and
97
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[b]n−k[b+ p− α]k−j = [b]n−j . Eventually we interchange the order of summations
to obtain if we remember that β = n− p− a− b− 1,

Sn(a+ p, b+ p, a, b) =

=
n∑

j=0

(
n

j

)
[a]n−j[b]n−j [n− p− a− b− 1]j

n∑
k=j

(
n− j

k − j

)
[n+ p− k]j(−1)j+k

(9.25)

When we apply (8.14) to the inner sum, it may be evaluated as

(9.26) [n+ p− j − n+ j]j−n+jj! = [p]2j−nj!

We only need to write
(
n
j

)
[p]2j−n[j]n−j =

(
p

2j−n

)
[n]j and restrict summation to

nonzero terms to obtain (9.21).
To prove (9.22) we reverse the direction of summation and apply (9.21) to

(a− p, b− p).

We do not know formulas for the general sums (9.20), but we may give you
a couple of recursion formulas.

The general recursion formula. The sums in (9.20) satisfy
(9.27)
Sn(a+p, b+q, a, b) = Sn(a+p−1, b+q, a, b)−n(b+q)Sn−1(a+p−1, b+q−1, a, b)

Proof. We apply (2.4) to write [a+ p]k = [a+ p− 1]k + k[a+ p− 1]k−1. Then the
sum splits in the two mentioned in (9.27).

The particular interesting case of q = 0 may be treated by a recursion of
such sums,

The special recursion formula. The sums in (9.20) satisfy

Sn(a+ p, b, a, b) =Sn(a+ p− 1, b, a, b)− n(b− a− p+ 1)Sn−1(a+ p− 1, b, a, b)−
n(a+ p− 1)Sn−1(a+ p− 2, b, a, b)

(9.28)

Proof. We apply (2.4) to write [a+ p]k = [a+ p− 1]k + k[a+ p− 1]k−1. Then the
sum splits in two, the first one is just Sn(a+ p− 1, b, a, b), but the second is

Sn(a+ p, b, a, b) =

= Sn(a+ p− 1, b, a, b) +
n∑

k=0

(
n

k

)
k[a+ p− 1]k−1[b]k[a]n−k[b]n−k(−1)k =

= Sn(a+ p− 1, b, a, b) + n

n∑
k=1

(
n− 1
k − 1

)
[a+ p− 1]k−1[b]k[a]n−k[b]n−k(−1)k =

= Sn(a+ p− 1, b, a, b)− nTn−1(a, b, p− 1)

(9.29)
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where we have put

(9.30) Tn(a, b, p) =
n∑

k=0

(
n

k

)
[a+ p]k[b]k+1[a]n−k[b]n−k(−1)k

If we write [b]k+1 = [b]k(b − k), then we get the new sum, Tn, written as a
sum of two,

Tn(a, b, p) =

= bSn(a+ p, b, a, b) + n

n−1∑
k=0

(
n− 1
k

)
[a+ p]k+1[b]k+1[a]n−1−k[b]n−1−k(−1)k =

= bSn(a+ p, b, a, b) + n(a+ p)Tn−1(a, b, p− 1)

(9.31)

If we multiply (9.29) with a+ p and add to (9.31), then we get

(9.32) Tn(a, b, p) = (b− a− p)Sn(a+ p, b, a, b) + (a+ p)Sn(a+ p− 1, b, a, b)

When we substitute (9.32) in (9.29), we eventually arrive at the recursion (9.28).

To get started we need two neighboring values, so we need e.g. to compute
Sn(a+ 1, b, a, b).

From (9.27) we get

(9.33) Sn(a+ 1, b, a, b) = Sn(a+ 1, b+ 1, a, b) + n(a+ 1)Sn−1(a, b, a, b)

where the two terms follow from (9.21). The result becomes

(9.34) Sn(a+ 1, b, a, b) = [n]�n
2 	[n− a− b− 2]
n

2 �[a]
n
2 �[b]�n

2 	(−1)n

The balanced and quasi–balanced Dixon identities. The balanced Dixon
identity, (9.4), is not so easy to generalize. And its proof does not follow from
the Pfaff–Saalschütz formula or the symmetric Dixon theorem. We shall present
a proof following an idea due to G. N. Watson, [114].

To prove also some quasi–balanced Dixon identities, we shall consider for
small integers p ∈ Z, with the balanced case as p = 0
(9.35)

Sn(n+2a, b+a, b−a, n−2a−p) =
n∑

k=0

(
n

k

)
[n+2a]k[b+a]k[b−a]n−k[n−2a−p]n−k(−1)k

Now we apply the Chu–Vandermonde formula (8.4) to write

(9.36) [a+ b]k =
k∑

j=0

(
k

j

)
[n+ 2a− k]j[b− a− n+ k]k−j
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Then the sum becomes

Sn(n+ 2a, b+ a, b− a, n− 2a− p) =

=
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
[n+ 2a]k[n+ 2a− k]j ·

[b− a]n−k[b− a− n+ k]k−j [n− 2a− p]n−k(−1)k

(9.37)

Now we shall apply (2.10) to write
(
n
k

)(
k
j

)
=
(
n
j

)(
n−j
k−j

)
. Next we apply (2.2) twice

and change the order of summations to get

Sn(n+ 2a, b+ a, b− a, n− 2a− p) =

=
n∑

j=0

(
n

j

)
[b− a]n−j

n∑
k=j

(
n− j

k − j

)
[n+ 2a]k+j[n− 2a− p]n−k(−1)k

(9.38)

Now we apply (2.2) to write [n + 2a]k+j = [n + 2a]2j[n + 2a − 2j]k−j. Then the
sum becomes

Sn(n+ 2a, b+ a, b− a, n− 2a− p) =

=
n∑

j=0

(
n

j

)
[n+ 2a]2j[b− a]n−j

n∑
k=j

(
n− j

k − j

)
[n+ 2a− 2j]k−j[n− 2a− p]n−k(−1)k

(9.39)

Changing variables in the inner sum, one gets

(9.40) (−1)j

n−j∑
k=0

(
n− j

k

)
[n−j−p+(2a−j+p)]k[n−j−(2a−j+p)]n−j−k(−1)k

This sum is a quasi–balanced Kummer sum, to be evaluated by (8.34) as

2n−j−(p∨0)

[n− j − p]−(p∧0)

|p|∑
i=0

(|p|
i

)
σ(p)p+i[−(2a− j + p) + n− j + i− 1, 2]n−j−(p∧0) =

2n−j−(p∨0)

[n− j − p]−(p∧0)

|p|∑
i=0

(|p|
i

)
σ(p)p+i[−2a+ p+ n+ i− 1, 2]n−j−(p∧0)

(9.41)

If p = 0, we apply (2.1) to (9.41) and substitute the result in (9.39), then we
get for the sum

Sn(n+ 2a, b+ a, b− a, n− 2a) =

=
n∑

j=0

(
n

j

)
[n+ 2a]2j[b− a]n−j(−1)j(−2)n−j [n+ 2a− 2j − 1, 2]n−j

(9.42)
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If we split [n + 2a]2j = [n + 2a, 2]j[n + 2a − 1, 2]j, and use (2.4) to
[n + 2a − 1, 2]j[n + 2a − 2j − 1, 2]n−j = [n + 2a − 1, 2]n and (2.5) to
[b− a]n−j2n−j = [2b− 2a, 2]n−j, we may write the sum as
(9.43)

Sn(n+2a, b+a, b−a, n−2a) = [n+2a−1, 2]n(−1)n
n∑

j=0

(
n

j

)
[n+2a, 2]j[2b−2a, 2]n−j

Now the Chu–Vandermonde formula (8.4) applies, so we get

(9.44) Sn(n+ 2a, b+ a, b− a, n− 2a) = [n+ 2a− 1, 2]n[n+ 2b, 2]n

This proves the balanced Dixon identity (9.4).
If p > 0, we get

Sn(n+ 2a, b+ a, b− a, n− 2a− p) = (−1)n2−p

p∑
i=0

(
p

i

) n∑
j=0

(
n

j

)
·

[2b− 2a, 2]n−j[n+ 2a, 2]j[n+ 2a− 1, 2]j[n+ 2a− 2j + p− 1 − i, 2]n−j

(9.45)

and for p < 0 we get

Sn(n+ 2a, b+ a, b− a, n− 2a− p) =
(−1)n

[n− p]−p[2b− 2a− 2p, 2]−p
·

−p∑
i=0

(−p
i

)
(−1)i

n∑
j=0

(
n− p

j

)
[2b− 2a− 2p, 2]n−p−j [n+ 2a, 2]j·

[n+ 2a− 1, 2]j[n+ 2a− 2j − p− 1 − i, 2]n−p−j

(9.46)

Theorem 9.5. Some quasi–balanced Dixon formulas are

Sn(n+ 2a, b+ a, b− a, n− 2a− 1) =
(9.47)

= 1
2 ([n− 2b− 1, 2]n[n+ 2a, 2]n + [n− 2a− 1, 2]n[n+ 2b, 2]n)

Sn(n+ 2a, b+ a, b− a, n− 2a− 2) =
(9.48)

= 1
4 [n− 2a− 1, 2]n[n+ 2b, 2]n + 1

2 [n− 2b− 1, 2]n[n+ 2a, 2]n+
1
4 [n− 2a− 3, 2]n[n+ 2b, 2]n + 1

2n(n+ 2a)[n− 2b− 2, 2]n[n+ 2a− 1, 2]n

Sn(n+ 2a, b+ a, b− a, n− 2a+ 1) =
(−1)n

(n+ 1)(2b− 2a+ 2)
·

(9.49)

([n+ 2a, 2]n+1[n+ 2b+ 1, 2]n+1 − [n+ 2a− 1, 2]n+1[n+ 2b+ 2, 2]n+1)

Proof. We substitute p = 1 and p = 2 in (9.45) and p = −1 in (9.46) and eventually
apply Chu–Vandermonde (8.4) to each term.
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Remarks. Surprisingly, Sn(n+2a, b+a, b−a, n− 2a− 1) is symmetric in (a, b).
Another symmetry for the balanced Dixon formula is
(9.50)
Sn(n+ 2a, b+ a, b− a, n− 2a) = Sn (n− 2b− 1,−b− a− 1, b− a, n+ 2b+ 1)

Furthermore, it does not matter, which term is changed with the deviation, p. If
we apply (9.8) to Sn(n + 2a, b+ a, b− a, n − 2a − p), we may get the symmetric
expression:

(9.51)
n∑

k=0

(
n

k

)
[−a− b− 1]k[a+ b]k[b− a]n−k[−1 + a− b+ p]n−k(−1)k

Proof of (9.50). Apply the transformation (9.8).

Watson’s formulas and their contiguous companions. The two finite ver-
sions of Watson’s formulas are

n∑
k=0

(
n

k

)
[−a]k[−b]k

[
1
2
(n+ a− 1)

]
n−k

[n+ 2b− 1]n−k(−1)k

(9.52)

=
{

0 for n odd[−1
2
(a+ 1)

]
m

[−b]m
[

1
2
(a− 1) − b

]
m

[n]m for n = 2m

n∑
k=0

(
n

k

)
[−a]k[−b]k

[
n+ 1

2(a+ b− 1)
]
n−k

[−n− 1]n−k(−1)k

(9.53)

= [−a− 1, 2]n[−b− 1, 2]n(−1)n

Besides we may introduce an excess, p, in one or two of the factorials. We
may write down:

n∑
k=0

(
n

k

)
[−a]k[−b]k

[
1
2 (n+ a− 1)

]
n−k

[n+ 2b]n−k(−1)k

(9.54)

= [n]�n
2 	
[
1
2 (n− a− 1) + b

]

n

2 � [−b− 1]
n
2 �
[

1
2 (n+ a− 1)

]
�n

2 	 (−1)n

n∑
k=0

(
n

k

)
[−a]k[−b]k

[
1
2 (n+ a− 1)

]
n−k

[n+ 2b− 2]n−k(−1)k

(9.55)

= [n]�n
2 	
[
1
2
(n− a− 3) + b

]

n

2 � [−b]
n
2 �
[
1
2
(n+ a− 1)

]
�n

2 	
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n∑
k=0

(
n

k

)
[−a− p]k[−b]k

[
1
2
(n+ a− 1)

]
n−k

[n+ 2b− 1 + p]n−k(−1)k

(9.56)

= σ(p)n

�n+|p|
2 	∑

j=
n
2 �

( |p|
2j − n

)
[n]j
[
1
2 (n− a− 1) + b

]
j

[
1
2(n+ a− 1) + (p ∧ 0)

]
n−j

[−b− (p ∨ 0)]n−j

n∑
k=0

(
n

k

)
[−a]k[−b]k

[
n+ 1

2(a+ b− 1)
]
n−k

[−n]n−k(−1)k

(9.57)

= 1
2

([−a, 2]n[−b, 2]n + [−a− 1, 2]n[−b− 1, 2]n) (−1)n

n∑
k=0

(
n

k

)
[−a]k[−b]k

[
n+ 1

2(a+ b− 1)
]
n−k

[−n− 2]n−k(−1)k

(9.58)

=
1

(n+ 1)(2n+ a+ b+ 1)
([−a, 2]n+1[−b, 2]n+1+

[−a− 1, 2]n+1[−b− 1, 2]n+1) (−1)n

Proof. The formulas (9.52) and (9.54–9.56) are transformed by (9.14) to the diffe-
rent quasi–symmetric Dixon formulas, (9.3), (9.34), and (9.21–9.22). The formulas
(9.53) and (9.57–9.58) are similarly transformed by (9.14) to the balanced Dixon
formula, (9.4), and the quasi–balanced Dixon formulas, (9.47) and (9.49).

The formulas with p of size one, (9.54), (9.55), (9.57) and (9.58) were consi-
dered by J. L. Lavoie [89] in 1987.

Whipple’s formulas and their contiguous companions. The two finite ver-
sions of Whipple’s formulas are

n∑
k=0

(
n

k

)
[−n− 1]k[−a]k[b+ n− 1]n−k[2a− b+ n]n−k(−1)k

(9.59)

= [b+ n− 2, 2]n[2a− b+ n− 1, 2]n

n∑
k=0

(
n

k

)
[a− 1]k[−a]k[b+ n− 1]n−k[−b− n]n−k(−1)k

(9.60)

= [a− b− 1, 2]n[−a− b, 2]n
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These formulas do also allow an excess of the size 1, giving the following 4 formulas

n∑
k=0

(
n

k

)
[−n− 1]k[−a]k[b+ n− 1]n−k[2a− b+ n+ 1]n−k(−1)k

(9.61)

= 1
2 ([b+ n− 2, 2]n[2a− b+ n− 1, 2]n + [b+ n− 1, 2]n[2a− b+ n− 2, 2]n)

n∑
k=0

(
n

k

)
[−n− 1]k[−a]k[b+ n− 1]n−k[2a− b+ n− 1]n−k(−1)k

(9.62)

=
(−1)n

(n+ 1)2a
([b+ n− 1, 2]n+1[−2a+ b+ n, 2]n+1−

[b+ n− 2, 2]n+1[2a− b+ n− 1, 2]n+1)

n∑
k=0

(
n

k

)
[a− 1]k[−a]k[b+ n− 1]n−k[−b− n+ 1]n−k(−1)k

(9.63)

= 1
2 ([a− b− 1, 2]n[−a− b, 2]n + [a− b, 2]n[−a− b+ 1, 2]n)

n∑
k=0

(
n

k

)
[a− 1]k[−a]k[b+ n− 1]n−k[−b− n− 1]n−k(−1)k(9.64)

=
1

(n+ 1)2(n+ b)
([a− b− 1, 2]n+1[−a− b+ 2, 2]n+1−

[a− b, 2]n+1[−a− b− 1, 2]n+1)

Proof. The formulas (9.59) and (9.61–9.62) are transformed by (9.14) to the diffe-
rent quasi–balanced Dixon formulas, (9.4), (9.47) and (9.49). The formulas (9.60)
and (9.63–9.64) are respectively the balanced Dixon formula, (9.5) transformed by
(9.8) and once more transformed by (9.8) to the quasi–balanced Dixon formulas,
(9.47) and (9.49).

Ma Xin–Rong and Wang Tian–Ming’s problem. In 1995 Ma Xin–Rong
and Wang Tian–Ming, Dalian University of Technology, Dalian, China, posed the
problem:

Show that

(9.65)
m∑

k=0

(
m

k

)(
n+ k

k

)(
n+ 1
j − k

)
=

n∑
k=0

(
n

k

)(
m+ k

k

)(
m+ 1
j − k

)

and

(9.66)
m∑

k=0

(
2n−m− 1 − k

n− k

)(
m+ k

k

)
=
(

2n− 1
n

)
(m ≤ n− 1)
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Proof of (9.65).
We shall remark that the upper limits of summation may well be changed to

j, because, possible terms with k > j or k > m (k > n) are zeros anyway.
Hence the identity may be written as

(9.67)
j∑

k=0

(
m

k

)(
n+ k

k

)(
n+ 1
j − k

)
=

j∑
k=0

(
n

k

)(
m+ k

k

)(
m+ 1
j − k

)

In this form, (9.67), the sums are defined for any complex values of m and n.
We shall prove the generalization of (9.65), that the function,

(9.68) Sj(m,n) =
j∑

k=0

(
m

k

)(
n+ k

k

)(
n+ 1
j − k

)

defined for integers j and complex variables m and n, is symmetric in m and n.
The function (9.68) may be changed without disturbing a possible symmetry

by multiplication with j!2. Then the function j!2Sj(m,n) becomes, using the
rewriting (2.1), [n+ k]k = [−n− 1]k(−1)k,

(9.69) j!2Sj(m,n) =
j∑

k=0

(
j

k

)
[m]k[−n− 1]k[n+ 1]j−k[j]j−k(−1)k

Now we apply the transformation (9.9) to write (9.69) in a form symmetric
in m and n

(9.70) j!2Sj(m,n) =
j∑

k=0

(
j

k

)
[m]k[n]k[j − 2 − n−m]j−k[j]j−k(−1)j−k

If we divide again with j!2, where we use once more,

(9.71) [j − 2 − n−m]j−k(−1)j−k = [m+ n+ 1 − k]j−k

then we get one symmetric form of the original function, (9.68),

(9.72) Sj(m,n) =
j∑

k=0

(
m

k

)(
n

k

)(
m+ n+ 1 − k

j − k

)

If we apply (9.9) to the function (9.69) interchanging the first two factorials

(9.73) j!2Sj(m,n) =
j∑

k=0

(
j

k

)
[−n− 1]k[m]k[n+ 1]j−k[j]j−k(−1)k
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then we get another symmetric form, namely

(9.74) j!2Sj(m,n) = (−1)j

j∑
k=0

(
j

k

)
[−n− 1]k[−m− 1]k[j − 1]j−k[j]j−k(−1)k

From this form we may regain as another symmetric form of the function, (9.68),

(9.75) Sj(m,n) =
j∑

k=0

(−n− 1
k

)(−m− 1
k

)(
j − 1
j − k

)
(−1)j−k

or, if you prefer

(9.76) Sj(m,n) =
j∑

k=0

(
n+ k

k

)(
m+ k

k

)( −k
j − k

)

Proof of (9.66).
We remark, that (9.66) is true for m = 0.
Then we prove that as long as m < n, the sum is the same for m and m− 1.
To get this equality it is convenient to apply Abelian summation or summa-

tion by parts. We remark that we have by (2.8)

(9.77)(
2n−m− 1 − k

n− k

)
=
(

2n− (m− 1) − 1 − k

n− k

)
−
(

2n− (m− 1) − 1 − k − 1
n− k − 1

)

With this we may split the sum in (9.66) as

m∑
k=0

(
2n−m− 1 − k

n− k

)(
m+ k

k

)
=

=
m∑

k=0

(
2n− (m− 1) − 1 − k

n− k

)(
m+ k

k

)
−

−
m∑

k=0

(
2n− (m− 1) − 1 − k − 1

n− k − 1

)(
m+ k

k

)
=

=
m∑

k=0

(
2n− (m− 1) − 1 − k

n− k

)(
m+ k

k

)
−

−
m+1∑
k=0

(
2n− (m− 1) − 1 − k

n− k

)(
m+ k − 1
k − 1

)
=

=
m−1∑
k=0

(
2n− (m− 1) − 1 − k

n− k

)(
(m− 1) + k

k

)
+

+
(

2n− 2m
n−m

)(
2m− 1
m

)
−
(

2n− 2m− 1
n−m− 1

)(
2m
m

)

(9.78)
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where the last two terms cancel, as long as m < n, because one is obtained from the
other by moving a factor 2 from one binomial coefficient to the other, cf. (5.43).

If we have m = n, then the equation (9.78) looks as

(9.79)
(

2n
n

)
=
(

2n− 1
n

)
+
(

2n− 1
n

)
− 0

where the last two terms do not cancel.

Comment. If we replace m with n−m− 1 in the formula (9.66), then we get

(9.80)
n−m−1∑

k=0

(
n+m− k

n− k

)(
n−m− 1 + k

k

)
=
(

2n− 1
n

)
(m ≤ n− 1)

Now, if we change the summation variable replacing k with n − k, i.e., changing
the direction of summation, then we get

(9.81)
n∑

k=m+1

(
m+ k

k

)(
2n−m− 1 − k

n− k

)
=
(

2n− 1
n

)
(m ≤ n− 1)

But this is the natural continuation of (9.66), so if we add (9.66) and (9.81), we
get

(9.82)
n∑

k=0

(
2n−m− 1 − k

n− k

)(
m+ k

k

)
=
(

2n
n

)

which happens to be valid for all complex values of m.
This is just a simple consequence of the Chu–Vandermonde equation, (8.4).

To see this we only need to change the binomial coefficients by (2.12),

n∑
k=0

(
2n−m− 1 − k

n− k

)(
m+ k

k

)
=

=(−1)n
n∑

k=0

(
n− k − 2n+m+ 1 + k − 1

n− k

)(
k −m− k − 1

k

)
=

=(−1)n
n∑

k=0

(
m− n

n− k

)(−m− 1
k

)
=

=(−1)n

(−n− 1
n

)
=

=
(

2n
n

)

(9.83)
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C. C. Grosjean’s problem. In 1992, C. C. Grosjean, University of Ghent, Bel-
gium, [72], [12], posed the problem:

Determine the sum

(9.84)
n∑

m=0

(−1
4

m

)2( −1
4

n−m

)2

.

We shall consider the sum

S =
n∑

m=0

(
n

m

)
[n+ x+ y]m

[
x− 1

4

]
m

[
y − 1

4

]
m

[n− x− y]n−m

[−x− 1
4

]
n−m

[−y − 1
4

]
n−m

,

(9.85)

We use the Pfaff–Saalschütz–identity, (9.1),

(9.86) [a+ d]n [b+ d]n =
n∑

k=0

(
n

k

)
[n− a− b− d− 1]k [d]k [a]n−k [b]n−k (−1)k.

We want to write the sum in (9.85) as a double sum using (9.86) to expand[
x− 1

4

]
m

[
y − 1

4

]
m

. We therefore replace n by m and let a = x− 1
4
−d, b = y− 1

4
−d

in (9.86). This gives us

S =
n∑

m=0

(
n

m

)
[n+ x+ y]m [n− x− y]n−m

[−x− 1
4

]
n−m

[−y − 1
4

]
n−m

m∑
k=0

(
m

k

)[
m+ d− x− y − 1

2

]
k
[d]k
[
x− 1

4
− d
]
m−k

[
y − 1

4
− d
]
m−k

(−1)k.

(9.87)

If we let d = n−m+ x+ y, then
[
x− 1

4
− d
]
m−k

[−y − 1
4

]
n−m

=
[−y − 1

4

]
n−k

and [
y − 1

4 − d
]
m−k

[−x− 1
4

]
n−m

=
[−x− 1

4

]
n−k

.

Using also
(

n
m

)(
m
k

)
=
(
n
k

)(
n−k
m−k

)
we obtain after changing the order of summation

S =
n∑

k=0

(
n

k

)[
n− 1

2

]
k

[−x− 1
4

]
n−k

[−y − 1
4

]
n−k

(−1)k

n∑
m=k

(
n− k

m− k

)
[n+ x+ y]m [n− x− y]n−m [n−m+ x+ y]k .

(9.88)
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Let T be the inner sum, i.e.

(9.89) T =
n∑

m=k

(
n− k

m− k

)
[n+ x+ y]m [n− x− y]n−m [n−m+ x+ y]k .

Since [n+ x+ y]m [n−m+ x+ y]k = [n+ x+ y]2k [n+ x+ y − 2k]m−k it follows
using the Chu–Vandermonde convolution (8.4) and (5.44) that
(9.90)

T = [n+ x+ y]2k [2n− 2k]n−k =
[

n+x+y
2

]
k

[
n+x+y−1

2

]
k

[
n− k − 1

2

]
n−k

4n.

Introducing this in (9.88) yields

S =
n∑

k=0

(
n

k

)[
n− 1

2

]
k

[−x− 1
4

]
n−k

[−y − 1
4

]
n−k

(−1)k

[
n+x+y

2

]
k

[
n+x+y−1

2

]
k

[
n− k − 1

2

]
n−k

4n =

4n
[
n− 1

2

]
n

n∑
k=0

(
n

k

)[
n+x+y

2

]
k

[
n+x+y−1

2

]
k

[−x− 1
4

]
n−k

[−y − 1
4

]
n−k

(−1)k.

(9.91)

This sum is a Pfaff–Saalschütz sum, (9.1), and we get using (9.86) an identity
for the sum in (9.85):

S = [2n]n
[

n−x+y
2

− 3
4

]
n

[
n+x−y

2
− 3

4

]
n

= [2n]n
[
n+ x− y − 1

2

]
2n

(−1
4

)n
,

(9.92)

where we have given two different forms of the result. If we divide by n!3 we obtain

n∑
m=0

(
n+ x+ y

m

)(
x− 1

4

m

)(
y − 1

4

m

)
(
n− x− y

n−m

)(−x− 1
4

n−m

)(−y − 1
4

n−m

)/(
n

m

)2

=
(

2n
n

)(n−x+y
2 − 3

4

n

)(n+x−y
2 − 3

4

n

)
=
(

2n
n

)2(
n+ x− y − 1

2

2n

)
(−1

4
)n.

(9.93)

For x = y = 0 we obtain

(9.94)
n∑

m=0

(−1
4

m

)2( −1
4

n−m

)2

=
(

2n
n

)(n
2
− 3

4

n

)2

=
(

2n
n

)2(
n− 1

2

2n

)
(−1

4)n.

this solves the problem.
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Peter Larcombe’s problem. On June 18, 2005, Peter Larcombe asked the qu-
estions, is the following formula true, and how to prove it?

(9.95) 16n
2n∑

k=0

4k

(−1
2

k

)(1
2

k

)( −2k
2n− k

)
= (4n+ 1)

(
2n
n

)2

Well, using the technique of getting a standard form, one may change the left side
to

(9.96)
2 · 42n

(2n)!2

2n∑
k=0

(
2n
k

)
[−2n]k[ 12 ]k[2n]2n−k[2n− 1]2n−k(−1)k

Using the formula (9.13) to the sum (without the front factor) we get

(9.97)
2n∑

k=0

(
2n
k

)
[ 12 ]k[ 12 ]k[−1

2 ]2n−k[−1 1
2 ]2n−k(−1)k

This expression is a generalized Dixon formula, so I have the tools to compute it.
Let’s define

(9.98) Sn(a, b; p, q) =
n∑

k=0

(
n

k

)
[a+ p]k[b+ q]k[a]n−k[b]n−k(−1)k

Then we are after

(9.99) S2n(−1
2
,−1 1

2
; 1, 2)

Now the general recursion formula (9.27) alows us to write it as

(9.100) S2n(−1
2
,−1 1

2
; 2, 2) + nS2n−1(−1

2
,−1 1

2
; 1, 1)

Both sums are quasi-symmetric Dixon sums to be evaluated be theorem 9.4 with
the formula (9.21) as
(9.101)
S2n(−1

2 ,−1 1
2 ; 2, 2) = [2n]n[2n−1]n[−1

2 ]n[−1 1
2 ]n+[2n]n+1[2n−1]n+1[−1

2 ]n−1[−1 1
2 ]n−1

and

(9.102) S2n−1(−1
2 ,−1 1

2 ; 1, 1) = [2n− 1]n[2n− 1]n[−1
2 ]n−1[−1 1

2 ]n−1

Now a tedious computation then leads to the result

(9.103) [2n]4n
1
2( 1

4 )2n(4n+ 1)

proving the formula (9.95).
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CHAPTER 10. SUMS OF TYPE II(4, 4,±1)

Introduction. We do not know any indefinite formulas of this type, so we may
as well rectify the limits and consider a sum of terms

(10.1) S(c, n) =
n∑

k=0

s(c, n, k)

with quotient

(10.2) qt(k) =
(n− k)(α1 − k)(α2 − k)(α3 − k)
(−1 − k)(β1 − k)(β2 − k)(β3 − k)

· z

We shall prefer to define aj = αj and bj = n− 1−βj , (j = 1, ·, 3), and hence
redefine the sum as

(10.3) Sn (a1, ·, a3, b1, ·, b3) =
n∑

k=0

(
n

k

)
[a1]k [a2]k [a3]k [b1]n−k [b2]n−k [b3]n−k z

k

Sum formulas for z = 1. In the case of z = 1 we know two important formulas
with three arguments and one excess.

The symmetric formula, cf. H. W. Gould, [64], formula (23.1):

Theorem 10.1. For any a, b, c ∈ C and n ∈ N we have, that if

(10.4) a+ b+ c = n− 1
2

then

(10.5)
n∑

k=0

(
n

k

)
[a]k[b]k[c]k[a]n−k[b]n−k[c]n−k =

(
1
4

)n [2a]n[2b]n[2c]n

This formula allows the generalization with excess:

Theorem 10.2. For any a, b, c ∈ C and n, p ∈ N0 we have, that if

(10.6) p = a+ b+ c− n+ 1
2

then

n∑
k=0

(
n

k

)
[a]k[b]k[c]k[a]n−k[b]n−k[c]n−k =

(10.7)

(−1)p2n[a]
n
2 �[b]
n

2 �[c]
n
2 �
[
a− p− 1

2

]
�n

2 	−p

[
b− p− 1

2

]
�n

2 	−p

[
c− p− 1

2

]
�n

2 	−p
·

p∑
i=0

(
p

i

)[�n
2
�]

i
[c]i
[
c− �n

2
�]

i

[
p− c− 1

2

]
p−i

[
a− �n

2
� − 1

2

]
p−i

[
b− �n

2
� − 1

2

]
p−i

To prove these formulas, we need a lemma,
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Lemma 10.1. For any a, b, x, y ∈ C and n ∈ N we have,

n∑
k=0

(
n

k

)
[x]k[y]n−k[a]k[a]n−k[b]k[b]n−k =

(−1)n

�n
2 	∑

j=0

[n]2j

j!
[x]j[y]j[n− 1 − a− b]j [a]n−j[b]n−j [n− 1 − x− y]n−2j(−1)j

(10.8)

Proof. We use the Pfaff–Saalschütz identity, (9.1), to write

(10.9) [a]k[b]k[a]n−k[b]n−k =
k∑

j=0

(
k

j

)
[n− k]j[n− 1 − a− b]j[a]n−j[b]n−j(−1)j

Substitution of this in the sum of (10.8) yields after changing the order of sum-
mation

n∑
j=0

(
n

j

)
[n− 1 − a− b]j[a]n−j [b]n−j [x]j[y]j(−1)j·

n∑
k=j

(
n− j

k − j

)
[n− k]j[x− j]k−j[y − j]n−j−k

(10.10)

After writing
(
n−j
k−j

)
[n− k]j =

(
n−2j
k−j

)
[n− j]j we can apply the Chu–Vandermonde

formula (8.4) to the inner sum and get

[n− j]j[x+ y − 2j]n−2j

Then we shall write

[x+ y − 2j]n−2j = (−1)n[n− 1 − x− y]n−2j

and eventually we shall write (
n

j

)
[n− j]j =

[n]2j

j!

Substituting all the changes, the very sum becomes the right side of (10.8).

Proof. We use lemma 1 with x = y = c and n− 1− a− b = c− 1
2 − p to write the

sum as

(−1)n

�n
2 	∑

j=0

[n]2j

j!
[c]2j [c− 1

2 − p]j[a]n−j [b]n−j[n− 1 − 2c]n−2j(−1)j
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Then we shall write

[n− 1 − 2c]n−2j(−1)n = [2c− 2j]n−2j = 2n−2j [c− j]
n
2 �−j

[
c− j − 1

2

]
�n

2 	−j

[c]j[c− j]
n
2 �−j = [c]
n

2 �
[c− 1

2 − p]j
[
c− j − 1

2

]
�n

2 	−j
=
[
c− 1

2 − p
]
�n

2 	−p

[
c− j − 1

2

]
p[

c− j − 1
2

]
p

= (−1)p
[
p− c− 1

2 + j
]
p

Eventually we shall write

[n]2j

j!
= 22j

(�n
2 �
j

)[�n
2
� − 1

2

]
j

Substituting all the changes, the very sum becomes

2n[c]
n
2 �
[
c− 1

2 − p
]
�n

2 	−p
(−1)p·

�n
2 	∑

j=0

(�n
2
�
j

)[�n
2 � − 1

2

]
j
[c]j[a]n−j [b]n−j(−1)j

[
p− c− 1

2 + j
]
p

Now we apply the Chu–Vandermonde convolution, (8.4), to write the last sum as

[
p− c− 1

2 + j
]
p

=
p∑

h=0

(
p

h

)[
p− c− 1

2

]
p−h

[j]h

and use the formula (2.9) to write

(�n
2 �
j

)
[j]h =

[�n
2 �
]
h

(�n
2 � − h

j − h

)

Eventually we change the order of summation to get

2n[c]
n
2 �
[
c− 1

2 − p
]
�n

2 	−p
(−1)p

p∑
h=0

(
p

h

)[
p− c− 1

2

]
p−h

[�n
2 �
]
h
·

�n
2 	∑

j=h

(�n
2 � − h

j − h

)[�n
2
� − 1

2

]
j
[c]j[a]n−j[b]n−j(−1)j

The inner sum may be written as

[�n
2 � − 1

2

]
h

[c]h[a]
n
2 �[b]
n

2 �(−1)h·
�n

2 	∑
j=h

(�n
2
� − h

j − h

)[�n
2 � − 1

2 − h
]
j−h

[c− h]j−h[a− �n
2 �]�n

2 	−j[b− �n
2 �]�n

2 	−j(−1)j−h
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This sum satisfies the condition for applying the generalized Pfaff–Saalschütz iden-
tity, (9.4), with excess

�n
2 � − 1

2 − h+ c− h+ a− �n
2 � + b− �n

2 � − �n
2 � + h+ 1 = p− h

so we may write it
p−h∑
i=0

(
p− h

i

)[�n
2 � − h

]
i
[c− h]i

[�n
2 � − 1

2 − h+ a− �n
2 � − p+ h

]
�n

2 	−h−i
·

[�n
2
� − 1

2
− h+ b− �n

2
� − p+ h

]
�n

2 	−h−i
(−1)i

=
p−h∑
i=0

(
p− h

i

)[�n
2 � − h

]
i
[c− h]i

[
a− p− 1

2

]
�n

2 	−h−i

[
b− p− 1

2

]
�n

2 	−h−i
(−1)i

Now we want to rewrite (
p

h

)(
p− h

i

)
=
(

p

h+ i

)(
h+ i

h

)
[�n

2 �
]
h

[�n
2 � − h

]
i
=
[�n

2 �
]
h+i

[c]h[c− h]i = [c]h+i

So the very sum becomes

2n[a]
n
2 �[b]
n

2 �[c]
n
2 �
[
c− 1

2 − p
]
�n

2 	−p
(−1)p

[
a− p− 1

2

]
�n

2 	−p

[
b− p− 1

2

]
�n

2 	−p
·

p∑
h=0

[
p− c− 1

2

]
p−h

[�n
2 � − 1

2

]
h
·

p−h∑
i=0

(
p

h+ i

)(
h+ i

h

)[�n
2 �
]
h+i

[c]h+i

[
a− �n

2 � − 1
2

]
p−h−i

[
b− �n

2 � − 1
2

]
p−h−i

(−1)h+i

Now we only need to change the summation variable. We write i for i + h and
obtain

2n[a]
n
2 �[b]
n

2 �[c]
n
2 �
[
c− 1

2 − p
]
�n

2 	−p
(−1)p

[
a− p− 1

2

]
�n

2 	−p

[
b− p− 1

2

]
�n

2 	−p
·

p∑
h=0

[
p− c− 1

2

]
p−h

[�n
2 � − 1

2

]
h
·

p∑
i=h

(
p

i

)(
i

h

)[�n
2 �
]
i
[c]i
[
a− �n

2 � − 1
2

]
p−i

[
b− �n

2 � − 1
2

]
p−i

(−1)i

Now it is time to change the order of summation again to get

2n[a]
n
2 �[b]
n

2 �[c]
n
2 �
[
c− 1

2
− p
]
�n

2 	−p
(−1)p

[
a− p− 1

2

]
�n

2 	−p

[
b− p− 1

2

]
�n

2 	−p
·

p∑
i=0

(
p

i

)[�n
2
�]

i
[c]i
[
a− �n

2
� − 1

2

]
p−i

[
b− �n

2
� − 1

2

]
p−i

(−1)i·

i∑
h=0

(
i

h

)[
p− c− 1

2

]
p−h

[�n
2
� − 1

2

]
h
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The inner sum may be subject to summation using the Chu–Vandermonde formula,
(8.4), it becomes

i∑
h=0

(
i

h

)[
p− c− 1

2

]
p−h

[�n
2 � − 1

2

]
h

=
[
p− c− 1

2

]
p−i

i∑
h=0

(
i

h

)[
i− c− 1

2

]
i−h

[�n
2 � − 1

2

]
h

=
[
p− c− 1

2

]
p−i

[�n
2 � + i− c− 1

]
i
=
[
p− c− 1

2

]
p−i

[
c− �n

2 �
]
i
(−1)i

This proves the formula in the theorem.

For p = 0 we get theorem 1.

Theorem 10.3. For any a, b, x, y ∈ C and n, p ∈ N0 we have, where x + y =
n− 1 − p,

n∑
k=0

(
n

k

)
[x]k[y]n−k[a]k[a]n−k[b]k[b]n−k =

=
n∑

k=0

(
n

k

)
[x]k[x+ p− k]n−k[a]k[a]n−k[b]k[b]n−k(−1)n−k =

= (−1)n

�n
2 	∑

j=
n−p
2 �

[n]2j

j!
[x]j [y]j[n− 1 − a− b]j[a]n−j [b]n−j[p]n−2j(−1)j

(10.11)

Proof. Follows immediately from lemma (10.1).

The special case of x = y = n
2 −1 which gives p = 1, is found by L. J. Slater,

[105], formula III.22.
There is a balanced identity of type II(4, 4, 1).

Theorem 10.4. For any a, b, c ∈ C and n ∈ N, satisfying the condition, b + c =
−1

2
, we have

(10.12)
n∑

k=0

(
n

k

)
[n+2a]k[n−2a]n−k[b+a]k[b−a]n−k[c+a]k[c−a]n−k =

(−1
4

)n [2n]n[2b+n]n

Proof. This formula follows as a corollary to theorem 11.4 with p = 0 and d = n−1
2

.

We also have a well–balanced identity of type II(4, 4, 1), mentioned by L. J.
Slater, [105], formula III.26.
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Theorem 10.4. For any a, b ∈ C and n ∈ N we have

n∑
k=0

(
n

k

)
[n+ 2a]k[n− 2a]n−k[b+ a]k[b− a]n−k(n+ 2a− 2k)(−1)k =

= 22n+1
[

n
2 + a

]
n+1

[
n−1

2 + b
]
n

(−1)n

(10.13)

Proof. Follows as a corollary to theorem 11.3, inserting c = n−1
2

in (11.5).

Sum formulas for z = −1. We also have a well–balanced identity of type
II(4, 4,−1), mentioned by L. J. Slater, [105], formula III.11.

Theorem 10.5. For any a, b ∈ C and n ∈ N we have

(10.14)
n∑

k=0

(
n

k

)
[n+2a]k[n−2a]n−k[b+a]k[b−a]n−k(n+2a−2k) = [n+2a]2n+1

Proof. This theorem follows as a corollary to a well–balanced formula of type
II(5, 5, 1). Consider the equation (11.6) as a polynomial identity in the variable,
c, and compare the coefficients to the term, cn.

There are a couple of general formulas, neither symmetric nor balanced. A
family of these are the following.

Theorem 10.6. For any a, b ∈ C and any n, p ∈ N0 we have

n∑
k=0

(
n

k

)[
a
2

]
k

[
a−1
2

]
k
[n+ p− b]k

[
b
2

]
n−k

[
b−1
2

]
n−k

[n− 1 − a]n−k =

(10.15)

=
(

1
4

)n
[a]n[b]n+p+1[2n− a− b− 1]n−p·

p∑
j=0

(
p

j

)
[n− a− b− 1 − p]p−j [n]j[b− p− 1 − j]−p−1(−1)j

Proof. We shall write the product
(10.16)[

a
2

]
k

[
a−1
2

]
k
[n−1−a]n−k = 4−k[a]2k(−1)n−k[a−k]n−k = (−1)n(−4)−k[a]n[a−k]k

and the product

[
b
2

]
n−k

[
b−1
2

]
n−k

[n+ p− b]k = 4k−n[b]2n−2k(−1)k[b− p− n− 1 + k]k =

= 4−n(−4)k[b]n+p+1[b− p− n− 1 + k]n−p−1−k

(10.17)
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The sum then becomes

(10.18)
(−1

4

)n [a]n[b]n+p+1

n∑
k=0

(
n

k

)
[a− k]k[b− p− n− 1 + k]n−p−1−k

Now we shall apply Chu–Vandermonde (8.3) to write
(10.19)

[a− k]k = (−1)k[−a− 1 + 2k]k = (−1)k
k∑

j=0

(
k

j

)
[2n− a− b− 1]j[b− 2n+ 2k]k−j

Substitution in the sum and interchanging the order of summation yields using
(2.10)

(−1
4

)n [a]n[b]n+p+1

n∑
j=0

(
n

j

)
[2n− a− b− 1]j(−1)j ·

n∑
k=j

(
n− j

k − j

)
(−1)k−j [b− p− n− 1 + k]n−p−1−j

(10.20)

By the Chu–Vandermonde formula, (8.13), the inner sum is equal to

(10.21) [b−p−n−1+j]−p−1[n−p−j−1]n−j(−1)n−j = [b−p−n−1+j]−p−1 [p]n−j

so the very sum becomes

(10.22)
(−1

4

)n [a]n[b]n+p+1

n∑
j=0

(
n

j

)
[2n−a−b−1]j [b−p−n−1+j]−p−1 [p]n−j(−1)j

Reversing the direction of summation, splitting the first factor and using(
n
j

)
[p]j =

(
p
j

)
[n]j proves the theorem.

The theorem for p = 0 reduces to the formula known from J. L. Slater, [105],
formula III.20,

Theorem 10.7. For any a, b ∈ C and any n ∈ N we have

n∑
k=0

(
n

k

)[
a
2

]
k

[
a−1
2

]
k
[n− b]k

[
b
2

]
n−k

[
b−1
2

]
n−k

[n− 1 − a]n−k =

=
(

1
4

)n [a]n[b− 1]n[2n− a− b− 1]n

(10.23)

Furthermore, a beautiful formula due to H. L. Krall. cf. [84], or equivalent
forms by H. W. Gould, in [64], formulas (11.5) and (11.6), in Krall’s form:
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Theorem 10.8. For all x �= y ∈ C we have

∑
k

(
n− k

k

)
[x]k[y]k[n− x− y]n−2k(−1)k = (−1)n [x]n+1 − [y]n+1

x− y
=

(10.24)

=
n∑

k=0

[x]k[n− y]n−k(−1)n−k

In our standard form, it looks like:

Theorem 10.9. For all x �= y ∈ C we have

�n
2 	∑

k=0

(�n
2
�
k

)[�n
2 � − 1

2

]
k
[x]k[y]k

[−�n
2 � − 1

]
�n

2 	−k

[
n−x−y

2

]

n

2 �−k

[
n−x−y−1

2

]
�n

2 	−k

(10.25)

= (−1)

n
2 � ( 1

2

)n [x]n+1 − [y]n+1

x− y

Proof. We prove the form (10.24). Let us define

(10.26) Sn(x, y) =
∑

k

(
n− k

k

)
[x]k[y]k[n− x− y]n−2k(−1)k

Then the formula (10.24) is obvious for n = 0, 1, so we consider Sn(x, y). Splitting
the binomial coefficient we obtain

Sn(x, y) =
∑

k

(
n− 1 − k

k

)
[x]k[y]k[n− x− y]n−2k(−1)k+

+
∑

k

(
n− 1 − k

k − 1

)
[x]k[y]k[n− x− y]n−2k(−1)k =

= (n− x− y)Sn−1(x, y)

−
∑

k

(
n− 2 − k

k

)
[x]k+1[y]k+1[n− 2 − (x− 1) − (y − 1)]n−2−2k(−1)k =

= (n− x− y)Sn−1(x, y) − xySn−2(x− 1, y − 1)

Substitution of the right side of (10.24) gives

(n− x− y) ([x]n − [y]n) + xy ([x− 1]n−1 − [y − 1]n−1)
(−1)n−1(x− y)

=

=
(n− x)x[x− 1]n−1 − (n− y)y[y − 1]n−1

(−1)n−1(x− y)
=

[x]n+1 − [y]n+1

(−1)n(x− y)

which is the correct right side of (10.24) for n.

We may split the formula in theorem 10.9 in the even and odd case to get
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Theorem 10.10. For all x �= y ∈ C we have

n∑
k=0

(
n

k

)[
n− 1

2

]
k
[x]k[y]k [−n− 1]n−k

[
n− x+y

2

]
n−k

[
n− x+y+1

2

]
n−k

(10.27)

=
(−1

4

)n [x]2n+1 − [y]2n+1

x− y

n∑
k=0

(
n

k

)[
n+ 1

2

]
k
[x]k[y]k [−n− 2]n−k

[
n− x+y

2

]
n−k

[
n− x+y+1

2

]
n−k

(10.28)

=
(−1

4

)n [x]2n+2 − [y]2n+2

(x+ y − 2n− 1)(x− y)
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CHAPTER 11. SUMS OF TYPE II(5, 5, 1)

Indefinite sums. There is a general summation formula of type II(5, 5, 1), nam-
ely:

Theorem 11.5. For any a, b, c ∈ C we have

Δ
[a+ b+ c]k[a− 1]k−1[b− 1]k−1[c− 1]k−1(−1)k

k![b+ c− 1]k−1[a+ c− 1]k−1[a+ b− 1]k−1
=

=
[a+ b+ c]k[a]k[b]k[c]k(a+ b+ c− 2k)(−1)k

k![b+ c− 1]k[a+ c− 1]k[a+ b− 1]k

(11.1)

Proof. Straightforward computation.

Symmetric and balanced sums. There are quite a few symmetric and balan-
ced – in particular well–balanced – formulas of type II(5, 5, 1). We start with a
symmetric formula:

Theorem 11.2. For any n, p ∈ N0 and a, b, c, d ∈ C satisfying the condition,

a+ b+ c+ d− 3n+ 1 = p

we have

2n∑
k=0

(
2n
k

)
[a]k[b]k[c]k[d]k[a]2n−k[b]2n−k[c]2n−k[d]2n−k(−1)k =

=[2n]n[a]n[b]n[c]n[d]n[a+ b− n− p]n−p[a+ c− n− p]n−p[b+ c− n− p]n−p·
p∑

j=0

(
p

j

)
[n]j[d]j[2n− a− b− c+ p− 1]j·

[a+ b− 2n]p−j[a+ c− 2n]p−j [b+ c− 2n]p−j =

=[2n]n[a]n[b]n[c]n[d]n
p∑

j=0

(
p

j

)
[n]j[d]j[2n− a− b− c+ p− 1]j·

[a+ b− n− p]n−j [a+ c− n− p]n−j [b+ c− n− p]n−j

(11.2)

Proof. We apply the Pfaff–Saalschütz identity, (9.1), to write

[a]k[b]k[a]2n−k[b]2n−k =
k∑

j=0

(
k

j

)
[2n− k]j [2n− a− b− 1]j[a]2n−j [b]2n−j(−1)j
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Substitution of this in the sum of (11.2) yields after changing the order of sum-
mation

2n∑
j=0

(
2n
j

)
[2n− a− b− 1]j [a]2n−j[b]2n−j ([c]j[d]j)

2 ·

2n∑
k=j

(
2n− j

k − j

)
[2n− k]j[c− j]k−j[d− j]k−j[c− j]2n−j−k[d− j]2n−j−k(−1)k−j

Now, we have [2n−k]j = 0 for j > 2n−k, so we may end summation for k = 2n−j
the inner sum then starts

2n−j∑
k=j

(
2n− 2j

2n− k − j

)
[2n− j]j · · ·

The inner sum may be written as

[2n− j]j
2n−j∑
k=j

(
2n− 2j
k − j

)
[c− j]k−j [d− j]k−j [c− j]2n−j−k[d− j]2n−j−k(−1)k−j

On this sum we may apply the Dixon identity, (9.3), and write it as

[2n− j]j[c− j]n−j [d− j]n−j [2n− 2j − c+ j − d+ j − 1]n−j [2n− 2j]n−j

Therefore we get the sum using
(
2n
j

)
[2n− j]n = [2n]n

(
n
j

)
2n∑

j=0

(
2n
j

)
[2n− a− b− 1]j[a]2n−j[b]2n−j [c]j[d]j[2n− j]n[c]n[d]n[2n− c− d− 1]n−j

= [2n]n[a]n[b]n[c]n[d]n·
2n∑

j=0

(
n

j

)
[2n− a− b− 1]j [a− n]n−j [b− n]n−j [c]j[d]j [a+ b− n− p]n−j

Now we may write

[a+ b− n− p]n−j [2n− a− b− 1]j =

=[a+ b− n− p]n−p[a+ b− 2n]p−j [a+ b− 2n+ j]j(−1)j =

=[a+ b− n− p]n−p[a+ b− 2n+ j]p(−1)j

And we may apply the Chu–Vandermonde theorem (9.4) to write

[a+ b− 2n+ j]p =
p∑

h=0

(
p

h

)
[a+ b− 2n]p−h[j]h
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Interchanging the order of summation yields

[2n]n[a]n[b]n[c]n[d]n[a+ b− n− p]n−p

p∑
h=0

(
p

h

)
[a+ b− 2n]p−h(−1)h·

[c]h[d]h
2n∑

j=0

(
n

j

)
[j]h[a− n]n−j [b− n]n−j [c− h]j−h[d− h]j−h(−1)j−h

As we remark that
(
n
j

)
[j]h = [n]h

(
n−h
j−h

)
, and we can see that the condition for the

generalized Pfaff–Saalschütz identity, (9.15), yields c− h+ d− h+ a−n+ b−n−
n+ h+ 1 = p− h, we may write the sum as

[2n]n[a]n[b]n[c]n[d]n[a+ b− n− p]n−p

p∑
h=0

(
p

h

)
[a+ b− 2n]p−h(−1)h·

[c]h[d]h[n]h
p−h∑
i=0

(
p− h

i

)
[n− h]i[d− h]i·

[c− h+ a− n− (p− h)]n−h−i[c− h+ b− n− (p− h)]n−h−i(−1)i

As we may write
(

p
h

)(
p−h

i

)
=
(

p
h+i

)(
h+i
h

)
and join [n]h[n−h]i = [n]h+i and [d]h[d−

h]i = [d]h+i we can change the variable i to i− h and write the sum as

[2n]n[a]n[b]n[c]n[d]n[a+ b− n− p]n−p

p∑
h=0

[a+ b− 2n]p−h[c]h·
p∑

i=h

(
p

i

)(
i

h

)
[n]i[d]i[c+ a− n− p]n−i[c+ b− n− p]n−i(−1)i

Interchanging the order of summation yields

[2n]n[a]n[b]n[c]n[d]n[a+ b− n− p]n−p

p∑
i=0

(
p

i

)
[a+ b− 2n]p−i[n]i[d]i[c+ a− n− p]n−i[c+ b− n− p]n−i(−1)i·

i∑
h=0

(
i

h

)
[a+ b− 2n− p+ i]i−h[c]h

Here the inner sum may be object to the Chu–Vandermonde convolution, (8.4),
so we have

[2n]n[a]n[b]n[c]n[d]n[a+ b− n− p]n−p

p∑
i=0

(
p

i

)
[a+ b− 2n]p−i[n]i[d]i·

[c+ a− n− p]n−i[c+ b− n− p]n−i(−1)i[a+ b− 2n− p+ i+ c]i
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Rewriting (−1)i[a+ b−2n−p+ i+ c]i = [2n+p−1−a− b− c]i yields the formula
(11.2).

The special case of p = 0 is due to W. A. Al–Salam from 1957, [6], cf. H. W.
Gould, [64], formula (22.1).

Then we proceed with the following well–balanced formula of type II(5, 5, 1),
cf. L. J. Slater, [105], formula III.13, although it also follows as a corollary to the
formula of J. Dougall, cf. chapter 12, formula (12.9).

We give the formula in the canonical form, (4.34).

Theorem 11.3. For any a, b, c ∈ C and n ∈ N we have

n∑
k=0

(
n

k

)
[n+ 2a]k[n− 2a]n−k[b+ a]k[b− a]n−k[c+ a]k[c− a]n−k(n+ 2a− 2k) =

=[b+ c]n[n+ 2a]2n+1

(11.3)

Proof. We use the Pfaff–Saalschütz formula, (9.1), to write
(11.4)

[b+a]k[c+a]k =
k∑

j=0

(
k

j

)
(−1)j [b−a−n+k]k−j [c−a−n+k]k−j [2a+n−k]j[n−b−c−1]j

Then we shall join the factorials,

[b− a]n−k[b− a− n+ k]k−j = [b− a]n−j(11.5)

[c− a]n−k[c− a− n+ k]k−j = [c− a]n−j(11.6)

[n+ 2a]k[n+ 2a− k]j = [n+ 2a]k+j(11.7)

Substitution of (11.4) in (11.3) yields after interchanging the order of summation
using (2.10)

n∑
j=0

(
n

j

)
(−1)j [n− b− c− 1]j [b− a]n−j [c− a]n−j ·

n∑
k=j

(
n− j

k − j

)
[n+ 2a]k+j[n− 2a]n−k(n+ 2a− 2k)

(11.8)

Now we may write

[n+ 2a]k+j = [n+ 2a]2j[n+ 2a− 2j]k−j

and split the factor as

n+ 2a− 2k = (n+ 2a− 2j) − 2(k − j)
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Then we get the inner sum split in two,

n∑
k=j

(
n− j

k − j

)
[n+ 2a]k+j[n− 2a]n−k(n+ 2a− 2k) =

= [n+ 2a]2j(n+ 2a− 2j)
n∑

k=j

(
n− j

k − j

)
[n+ 2a− 2j]k−j[n− 2a]n−k

− 2[n+ 2a]2j(n− j)
n∑

k=j+1

(
n− j − 1
k − j − 1

)
[n+ 2a− 2j]k−j [n− 2a]n−k =

= [n+ 2a]2j(n+ 2a− 2j)[2n− 2j]n−j

− 2[n+ 2a]2j(n− j)(n+ 2a− 2j)[2n− 2j − 1]n−j−1

(11.9)

where we have used Chu–Vandermonde (8.3) on the two sums. Now, this vanishes
except for j = n, in which case the whole sum becomes

(−1)n[n− b− c− 1]n[n+ 2a]2n(2a− n) = [b+ c]n[n+ 2a]2n+1

which proves the statement.

There exist a family of balanced formulas too, namely:

Theorem 11.4. For any n ∈ N and a, b, c, d ∈ C satisfying the condition,

(11.10) p = b+ c+ d− n
2

+ 1 ∈ N0

we have

n∑
k=0

(
n

k

)
[n+ 2a]k[b+ a]k[c+ a]k[d+ a]k

[n− 2a]n−k[b− a]n−k[c− a]n−k[d− a]n−k(−1)k

=4n
[

n−1
2 + a

]
n

[
b+ n

2 − p
]
n−p

[b+ d− p]n−p

[
d+ n

2 − p
]
n−p

·
p∑

j=0

(
p

j

)
[n]j [c+ a]j[c− a]j[b+ d− n]p−j

[
b− n

2

]
p−j

[
d− n

2

]
p−j

=4n
[

n−1
2

+ a
]
n

p∑
j=0

(
p

j

)
[n]j [c+ a]j[c− a]j[b+ d− p]n−j

[
b+ n

2 − p
]
n−j

[
d+ n

2 − p
]
n−j

(11.11)

Proof. This theorem is a corollary to the generalization of Dougall’s theorem in
chapter 12. We choose e = n

2 in (12.11), and remark that[
n
2 + a

]
k

[
n
2 − a

]
n−k

(n+ 2a− 2k) = (−1)n−k2
[

n
2 + a

]
n+1
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Dividing (12.11) with this constant yields (11.11).

The special case of (11.11) for p = 0 was found by S. Ramanujan 1911–12,
cf. G. H. Hardy, [74], p. 493.
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CHAPTER 12. SUMS OF TYPE II(6, 6,±1)

There is a single well–balanced formula of this type and three others. But
we have a kind of general transformation available from type II(6, 6,−1) to type
II(3, 3, 1).

Theorem 12.1. For any a, b, c, d ∈ C and n ∈ N we have

n∑
k=0

(
n

k

)
[n+ 2a]k[b+ a]k[c+ a]k[d+ a]k·

[n− 2a]n−k[b− a]n−k[c− a]n−k[d− a]n−k(n+ 2a− 2k)

=[n+ 2a]2n+1

n∑
j=0

(
n

j

)
[b+ a]j [n− c− d− 1]j [c− a]n−j [d− a]n−j(−1)j

(12.1)

Proof. We apply the Pfaff–Saalschütz formula (9.1) to write
(12.2)

[c+a]k[d+a]k =
k∑

j=0

(
k

j

)
[c−a−n+k]k−j [d−a−n+k]k−j [n+2a−k]j [n−c−d−1]j(−1)j

Then we shall join the factorials,

[c− a]n−k[c− a− n+ k]k−j = [c− a]n−j

(12.3)

[d− a]n−k[d− a− n+ k]k−j = [d− a]n−j

(12.4)

[n+ 2a]k[n+ 2a− k]j = [n+ 2a]k+j = [n+ 2a]2j[n+ 2a− 2j]k−j

(12.5)

to write the left sum of (12.1) after changing the order of summation as

n∑
j=0

(
n

j

)
[n+ 2a]2j[c− a]n−j [d− a]n−j [n− c− d− 1]j[b+ a]j(−1)j

n∑
k=j

(
n− j

k − j

)
[n+ 2a− 2j]k−j [b+ a− j]k−j ·

[n− 2a]n−k[b− a]n−k(n+ 2a− 2k)

(12.6)

The inner sum has the form of (10.6), if we replace n with n− j, a with a− j
2 and

b with b− j
2 . Then theorem 10.3 gives us

n∑
k=j

(
n− j

k − j

)
[n+ 2a− 2j]k−j[b+ a− j]k−j ·

[n− 2a]n−k[b− a]n−k(n+ 2a− 2k) =

= [n− j + 2a− j]2n−2j+1

(12.7)
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which inserted in (12.6) gives

(12.8) [n+ 2a]2n+1

n∑
j=0

(
n

j

)
[b+ a]j[n− c− d− 1]j [c− a]n−j [d− a]n−j(−1)j

This transformation allows no nice formulas of type II(6, 6,−1).
The well–balanced formula of type II(6, 6, 1):

Theorem 12.2. For any n ∈ N and a, b, c, d ∈ C satisfying the condition, b+ c+
d = n−1

2 , we have

n∑
k=0

(
n

k

)
(−1)k[n+ 2a]k[b+ a]k[c+ a]k[d+ a]k·

[n− 2a]n−k[b− a]n−k[c− a]n−k[d− a]n−k(n+ 2a− 2k)

=(−1)n22n+1[a+ n
2 ]n+1[b+ n−1

2 ]n[c+ n−1
2 ]n[d+ n−1

2 ]n

(12.9)

Proof. This follows as a corollary to theorem 13.2 choosing e = n−1
2

.

In [48] I. M. Gessel proves three formulas of this type, no. 19.1a, 19.2a and
19.3a.

n∑
k=0

(
n

k

)
[−b − 1]k

[−a− b− 1
2

]
k
[a+ 2b− n− 1]k [b]k

[
n+ 1

2

]
n−k

·
(12.10)

[n− 2a− 3b]n−k [3n+ 1 − b]n−k [2a+ 3b− n− 1]n−k (b− 1 − 3k)(−1)k =

= [a+ b− 1]n [b− 1 − n]2n+1

[
a+ 2b− 1

2

]
n

(−1)n

n∑
k=0

(
n

k

)
[1 − b− a]k [1 − a− 2b− n]k

[
b− 1

2

]
k
[b+ a− 1]k

[
n− 1

2

]
n−k

·
(12.11)

[3n− 1 + a+ b]n−k [n− 2 + 3b+ a]n−k [1 − a− 3b− n]n−k

(a+ b− 1 + 3k)(−1)k =

= (a+ b− 1)
[
1
2 − a− 2b

]
n

[−b]n [−a− b− n]2n (−1)n

n∑
k=0

(
n

k

)
[−b]k [1 − 2a]k [−b − a− n]k

[
1
2
− b− a

]
k
·

(12.12)

[−n− 1]n−k [2(b+ a) + 3n− 1]n−k

[
n− 1 + b

2 + a
]
n−k[

n− 1
2

+ b
2

+ a
]
n−k

(2(b+ a) − 1 + 3k)(−1)k =

= −2 [−a]n [2n+ b]n [−2(b+ a+ n)]n
[

1
2 − b− a

]
n+1
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CHAPTER 13. SUMS OF TYPE II(7, 7, 1)

There are but a few well–balanced formulas of type II(7, 7, 1), and a couple
of others. But we have a kind of general transformation available, which e.g. may
be used to prove the famous formula due to J. Dougall from 1907, [34].

Theorem 13.1. For any a, b, c, d, e ∈ C and n ∈ N we have

n∑
k=0

(
n

k

)
[n+ 2a]k[b+ a]k[c+ a]k[d+ a]k[e+ a]k·

[n− 2a]n−k[b− a]n−k[c− a]n−k[d− a]n−k[e− a]n−k(n+ 2a− 2k)

=[n+ 2a]2n+1(−1)n
n∑

j=0

(
n

j

)
[b+ a]j[c+ a]j[n− d− e− 1]j ·

[d− a]n−j [e− a]n−j [n− b− c− 1]n−j

(13.1)

Proof. We apply the Pfaff–Saalschütz formula (9.1) to write
(13.2)

[d+a]k[e+a]k =
k∑

j=0

(
k

j

)
[d−a−n+k]k−j [e−a−n+k]k−j [n+2a−k]j[n−d−e−1]j(−1)j

Then we shall join the factorials,

[d− a]n−k[d− a− n+ k]k−j = [d− a]n−j

(13.3)

[e− a]n−k[e− a− n+ k]k−j = [e− a]n−j

(13.4)

[n+ 2a]k[n+ 2a− k]j = [n+ 2a]k+j = [n+ 2a]2j[n+ 2a− 2j]k−j

(13.5)

to write the left sum of (13.1) after changing the order of summation as

n∑
j=0

(
n

j

)
[n+ 2a]2j[d− a]n−j [e− a]n−j [n− d− e− 1]j[b+ a]j [c+ a]j(−1)j ·

n∑
k=j

(
n− j

k − j

)
[n+ 2a− 2j]k−j[b+ a− j]k−j [c+ a− j]k−j·

[n− 2a]n−k[b− a]n−k[c− a]n−k(n+ 2a− 2k)

(13.6)

The inner sum has the form of (11.2), if we replace n with n− j, a with a − j
2
, b
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with b− j
2 and c with c− c

2 . Then theorem 11.2 gives us

n∑
k=j

(
n− j

k − j

)
[n+ 2a− 2j]k−j [b+ a− j]k−j [c+ a− j]k−j ·

[n− 2a]n−k[b− a]n−k[c− a]n−k(n+ 2a− 2k) =

= [n− j + 2a− j]2n−2j+1[b+ c− j]n−j

(13.7)

which inserted in (13.6) gives
(13.8)

[n+2a]2n+1(−1)n
n∑

j=0

(
n

j

)
[b+a]j[c+a]j[n−d−e−1]j [d−a]n−j [e−a]n−j [n−b−c−1]n−j

This theorem transferring a sum of type II(7, 7, 1) to a certain sum of type
II(4, 4, 1) proves particularly useful to prove the identity of J. Dougall, [34], from
1907, cf. [64], formulas (71.1) and (97.1).

Theorem 13.2. For any n ∈ N and a, b, c, d, e ∈ C satisfying the condition,
b+ c+ d+ e = n− 1, we have

n∑
k=0

(
n

k

)
[n+ 2a]k[b+ a]k[c+ a]k[d+ a]k[e+ a]k·

[n− 2a]n−k[b− a]n−k[c− a]n−k[d− a]n−k[e− a]n−k(n+ 2a− 2k)

=[n+ 2a]2n+1[b+ e]n[c+ e]n[d+ e]n
=(−1)n[n+ 2a]2n+1[b+ c]n[c+ d]n[d+ b]n

(13.9)

Proof. The condition implies that we may write

[n− b− c− 1]n−j = [d+ e]n−j

and as we have
[n− d− e− 1]j = [d+ e− n+ j]j(−1)j

the product of these two factors from the right sum of (13.1) becomes

[n− b− c− 1]n−j [n− d− e− 1]j = [d+ e]n−j [d+ e− n+ j]j(−1)j = [d+ e]n(−1)j

The right sum therefore becomes

[d+ e]n
n∑

j=0

(
n

j

)
[b+ a]j[c+ a]j[d− a]n−j [e− a]n−j(−1)j

But the condition now implies that the Pfaff–Saalschütz identity, (9.1), tells us
that this sum equals (−1)n[b+ e]n[c+ e]n. This proves the theorem.
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Remark. If we express e in (13.9) by the condition, and consider the identity as
a polynomial identity in the variable, d, then the identity between the coefficients
to dn becomes (11.2).

This theorem allows a generalization analogous to the generalization of the
Pfaff–Saalschütz formula given in (9.15).

Theorem 13.3. For any n ∈ N and a, b, c, d, e ∈ C satisfying the condition,

(13.10) p = b+ c+ d+ e− n+ 1 ∈ N0

we have

n∑
k=0

(
n

k

)
[n+ 2a]k[b+ a]k[c+ a]k[d+ a]k[e+ a]k·

[n− 2a]n−k[b− a]n−k[c− a]n−k[d− a]n−k[e− a]n−k(n+ 2a− 2k)

=(−1)n · [n+ 2a]2n+1[b+ e− p]n−p[b+ d− p]n−p[d+ e− p]n−p·
p∑

j=0

(
p

j

)
[n]j[c+ a]j [c− a]j [b+ e− n]p−j [b+ d− n]p−j [d+ e− n]p−j

=(−1)n · [n+ 2a]2n+1·
p∑

j=0

(
p

j

)
[n]j[c+ a]j [c− a]j [b+ e− p]n−j [b+ d− p]n−j [d+ e− p]n−j

(13.11)

Proof. The theorem 13.1 yields

(−1)n · [n+ 2a]2n+1 · S

where

S =
n∑

j=0

(
n

j

)
[b+ a]j[c+ a]j[n− d− e− 1]j [d− a]n−j [e− a]n−j[n− b− c− 1]n−j

Using the condition (13.10) we can write the product

[n− d− e− 1]j[n− b− c− 1]n−j = (−1)j[d+ e− p]n−p[j + d+ e− n]p

Next we apply the Chu–Vandermonde formula (8.3) to write

[j + d+ e− n]p =
p∑

i=0

(
p

i

)
[j]i[d+ e− n]p−i
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and then the product as

[n− d− e− 1]j [n− b− c− 1]n−j = (−1)j [d+ e− p]n−p

p∑
i=0

(
p

i

)
[j]i[d+ e− n]p−i

= (−1)j

p∑
i=0

(
p

i

)
[j]i[d+ e− p]n−i

Changing the order of summation we get

S =
p∑

i=0

(
p

i

)
[d+ e− p]n−i

n∑
j=0

(
n

j

)
[j]i[b+ a]j [c+ a]j[d− a]n−j [e− a]n−j(−1)j

Using
(
n
j

)
[j]i = [n]i

(
n−i
j−i

)
and [x]j = [x]i[x− i]j−i for x = b+ a and x = c + a we

obtain

S =
p∑

i=0

(
p

i

)
[d+ e− p]n−i[n]i[b+ a]i[c+ a]i·

n∑
j=0

(
n− i

j − i

)
[b+ a− i]j−i[c+ a− i]j−i[d− a]n−j [e− a]n−j(−1)j

Now the condition (13.10) assures that we may apply the generalized Pfaff–Saalschütz
formula, (9.15), with the number (9.14) equal to p− i. Therefore the sum becomes

S =
p∑

i=0

(
p

i

)
[d+ e− p]n−i[n]i[b+ a]i[c+ a]i·

p−i∑
�=0

(
p− i

�

)
[n− i]�[c+ a− i]�[b+ d− p]n−i−�[b+ e− p]n−i−�(−1)�+i

In this sum we may join two pairs, [c + a]i[c + a − i]� = [c + a]i+� and
[n]i[n − i]� = [n]i+�. Then we substitute � − i for � and interchange the order of
summation to get

S =
p∑

�=0

(
p

�

)
[n]�[b+ d− p]n−�[b+ e− p]n−�[c+ a]�(−1)�·

�∑
i=0

(
�

i

)
[d+ e− p]n−i[b+ a]i

After writing the product [d+ e− p]n−i = [d+ e− p]n−�[d+ e− p− n+ �]�−i we
can apply the Chu–Vandermonde formula (8.3) to get for the inner sum

[d+ e− p]n−�[a+ b+ d+ e− p− n+ �]� = [d+ e− p]n−�[c− a]�(−1)�
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and hence the very sum as

S =
p∑

�=0

(
p

�

)
[n]�[b+ d− p]n−�[b+ e− p]n−�[c+ a]�[d+ e− p]n−�[c− a]�

Applying the factorization [x − p]n−� = [x − p]n−p[x − n]p−� we get the form of
(13.11).

Furthermore we have from J. L. Slater, [105], formula III.19:

Theorem 13.4. For any a, d ∈ C and any n ∈ N we have

n∑
k=0

(
n

k

)
[n+ 2a]k[d+ a]k

[
d+ a− 1

2

]
k
[n− 2d]k[n− 1 + 2a− 2d]k(n+ 2a− 2k)·

[n− 2a]n−k[d− a]n−k

[
d− a− 1

2

]
n−k

[n− 2d− 2a]n−k[n− 1 − 2d]n−k =

=
(

1
4

)n [n+ 2a]2n+1[4d− n]n[2d− 2a]n[2d+ 2a− 1]n

(13.12)

Proof. We apply the transformation theorem, theorem 13.1, with the arguments
(a, b, c, d, e) replaced by (a, d, d− 1

2 , n− 2d− a, n− 1 + a− 2d). Then we get

(−1)n[n+ 2a]2n+1

n∑
j=0

(
n

j

)
[d+ a]j

[
d+ a− 1

2

]
j
·

[4d− n]j[n− 2d− 2a]n−j [n− 1 − 2d]n−j [n− 2d− 1
2
]n−j

(13.13)

Now we can apply theorem 10.5 for the arguments (a, b) replaced with
(2n− 1 − 4d, 2d+ 2a) and obtain for the sum (reversed)

(13.14)
(

1
4

)n [2n− 1 − 4d]n[2d− 2a− 1]n[2d− 2a]n

Now, by changing the signs of the first factor, we obtain the result in the theorem.

There are three formulas to be derived from the theorems 10.5 and 10.6.
They follow from the following lemma:

Lemma 13.1. For any a, b ∈ C we have

�n
2 	∑

k=0

(�n
2 �
k

)[�n
2
� − 1

2

]
k

[�n
2
� − 1

2

]
�n

2 	−k

[
n
2

+ a
]
k

[
n−1

2
+ a
]
k

[
n
2
− a
]

n

2 �−k
·

(13.15)

[
n−1

2 − a
]
�n

2 	−k

[
b+a
2

]
k

[
b+a−1

2

]
k

[
b−a
2

]

n

2 �−k

[
b−a−1

2

]
�n

2 	−k
(n+ 2a− 4k) =

=
[�n

2
� − 1

2

]
�n

2 	
[

n
2

+ a
]
n+1

([
n−1

2
+ a
]
n

+ (−1)n
[

n−1
2

+ b
]
n

)
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�n
2 	∑

k=0

(�n
2
�
k

)[�n
2 � − 1

2

]
k

[�n
2 � + 1

2

]
�n

2 	−k

[
n
2 + a

]
k

[
n−1

2 + a
]
k

[
n+1

2 − a
]

n

2 �−k
·

(13.16)

[
n
2
− a
]
�n

2 	−k

[
b+a−2

2

]
k

[
b+a−1

2

]
k

[
b−a
2

]

n

2 �−k

[
b−a−1

2

]
�n

2 	−k
(n+ 2a− 4k − 1) =

=

[�n
2 � + 1

2

]
�n

2 	
[

n−1
2 + a

]
n+1

2(n+ 1)(a+ b)

([
n
2

+ a
]
n+1

+ (−1)n
[

n
2

+ b
]
n+1

)

Proof. The formulas are obtained by adding and subtracting the formulas 10.9
and 10.10 and then applying the expansions 2.33–34.

Theorem 13.5. For any a, b ∈ C and any n ∈ N we have

n∑
k=0

(
n

k

)[
n− 1

2

]
k

[
n− 1

2

]
n−k

[n+ a]k
[
n− 1

2 + a
]
k
[n− a]n−k ·

(13.17)

[
n− 1

2 − a
]
n−k

[
b+a
2

]
k

[
b+a−1

2

]
k

[
b−a
2

]
n−k

[
b−a−1

2

]
n−k

(n+ a− 2k) =

=
1
2
[
n− 1

2

]
n

[n+ a]2n+1

([
n− 1

2 + a
]
2n

+
[
n− 1

2 + b
]
2n

)
n∑

k=0

(
n

k

)[
n− 1

2

]
k

[
n+ 1

2

]
n−k

[
n+ a+ 1

2

]
k
[n+ a]k [n− a]n−k ·

(13.18)

[
n− a− 1

2

]
n−k

[
b+a− 3

2
2

]
k

[
b+a− 1

2
2

]
k

[
b−a− 1

2
2

]
n−k

[
b−a− 3

2
2

]
n−k

(n+ a− 2k) =

=

[
n− 1

2

]
n

[n+ a]2n+1

a+ b+ 1
2

([
n+ a+ 1

2

]
2n+1

+ [n+ b]2n+1

)

n∑
k=0

(
n

k

)[
n+ 1

2

]
k

[
n+ 1

2

]
n−k

[
n+ 1

2 + a
]
k
[n+ a]k [n− a]n−k ·

(13.19)

[
n+ 1

2
− a
]
n−k

[
b+a−2

2

]
k

[
b+a−1

2

]
k

[
b−a−2

2

]
n−k

[
b−a−1

2

]
n−k

(n+ a− 2k) =

=

[
n+ 1

2

]
n

[n+ a]2n+1

(n+ 1)(a+ b)(a− b)

([
n+ 1

2 + a
]
2n+2

− [n+ 1
2 + b

]
2n+2

)

Proof. The formulas follow immediately from lemmas 13.1 and 13.2 by replacing
n by 2n and 2n+ 1.

133



134 MOGENS ESROM LARSEN

CHAPTER 14. SUMS OF TYPE II(8, 8, 1)

There is a single formula known to us of this type.

Theorem 14.1. For any a, b, c ∈ C and n, p ∈ N0 we have that if the arguments
satisfies

(14.1) p = 2(a+ b+ c+ 1 − n) + 1
2

then we have the following balanced formula

n∑
k=0

(
n

k

)[
n+ 1

2

]
k

[
n− 1

2

]
n−k

[
a+ 1

2

]
k

[
b+ 1

2

]
k

[
c+ 1

2

]
k
[a]k[b]k[c]k·

(14.2)

[a]n−k[b]n−k[c]n−k

[
a− 1

2

]
n−k

[
b− 1

2

]
n−k

[
c− 1

2

]
n−k

=

(−1)p
(

1
64

)n [2n]n [2a]n[2b]n[2c]n
[
2a+ 1

2
− p
]
n−p

[
2b+ 1

2
− p
]
n−p

[
2c+ 1

2
− p
]
n−p

·
p∑

i=0

(
p

i

)
[n]i[2c+ 1]i[2c− n]i

[
p− 2c− 3

2

]
p−i

[
2a+ 1

2 − n
]
p−i

[
2b+ 1

2 − n
]
p−i

Proof. We apply theorem (10.1) to 2n + 1, 2a + 1, 2b + 1 and 2c + 1, and the
remark, that the corresponding symmetric sum of type II(4, 4,−1) must vanish.
Adding the two sums we may apply formula (2.31) to the binomial coefficient and
split the 6 factorials in two each.

For p = 0 the formula has a much nicer right side:

Corollary 14.1. For any a, b, c ∈ C and n ∈ N0 we have that if the arguments
satisfies

(14.3) a+ b+ c+ 1 − n+ 1
4 = 0

then we have the following balanced formula

n∑
k=0

(
n

k

)[
n+ 1

2

]
k

[
n− 1

2

]
n−k

[
a+ 1

2

]
k

[
b+ 1

2

]
k

[
c+ 1

2

]
k
[a]k[b]k[c]k·

(14.4)

[a]n−k[b]n−k[c]n−k

[
a− 1

2

]
n−k

[
b− 1

2

]
n−k

[
c− 1

2

]
n−k

=(
1

4096

)n [2n]n [4a+ 1]2n[4b+ 1]2n[4c+ 1]2n

Proof. Obvious.
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CHAPTER 15. SUMS OF TYPES II(p, p, z)

Sums of types II(p, p, z). The general formula for the family is the following,
cf. Gould’s table, [64], formula no. 1.53:

Theorem 15.1. For p, n ∈ N, y ∈ C and q, r ∈ N0 satisfying r, q < p, r + q ≤ p

we have with ρ = e
2πi
p and z = yp the equivalent identities

n∑
k=0

(
pn+ r + q

pk + r

)
zk =

y−r

p

p−1∑
j=0

(
1 + ρjy

)pn+r+q
ρ−jr

(15.1)

n∑
k=0

(
n

k

) q∏
j=1

[
n+ j

p

]
k

p−q−1∏
j=1

[
n− j

p

]
k

r∏
j=1

[
n+ j

p

]
n−k

p−r−1∏
j=1

[
n− j

p

]
n−k

zk =

∏r
j=1

[
n+ j

p

]
n

∏p−r−1
j=1

[
n− j

p

]
n

p
(
pn+r+q

r

)
yr

p−1∑
j=0

(
1 + ρjy

)pn+r+q
ρ−jr

(15.2)

Proof. We consider the sum on the right sides of (15.1–15.2), and apply the bino-
mial formula to the power:

S =
p−1∑
j=0

(
1 + ρjy

)pn+r+q
ρ−jr =

p−1∑
j=0

pn+r+q∑
i=0

(
pn+ r + q

i

)
ρijyiρ−rj =

pn+r+q∑
i=0

(
pn+ r + q

i

)
yi

p−1∑
j=0

ρ(i−r)j

(15.3)

As we have

(15.4)
p−1∑
j=0

ρ(i−r)j =
{
p if i ≡ r (p)
0 if i �≡ r (p)

we may sum only the nonzero terms by changing the summation variable to k with
i = r + kp in (15.3) to get

(15.5) S =
n∑

k=0

(
pn+ r + q

pk + r

)
ypk+rp = pyr

n∑
k=0

(
pn+ r + q

pk + r

)
zk

This yields (15.1).
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To obtain (15.2) it only remains to write the binomial coefficient in the
appropriate way, i.e.,

(
pn+ r + q

pk + r

)
=

[pn+ r + q]pk+r

[pk + r]pk+r

=
[pn+ r + q]r [pn+ q]pk

[pk + r]pk [r]r
=

=
(
pn+ r + q

r

)∏p−1
j=0 [pn+ q − j, p]k∏p−1
j=0 [pk + r − j, p]k

=

=
(
pn+ r + q

r

)(
n

k

)∏q
j=1

[
n+ j

p

]
k

∏p−q−1
j=1

[
n− j

p

]
k∏r

j=1

[
k + j

p

]
k

∏p−r−1
j=1

[
k − j

p

]
k

=

=

(
pn+r+q

r

)
∏r

j=1

[
n+ j

p

]
n

∏p−r−1
j=1

[
n− j

p

]
n

·

(
n

k

)
·

q∏
j=1

[
n+ j

p

]
k

p−q−1∏
j=1

[
n− j

p

]
k

r∏
j=1

[
n+ j

p

]
n−k

p−r−1∏
j=1

[
n− j

p

]
n−k

(15.6)

Substitution of (15.6) in (15.5) yields (15.2).

The special choice of p = 2 gives for (r, q) = (0, 0) the formula (8.29), for
(r, q) = (0, 1) the formula (8.30) and for (r, q) = (1, 1) the formula (8.31).
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CHAPTER 16. ZEILBERGER’S ALGORITHM

Zeilberger’s algorithm. In 1990 D. Zeilberger, [119], and with H. Wilf, [117],
cf. T. H. Kornwinder, [83], and GKP, [70], and later with Marco Petkovšek [96],
used Gosper’s algorithm to prove formulas of the form, where a is independent of
n and k, and the limits are natural in the sense that the terms vanish outside the
interval of summation,

(16.1) T (a, n) =
n∑

k=0

t(a, n, k)

It is required that the quotients,

(16.2) qt(a, n, k) =
t(a, n, k+ 1)
t(a, n, k)

are rational not only as a function of k, but as a function of n as well, and
furthermore, that the quotients

(16.3) rt(a, n, k) =
t(a, n+ 1, k)
t(a, n, k)

are rational as function of both k and n.
In [117] and [96], cf. also GKP, [70], p. 239 ff., they proved that the method

works in all cases where the terms are proper, by which notation they understand
that the terms consist of products of polynomials in n and k, powers to the degrees
k and n and factorials of the form [a + pk + qn]m, where a ∈ C and p, q,m ∈ Z.
And of course that the terms vanish outside the interval of summation.

In the simplest cases the method not only provides us with a tool to prove
known – or guessed – formulas, but also allows the finding of one.

The aim is to find a difference equation satisfied by the sums, T (a, n), with
coefficients that are rational in n, i.e., to find an equation

(16.4) β0(n)T (a, n) + β1(n)T (a, n+ 1) + · · ·+ β�(n)T (a, n+ �) = 0

To do that we seek to sum the corresponding terms,

(16.5) β0(n)t(a, n, k) + β1(n)t(a, n+ 1, k) + · · ·+ β�(n)t(a, n+ �, k)

by Gosper’s algorithm on the form ΔS(a, n, k), because, with the terms the sums
S(a, n, k) must also vanish outside a finite interval. Hence we shall have

(16.6)
∞∑

k=−∞
ΔS(a, n, k) =

∞∑
k=−∞

S(a, n, k+ 1) −
∞∑

k=−∞
S(a, n, k) = 0
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We want of course the order of the difference equation as small as possible, so
we start with � = 1 and try to find the coefficients, such that Gosper’s algorithm
work. If not, we try again with � = 2, etc. If we succeed with a first order equation,
we can always find the sum. Otherwise we may use the difference equation to prove
a known formula, unless we are able to solve the equation. But, this is more often
than not – not the case, cf. chapter 4.

To make the ideas more transparent, let’s consider the case � = 1. Then we
shall handle the quotient of

(16.7) s(a, n, k) = β0(n)t(a, n, k) + β1(n)t(a, n+ 1, k)

namely

(16.8) qs(a, n, k) =
β0(n)t(a, n, k+ 1) + β1(n)t(a, n+ 1, k + 1)

β0(n)t(a, n, k) + β1(n)t(a, n+ 1, k)

Now we may apply (16.3) to write this quotient as

(16.9) qs(a, n, k) =
β0(n) + β1(n)rt(a, n, k+ 1)
β0(n) + β1(n)rt(a, n, k)

· t(a, n, k+ 1)
t(a, n, k)

If the function rt behaves nicely, we may rewrite this quotient as

(16.10) qs(a, n, k) =
f(a, n, k+ 1)
f(a, n, k)

· g(a, n, k)
h(a, n, k + 1)

with f , g and h polynomials in k with coefficients which are rational functions of
n. If this is the case, we proceed with Gosper forming

G(a, n, k) = g(a, n, k)− h(a, n, k)(16.11)

H(a, n, k) = g(a, n, k) + h(a, n, k)(16.12)

to estimate the degree, d, of the polynomial, s, in k solving

(16.13) f(a, n, k) = s(a, n, k+ 1)g(a, n, k)− s(a, n, k)h(a, n, k)

This polynomial identity must be solved in the d+1 unknown coefficients in
s and the �+ 1 = 2 unknown coefficients in f as rational functions of n. As soon
as the existence of a solution is verified, we are satisfied with the two functions,
β, or even less, namely their ratio,

(16.14)
β0(n)
β1(n)

because we then find immediately the wanted sum as

(16.15) T (a, n) = T (a, 0) ·
n−1∏
ν=0

−β0(ν)
β1(ν)
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A simple example of Zeilberger’s algorithm. Let us consider the sum on
standard form

(16.16) T (n) =
∑

k

(
n

k

)
[a]k[b]n−kx

k

and look at the terms (16.7) with � = 1. It may be written as

s(n, k) = β0(n)
(
n

k

)
[a]k[b]n−kx

k + β1(n)
(
n+ 1
k

)
[a]k[b]n+1−kx

k

=
(
n+ 1 − k

n+ 1
β0(n) + (b− n+ k)β1(n)

)
·
(
n+ 1
k

)
[a]k[b]n−kx

k

(16.17)

The quotient hence becomes
(16.18)

qs(n, k) =
(n− k)β0(n) + (b− n+ k + 1)(n+ 1)β1(n)
(n+ 1 − k)β0(n) + (b− n+ k)(n+ 1)β1(n)

· (n+ 1 − k)(a− k)x
(−1 − k)(n− 1 − b− k)

and it is obvious to obtain the polynomials as

f(n, k) = (n+ 1 − k)β0(n) + (b− n+ k)(n+ 1)β1(n)
(16.19)

g(n, k) = xk2 − x(n+ 1 + a)k + xa(n+ 1)
(16.20)

h(n, k) = k2 + (b− n)k
(16.21)

G(n, k) = (x− 1)k2 − (x(n+ 1 + a) − n+ b)k + xa(n+ 1)
(16.22)

H(n, k) = (x+ 1)k2 − (x(n+ 1 + a) + n− b)k + xa(n+ 1)
(16.23)

Now, if x �= 1, the degrees of G and H are both 2, while the degree of f is 1
leaving us with no solution. Nevertheless, if we allow � = 2, there is a solution,
namely – found by computer algebra using MAPLE – (the program supplied by
D. Zeilberger), cf. (8.138):

(16.24) T (n+2)+((1 + x)(n+ 1) − xa− b)T (n+1)+x(n−a−b)(n+1)T (n) = 0

But, for x = 1, we get the reduction

(16.25) G(n, k) = (−1 − a− b)k + a(n+ 1)

Hence the degree from (6.24) becomes 0, so we just have one rational function of
n, α(n).
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The equation (16.13) takes the simple form

(16.26) f(n, k) = α(n)G(n, k)

or

(16.27) (n+1−k)β0(n)+(b−n+k)(n+1)β1(n) = α(n)((−1−a−b)k+a(n+1))

or, comparing coefficients of the two polynomials, we get the couple of equations

−β0(n) + (n+ 1)β1(n) = α(n)(−1 − a− b)(16.28)

(n+ 1)β0(n) + (b− n)(n+ 1)β1(n) = α(n)a(n+ 1))
(16.29)

having the wanted fraction (16.14) to be

(16.30)
β0(n)
β1(n)

= −(a+ b− n)

which yields the solution

(16.31) T (n) = [a+ b]n

the well–known Chu–Vandermonde formula, cf. (8.3).

A less simple example of Zeilberger’s algorithm. Let us consider the sum
on standard form

(16.32) T (n) =
∑

k

(
n

k

)
[a]k[b]k[c]n−k[n− 1 − a− b− c]n−k(−1)k

and look at the terms (16.7) with � = 1. It may be written as

s(n, k) = β0(n)
(
n

k

)
[a]k[b]k[c]n−k[n− 1 − a− b− c]n−k(−1)k+

+ β1(n)
(
n+ 1
k

)
[a]k[b]k[c]n+1−k[n− a− b− c]n+1−k(−1)k

=
(
n+ 1 − k

n+ 1
β0(n) + (c− n+ k)(n− a− b− c)β1(n)

)
·

·
(
n+ 1
k

)
[a]k[b]k[c]n−k[n− 1 − a− b− c]n−k(−1)k

(16.33)

The quotient hence becomes

qs(n, k) =
(n− k)β0(n) + (c− n+ k + 1)(n− a− b− c)(n+ 1)β1(n)
(n+ 1 − k)β0(n) + (c− n+ k)(n− a− b− c)(n+ 1)β1(n)

·

· (n+ 1 − k)(a− k)(b− k)
(−1 − k)(n− 1 − c− k)(a+ b+ c− k)

(16.34)
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and it is obvious to obtain the polynomials as

f(n, k) =(n+ 1 − k)β0(n) + (c− n+ k)(n− a− b− c)(n+ 1)β1(n)
(16.35)

g(n, k) =k3 − (n+ 1 + a+ b)k2 + ((a+ b)(n+ 1) + ab)k − (n+ 1)ab
(16.36)

h(n, k) =k3 − (n+ 1 + a+ b)k2 + (n− c)(a+ b+ c+ 1)k
(16.37)

G(n, k) =((c+ 1)(a+ b+ c− n) + ab)k − (n+ 1)ab
(16.38)

H(n, k) =2k3 − 2(n+ 1 + a+ b)k2+
(16.39)

+ ((n+ 1)(a+ b) + ab+ (n− c)(a+ b+ c+ 1))k − (n+ 1)ab

We get the degree from (6.24) to be 0, so we just have one rational function
of n, α(n).

The equation (16.13) takes the simple form

(16.40) f(n, k) = α(n)G(n, k)

or

(n+ 1 − k)β0(n) + (c− n+ k)(n− a− b− c)(n+ 1)β1(n) =

= α(n)(((c+ 1)(a+ b+ c− n) + ab)k − (n+ 1)ab)

(16.41)

or, comparing coefficients of the two polynomials, we get the couple of equations

−β0(n) + (n− a− b− c)(n+ 1)β1(n) = α(n)((c+ 1)(a+ b+ c− n) + ab)
(16.42)

(n+ 1)β0(n) + (c− n)(n− a− b− c)(n+ 1)β1(n) = −α(n)(n+ 1)ab
(16.43)

having the wanted fraction (16.14) to be

(16.44)
β0(n)
β1(n)

= (a+ c− n)(b+ c− n)

which yields the solution

(16.45) T (n) = [a+ c]n[b+ c]n(−1)n

the well–known Pfaff–Saalschütz formula, cf. (9.1).
141



142 MOGENS ESROM LARSEN

Sporadic formulas of types II(2, 2, z). Besides (16.45) there are a lot of for-
mulas with the limit of summation as the only free parameter. In each case, the
transformation group gives up to six equivalent formulas with different factors. We
shall prefer to choose the biggest of the six factors in the following presentation of
such formulas.

The factor 2. Besides the theorems of Gauß and Bailey, there are a few other
formulas known with a factor of 2.

n∑
k=0

(
n

k

)[
4n+ 1

2

]
k

[−n− 1
2

]
n−k

2k =

[−3
8

]
n

[−5
8

]
n[−1

2

]
n

(−16)n

(16.46)

n∑
k=0

(
n

k

)[
4n+ 5

2

]
k

[−n− 3
2

]
n−k

2k =

[−7
8

]
n

[−9
8

]
n[−3

2

]
n

(−16)n

(16.47)

The factor 4. The following seven are known

n∑
k=0

(
n

k

)[
3n+ 1

2

]
k

[−1
2

]
n−k

4k =
[−1

2

]
n
(−27)n

(16.48)

n∑
k=0

(
n

k

)[
3n+ 3

2

]
k

[−1
2

]
n−k

4k =

[−5
6

]
n

[−7
6

]
n[−3

2

]
n

(−27)n =
[6n+ 1, 2]2n

[2n]n

(16.49)

n∑
k=0

(
n

k

)[
3n+ 1

2

]
k
[−3n− 1]n−k 4k =

[−5
6

]
n

[−1
2

]
n[−2

3

]
n

(−16)n

(16.50)

n∑
k=0

(
n

k

)[
3n+ 3

2

]
k
[−3n− 3]n−k 4k =

[−5
6

]
n

[−3
2

]
n[−5

3

]
n

(−16)n

(16.51)

n∑
k=0

(
n

k

)[−1
2

]
k

[
3n
2

]
n−k

4k =
[

3n
2

]
n

2(−1)n+1
3

(16.52)

n∑
k=0

(
n

k

)[−1
2

]
k

[
3n+1

2

]
n−k

4k =
{

0 if n odd
[n]2m

(
27
16

)m if n = 2m

(16.53)

The formulas (16.48) and (16.53) are due to Ira M. Gessel, [46], formula 5.22
and 5.25.

142



16. ZEILBERGER’S ALGORITHM 143

The formula (16.52) allows for even values of the limit of summation a slight
generalization,

(16.54)
2n∑

k=0

(
2n
k

)[−1
2 − p

]
k
[3n+ p]2n−k 4k =

[3n+p]2n+p

[p]p
p = 0, 1, 2

The formula (16.54) for p = 0 is due to Ira M. Gessel, [48], formula no. 28.1a, and
for p = 1 is from Gould’s table, [64], no. 7.8.

The factor 5. The following four are known

n∑
k=0

(
n

k

)[
5n+ 1

2

]
k

[
n− 1

2

]
n−k

5k =

[−1
2

]
n

[− 3
10

]
n

[− 7
10

]
n[−2

5

]
n

[−3
5

]
n

(−64)n

(16.55)

n∑
k=0

(
n

k

)[
5n+ 3

2

]
k

[
n− 1

2

]
n−k

5k =

[−1
2

]
n

[− 9
10

]
n

[−11
10

]
n[−4

5

]
n

[−6
5

]
n

(−64)n

(16.56)

n∑
k=0

(
n

k

)[
5n+ 5

2

]
k

[
n+ 1

2

]
n−k

5k =

[−3
2

]
n

[− 7
10

]
n

[−13
10

]
n[−7

5

]
n

[−8
5

]
n

(−64)n

(16.57)

n∑
k=0

(
n

k

)[
5n+ 7

2

]
k

[
n+ 1

2

]
n−k

5k =

[−3
2

]
n

[− 9
10

]
n

[−11
10

]
n[−6

5

]
n

[−9
5

]
n

(−64)n

(16.58)

The factor 9. The following eighteen are known

n∑
k=0

(
n

k

)[
2n− 8

3

]
k
[−2n+ 3]n−k 9k =

[−2n+ 3]n[
2
3

]
n

([
5
6

]
n

+
(

3
4
− n

3

) [
1
2

]
n−1

)
(−4)n

(16.59 n > 1)

n∑
k=0

(
n

k

)[
2n− 4

3

]
k
[−2n+ 1]n−k 9k =

[3n− 2]n[
1
3

]
n

([
1
6

]
n

+ 1
2

[
1
2

]
n

)
4n

(16.60)

n∑
k=0

(
n

k

)[
2n− 2

3

]
k
[−2n]n−k 9k =

[3n− 1]n[−1
3

]
n

([−1
6

]
n

+ 1
2

[−1
2

]
n

)
4n

(16.61)

n∑
k=0

(
n

k

)[
2n+ 1

3

]
k
[−2n− 1]n−k 9k =

[−2
3

]
n
(−27)n

(16.62)

n∑
k=0

(
n

k

)[
2n+ 2

3

]
k
[−2n− 2]n−k 9k =

[−5
6

]
n

[−4
3

]
n[−3

2

]
n

(−27)n

(16.63)
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n∑
k=0

(
n

k

)[
2n+ 4

3

]
k
[−2n− 3]n−k 9k = 6 ·

[−5
3

]
n

[2n+ 2]n+2

([−1
6

]
n+1

− [−1
2

]
n+1

)
108n

(16.64)

n∑
k=0

(
n

k

)[
3n+ 1

2

]
k

[
n− 1

2

]
n−k

9k =
[−1

2

]
n
(−64)n

(16.65)

n∑
k=0

(
n

k

)[
3n+ 3

2

]
k

[
n+ 1

2

]
n−k

9k =

[−3
2

]
n

[−5
6

]
n

[−7
6

]
n[−4

3

]
n

[−5
3

]
n

(−64)n

(16.66)

n∑
k=0

(
n

k

)[
3n+ 1

4

]
k

[
n− 1

4

]
n−k

9k =

[−3
4

]
n

[− 5
12

]
n[−2

3

]
n

(−64)n

(16.67)

n∑
k=0

(
n

k

)[
3n+ 3

4

]
k

[
n+ 1

4

]
n−k

9k =

[−5
4

]
n

[− 7
12

]
n[−4

3

]
n

(−64)n

(16.68)

n∑
k=0

(
n

k

)[
3n+ 5

4

]
k

[
n− 1

4

]
n−k

9k =

[−3
4

]
n

[−13
12

]
n[−4

3

]
n

(−64)n

(16.69)

n∑
k=0

(
n

k

)[
3n+ 7

4

]
k

[
n+ 1

4

]
n−k

9k =

[−5
4

]
n

[−11
12

]
n[−5

3

]
n

(−64)n

(16.70)

n∑
k=0

(
n

k

)[
n
2 − 1

3

]
k

[−n
2 − 1

]
n−k

9k =
{

0 for n odd[−1
2

]
m

[−2
3

]
m

(−108)m for n = 2m

(16.71)

n∑
k=0

(
n

k

)[
n
2 − 1

3

]
k

[−n
2

]
n−k

9k =
{ [

1
3

]
n
· (−1)m+13n+m for n = 2m+ 1

(16.72)

([
1
3

]
n

+ 2
[−1

2

]
m

[−2
3

]
m

4m
) · (−1)m3n+m−1 for n = 2m

n∑
k=0

(
n

k

)[
n
2
− 1

6

]
k

[−n
2
− 1

2

]
n−k

9k =
[−2

3

]
n

(−1)�
n
2 	3n+�n

2 	

(16.73)

n∑
k=0

(
n

k

)[
n
2 + 1

6

]
k

[−n
2 − 3

2

]
n−k

9k =
{ 1

n+1

[−1
3

]
n+1

(−1)m+13n+m+1 f. n = 2m
(16.74)

1
n+1

([−1
3

]
n+1

(−1)m+13n+m+1 − 1
3

[−1
2

]
m+1

[−2
3

]
m+1

(−108)m+1
)

f. n = 2m+ 1
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The formulas (16.59), (16.60), (16.61), (16.62), (16.63), (16.71), (16.72),
(16.73) and (16.74) only for n even are found i Gessel, [46], formulas 3.10, 3.9,
3.8, 5.23, 3.7, 5.24, 3.13, 3.12 and 3.14 respectively. The formulas (16.67) and
(16.69) are mentioned as conjectures of Gosper in [46], formulas 6.5 and 6.6, re-
spectively.

Two similar formulas are known only for n even, namely

n∑
k=0

(
n

k

)[
n
2 + 1

3

]
k

[−n
2 − 2

]
n−k

9k =

[−5
3

]
n

(−1)
n
2 3n+ n

2 +1

n+ 2

(16.75)

n∑
k=0

(
n

k

)[
n
2 + 2

3

]
k

[−n
2 − 3

]
n−k

9k = 5
(n+2)(n+4) ·

[−7
3

]
n

(−1)
n
2 3n+ n

2 +1

(16.76)

The formulas (16.75) and (16.76) are found in [46] as formulas 3.15 and 3.16.

Sporadic formulas of types II(4, 4, z). A few formulas are known with z �= ±1,
all of them proven by the Zeilberger method by I. M. Gessel in [48]. They have
respectively z equal to 4, 32

27 , 2
27 , − 9

16 and −8.
The formulas with z = −8 are in [48] as no. 11.1a, 11.2a, 21.1a, 21.3a and

30.3a.

n∑
k=0

(
n

k

)
[n+ a]k

[
a− 1

2

]
k
[−n− 1]n−k[n− 2a]n−k(2a+ 2n− 3k)8k =

(16.77)

= [2a]n+1[−a− 1]n(−4)n

n∑
k=0

(
n

k

)
[a− 1]k

[
n− a+ 1

2

]
k
[n+ 1 − 2a]n−k[2a− n− 2]n−k(2n− 3k)8k = 0

(16.78)

n∑
k=0

(
n

k

)
[n− b]k

[−b− 1
2

]
k
[−n− 1]n−k[2b+ n]n−k·

(16.79)

(2(n− b) − 3k)8k = [b− 1]n[−2b]n+1

n∑
k=0

(
n

k

)
[n− b]k

[−b− 1
2

]
k
[−n− 1]n−k[2b+ n]n−k·

(16.80)

(2(n− b) − 3k)8k = [b− 1]n[−2b]n+1

n∑
k=0

(
n

k

)
[−a − 1/2]k [n+ a]k [n+ 2a]n−k [−1 − 2a− n]n−k (2n− 3k)8k = 0

(16.81)
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The formula with z = − 9
16 is in [48] as no. 28.7a.

n∑
k=0

(
n

k

)[−1
2

]
k

[
2n+ 1

2

]
k

[−n
2
− 1
]
n−k

·

[−n
2
− 1

2

]
n−k

(3(4n+ 1) − 10k)
(

9
16

)k

= 3[4n+ 1]2n+1

(
27
256

)n

(16.82)

The formulas with z = 2
27 are in [48] as no. 30.4a, 30.5a, 30.6a and 30.7a.

n∑
k=0

(
n

k

)[−2
3

]
k
[−2n− 2]k

[
2n+ 5

6

]
n−k

[
1
3 + n

]
n−k

(2n+ 5 + 10k)
(
− 2

27

)k

=

(16.83)

= 5
[n+ 1/3]n [2n+ 5/6]2n

[2n+ 1]n+1

4n

n∑
k=0

(
n

k

)[−1
6

]
k
[−2n]k

[
n− 2

3

]
n−k

[−2
3 + 2n

]
n−k

(n+ 5k)
(
− 2

27

)k

=

(16.84)

=
n [2n− 2/3]2n [n− 2/3]n

[2n]n
4n

n∑
k=0

(
n

k

)[−1
3

]
k
[−2n− 1]k

[
n− 1

3

]
n−k

[
1
6 + 2n

]
n−k

(2n+ 1 + 10k)
(
− 2

27

)k

=

(16.85)

=
[n− 1/3]n [2n+ 1/6]2n

[2n]n
4n

n∑
k=0

(
n

k

)[−5
6

]
k
[−2 − 2n]k

[
n+ 2

3

]
n−k

[
2n+ 2

3

]
n−k

(n+ 4 + 5k)
(
− 2

27

)k

=

(16.86)

=

[
n+ 2

3

]
n

[
2n+ 2

3

]
2n

[2n+ 1]n+1

4n+1

The formulas with z = 32
27

are in [48] as no. 30.10a.

n∑
k=0

(
n

k

)[−1
3

]
k

[
n− 1

2

]
k

[
n− 1

3

]
n−k

[−3n]n−k (4n+ 5k)
(

32
27

)k

=

(16.87)

= 3

[
n− 1

3

]
n

[
2n− 5

6

]
2n

[3n− 1]n−1

(−16)n
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n∑
k=0

(
n

k

)[−1
3

]
k

[
n+ 1

2

]
k

[
n− 1

3

]
n−k

[−3n− 2]n−k (4n+ 2 + 5k)
(

32
27

)k

=

(16.88)

= 12

[
n− 1

3

]
n

[
2n+ 1

6

]
2n+1

[3n+ 1]n
(−16)n

The formulas with z = 4 are in [48] as no. 22.1a, 27.3a, 29.1a, 29.2a, 29.4a
and 29.5a.

n∑
k=0

(
n

k

)[
b+ n

2

]
k

[
b+ n−1

2

]
k
[n− b]n−k[−2b]n−k(2b+ n− 3k)(−4)k =

= −[b− 1]n[−2b]n+1

(16.89)

n∑
k=0

(
n

k

)[
n− 1

2

]
k
[3n+ a]k[a]n−k[−a]n−k(3n+ a− 3k)(−4)k = (−1)na[3n+ a]2n

(16.90)

n∑
k=0

(
n

k

)[
b− 1

2

]
k
[n+ b]k[n− b]n−k[n− 2b]n−k·

(16.91)

(2(n+ b) − 3k)(−4)k = −2[2b− 1]n[−b]n+1

n∑
k=0

(
n

k

)[
n− 1

2

]
k
[2b]k[b]n−k[−n]n−k(2n− 3k)(−4)k = −(−1)n[2n]n+1[b]n

(16.92)

n∑
k=0

(
n

k

)[
n−3

2 − a
]
k

[
n−2

2 − a
]
k
[a+ n+ 1]n−k[2(a+ 1)]n−k·

(16.93)

(2(a+ 1) − n+ 3k)(−4)k = −2[2a+ 1]n[−a− 1]n+1

n∑
k=0

(
n

k

)[
n− 1

2

]
k
[a− 1]k [−n]n−k

[−1
2 + a

2 − n
]
n−k

(4n− 3k)(−4)k =

(16.94)

= [2n]n+1

[
a
2
− 1
]
n

(−4)n

n∑
k=0

(
n

k

)[
n+ 1

2

]
k
[a− 1]k [−n− 1]n−k

[
a
2 − 3

2 − n
]
n−k

(4n+ 2 − 3k)(−4)k =

(16.95)

= 2 [2n+ 1]n+1

[
a
2
− 1
]
n

(−4)n
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CHAPTER 17. SUMS OF TYPE III–IV

The Abel, Hagen–Rothe, Cauchy and Jensen formulas. The classical for-
mulas of type III are the Hagen–Rothe formula and the Jensen formula.

The Hagen–Rothe formula generalizes the Chu–Vandermonde identity and
was established 1793 in H. A. Rothe (1773–1841), [100], and mentioned in J. G.
Hagen (1847–1930) [73] in 1891. It may be found in H. W. Gould, [64], as formula
3.142 or 3.146, or in J. Kaucký, [81], formula 6.4, or J. Riordan, [99], p. 169, or of
course in our papers, [7], p. 19, and [14], formula 6.
(17.1)

n∑
k=0

x

x+ kz

(
x+ kz

k

)
y

y + (n− k)z

(
y + (n− k)z

n− k

)
=

x+ y

x+ y + nz

(
x+ y + nz

n

)

The Jensen formula generalizes the binomial formula and was established
1902 in J. L. W. V. Jensen (1859–1925) [80], formula 10, see H. W. Gould [64],
formula 1.125, or J. Kaucký, [81], formula 6.6.5, or of course ours, [7], p. 19, and
[14], formula 4.

(17.2)
n∑

k=0

(
n

k

)
(x+ kz)k−1(y − kz)n−k−1 =

x+ y − nz

x(y − nz)
(x+ y)n−1

Both formulas are valid for any complex number, z.
To treat these two formulas as one, we introduce in analogy with J. Riordan’s

treatment of the identities due to N. H. Abel (1802–1829), see [1], [99], p. 18–23:
(17.3)

S = S(x, y, z, d; p, q, n) =
n∑

k=0

(
n

k

)
[x+ kz − pd, d]k−p[y + (n− k)z − qd, d]n−k−q

where x, y, z, d ∈ C, p, q ∈ Z and n ∈ N0.
Remark that by changing the direction of summation we get the correspon-

ding sum with x exchanged with y and p with q:

(17.4) S(y, x, z, d; q, p, n) = S(x, y, z, d; p, q, n)

For p = q = 1 the sum becomes for d = 1 after division by [n]n equal to the
left side of (17.1), and for d = 0 after the substitution of y− nz for y equal to the
left side of (17.2).

For d = 0 the addition of the terms kz was studied by A.–L. Cauchy (1789–
1857) in 1826 see [27] in the case of p = q = 0, and the same year by N. H. Abel,
see [1], for p = 1, q = 0, see also [64] formula 1.124, J. Riordan [99], p. 18, [7], p.
20, while J. L. W. V. Jensen was the first one to study the case of p = q = 1 in
1902 [80].

For d = 1 the story took the opposite direction. The case of p = q = 1 was
studied already 1793 by H. A. Rothe in [100] and again by J. G. Hagen in 1891
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in [73], while the cases p = q = 0 and p = 1, q = 0 was postponed until J. L. W.
V. Jensen in 1902, [80], formulas 17 and 18. See also H. W. Gould, [64] formula
3.144 and J. Kaucký, [81], formula 6.4.2, and [7], p. 19.

We shall follow our explanation in the paper, [14] from 1994. We shall allow d
to be arbitrary, and then prove the formulas for (p, q) = (0, 0), then (p, q) = (1, 0)
(and hereby from (17.4) also for (p, q) = (0, 1)) and eventually for (p, q) = (1, 1).
For technical reasons we shall replace y with y + nz in (17.3).

Theorem 17.1. The generalized Cauchy–Jensen identity for x, y, z, d ∈ C and
n ∈ N0

(17.5)
n∑

k=0

(
n

k

)
[x+ kz, d]k[y − kz, d]n−k =

n∑
j=0

[n]jzj [x+ y − jd, d]n−j

Proof. Let

(17.6) S = S(x, y − nz, z, d; 0, 0, n) =
n∑

k=0

(
n

k

)
[x+ kz, d]k[y − kz, d]n−k

We apply (8.4) to rewrite the first factor as

[x+ kz, d]k =
k∑

i=0

(
k

i

)
[x, d]i[kz, d]k−i

Hereby we may write S as a double sum

S =
n∑

k=0

(
n

k

) k∑
i=0

(
k

i

)
[x, d]i[kz, d]k−i[y − kz, d]n−k

Now we apply (2.1) to the last factor, and then (8.4):

(−1)n−k[y − kz, d]n−k = [−y + kz + (n− k − 1)d, d]n−k =

=
n−k+i∑

j=i

(
n− k

j − i

)
[−y + (n− i− 1)d, d]j−i[kz + (i− k)d, d]n−k−j+i

We the get S written as a triple sum:

S =
n∑

k=0

(
n

k

) k∑
i=0

(
k

i

) n−k+i∑
j=i

(
n− k

j − i

)
[x, d]i[kz, d]k−i(−1)n−k·

· [−y + (n− i− 1)d, d]j−i[kz + (i− k)d, d]n−k−j+i
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Now we apply (2.10) and (2.13) several times on the product of the three
binomial coefficients and get by that the rewriting(

n

k

)(
k

i

)(
n− k

j − i

)
=
(
n

i

)(
n− i

k − i

)(
n− k

j − i

)
=
(
n

i

)(
n− i

n− k

)(
n− k

j − i

)
=

=
(
n

i

)(
n− i

j − i

)(
n− j

n− k − j + i

)
=
(
n

j

)(
j

i

)(
n− j

k − i

)

After this, the sum (17.6) may be rearranged to

(17.7) S =
n∑

j=0

(
n

j

) j∑
i=0

(
j

i

)
[x, d]i[−y + (n− i− 1)d, d]j−i(−1)n−iTji(z, d;n)

where

(17.8) Tji(z, d;n) =
n−j+i∑

k=i

(
n− j

k − i

)
[kz, d]k−i[kz + (i− k)d, d]n−k−j+i(−1)k−i

Now we apply (2.2) on the sum (17.8) and obtain

(17.9) Tji(z, d;n) =
n−j+i∑

k=i

(
n− j

k − i

)
[kz, d]n−j(−1)k−i

By the translation of the variable of summation with the amount of i we get

(17.10) Tji(z, d;n) =
n−j∑
k=0

(
n− j

k

)
[(k + i)z, d]n−j(−1)k

Now the factorial in (17.10) is a polynomial in k of the form:

[(k + i)z, d]n−j =
n−j−1∏

�=0

(kz + iz − �d) = zn−jkn−j + · · · .

Hence when we apply (8.17) on (17.10) we only get one term, which, as S
(n)
n = 1,

becomes

(17.11) Tji(z, d;n) = zn−j [n− j]n−j(−1)n−j

When we imbed (17.11) in (17.7), then we get the sum

S =
n∑

j=0

(
n

j

) j∑
i=0

(
j

i

)
[x, d]i[−y + (n− i− 1)d, d]j−i(−1)j−izn−j [n− j]n−j
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Now we may place the terms which are independent of i outside the inner sum,
apply (2.13) and (2.9) outside the inner sum, and (2.1) inside it, to get

S =
n∑

j=0

[n]n−jz
n−j

j∑
i=0

(
j

i

)
[x, d]i[y − (n− j)d, d]j−i

Then we may apply (8.4) to the inner sum to get rid of it

S =
n∑

j=0

[n]n−jz
n−j [x+ y − (n− j)d, d]j

When we eventually change the direction of summation, then we get

S =
n∑

j=0

[n]jzj [x+ y − jd, d]n−j

which gives (17.5).

If we replace y with y + nz in (17.5), then we get the expression

(17.12)
n∑

k=0

(
n

k

)
[x+kz, d]k[y+(n−k)z, d]n−k =

n∑
j=0

[n]jzj [x+y+nz− jd, d]n−j

Now, let again p and q be arbitrary integers. We want to prove a recursion,
which allows us to find a generalization of the formulas due to N. H. Abel and J.
L. W. V. Jensen for p = 1 and q = 0 by the help of (17.5) and (17.12).

Recursion formula in p and n. For all p, q ∈ Z, n ∈ N we have

S(x, y, z, d; p, q, n) =

= (x− pd)S(x, y, z, d; p+ 1, q, n) + nzS(x− d+ z, y, z, d; p, q, n− 1)

(17.13)

Proof. We apply (2.2) with m = 1 to the first factor in (17.3) to write it as

[x+ kz − pd, d]k−p = (x+ kz − pd)[x+ kz − (p+ 1)d, d]k−(p+1)

We split the factor (x+ kz − pd) in the two parts, (x− pd) and kz, by which S is
split into two sums, and apply (2.9) on the second sum:

S(x, y, z, d; p, q, n) =

=
n∑

k=0

(
n

k

)
(x− pd)[x+ kz − (p+ 1)d, d]k−p−1[y + (n− k)z − qd, d]n−k−q

+
n∑

k=1

(
n

k

)
kz[x+ kz − (p+ 1)d, d]k−p−1[y + (n− k)z − qd, d]n−k−q =

= (x− pd)S(x, y, z, d; p+ 1, q, n)

+ nz

n∑
k=1

(
n− 1
k − 1

)
[x− d+ kz − pd, d]k−1−p[y + (n− k)z − qd, d]n−k−q =

= (x− pd)S(x, y, z, d; p+ 1, q, n) + nzS(x− d+ z, y, z, d; p, q, n− 1)
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With this we have a two–dimensional recursion formula in the variables, p
and n, relating the three pairs, (p, n), (p + 1, n) and (p, n − 1). As we know the
sum for p = q = 0 and all n in (17.12), we may use the recursion formula from
here.

Choosing p = q = 0 in (17.13) we get applying (17.12):

S(x, y, z, d; 1, 0, n) =

=
1
x

(S(x, y, z, d; 0, 0, n)− nzS(x− d+ z, y, z, d; 0, 0, n− 1)) =

=
1
x

⎛
⎝ n∑

j=0

[n]jzj [x+ y + nz − jd, d]n−j−

−nz
n−1∑
j=0

[n− 1]jzj [x− d+ z + y + (n− 1)z − jd, d]n−1−j

⎞
⎠ =

=
1
x

⎛
⎝ n∑

j=0

[n]jzj [x+ y + nz − jd, d]n−j−

−
n−1∑
j=0

[n]j+1z
j+1[x+ y + nz − (j + 1)d, d]n−(j+1)

⎞
⎠ =

=
1
x

⎛
⎝ n∑

j=0

[n]jzj [x+ y + nz − jd, d]n−j −
n∑

j=1

[n]jzj [x+ y + nz − jd, d]n−j

⎞
⎠ =

=
1
x

[x+ y + nz, d]n

We have proved the formulas:

Theorem 17.2 (The generalized Abel–Jensen Identity I).

For n ∈ N0 and x, y, z, d ∈ C we have the formula:

(17.14)
n∑

k=0

(
n

k

)
[x+ kz − d, d]k−1[y + (n− k)z, d]n−k =

1
x

[x+ y + nz, d]n

and the formula we get by exchanging y with y − nz, i.e.:

Corollary 17.3 (The generalized Abel–Jensen Identity II).

For n ∈ N0 and x, y, z, d ∈ C we have the formula:

(17.15)
n∑

k=0

(
n

k

)
[x+ kz − d, d]k−1[y − kz, d]n−k =

1
x

[x+ y, d]n
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For d = 0 the formula (17.15) becomes the formula of N. H. Abel from 1826,
[1], and for d = 1 after division by [n]n, it becomes the formula of J. L. W. V.
Jensen no. 17 from 1902, [80].

The surprise is that for p = 1 and q = 0 the sum is reduced to a single
term, while the sum for p = q = 0 only is rewritten as another sum. Even more
surprising is the fact, that a single term also is sufficient for p = q = 1.

For this purpose we shall apply the symmetry (17.4) to evaluate the sum for
p = 0 and q = 1. Then we shall apply the following recursion in p, q and n:

Recursion formula in p, q and n.

For all p, q ∈ Z, n ∈ N we have
(17.16)
S(x, y, z, d; p, q, n) = S(x+z−d, y, z, d; p−1, q, n−1)+S(x, y+z−d, z, d; p, q−1, n−1)

Proof. We split the sum (17.3) by using (2.8) into

S =
n∑

k=0

(
n

k

)
[x+ kz − pd, d]k−p[y + (n− k)z − qd, d]n−k−q =

=
∑

k

(
n− 1
k − 1

)
[x+ kz − pd, d]k−p[y + (n− k)z − qd, d]n−k−q+

+
∑

k

(
n− 1
k

)
[x+ kz − pd, d]k−p[y + (n− k)z − qd, d]n−k−q =

=
∑

k

(
n− 1
k

)
[x+ z − d+ kz − (p− 1)d, d]k−(p−1)·

·[y + (n− 1 − k)z − qd, d]n−1−k−q+

+
∑

k

(
n− 1
k

)
[x+ kz − pd, d]k−p·

·[y + z − d+ (n− 1 − k)z − (q − 1)d, d]n−1−k−(q−1) =

= S(x+ z − d, y, z, d; p− 1, q, n− 1) + S(x, y + z − d, z, d; p, q − 1, n− 1)

When we put p = q = 1 in (17.16) and apply (17.14) and its symmetric
companion onto the first and second of the two sums, respectively, then we get

S(x, y, z, d; 1, 1, n) =

= S(x+ z − d, y, z, d; 0, 1, n− 1) + S(x, y + z − d, z, d; 1, 0, n− 1) =

=
1
y
[x+ z − d+ y + (n− 1)z, d]n−1 +

1
x

[y + z − d+ x+ (n− 1)z, d]n−1 =

=
x+ y

xy
[x+ y + nz − d, d]n−1

Hence we have proven the formulas
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Theorem 17.3 (The generalized Hagen–Rothe–Jensen Identity I).

For n ∈ N0 and x, y, z, d ∈ C we have the formula
(17.17)

n∑
k=0

(
n

k

)
[x+ kz − d, d]k−1[y+ (n− k)z− d, d]n−k−1 =

x+ y

xy
[x+ y+ nz − d, d]n−1

As above we may write y for y + nz and get the equivalent formula

Corollary (The generalized Hagen–Rothe–Jensen Identity II).

For n ∈ N0 and x, y, z, d ∈ C we have the formula

(17.18)
n∑

k=0

(
n

k

)
[x+kz−d, d]k−1[y−kz−d, d]n−k−1 =

x+ y − nz

x(y − nz)
[x+y−d, d]n−1

For d = 1 the formula (17.17) is identical to (17.1), when this is multiplied
with [n]n, while d = 0 makes (17.18) identical to (17.2).

A Polynomial Identity. In 1995 we, cf. [15], posed the problem:
For x ∈ C and n ∈ N, prove the following identities between the polynomials.

(17.19) (−4)n
n∑

j=0

(
x+ 1

2

j

)(
n− 1 − x

2n− j

)
=
(

2n
n

) n∑
j=0

(
x+ j

2j

)(
x− j

2n− 2j

)
.

For all m ∈ N with 0 ≤ m ≤ 2n generalize (17.19) to
(17.20)

(−4)n
n∑

j=0

(
x+ 1

2

j

)(
n− 1 − x

2n− j

)
=
(

2n
n

) n−[m
2 ]∑

j=−[m
2 ]

(
x+ j

2j +m

)(
x− j

2n−m− 2j

)
.

Proof. We give the proof of (17.19), because the proof of (17.20) is similar, but
with some technical complications.

The two sides of (17.19) represent polynomials in x of degree 2n, so it is
sufficient to establish the identity for 2n+ 1 different values of x.

The points x = 0, 1, . . . , n− 1 shall be proven zeros of the two polynomials.
The left hand side is zero for x = 0, 1, . . . , n − 1, because 0 ≤ n − 1 − x <

n ≤ 2n− j.
The right hand side is zero for x = 0, 1, . . . , n−1, because, we have x+j ≥ 0,

so to get a nonzero term, we must have x+ j ≥ 2j, i.e. x− j ≥ 0. Hence the other
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factor can only be nonzero, if x− j ≥ 2n− 2j, i.e., x+ j ≥ 2n, and hence 2x ≥ 2n
contrary to the assumption.

Now consider x = y− 1
2 , y = 0, 1, . . . , n. The polynomials shall be proven to

take the same constant value for all of these points.
The left hand side becomes

(17.21) (−4)n
n∑

j=0

(
y

j

)(
n− 1

2 − y

2n− j

)
= (−4)n

n∑
j=0

(
y

j

)
[n− 1

2 − y]2n−j

[2n− j]2n−j

As long as y ≤ n, the limit of summation becomes y. So we get

(17.22)
(−4)n[n− 1

2
− y]2n−y

[2n]2n

y∑
j=0

(
y

j

)
[−n− 1

2
]y−j [2n]j

But this is a Chu–Vandermonde, (8.4) or (20.4), so we get

(−4)n
[
n− 1

2 − y
]
2n−y

[2n]2n

[
n− 1

2

]
y

=
(−4)n

[
n− 1

2

]
2n

[2n]2n
=

(−4)n
[
n− 1

2

]
n

[−1
2

]
n

[2n]2n
=

=
[2n− 1, 2]2n[2n, 2]2n

[2n]2n[n]2n

(
1
2

)2n =
[2n]2n

[n]2n

(
1
2

)2n =
(

2n
n

)(
1
2

)2n

(17.23)

The right hand side of (17.19) may be written for x = y − 1
2

as

(17.24)
1

[n]2n

∑
k≡0(2)

(
2n
k

)[
y − 1

2 + k
2

]
k

[
y − 1

2 − k
2

]
2n−k

If we in the form of the sum, (17.24), consider an odd k, 0 < k < 2n, then the
terms are zero for y = 0, 1, . . . , n. If k ≤ y− 1

2 + k
2 and 2n−k ≤ y− 1

2 − k
2 , then we

get 2n ≤ 2y− 1 i.e., n < y. And if we have y− 1
2 + k

2 < 0 and y− 1
2 + k

2 ≥ 2n− k,
then we must have 2n < 0, and if y − 1

2 − k
2 < 0 and then y− 1

2 + k
2 ≥ k, then we

must have y− 1
2 − k

2 ≥ 0 too. Eventually, if both y− 1
2 − k

2 < 0 and y− 1
2 + k

2 < 0,
then we get 2y−1 < 0, so that we must have y = 0. But then −1

2 + k
2 < 0, so that

k < 1,which is impossible for an odd integer, 0 < k < 2n. So, one of the factors
must vanish.

This means that we might as well take the sum for all indices, k = 0, . . .2n.
The sum in (17.24) equals

(17.25)
1

[n]2n

2n∑
k=0

(
2n
k

)[
y − 1

2 + k
2

]
k

[
y − 1

2 − k
2

]
2n−k

We may now apply J. L. W. V. Jensen’s formula (17.5).
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With n = 2n, x = y = y − 1
2 , d = 1 and z = 1

2 substituted in (17.25), we get
it to be written as

(17.26)
1

[n]2n

2n∑
j=0

[2n]j
(

1
2

)j [2y − 1 − j]2n−j

Now we shall rewrite

(17.27) [2y − 1 − j]2n−j = (−1)j [2n− 2y]2n−j = (−1)j [2n− j]2n−j

(
2n− 2y
2n− j

)

Now, two factors join, [2n]j[2n− j]2n−j = [2n]2n, so that the sum takes the form
after substitution of (17.27) in (17.26)
(17.28)
[2n]2n

[n]2n

2n∑
j=0

(
2n− 2y
2n− j

)(−1
2

)j =
(

2n
n

)(
1
2

)2y
2n∑

j=0

(
2n− 2y
j − 2y

)(−1
2

)j−2y =
(

2n
n

)(
1
2

)2n

Where we have applied the binomial theorem, (7.1).
As this is the same result as in (17.23), the identity, (17.19), is established.

The generalization, (17.20), is proved the same way without serious trouble.

Joseph Sinyor and Ted Speevak’s problem.

The problem is to prove a combinatorial identity, conjectured by Joseph
Sinyor and Ted Speevak in Discrete Mathematics [104]. The identity is in their
formulation, that the double sum,
(17.29)∑
�′≤�

∑
j′≤j

1
(m− �′)

(
m+ �′ − j′

2�′ − j′ + 1

)(
m− �′ + j′ − 1

j′

)(
m− �′

2(�− �′) − (j − j′)

)(
m− �′

(j − j′)

)

for m > � ≥ 0 ≤ j ≤ 2�+ 1 is equal to the following expressions:

(17.30)
1

2(m− �)

(
2m

2�+ 1

)(
2�+ 1
j

)
=

1
2�+ 1

(
2m
2�

)(
2�+ 1
j

)

Sinyor and Speevak support the conjecture with proofs of four special cases.
In the case of j = 0, cf. remark 1, they reduce the formula to the Pfaff–Saalschütz
identity, cf. (9.1). In the case of j = 1, cf. remark 3, they give a sophisticated
combinatorial argument applying partition, and the cases of j = 2� and j = 2�+1,
cf. remark 4, are reduced to the cases j = 1 and j = 0 respectively.

We have of course computed both sides of the formula for different integral
values of j and � and complex values of m, and could not find any counterexample.
But, remind the formula

(17.31)
∑

j

∑
k

(
n

j − k

)(
m

j + k

)
= 2n+m−1
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where the summation is over all integer values of j and k such that the binomial
coefficients do not vanish. This is true for all natural numbers m and n, which
are not both zero, but fails for n = m = 0. So, even convinced by experiments, a
proof is needed.

Changing the problem to a polynomial identity.

We shall prefer to change the notations of the names of the variables, x for
m, n for j, k for j′ and i for �′. Then (17.29) looks like:
(17.32)∑

i≤�

∑
k≤n

1
x− i

(
x+ i− k

2i− k + 1

)(
x− i+ k − 1

k

)(
x− i

2(�− i) − (n− k)

)(
x− i

n− k

)

And (17.30) looks like:

(17.33)
1

2(x− �)

(
2x

2�+ 1

)(
2�+ 1
n

)
=

1
2�+ 1

(
2x
2�

)(
2�+ 1
n

)

Now we want to multiply the expressions (17.32–17.33) with n!(2�+ 1 − n)!
which is a “constant”, i.e. independent of the summation indices i and k, to get
the formula:
(17.34)∑

i

∑
k

(
2�+ 1 − n

2i− k + 1

)(
n

k

)
[x+i−k]2i−k+1[x−i+k−1]k[x−i−1]2�−1−2i+k−n[x−i]n−k

At the same time the multiplication of the result, (17.33), gives the simplification,
that only a single factorial is left:

(17.35) [2x]2�

In the forms, (17.34) and (17.35), the number, � only appear with the factor
2. Hence it is tempting to write m = 2�, and ask if the formula is true for all and
not only even values of m ≥ 0? Doing so, we ask for a proof of the equality of the
sum, (17.36),
(17.36)∑

i

∑
k

(
m+ 1 − n

2i− k + 1

)(
n

k

)
[x+i−k]2i−k+1[x−i+k−1]k[x−i−1]m−1−2i+k−n[x−i]n−k

with the factorial, (17.37):

(17.37) [2x]m

The sum in (17.36) is a polynomial in x of degree m, so we may as well
establish the identity of (17.36) with (17.37) for all x ∈ C, but we must keep the
condition, 0 ≤ n ≤ m+ 1.
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We know the zeros of the polynomial (17.37), the values j
2 , j = 0, . . . , m− 1.

Hence we shall prove that these numbers are zeros of the polynomial (17.36).
When this is done we only need to establish that the two polynomials coincide in
one point further.

Fortunately, the factorials in (17.36) join:

[x+ i− k]2i−k+1[x− i− 1]m−1−2i+k−n = [x+ i− k]m−n

(17.38)

[x− i+ k − 1]k[x− i]n−k = (x− i)[x− i+ k − 1]n−1(17.39)

where we have applied the formula (2.2).
Hence we may rewrite (17.36) as

(17.40)
∑

i

∑
k

(
m+ 1 − n

2i− k + 1

)(
n

k

)
(x− i)[x+ i− k]m−n[x− i+ k − 1]n−1

Rewriting the double sum as two single sums.

Now it is time to change variables in (17.40). We write i = j+ k and change
the summation indices to j and k and receive

(17.41)
∑

j

[x+ j]m−n[x− 1 − j]n−1

∑
k

(
m+ 1 − n

2j + k + 1

)(
n

k

)
(x− j − k)

The inner sum may be written as the difference of two sums,

(17.42)
∑

k

(
m+ 1 − n

2j + k + 1

)(
n

k

)
(x− j) −

∑
k

(
m+ 1 − n

2j + k + 1

)(
n

k

)
k

Both sums are Chu–Vandermonde convolutions, cf. (8.1), i.e.

∑
k

(
m+ 1 − n

2j + k + 1

)(
n

k

)
(x− j) = (x− j)

∑
k

(
m+ 1 − n

m− 2j − n− k

)(
n

k

)
=

(17.43)

= (x− j)
(

m+ 1
m− 2j − n

)

∑
k

(
m+ 1 − n

2j + k + 1

)(
n

k

)
k = n

∑
k

(
m+ 1 − n

m− 2j − n− k

)(
n− 1
k − 1

)
=

(17.44)

= n

(
m

m− 2j − n− 1

)
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This means that the polynomial in (17.41) may be written as the difference
of two,

∑
j

(
m+ 1

m− 2j − n

)
(x− j)[x+ j]m−n[x− j − 1]n−1−

−n
∑

j

(
m

m− 2j − n− 1

)
[x+ j]m−n[x− j − 1]n−1 =

=
∑

j

(
m+ 1

2j + n+ 1

)
[x+ j]m−n[x− j]n−

−
∑

j

(
m

2j + n+ 1

)
[x+ j]m−n n[x− j − 1]n−1

(17.45)

where we have applied (2.2) and (2.13)
Now, we have, cf. (2.4),

(17.46) n[x− j − 1]n−1 = [x− j]n − [x− j − 1]n

and, cf. (2.8)

(17.47)
(

m+ 1
2j + n+ 1

)
=
(

m

2j + n+ 1

)
+
(

m

2j + n

)

so we may write the difference (17.45) as a sum, namely

(17.48)
∑

j

(
m

2j + n

)
[x+ j]m−n[x− j]n +

∑
j

(
m

2j + n+ 1

)
[x+ j]m−n[x− j−1]n

The integral zeros of (17.48).

The polynomial (17.48) is zero for integral values of x, x = 0, . . . ,
[

m−1
2

]
,

because it is two sums of zeros. The numbers x + j and x − j cannot both be
negative, and if x+ j ≥ m−n and x− j ≥ n, then 2x ≥ m. And if x+ j ≥ m−n,
but x − j(−1) < 0, then 2j + n(+1) > m − x + x = m, such that the binomial
coefficient is zero. And if x+j < 0 and x−j(−1) ≥ n, then 2j+n(+1) < x−x = 0,
such that the binomial coefficient is zero.

The evaluation of the polynomial (17.48) for x = −1.

For x = −1 we may compute the value of the polynomial.
First for n ≤ m: In the first sum of (17.48) only the term corresponding to

j = 0 is different from zero, and in the second sum, only the terms corresponding
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to j = 0,−1 are different from zero. Hence the sum of the sums is the sum of the
three terms:

(
m

n

)
[−1]m−n[−1]n = (−1)m[m]n[m− n]m−n = (−1)m[m]m

(17.49)

(
m

n+ 1

)
[−1]m−n[−2]n = (−1)m[m]n+1[m− n]m−n = (m− n)(−1)m[m]m

(17.50)

(
m

n− 1

)
[−2]m−n[−1]n = (−1)m[m]n−1[m− n+ 1]m−n+1 n = n(−1)m[m]m

(17.51)

where we have applied (2.1) and (2.2). The sum of the three results, (17.49–17.51),
gives

(17.52) (1 +m− n+ n)(−1)m[m]m = (−1)m[m+ 1]m+1 = −[−1]m+1 = [−2]m

which is the expected value according to (17.37).
If n = m+ 1, then the first sum of (17.48) is zero, and the second sum may

have only the term of j = −1 different from zero. So, the value of (17.48) equals
the value of (17.51), i.e., (m+ 1)(−1)m[m]m = [−2]m as in (17.52).

The non–integral zeros of (17.48).

In order to find the remaining zeros of the polynomial (17.48), we shall change
variables in the sums to k = 2j+n and k = 2j+n+ 1 respectively. Then we may
write the polynomial as

∑
k≡n(2)

(
m

k

)[
x+

k − n

2

]
m−n

[
x− k − n

2

]
n

+

+
∑

k≡| n(2)

(
m

k

)[
x− 1

2
+
k − n

2

]
m−n

[
x− 1

2
− k − n

2

]
n

(17.53)

Now, let x = y
2

for y an odd integer, −1 ≤ y ≤ m− 1. Then we get

∑
k≡n(2)

(
m

k

)[
y − n

2
+
k

2

]
m−n

[
y + n

2
− k

2

]
n

+

+
∑

k≡| n(2)

(
m

k

)[
y − n− 1

2
+
k

2

]
m−n

[
y + n− 1

2
− k

2

]
n

(17.54)
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The missing terms for the rest of the k’s are all zeros, provided y is an integer of
the prescribed size. Hence we may omit the restrictions on the summations and
consider the function:

(17.55) P (y, n,m) =
m∑

k=0

(
m

k

)[
y − n

2
+
k

2

]
m−n

[
y + n

2
− k

2

]
n

with which definition the polynomial in (17.54) for 0 ≤ y ≤ m − 1 must coincide
with the sum of consecutive values (for y) of the polynomial (17.55), i.e:

(17.56) P (y, n,m) + P (y − 1, n,m)

To evaluate (17.55), we shall rewrite the factorials using (2.2) a couple of
times:

[
y − n

2
+
k

2

]
m−n

[
y + n

2
− k

2

]
n

=

=
[
y − n

2
+
k

2

]
k

[
y − n

2
− k

2

]
m−n−k

[
y + n

2
− k

2

]
m−k

[
y + n

2
+
k

2
−m

]
n−m+k

=

=
[
y − n

2
+
k

2

]
k

[
y + n

2
− k

2

]
m−k

(17.57)

With this rewriting we may write the polynomial P in (17.55) as

(17.58) P (y, n,m) =
m∑

k=0

(
m

k

)[
y − n

2
+
k

2

]
k

[
y + n

2
− k

2

]
m−k

In the form (17.58) the polynomial is suitable for applying the famous formula
of J. L. W. V. Jensen, (17.5). Doing this we get:

(17.59) P (y, n,m) =
m∑

j=0

[m]j
(

1
2

)j [y − j]m−j

We apply (2.1) to write

(17.60) [y − j]m−j = (−1)m+j[m− y − 1]m−j

Then we multiply and divide by [m− j]m−j to get

(17.61) [m− y − 1]m−j = [m− j]m−j

(
m− y − 1
m− j

)
161



162 MOGENS ESROM LARSEN

Now we apply (2.2) and (2.3) to get for −1 ≤ y ≤ m− 1:

P (y, n,m) = (−1)m
m∑

j=0

[m]j [m− j]m−j

(
m− y − 1
m− j

)(−1
2

)j =

= (−1)m[m]m
(−1

2

)y+1
m∑

j=0

(
m− y − 1
j − y − 1

)(−1
2

)j−y−1 =

= (−1)m[m]m
(−1

2

)y+1 (1 − 1
2

)m−y−1 = (−1)y+m+1 [m]m
(

1
2

)m

(17.62)

where we have applied the binomial formula (7.1).
From (17.62) follows immediately, that we have

(17.63) P (y, n,m) + P (y − 1, n,m) = 0

Hence the polynomial (17.34) has the same values as the polynomial (17.35)
in the m+1 points, −1, 0, 1

2 , 1, . . . ,
m−1

2 , so that the polynomials must be identical.
This ends the proof.

Remark 1.

We have now proven that the polynomial (17.40) is in fact equal to (17.37)
independent of n. As soon as this fact is known, it is possible to prove the formula
by evaluating the polynomial for n = 0, in which case (17.40) with m = 2� reduces
to

�∑
i=0

0∑
k=0

(
2�+ 1

2i− k + 1

)
(x− i)[x+ i− k]2�−0[x− i+ k − 1]−1 =

=
�∑

i=0

(
2�+ 1
2i+ 1

)
[x− i]1[x+ i]2�[x− i− 1]−1 =

�∑
i=0

(
2�+ 1
2i+ 1

)
[x+ i]2�

(17.64)

where we have used (2.2). Now we shall apply (2.2), (2.3) and (2.5) to write using
(17.34) with d = 2

(
2�+ 1
2i+ 1

)
=

[2�+ 1]2i+1

[2i+ 1]2i+1
=

[2�+ 1, 2]i+1 [2�, 2]i
[2i+ 1, 2]i+1[2i, 2]i

=

[
�+ 1

2

]
i+1

[�]i[
i+ 1

2

]
i+1

[i]i
=

=
(
�

i

)[
�+ 1

2

]
i+1

[
�+ 1

2

]
�+1[

i+ 1
2

]
i+1

[
�+ 1

2

]
�+1

=
1[

�− 1
2

]
�

(
�

i

)[
�− 1

2

]
i

[
�+ 1

2

]
�−i

(17.65)

and (2.1) and (2.2) to write

(17.66) [x+ i]2� = [x+ i]i[x]2�−i = [−x− 1]i(−1)i[x]�[x− �]�−i
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Hence we may write (17.64) by substitution of (17.65) and (17.66) as

(17.67)
[x]�[
�− 1

2

]
�

�∑
i=0

(
�

i

)[
�− 1

2

]
i
[−x− 1]i

[
�+ 1

2

]
�−i

[x− �]�−i(−1)i

The sum,(17.67), satisfies the Pfaff–Saalschütz condition

(17.68) �− 1
2 − x− 1 + �+ 1

2 + x− �− �+ 1 = 0

so we may apply the Pfaff–Saalschütz identity, cf. (9.1), to obtain
(17.69)

[x]�[
�− 1

2

]
�

[2�]�
[
x− 1

2

]
�
=

[2x, 2]�[2x− 1, 2]�[2�]�[�]�
[2�− 1, 2]�[2�, 2]�

=
[2x]2�[2�]2�

[2�]2�
= [2x]2�

as already observed by Joseph Sinyor and Ted Speevak, cf. [104].

Remark 2.

This form of Pfaff–Saalschütz is also interesting in itself, combining (17.64)
with (17.69) to the formula

(17.70)
�∑

i=0

(
2�+ 1
2i+ 1

)
[x+ i]2� = [2x]2�

This raises two questions about generalizations, one, is the number 2 crucial, or
do we have a formula:

(17.71)
[m

2 ]∑
i=0

(
m+ 1
2i+ 1

)
[x+ i]m = [2x]m

and what about the formula

(17.72)
[m+1

2 ]∑
i=0

(
m+ 1

2i

)
[x+ i]m = [2x+ 1]m

They both prove valid. The formulas (17.71) and (17.72) are reduced to Pfaff–
Saalschütz similarly to the proof of (17.70).

Remark 3.

In [104] Joseph Sinyor and Ted Speevak give a beautiful combinatorial proof
of the formula for n = 1. With the help of the formulas in remark 2, we may
compute this result algebraically from (17.40) with m = 2�. We get

�∑
i=0

1∑
k=0

(
2�

2i− k + 1

)
(x− i)[x+ i− k]2�−1[x− i+ k − 1]0 =

=
�−1∑
i=0

(
2�

2i+ 1

)
(x− i)[x+ i]2�−1 +

�∑
i=0

(
2�
2i

)
(x− i)[x+ i− 1]2�−1

(17.73)
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We may write x − i = (2x − 2� + 1) − (x − 2� + 1 − i) in the first sum, and
x− i = 2x− (x− i) in the second to rewrite the sums in (17.73) conveniently as

�−1∑
i=0

(
2�

2i+ 1

)
((2x− 2�+ 1) − (x− 2�+ 1 + i))[x+ i]2�−1+

+
�∑

i=0

(
2�
2i

)
(2x− (x+ i))[x+ i− 1]2�−1 =

=(2x− 2�+ 1)
�−1∑
i=0

(
2�

2i+ 1

)
[x+ i]2�−1 −

�−1∑
i=0

(
2�

2i+ 1

)
(x− 2�+ 1 + i)[x+ i]2�−1+

+ 2x
�∑

i=0

(
2�
2i

)
[x+ i− 1]2�−1 −

�∑
i=0

(
2�
2i

)
(x+ i)[x+ i− 1]2�−1 =

=(2x− 2�+ 1)[2x]2�−1 −
�−1∑
i=0

(
2�

2i+ 1

)
[x+ i]2�+

+ 2x[2(x− 1) + 1]2�−1 −
�∑

i=0

(
2�
2i

)
[x+ i]2� =

=[2x]2� −
�∑

i=0

(
2�+ 1
2i+ 1

)
[x+ i]2� + [2x]2� = [2x]2�

(17.74)

where we have joined the second and fourth sums by the formulas (2.4), (2.2) and
eventually (17.71) and (17.72) from remark 2.

Remark 4.

Also the cases of n = 2� and n = 2� + 1 as considered in [104] by Joseph
Sinyor and Ted Speevak are easy to handle from (17.40) with m = 2�. We obtain
for n = 2�:

∑
i

2i+1∑
k=2i

(
1

2i− k + 1

)(
2�
k

)
(x− i)[x+ i− k]0[x− i+ k − 1]2�−1 =

=
∑

i

(
2�
2i

)
(x− i)[x− i+ 2i− 1]2�−1 +

∑
i

(
2�

2i+ 1

)
(x− i)[x− i+ 2i]2�−1 =

=
∑

i

(
2�
2i

)
(x− i)[x+ i− 1]2�−1 +

∑
i

(
2�

2i+ 1

)
(x− i)[x+ i]2�−1

(17.75)

exactly the same as in (17.73).
And for n = 2� + 1 even easier, because, as 2i− k + 1 = 0, the sum (17.40)

with m = 2� reduces to

(17.76)
∑

i

(
2�+ 1
2i+ 1

)
[x− i]1[x− i− 1]−1[x+ i]2� =

∑
i

(
2�+ 1
2i+ 1

)
[x+ i]2� = [2x]2�
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using (17.71).

Remark 5.

We also get an interesting interpolation formula. If we apply (17.57) directly
to the first sum in (17.48) with m = 2� > 0, then we may write it as

(17.77)
∑

j

(
2�

2j + n

)
[x+ j]2j+n[x− j]2�−n−2j

and we know its value for x = −1
2
, 0, 1

2
, 1, ..., �− 1

2
.

If we divide by (2�)! and multiply with 22�, we may write this result, for
0 ≤ n ≤ 2�+ 1, as

(17.78) 22�
∑

j

(
x+ j

2j + n

)(
x− j

2�− n− 2j

)
=
{

0 for x = 0, . . . , �
1 for x = −1

2 , . . . , �− 1
2

From (17.49) we know that this polynomial takes the value 22� for x = −1.
This sum can not be reduced to the Pfaff–Saalschütz formula.

Remark 6.

For comparison the Lagrange interpolation formula gives the polynomial in
the form

(17.79)
(

2x+ 1
2�+ 1

)
(2�+ 1)

�∑
j=0

(
2�
2j

)
1

2x+ 1 − 2j

The sum in (17.79) may be considered as a generalized Pfaff–Saalschütz sum by
the changes

(
2�
2j

)
=

[2�]2j

[2j]2j
=

[2�, 2]j[2�− 1, 2]j
[2j, 2]j[2j − 1, 2]j

=
[�]j
[
�− 1

2

]
j

[j]j
[
j − 1

2

]
j

=
(
�

j

)[�− 1
2

]
j

[
�− 1

2

]
�[

j − 1
2

]
j

[
�− 1

2

]
�

=

=
1[

�− 1
2

]
�

(
�

j

)[
�− 1

2

]
j

[
�− 1

2

]
�−j

(17.80)

similar to the changes in (17.65) and

1
2x+ 1 − 2j

= 1
2

[
x− 1

2 − j
]
−1

= −1
2

[−x+ 1
2 + j − 2

]
−1

=

= − 1
2

[−x− 3
2

+ j
]
j

[−x− 3
2

]
−j−1

=

= − (−1)j

2

[
x+ 3

2
− j + j − 1

]
j

[−x− 3
2

]
−�−1

[−x− 3
2

+ �+ 1
]
�−j

=

=
(−1)j+1

2
[−x− 3

2 + �+ 1
]
�+1

[
x+ 1

2

]
j

[
�− x− 1

2

]
�−j

(17.81)
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where we have applied (2.1)–(2.2).
Then the sum (17.79) becomes

(17.82)
−(2x+1

2�+1

)
(2�+ 1)

2
[
�− 1

2

]
�

[
�− 1

2
− x
]
�+1

�∑
j=0

(
�

j

)[
�− 1

2

]
j

[
x+ 1

2

]
j

[
�− 1

2

]
�−j

[
�− 1

2 − x
]
�−j

(−1)j

The factor in (17.82) may be rewritten as

− [2x+ 1]2�+1(2�+ 1)
[2�+ 1]2�+1 2

[
�− 1

2

]
�

[
�− 1

2
− x
]
�+1

= − [2x+ 1, 2]�+1[2x, 2]� 22�[�]�
[2�]2� [2�− 1, 2]� [2�− 1 − 2x, 2]�+1 [�]�

=

− [2x+ 1, 2]�+1[x]� 24�[�]�
[2�]2� [2�− 1, 2]� [2�, 2]�(−1)�+1 [1 + 2x, 2]�+1

=
(−16)�[x]�
[2�]�[2�]2�

=
16�[�− 1 − x]�

[2�]�[2�]2�

(17.83)

The sum in (17.82) with the factor replaced by (17.83), may be rewritten as
a generalized Pfaff–Saalschütz sum, cf. (9.16):

(17.84)
16�[�− 1 − x]�

[2�]�[2�]2�

2�∑
j=0

(
2�
j

)
[�]j
[
x+ 1

2

]
j
[−1]�−j [−1 − x]�−j(−1)j

but this rewriting may not seem much of an improvement. Nevertheless, it is
possible to simplify it. First denote, that [�]j = 0 for j > �, so we may change the
upper limit of summation to �. Next, two of the factors in the sum join, as long
as j ≤ �

(17.85) [�]j[−1]�−j = [�]j[�− j]�−j(−1)�−j = [�]�(−1)�−j

and two other factors join too,

(17.86) [�− 1 − x]�[−1 − x]�−j = [�− 1 − x]2�−j

Substitution of (17.85) and (17.86) in (17.84) yields
(17.87)

(−16)�

[2�]2�

(
2�
�

) �∑
j=0

(
2�
j

)[
x+ 1

2

]
j
[�− 1 − x]2�−j =

(−16)�(
2�
�

) �∑
j=0

(
x+ 1

2

j

)(
�− 1 − x

2�− j

)

In the case of Lagrange interpolation, the Pfaff–Saalschütz formula proved useful
to change the formula to some extent. The result is of Chu–Vandermonde type,
but the limits of summation are not natural. We may say, it is a half Chu–
Vandermonde.

The coincidence between the two expressions of this polynomial, (17.78) and
(17.87) is a surprising identity.
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CHAPTER 18. SUMS OF TYPE V, HARMONIC SUMS

Harmonic sums. Harmonic sums are such sums which terms include a genera-
lized harmonic factor, cf. (1.20), i.e., a factor of the form

(18.1) H(m)
c,n :=

n∑
k=1

1
(c+ k)m

Remark that we consider the harmonic numbers well defined for n = 0 as the
empty sum, H(m)

c,0 = 0.

Harmonic sums of power m = 1. Only the simplest allow c �= 0.
The first indefinite harmonic sum is the sum of harmonic numbers with

factorial factors.

Theorem 18.1. For all m,n ∈ Z, m �= −1, we have

(18.2)
∑

[c+ n+ k]mH
(1)
c,n+kδk =

[c+ n+ k]m+1

m+ 1

(
H

(1)
c,n+k − 1

m+ 1

)

Proof. Straightforward taking the difference of the right side.

The omission is covered by the result

Theorem 18.2. For all n ∈ Z, we have

(18.3)
∑

[c+ n+ k]−1H
(1)
c,n+kδk = 1

2

((
H

(1)
c,n+k

)2

−H
(2)
c,n+k

)

Proof. Straightforward taking the difference of the right side.

Corollary 18.2. We have for c = 0

(18.4)
n∑

k=1

Hk

k
= 1

2

(
H2

n +H
(2)
0,n

)

This is the form preferred by GKP, cf. [70], formula 6.71.

Remark. The formulas (18.2–18.3) allow the summation of sums of the form

(18.5)
∑ p(k)

q(k)
H

(1)
c,kδk

with a rational factor, provided the denominator has different roots. We just have
to apply (5.4).

Furthermore we shall mention
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Theorem 18.3. We have the indefinite summation formula for c ∈ C and n ∈ Z

(18.6)∑(
H

(1)
c,n+k

)2

δk = (c+n+k)
(
H

(1)
c,n+k

)2

− (2(c+n+k)+1)H(1)
c,n+k +2(c+n+k)

Proof. Straightforward.

Theorem 18.4. For all x ∈ C \ {0} we have

(18.7)
∑

(−1)k−1

(
x

k

)
Hkδk = (−1)k

((
x− 1
k − 1

)
Hk − 1

x

(
x− 1
k

))

Proof. Straightforward.

This is actually a special case of the more general formula:

Theorem 18.5. For all x, y ∈ C, y /∈ N such that x− y − 1 �= 0 we have

(18.8)
∑ [x]k

[y]k
H

(1)
−y−1,kδk =

1
x− y − 1

[x]k
[y]k−1

(
H

(1)
−y−1,k−1 +

1
x− y − 1

)

Proof. Straightforward.

For x ∈ N we may generalize the harmonic factor,

Theorem 18.6. For all n ∈ N, m ∈ Z and c ∈ C we have the formula

(18.9)
n∑

k=0

(−1)k−1

(
n

k

)
H

(1)
c,m+k =

(n− 1)!
[c+m+ n]n

=
1

n
(
c+m+n

n

)

Proof. Let m = 0. We apply the formula (2.16) and summation by parts, (2.24),
to write the sum as

−
n∑

k=0

(−1)k−1

(
n− 1
k

)
1

c+ k + 1
=

n∑
k=0

(−1)k

(
n− 1
k

)
[c+ k]−1

This sum is a Chu–Vandermonde sum, (8.20), so it equals

(n− 1)!
[c+ n]n

The special case of c = 0 is found in [81], formula 6.7.1.
Inversion, cf. (2.29), of the formula (18.9) for m = 0 yields a formula of type

II(2, 2, 1) which we could have known already:
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Corollary 18.6. For all n ∈ N and c ∈ C we have the formula

(18.10)
n∑

k=1

1
k
· [n]k
[−c− 1]k

= H(1)
c,n

Proof. Let us define

f(n) =
n∑

k=1

1
k
· [n]k
[−c− 1]k

Then we enjoy that the upper limit is natural, so the difference

f(n) − f(n− 1) =
n∑

k=1

[n− 1]k−1

[−c− 1]k
=

=
1
n
· 1
c+ n

[
[n]k

[−c− 1]k−1

]n+1

1

=

=
1
n
· 1
c+ n

(0 − n) =
1

c+ n

where we have used the formula (7.4).

Theorem 18.7. For any x ∈ C we have the indefinite summation formula, but
in case x ∈ N, we must require k ≤ n,

(18.11)
∑

(−1)k

(
x

k

)−1

Hkδk =
(−1)kk

x+ 2

(
x

k − 1

)−1( 1
x+ 2

−Hk

)

Proof. Straightforward.

The following formulas are found in [81], formulas 6.7.6 and 6.7.7. They
are very special cases of theorem 18.6, for the choice of x = 2n and x = 2n − 1,
respectively, and the limits 1 and 2n− 1.

Theorem 18.8. For any integer, n ∈ N, we have the sums

2n∑
k=1

(−1)k−1

(
2n
k

)−1

Hk =
n

2(n+ 1)2
+

1
2n+ 2

H2n(18.12)

2n−1∑
k=1

(−1)k−1

(
2n− 1
k

)−1

Hk =
2n

2n+ 1
H2n(18.13)

Theorem (18.7) may be generalized to:
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Theorem 18.9. For all x, y ∈ C, such that x− y − 1 �= 0, x /∈ N, we have

(18.14)
∑ [x]k

[y]k
H

(1)
−x−1,kδk =

1
x− y − 1

[x]k
[y]k−1

(
H

(1)
−x−1,k +

1
x− y − 1

)

Proof. Straightforward.

The following formula is found in [81], formula 6.7.3.

Theorem 18.10. For all n ∈ N, we have the sum

(18.15)
n∑

k=0

(−1)k−1

(
n

k

)
H2k =

1
2n

+
[2n− 2, 2]n−1

[2n− 1, 2]n

Proof. We have from (2.15)

Δ(−1)k

(
n− 1
k − 1

)
= (−1)k−1

(
n

k

)

Summation by parts therefore may yield

−
n∑

k=0

(−1)k+1

(
n− 1
k

)(
1

2k + 2
+

1
2k + 1

)
=

1
2

n−1∑
k=0

(−1)k

(
n− 1
k

)
[k]−1 +

1
2

n−1∑
k=0

(−1)k

(
n− 1
k

)[−1
2

+ k
]
−1

=
(−1)n−1

2

(
[0]−n[−1]n−1 +

[−1
2

]
−n

[−1]n−1

)
=

1
2n

+
[n− 1]n−1

2
[
n− 1

2

]
n

where we have applied the Chu–Vandermonde convolution, (8.20). The formula
follows by multiplication with the right power of 2.

The following formula is a generalization of a strange formula due to W.
Ljunggren from 1947, [90], which has only been proved by analytic methods, by
J. E. Fjeldstad, [41] and J. Kvamsdal, [86] in 1948, cf. [81], formula 6.7.5.

Theorem 18.11. For any complex number, x ∈ C, and any integers, n ∈ N and
p ∈ N0, we have the sum
(18.16)

n∑
k=p

(
n− p

k − p

)(
x+ p

k

)
Hk =

n−p∑
k=0

(
n− p

k

)(
x+ p

k + p

)
Hk+p =

(
x+ n

n

)(
Hn +H(1)

x,p −H(1)
x,n

)

From this theorem Ljunggren’s formula follows from the choices x = n and
p = 0:
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Corollary 18.11. For any integer, n ∈ N, we have the sum

(18.17)
n∑

k=1

(
n

k

)2

Hk =
(

2n
n

)(
Hn −H(1)

n,n

)
=
(

2n
n

)
(2Hn −H2n)

Proof of theorem 18.10. We consider the function

(18.18) f(n, x, p) =
n∑

k=p

(
n− p

k − p

)(
x+ p

k

)
Hk

which we shall compute. Now we remark that

(18.19) Δk(−1)k

(
x

k

)
Hk = (−1)k+1

(
x+ 1
k + 1

)(
Hk+1 − 1

x+ 1

)

Using (18.19) summation by parts, (2.24), yields

f(n, x, p) = −
n∑

k=p

(−1)k

(
n− p− 1
k − p

)
(−1)k+1

(
x+ p+ 1
k + 1

)(
Hk+1 − 1

x+ p+ 1

)
=

n−1∑
k=p+1

(
n− p− 1
k − p− 1

)(
x+ p+ 1

k

)
Hk − 1

x+ p+ 1

n−1∑
k=p

(
n− p− 1
n− 1 − k

)(
x+ p+ 1
k + 1

)

The first sum is just f(n, x, p+ 1) as defined in (18.18), while the second sum is a
Chu–Vandermonde convolution as of (8.1), so it yields

1
x+ p+ 1

(
x+ n

n

)

Hence we have derived the formula with the difference taken in the variable p,

Δpf(n, x, p) =
1

x+ p+ 1

(
x+ n

n

)

Summation gives us

f(n, x, p) = f(n, x, n)−
(
x+ n

n

) n−1∑
k=p

1
x+ k + 1

=

=
(
x+ n

n

)
Hn −

(
x+ n

n

)
H

(1)
x+p,n−p =

(
x+ n

n

)(
Hn +H(1)

x,p −H(1)
x,n

)

proving the formula.

A more general result is the following formula,
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Theorem 18.12. For any complex number, x ∈ C we have the sum

(18.20)
n∑

k=1

(
n

k

)
[−x]k[x]n−kHk = (−1)n(n− 1)! − 1

n
[x− 1]n

Proof. From corollary (6.1) we have the difference formula

(18.21)
(
n

k

)
[−x]k[x]n−k = Δ

(
n− 1
k − 1

)
[−x− 1]k−1[x]n−k+1

Summation by parts, (2.24), now yields

− [x]n −
n∑

k=1

(
n− 1
k

)
[−x− 1]k[x]n−k

1
k + 1

=

= −[x]n + 1
n

n∑
k=1

(
n

k + 1

)
[−x]k+1[x− 1]n−k−1

This sum is a Chu–Vandermonde sum, missing the first two terms, corresponding
to k = 0 and k = −1. Hence we get

−[x]n +
1
n

([−1]n − n(−x)[x− 1]n−1 − [x− 1]n) = (−1)n(n− 1)! − 1
n [x− 1]n

This ends the proof.

Remark. If x ∈ N0, x ≤ n, the second term vanish, so the right side becomes just

(−1)n(n− 1)!

independent of x. The case of x = n is found in [81], formula 6.7.2.

A similar, but more specialized formula is the following:

Theorem 18.13. For all p ∈ N, we have the sum

(18.22)
n∑

k=0

(
n

k

)
[−p]k[p]n−kHp+k−1 = (−1)n(n− 1)!

Proof. We write the sum as

[p]nHp−1 +
n∑

k=1

(
n

k

)
[−p]k[p]n−kHp+k−1
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We have from (18.21) above

(
n

k

)
[−p]k[p]n−k = Δ

(
n− 1
k − 1

)
[−p− 1]k−1[p]n−k+1

Hence summation by parts yields

[p]nHp−1 − [p]nHp −
n∑

k=1

(
n− 1
k

)
[−p− 1]k[p]n−k · 1

p+ k
=

= −[p− 1]n−1 −
n∑

k=1

(
n− 1
k

)
[−p− 1]k−1[p]n−k =

= −[p− 1]n−1 +
n∑

k=1

(
n− 1
k

)
[−p]k[p− 1]n−1−k =

= −[p− 1]n−1 + [−1]n−1 − [p− 1]n−1 = (−1)n(n− 1)!

where we have moved a factor p and applied the Chu–Vandermonde convolution,
(8.4).

The special case of p = n is similar to the remark above,

Remark. For all n ∈ N we have the formula

(18.23)
n∑

k=0

(
n

k

)(−n
k

)
Hn+k−1 =

(−1)n

n

Proof. Chose p = n in (18.22) and divide by n!.

A similar formula not containing any of the three above as special cases is
found in [64] as formula 7.15.

Theorem 18.14. For any x, y ∈ C except certain negative integers, we have

(18.24)
n∑

k=0

(
n

k

)
[x]k[y + n]n−kH

(1)
y,k = [x+ y + n]n

(
H(1)

y,n −H
(1)
x+y,n

)

Proof. By induction after n. For n = 1 the result is obvious. Let us denote the
left hand side of (18.24) by S,

S(n, x, y) =
n∑

k=0

(
n

k

)
[x]k[y + n]n−kH

(1)
y,k
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Splitting the binomial coefficient by (2.8) we get the sum as a sum of two,

(1) =
n−1∑
k=0

(
n− 1
k

)
[x]k[y + n]n−kH

(1)
y,k

(2) =
n∑

k=1

(
n− 1
k − 1

)
[x]k[y + n]n−kH

(1)
y,k

The first is

(1) = (y + n)S(n− 1, x, y) = (y + n)[x+ y + n− 1]n−1

(
H

(1)
y,n−1 −H

(1)
x+y,n−1

)

In the second we translate the index by 1 to get

(2) =
n−1∑
k=0

(
n− 1
k

)
[x]k+1[y + 1 + n− 1]n−1−kH

(1)
y,k+1

We remark, that H(1)
y,k+1 = 1

y+1 +H
(1)
y+1,k, so we may write

(2) = x

n−1∑
k=0

(
n− 1
k

)
[x− 1]k[y + 1 + n− 1]n−1−kH

(1)
y+1,k+

+ x

n−1∑
k=0

(
n− 1
k

)
[x− 1]k[y + 1 + n− 1]n−1−k

1
y + 1

=

= xS(n− 1, x− 1, y + 1) +
x

y + 1
[x+ y + n− 1]n−1 =

= x[x+ y + n− 1]n−1

(
H

(1)
y+1,n−1 −H

(1)
x+y,n−1 +

1
y + 1

)
=

= x[x+ y + n− 1]n−1

(
H

(1)
y,n−1 −H

(1)
x+y,n−1 +

1
y + n

)

using (18.24) to the first sum and the Chu–Vandermonde convolution (8.4) to the
second sum.

Adding (1) and (2) we get

(x+ y + n)[x+ y + n− 1]n−1

(
H

(1)
y,n−1 −H

(1)
x+y,n−1

)
+

x

y + n
[x+ y + n− 1]n−1 =

=[x+ y + n]n
(
H

(1)
y,n−1 −H

(1)
x+y,n−1

)
+ [x+ y + n]n

(
1

y + n
− 1
x+ y + n

)
=

=[x+ y + n]n
(
H(1)

y,n −H
(1)
x+y,n

)
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Remark. The analog of the harmonic numbers with alternating signs in the sum
do not provide anything new. Actually we have the formula,

(18.25)
n∑

k=1

(−1)k

k
= H�n

2 	 −Hn

Harmonic sums of power m > 1. Some formulas containing the generalized
harmonic numbers, (1.20), of power m = 2 are known,

Theorem 18.15. For all x ∈ C we have the formula

(18.26)
∑(

x

k

)(−x
k

)
H

(2)
0,kδk =

(
x− 1
k − 1

)(−x− 1
k − 1

)
H

(2)
0,k+

1
x2

(
x− 1
k

)(−x− 1
k

)

Proof. Straightforward.

Corollary 18.15. For all n ∈ N we have the formula

(18.27)
n∑

k=0

(
n

k

)(−n
k

)
H

(2)
0,k = − 1

n2

Proof. Obvious.

The sums with a factorial with nonnegative index are also possible to find.
The first three are:

Theorem 18.16. We have the following indefinite sums for m ∈ N0

(18.28)∑
[c+ k]mH

(2)
c,kδk =

[c+ k]m+1

m+ 1
H

(2)
c,k − (−1)mm!

m+ 1
H

(1)
c,k −

m∑
j=1

(−1)j[m]m−j [c+ k]j
j(m+ 1)

Proof. Straightforward.

Seung–Jin Bang’s problem. In 1995 Seung–Jin Bang, Ajou University, Suwon,
Korea, posed the problem, [23]:

Show that

(18.29)
n∑

k=1

(−1)k−1

k

(
n

k

) k∑
j=1

1
j

(
1
1

+
1
2

+ · · ·+ 1
j

)
=

n∑
k=1

1
k3

for all positive integers n.
This is the special case p = 2 of the following
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Theorem 18.17. For n ∈ N and p ∈ N0 we define the multiple sum

(18.30) S(n, p) =
n∑

k=1

(−1)k−1

k

(
n

k

) k∑
j1=1

1
j1

j1∑
j2=1

1
j2

j2∑
j3=1

· · · 1
jp−1

jp−1∑
jp=1

1
jp

Then we have

(18.31) S(n, p) =
n∑

k=1

1
kp+1

= H
(p+1)
0,n

Proof. We consider the difference D(n, p) = S(n, p) − S(n− 1, p),

(18.32) D(n, p) =
n∑

k=1

(−1)k−1

k

((
n

k

)
−
(
n− 1
k

)) k∑
j1=1

1
j1

j1∑
j2=1

1
j2

j2∑
j3=1

· · ·
jp−1∑
jp=1

1
jp

and want to prove that it satisfies

(18.33) D(n, p) =
1

np+1

Since

(18.34)
1
k

((
n

k

)
−
(
n− 1
k

))
=

1
k

(
n− 1
k − 1

)
=

1
n

(
n

k

)

the difference may be written (where we for convenience have added the zero term
for k = 0)

(18.35) D(n, p) =
1
n

n∑
k=0

(−1)k−1

(
n

k

) k∑
j1=1

1
j1

j1∑
j2=1

1
j2

j2∑
j3=1

· · · 1
jp−1

jp−1∑
jp=1

1
jp

Now summation by parts or Abelian summation (2.24) yields – as the constant
terms vanish – that this is

D(n, p) = − 1
n

n∑
k=0

(−1)k+1

(
n− 1
k

)
1

k + 1

k+1∑
j2=1

1
j2

j2∑
j3=1

· · · 1
jp−1

jp−1∑
jp=1

1
jp

=
1
n2

n−1∑
k=0

(−1)k

(
n

k + 1

) k+1∑
j2=1

1
j2

j2∑
j3=1

· · · 1
jp−1

jp−1∑
jp=1

1
jp

=
1
n2

n∑
k=0

(−1)k−1

(
n

k

) k∑
j2=1

1
j2

j2∑
j3=1

· · · 1
jp−1

jp−1∑
jp=1

1
jp

=
1
n
D(n, p− 1)

(18.36)
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I.e., the difference satisfies the recursion

(18.37) D(n, p) =
1
n
D(n, p− 1)

and hence we get

(18.38) D(n, p) =
1
np
D(n, 0) =

1
np+1

n∑
k=1

(−1)k−1

(
n

k

)

where we must change the limit to 1, because the zero term no longer vanishes.
But from (2.15) we have

(18.39)
n∑

k=1

(−1)k−1

(
n

k

)
= (−1)k

(
n− 1
k − 1

)]n+1

1

= 0 − (−1) = 1

or, if you please, it follows from the binomial theorem (7.1) as

(18.40)
n∑

k=0

(−1)k

(
n

k

)
= (1 − 1)n = 0

This proves the theorem.

The Larcombe identities. In our papers [87, 88] we prove a family of harmonic
identities.

Let us define the sum for non–negative integers, n and p, and a complex
number z, not a negative integer, −1,−2, · · · ,−n:

(18.41) S(n, p, z) = z

(
z + n

n

) n∑
k=0

(−1)k

(
n

k

)
1

(z + k)p

Theorem 18.18.

(18.42) S(n, 0, z) = z · 0n

Proof. The binomial formula for (1− 1)n.

Theorem 18.19.

(18.43) S(n, 1, z) = 1

Proof.

S(n, 1, z) =
[z + n]n+1

n!

n∑
k=0

n!
k!(n− k)!

(−1)k 1
z + k

=
n∑

k=0

1
k!(n− k)!

(−1)k[z + n]n−k[z + k − 1]k

=
n∑

k=0

(−z
k

)(
n+ z

n− k

)
=
(
n

n

)
= 1

using Chu–Vandermonde (8.1).
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Theorem 18.20. For p > 0 we have the recursion

(18.44) S(n, p, z) =
n∑

k=0

1
z + k

S(k, p− 1, z)

Corollary 18.20. For p > 0 we have the recursion

(18.45) ΔkS(k − 1, p, z) =
1

z + k
S(k, p− 1, z)

Proof of the theorem.

S(n, p, z) =
[z + n]n+1

n!

n∑
k=0

(
n

k

)
(−1)k 1

(z + k)p

=
n∑

k=0

(−z
k

)(
z + n

n− k

)
1

(z + k)p−1

=
n∑

k=0

(−z
k

)(−z − k − 1
n− k

)
(−1)n−k 1

(z + k)p−1

Now we apply Chu–Vandermonde to write(−z − k − 1
n− k

)
=

n∑
j=k

(−z − k

j − k

)( −1
n− j

)

=
n∑

j=k

(−z − k

j − k

)
(−1)n−j

Appreciating (2.10) (−z
k

)(−z − k

j − k

)
=
(−z
j

)(
j

k

)
and changing the order of summation we obtain using (2.12), (2.11) and (18.40)

S(n, p, z) =
n∑

j=0

(−z
j

)
(−1)j

j∑
k=0

(
j

k

)
(−1)k 1

(z + k)p−1

=
n∑

j=0

(
z + j − 1

j

) j∑
k=0

(
j

k

)
(−1)k 1

(z + k)p−1

=
n∑

j=0

1
z + j

z

(
z + j

j

) j∑
k=0

(
j

k

)
(−1)k 1

(z + k)p−1

=
n∑

j=0

1
z + j

S(j, p− 1, z)
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Theorem 18.21. For p > 1

(18.46) S(n, p, z) =
1

p− 1

p−1∑
j=1

H(j)
z,nS(n, p− j, z)

Proof. By induction after p.
For p = 2 we have

S(n, 2, z) =
n∑

k=0

1
z + k

S(k, 1, z) =
n∑

k=0

1
z + k

= H(1)
z,n =

1
2 − 1

2−1∑
j=1

H(j)
z,nS(n, 2− j, z)

by theorem (18.19), then theorem (18.18), and eventually the definition of harmo-
nic numbers, (1.20).

The induction step goes

Δk
1

p− 1

p−1∑
j=1

H
(j)
z,k−1S(k − 1, p− j, z)

=
1

p− 1

p−1∑
j=1

1
(z + k)j

S(k, p− j, z) +
1

p− 1

p−2∑
j=1

H
(j)
z,k

1
z + k

S(k, p− 1 − j, z)

− 1
p− 1

p−2∑
j=1

1
(z + k)j+1

S(k, p− 1 − j, z)

=
1

p− 1
1

z + k
S(k, p− 1, z) +

1
p− 1

p−1∑
j=2

1
(z + k)j

S(k, p− j, z)

+
1

p− 1
(p− 2)

1
z + k

S(k, p− 1, z) − 1
p− 1

p−1∑
j=2

1
(z + k)j

S(k, p− j, z)

=
1

z + k
S(k, p− 1, z)

Use the formula (2.19) on each term of the sum and corollary 18.19 for ΔS. Take
outside the first term of the first sum. Apply the induction assumption for p − 1
on the second sum. Change the summation index by 1 in the last sum. Then add
the first and third expression while second and last sums cancel.
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Corollary 18.21.

S(n, 1, z) =1

S(n, 2, z) =H(1)
z,n

S(n, 3, z) =
1
2

((
H(1)

z,n

)2

+H(2)
z,n

)

S(n, 4, z) =
1
6

((
H(1)

z,n

)3

+ 3H(1)
z,nH

(2)
z,n + 2H(3)

z,n

)

S(n, 5, z) =
1
24

((
H(1)

z,n

)4

+ 6
(
H(1)

z,n

)2

H(2)
z,n + 3

(
H(2)

z,n

)2

+ 8H(1)
z,nH

(3)
z,n + 6H(4)

z,n

)

S(n, 6, z) =
1

120

((
H(1)

z,n

)5

+ 10
(
H(1)

z,n

)3

H(2)
z,n + 15H(1)

z,n

(
H(2)

z,n

)2

+20
(
H(1)

z,n

)2

H(3)
z,n + 20H(2)

z,nH
(3)
z,n + 30H(1)

z,nH
(4)
z,n + 24H(5)

z,n

)

S(n, 7, z) =
1

720

((
H(1)

z,n

)6

+ 15
(
H(1)

z,n

)4

H(2)
z,n + 45

(
H(1)

z,n

)2 (
H(2)

z,n

)2

+40
(
H(1)

z,n

)3

H(3)
z,n + 120H(1)

z,nH
(2)
z,nH

(3)
z,n + 90

(
H(1)

z,n

)2

H(4)
z,n+

+144H(1)
z,nH

(5)
z,n + 15

(
H(2)

z,n

)3

+ 90H(2)
z,nH

(4)
z,n + 40

(
H(3)

z,n

)2

+ 120H(6)
z,n

)

(18.47)

Proof. Let’s do S(n, 5, z). Take

H(1)
z,nS(n, 4, z)/4 =

1
24

((
H(1)

z,n

)4

+ 3
(
H(1)

z,n

)2

H(2)
z,n + 2H(1)

z,nH
(3)
z,n

)
Then take

H(2)
z,nS(n, 3, z)/4 =

1
8

((
H(1)

z,n

)2

H(2)
z,n +

(
H(2)

z,n

)2
)

=
1
24

(
3
(
H(1)

z,n

)2

H(2)
z,n + 3

(
H(2)

z,n

)2
)

So take
H(3)

z,nS(n, 2, z)/4 =
1
24

6H(1)
z,nH

(3)
z,n

And eventually

H(4)
z,nS(n, 1, z)/4 =

1
24

6H(4)
z,n

Adding we get the coefficients 1, 3+3=6, 3, 2+6=8, and 6.

Theorem 18.22. The coefficients in the corollary are:

(18.48)
(p− 1)!∏

i i
nini!

∏
i

(
H(i)

z,n

)ni

with
∑

i ini = p− 1.

Proof. Guessing the coefficients as class orders from symmetric groups, cf. [109].
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CHAPTER 19. APPENDIX ON INDEFINITE SUMS

Rational functions. Rational functions may always be summed indefinitely in
principle. The function may be split into a polynomial part and a sum of principal
fractions. All we need are the formulas cf. (3.5 ff.), (1.20) and (3.47)

∑
[c+ k]mδk =

{ [c+k]m+1
m+1

m �= −1

H
(1)
c,k m = −1

(19.1)

∑ 1
(c+ k)m

δk = H
(m)
c,k(19.2)

∑
kmδk =

Bm+1(k)
m+ 1

(19.3)

Rational functions may take the convenient form, cf. (7.4),

(19.4)
∑ [a]k

[b]k
δk =

1
a− b− 1

[a]k
[b]k−1

to be recognized as a sum of type I with quotient

(19.5) q(k) =
a− k

b− k

A more complicated form with condition on the arguments is, cf. (8.70), if
p = a+ b− c− d ∈ N0, we have

(19.6)
∑ [a]k[b]k

[c− 1]k[d− 1]k
δk =

[a]k[b]k
[c− 1]k−1[d− 1]k−1

p∑
j=0

[p]j [k − c− 1]j
[a− c]j+1[b− c]j+1

with quotient

(19.7) q(k) =
(a− k)(b− k)

(c− 1 − k)(d− 1 − k)

A similar, but more special, formula is

(19.8)
∑(

x

k

)
(x− 2k)δk = k

(
x

k

)
with quotient

(19.9) q(k) =
(x− k)

(
x
2 − 1 − k

)
(−1 − k)

(
x
2 − k

) · (−1)

Furthermore, we have the surprising formula, cf. (11.1),∑ [a+ b+ c]k[a]k[b]k[c]k(a+ b+ c− 2k)(−1)k

k![b+ c− 1]k[a+ c− 1]k[a+ b− 1]k
δk =

=
[a+ b+ c]k[a− 1]k−1[b− 1]k−1[c− 1]k−1(−1)k

k![b+ c− 1]k−1[a+ c− 1]k−1[a+ b− 1]k−1

(19.10)
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Other indefinite sums. We know a few indefinite sums involving harmonic
numbers, cf. (18.2), (18.3), (18.6), (18.7), (18.8), (18.14), (18.11), (18.28), seven
with first order harmonic numbers,

∑
[c+ k]mH

(1)
c,kδk =

[c+ k]m+1

m+ 1

(
H

(1)
c,k − 1

m+ 1

)(19.11)

∑
[c+ k]−1H

(1)
c,kδk = 1

2

((
H

(1)
c,k

)2

−H
(2)
c,k

)(19.12)

∑(
H

(1)
c,k

)2

δk = (c+ k)
(
H

(1)
c,k

)2

− (2(c+ k) + 1)H(1)
c,k + 2(c+ k)

(19.13)

∑
(−1)k−1

(
x

k

)
Hkδk = (−1)k

((
x− 1
k − 1

)
Hk − 1

x

(
x− 1
k

))(19.14)

∑ [x]k
[y]k

H
(1)
−y−1,kδk =

1
x− y − 1

[x]k
[y]k−1

(
H

(1)
−y−1,k−1 +

1
x− y − 1

)(19.15)

∑ [x]k
[y]k

H
(1)
−x−1,kδk =

1
x− y − 1

[x]k
[y]k−1

(
H

(1)
−x−1,k +

1
x− y − 1

)(19.16)

∑
(−1)k

(
x

k

)−1

Hkδk =
(−1)kk

x+ 2

(
x

k − 1

)−1 ( 1
x+ 2

−Hk

)(19.17)

and with second order harmonic numbers

∑
H

(2)
c,kδk = (c+ k)H(2)

c,k −H
(1)
c,k

(19.18)

∑
(c+ k)H(2)

c,kδk =
1
2

(
[c+ k]2H

(2)
c,k +H

(1)
c,k − (c+ k)

)(19.19)

∑
[c+ k]2H

(2)
c,kδk =

1
3

(
[c+ k]3H

(2)
c,k − 2H(1)

c,k + 2(c+ k) − [c+ k]2
2

)(19.20)

The general form for m ∈ N0 is
(19.21)∑

[c+ k]mH
(2)
c,kδk =

[c+ k]m+1

m+ 1
H

(2)
c,k − (−1)mm!

m+ 1
H

(1)
c,k −

m∑
j=1

(−1)j[m]m−j [c+ k]j
j(m+ 1)
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CHAPTER 20. APPENDIX ON BASIC IDENTITIES

Introduction.

In this chapter we shall present basic generalizations of the simplest ordinary
combinatorial identities. We prove the generalizations from which the ordinary
cases are deduced simply by substitution of Q = R = 1 in the generalizations.

Our definition of a basic number is slightly more general than the usual
definition. The main reason for the generalization is that it makes many formulas
more symmetric in their appearance.

We shall assume the existence of two “universal constants” Q and R. We
define the basic transformation {x} of x by:

(20.1) {x} =
{
x ·Qx−1 if Q = R

(Qx −Rx)/(Q−R) if Q �= R .

The following properties of {x} are easily verified:

{0} = 0 and {1} = 1 ,(20.2)

{−x} = −{x} · (Q ·R)−x ,(20.3)

{x+ y} = {x} ·Qy + {y} ·Rx = {x} ·Ry + {y} ·Qx ,(20.4)

{x− y} = {x} ·R−y − {y} ·R−y ·Qx−y(20.5)

= {x} ·Q−y − {y} ·Q−y ·Rx−y ,

(20.6)

⎧⎪⎨
⎪⎩

if n is a positive integer then
{n} = Qn−1 +Qn−2 ·R + · · ·+Rn−1

{−n} = −(Q−1 ·R−n +Q−2 ·R−n+1 + . . .Q−n ·R−1) .

Remark. Because of the symmetry in Q and R in the definition (20.1) Q and R
must be interchangeable in all the following formulas.

Remark 2. The expression (20.6) shows our definition as a generalization of the
definition of [k]p,q due to Wachs and White [113] 1991.

In his original introduction of basic numbers in 1847, [75], Untersuchungen
über die Reihe ...,

1 +
(1 − qα)(1 − qβ)
(1 − q)(1 − qγ)

· x+
(1 − qα)(1 − qα+1)(1 − qβ)(1 − qβ+1)

(1 − q)(1 − q2)(1 − qγ)(1 − qγ+1)
· x2 + · · ·

E. Heine replaced α, β, etc. in a Gaußian hypergeometric series by 1−qα

1−q
, 1−qβ

1−q
,

etc. in order to obtain a continuous generalization from α as 1−qα

1−q → α for q → 1.
He also noticed the similarity between q and r = 1

q
.
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We have replaced q by Q/R to obtain

(20.7)
1 − qα

1 − q
=
Rα −Qα

R −Q
·R1−α = {α} ·R1−α

– hardly a generalization at all. Nevertheless, some of our formulas contains two
of Heine’s by choosing R = q and Q = 1 or R = 1 and Q = q.

It is sometimes customary to omit the denominator 1 − q, because it often
cancels out anyway. We have chosen not to do so to keep the continuity. It is
further customary to replace qα with a, and further qα+1 with aq, etc., but we
shall not do so, because it makes no difference, as mentioned by E. Heine 1878,
[76], p. 98. One just has to apply the usual formulas to qα for comparison.

Factorials and binomial coefficients.

We introduce a generalized basic factorial:

(20.8) {x, d}n =

⎧⎪⎨
⎪⎩
∏n−1

j=0 {x− j · d} if n ∈ N

1 if n = 0 .∏−n
j=1

1
{x+j·d} if −n ∈ N

Since descending factorials are the most important in combinatorics we shall use
the notation {x}n for {x, 1}n. If Q = R = 1 then we have the ordinary descending
factorial [x]n. The most important properties of the generalized factorial are:

{x, d}n = {x− d, d}n ·Qn·d + {x− d, d}n−1 · {n · d} ·Rx−n·d
(20.9)

{x, d}n = {x− d, d}n ·Qn·d − {x− d, d}n−1 · {−n · d} ·Rx ·Qn·d
(20.10)

{x, d}n = {−x+ (n− 1) · d, d}n · (−1)n · (Q ·R)n·x−(n
2)·d

(20.11)

{x, d}n = {x− (n− 1) · d,−d}n

(20.12)

{x, d}n = {−x,−d}n · (−1)n · (Q ·R)n·x−(n
2)·d

(20.13)

{x, d}m+n = {x, d}m · {x−m · d, d}n

(20.14)

{x, d}−n = 1/{x+ n · d, d}n

(20.15)
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{2 · x, 2 · d}n

{x, d}n
=

n−1∏
j=0

(Qx−j·d +Rx−j·d)

(20.16)

{2 · n · d, d}n = {2 · n · d− d, 2 · d}n · {(2 · n · d, 2 · d}n

{n · d, d}n
=

(20.17)

= {−d, 2 · d}n · (−1)n · (Q ·R)n2·d ·
n∏

j=1

(Qj·d +Rj·d)

The basic binomial coefficients are defined by:

(20.18)
{
x

n

}
=
{ {x}n/{n}n if n ∈ N0

0 if n /∈ N0 .

We note the following properties of the basic binomial coefficient:{
n

0

}
=
{
n

n

}
= 1(20.19) {

x

n

}
=
{
x− 1
n− 1

}
·Qx−n +

{
x− 1
n

}
·Rn(20.20) {

x

n

}
·
{
n

m

}
=
{
x

m

}
·
{
x−m

n−m

}
(20.21) {

x

n

}
· {n}m = {x}m ·

{
x−m

n−m

}
(20.22)

If x ∈ N0 and x ≥ n then
{

x
n

}
=
{

x
x−n

}
, and from (20.20) follows that

{
x
n

}
is a

homogeneous polynomial in Q and R of degree (x− n) · n .

Two basic binomial theorems.

Theorem 20.1.

For arbitrary x and y and integers m and n (≥ m) and arbitrary α and β:

(20.23)
n∑

k=m

{
n−m

k −m

}
· xk−m · yn−k ·Q(k−m

2 ) ·R(n−k
2 ) =

n−m−1∏
j=0

(x ·Qj + y ·Rj) .

n∑
k=m

{
n−m

k −m

}
· xk−m · yn−k ·Q(k−m

2 )+α(k−m) ·R(n−k
2 )+β(n−k) =

n−m−1∏
j=0

(x ·Qj+α + y ·Rj+β) .

(20.24)
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Proofs.
It is sufficient to prove (20.23) for m = 0, because the general case follows

by substitution of k +m for k and n+m for n. Let

S(n, x, y) =
∑

k

{
n

k

}
· xk · yn−k ·Q(k

2) ·R(n−k
2 )

Using {
n

k

}
=
{
n− 1
k − 1

}
·Qn−k +

{
n− 1
k

}
·Rk ,

we split S into two sums. In the sum with
{

n−1
k−1

}
we may substitute k + 1 for k.

When we take advantage of common factors in the two sums, this gives us:

S(n, x, y) =
∑

k

{
n− 1
k

}
· xk · yn−1−k ·Q(k

2) ·R(n−k
2 ) · (x ·Qn−1 + y ·Rn−1)

= S(n− 1, x, y) · (x ·Qn−1 + y ·Rn−1) .

Iteration now yields the formulae (20.23).

The more general formula (20.24) follows from (20.23) by substitution of
x ·Qα for x and y ·Rβ for y in (20.23).

Two basic Chu–Vandermonde convolutions.

Theorem 20.2. For arbitrary a and b and arbitrary integers 0 ≤ m ≤ n

n∑
k=m

{
n−m

k −m

}
· {a}k−m · {b}n−k · (QR)−(k−m)·(n−k)·Qa·(n−k) ·Rb·(k−m)

= {a+ b}n−m ,(20.25)

n∑
k=m

{
n−m

k −m

}
· {a,−1}k−m · {b,−1}n−k ·Qa·(n−k) ·Rb·(k−m)

= {a+ b,−1}n−m .(20.26)

Proofs.
It is sufficient to prove (20.25) and (20.26) for m = 0. We shall prove (20.26)

from which (20.25) follows.
Let

S(n, a, b) =
∑

k

{
n

k

}
· {a,−1}k · {b,−1}n−k ·Qa·(n−k) ·Rb·k .
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Using (20.20), {
n

k

}
=
{
n− 1
k − 1

}
·Rn−k +

{
n− 1
k

}
·Qk ,

we split S into two sums. In the sum with
{

n−1
k−1

}
we substitute k+ 1 for k. When

we take advantage of common factors in the two sums, this gives us:

S(n, a, b) =∑
k

{
n− 1
k

}
· {a,−1}k · {b,−1}n−1−k ·Qa·(n−1−k) ·Rb·k

· ({a+ k} ·Rb+n−1−k + {b+ n− 1 − k} ·Qa+k)

Using (20.4) this gives

S(n, a, b) = S(n− 1, a, b) · {a+ b+ n− 1})
Iteration now yields the formula (20.26).
If we apply (20.26) to −a and −b using (20.6) to change the sign of d, we get

(20.25).

Two special cases of the basic Chu–Vandermonde convolutions.

Theorem 20.3.

For arbitrary c and p an arbitrary integer and integers m and n (≥ m):

(20.27)

n∑
k=m

{
n−m

k −m

}
· (−1)n−k · {c−m+ k}p

·Q(n−m)·(p−c−n+m)+(n−k
2 ) ·R(n−k)·(p+m−n+1)+(n−k

2 ) =

{p}n−m · {c}p−n+m .

(20.28)

n∑
k=m

{
n−m

k −m

}
· (−1)k−m · {c+ n− k}p

·Q(n−m)·(p−c−n+m)+(k−m
2 ) ·R(k−m)·(p+m−n+1)+(k−m

2 ) =

{p}n−m · {c}p−n+m .

Proofs.
In (20.27) we substitute −1− c for a and c−m+n−p for b and obtain using

(20.11) on the right hand side:

(20.29)

∑
k

{
n−m

k −m

}
· {−1 − c}k−m · {c−m+ n− p}n−k

·Q(−1−c−k+m)·(n−k) ·R(c−m−p+k)·(k−m) = {n−m− p− 1}n−m

= {p}n−m · (−1)n−m · (Q ·R)(n−m−p−1)·(n−m)−(n−m
2 ) .
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In the sum we use formula (20.11) on the factor {−1 − c}k−m and observe that

(20.30) {c−m+k}k−m ·{c−m+n−p}n−k = {c−m+k}p ·{c−m+n−p}n−m−p

since all factors occur with the same multiplicity on both sides. We obtain

(20.31)

∑
k

{
n−m

k −m

}
· (−1)k−m · {c−m+ k}p · {c−m+ n− p}n−m−p·

·Q(−1−c−k+m)·(n−k) ·R(c−m−p+k)·(k−m) · (Q ·R)(−1−c)·(k−m)−(k−m
2 ) =

{p}n−m · (−1)n−m · (Q ·R)(n−m−p−1)·(n−m)−(n−m
2 ) .

We now multiply the equation (20.31) by {c}p−n+m = 1/{c −m + n − p}n−m−p

and by (−1)n−m · (Q · R)−(n−m−p−1)·(n−m)+(n−m
2 ). Simplifying the exponents of

Q and R yields the equation (20.27).
The equation (20.28) is obtained from (20.27) by substitution of n+m− k

for k i.e. by reversal of the direction of summation.

The formula (20.27) for p = −1 has a nice interpretation as a generalization
of a useful partition of the quotient into partial fractions.

Corollary 20.1. For arbitrary c and arbitrary nonnegative integer n

(20.32)
1

{c+ n}n+1
=

1
{n}n

n∑
k=0

{
n

k

}
(−1)k

{c+ k} (QR)(
k+1
2 )Q−n·(c+k)

Proof. Substitution of m = 0, p = −1 and c = c− 1 gives the formula.

The symmetric Kummer identity.

Theorem 20.4. For arbitrary a and arbitrary nonnegative integer n

2n∑
k=0

{
2n
k

}
{a}k{a}2n−k(−1)k(QR)−k(2n−k) = {2a, 2}n{−1, 2}n

(20.33)

= (−1)n{2a, 2}n{2n− 1, 2}n(QR)−n2

2n+1∑
k=0

{
2n+ 1
k

}
{a}k{a}2n+1−k(−1)k(QR)−k(2n+1−k) = 0

(20.34)

Proofs. Let

S(n, a) =
∑

k

{
n

k

}
{a}k{a}n−k(−1)k(QR)−k(n−k)
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Then remark, that

S(2n+ 1, a) =
∑

k

{
2n+ 1
k

}
{a}k{a}2n+1−k(−1)k(QR)−k(2n+1−k)

= −S(2n+ 1, a) = 0

by reversing the order of summation.
Now,

S(2n, a) =
∑

k

{
2n− 1
k

}
{a}k{a}2n−k(−1)kQ−k(2n−1−k)R−k(2n−k)

+
∑

k

{
2n− 1
k − 1

}
{a}k{a}2n−k(−1)kQ−k(2n−k)R−(k−1)(2n−k)

by (20.20). By replacing k with k + 1 the second sum becomes

−
∑

k

{
2n− 1
k

}
{a}k+1{a}2n−1−k(−1)kQ−(k+1)(2n−1−k)R−k(2n−1−k)

Application of (20.14) with m = 1 to {a}k+1 and {a}2n−k yields

S(2n, a) = {a}
∑

k

{
2n− 1
k

}
{a}k{a− 1}2n−1−k(−1)kQ−k(2n−1−k)R−k(2n−k)

− {a}
∑

k

{
2n− 1
k

}
{a− 1}k{a}2n−1−k(−1)kQ−(k+1)(2n−1−k)R−k(2n−1−k)

We apply the formula (20.9) in the forms

{a}k = {a− 1}kR
k + {a− 1}k−1{k}Qa−k

{a}2n−1−k = {a− 1}2n−1−kQ
2n−1−k

+ {a− 1}2n−2−k{2n− 1 − k}Ra−2n+1+k

and get

S(2n, a) =

{a}
(∑

k

{
2n− 1
k

}
{a− 1}k{a− 1}2n−1−k(−1)k(QR)−k(2n−1−k)

+
∑

k

{
2n− 1
k

}
{a− 1}k−1{a− 1}2n−1−k{k}(−1)kQa(QR)−k(2n−k)

−
∑

k

{
2n− 1
k

}
{a− 1}k{a− 1}2n−1−k(−1)k(QR)−k(2n−1−k)

−
∑

k

{
2n− 1
k

}
{a− 1}k{a− 1}2n−2−k{2n− 1 − k}(−1)kRa(QR)−(k+1)(2n−1−k)

)
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The first and the third sums cancel. On the remaining two sums we apply the
formula (20.22) to get

S(2n, a) =

{a}{2n− 1}
(∑

k

{
2n− 2
k − 1

}
{a− 1}k−1{a− 1}2n−1−k(−1)kQa(QR)−k(2n−k)

−
∑

k

{
2n− 2
k

}
{a− 1}k{a− 1}2n−2−k(−1)kRa(QR)−(k+1)(2n−1−k)

)

= −{a}{2n− 1} (Qa +Ra) ·

·
∑

k

{
2n− 2
k

}
{a− 1}k{a− 1}2n−2−k(−1)k(QR)−k(2n−2−k)+1−2n

= −{a}{2n− 1} (Qa +Ra)S(2n− 2, a− 1)(QR)1−2n

by replacing k with k + 1 in the first sum. From the definition (20.1) we have

{a} (Qa +Ra) = {2a}
Iteration of the reduction yields because S(0, x) = 1

S(2n, a) = (−1)n{2a, 2}n{2n− 1, 2}n(QR)−n2
= {2a, 2}n{−1, 2}n

The last equality due to (20.11).

The symmetry of the formula (20.33) is emphasized by the following change
of summation variable.

Corollary 20.2. For arbitrary a and arbitrary nonnegative integer n

n∑
k=−n

{
2n
n+ k

}
{a}n+k{a}n−k(−1)k(QR)k2

= {2a, 2}n{2n− 1, 2}n

(20.35)

= (−1)n{2a, 2}n{−1, 2}n(QR)n2

The quasi–symmetric Kummer identity.

Theorem 20.5. For arbitrary a, arbitrary integer p and arbitrary nonnegative
integers m ≤ n
(20.36)

n∑
k=m

{
n−m

k −m

}
{a}k−m{a+ p}n−k(−1)k−m(QR)−(k−m)·(n−k)R(k−m)·p =

(σ(p))n−m

�n−m
2 �∑

j=�n−m−|p|
2 �

{ |p|
n−m− 2j

}
{n−m}n−m−2j{2(a+ (p ∧ 0)), 2}j{−1, 2}j·

Q(a+(p∧0)−2j)·(n−m−2j)R(|p|−n+m+2j)·2j+(n−m)·(p∧0)
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Proof. It is enough to prove the theorem form = 0. We apply the Chu–Vandermonde
convolution (20.25) on {a+ p}n−k in the form

{a+ p}n−k =
∑

j

{
n− k

j − k

}
{a}j−k{p}n−jQ

(a−j+k)·(n−j)R(p−n+j)·(j−k)

to get

∑
k

{
n

k

}
{a}k(−1)k

∑
j

{
n− k

j − k

}
{a}j−k{p}n−jQ

(a−j+k)·(n−j)R(p−n+j)·(j−k) =

=
∑

j

{p}n−j

∑
k

(−1)k

{
n

k

}{
n− k

j − k

}
{a}k{a}j−kQ

(a−j+k)·(n−j)R(p−n+j)·(j−k)

Next (20.21) allows the transformation{
n

k

}{
n− k

j − k

}
=
{

n

n− k

}{
n− k

n− j

}
=
{

n

n− j

}{
j

j − k

}
=
{
n

j

}{
j

k

}

Hence we obtain from (20.33)

∑
j

{p}n−j

{
n

j

}
Q(a−j)·(n−j)R(p−n+j)·j∑

k

(−1)k

{
j

k

}
{a}k{a}j−k(QR)−k·(j−k) =

∑
j

{p}n−2j

{
n

2j

}
{2a, 2}j{−1, 2}jQ

(a−2j)·(n−2j)R(p−n+2j)·2j

In the case of p ≥ 0, we can write

{p}n−2j

{
n

2j

}
=
{

p

n− 2j

}
{n}n−2j

and note, that {
p

n− 2j

}
= 0 for j <

n− p

2

In the case of negative p, we apply the above formula for a+ p and −p.
The balanced Kummer identity.

Theorem 20.6.

For arbitrary a and arbitrary integer n ≥ 0
(20.37)

n∑
k=0

{
n

k

}
{n+ a}k{n− a}n−k(−1)k(QR)k·(k−n−a) = {n− a− 1, 2}n · {2n, 2}n

{n}n

In order to prove this theorem we need a 2–step version of the corollary
(20.27).
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Lemma 20.1. For arbitrary c and arbitrary nonnegative integer n

(20.38)
{2n, 2}n

{2(c+ n), 2}n+1
=

n∑
k=0

{2n, 2}k

{2k, 2}k
· (−1)k

{2(c+ k)} · (QR)k·(k+1)Q−2n·(c+k)

Proof. We consider the formula (20.32) for the universal constants Q2 and R2, in
which case we shall denote the basic transformation with {{·}}, i.e. e.g.

(20.39) {{x}} = (Q2x −R2x)/(Q2 −R2) = {2x}/(Q+R)

Then we have

(20.40) {{x}}n = {2x, 2}n/(Q+R)n

and hence,

(20.41)
{{

x

n

}}
=

{{x}}n

{{n}}n
=

{2x, 2}n

{2n, 2}n

Therefore we get

(20.42)
1

{{c+ n}}n+1
=

1
{{n}}n

n∑
k=0

{{
n

k

}}
(−1)k

{{c+ k}}(QR)k·(k+1)Q−2n·(c+k)

Substitution of (20.39–41) gives (20.38).

Proof of theorem 20.6. Consider the sum

(20.43) S :=
∑

k

{
n

k

}
{n+ a}k{n− a}n−k(−1)k(QR)k·(k−n−a)

We apply (20.13) and (20.12) to write

{n+a}k(−1)k = {−a−n,−1}k·(QR)k·(n+a)−(k
2) = {−a−n−1+k}k·(QR)k·(n+a)−(k

2)

the sum then looks

S =
∑

k

{
n

k

}
{n− a}n−k{−a− n− 1 + k}k · (QR)(

k+1
2 )

Now we apply (20.14) to write

{n− a}2n+1 = {n− a}n−k{−a + k}n+1{−a− n− 1 + k}k
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The sum is then written

S = {n− a}2n+1

∑
k

{
n

k

}
(QR)(

k+1
2 )

{−a+ k}n+1

Now we apply corollary (20.1) on

1
{−a+ k}n+1

=
1

{n}n

∑
j

{
n

j

}
(−1)j

{−a− n+ k + j} · (QR)(
j+1
2 ) ·Q−n(−a−n+k+j)

Substitution of j = i− k in the sum, and the sum in the sum above, yields

S = {n− a}2n+1

∑
k

{
n

k

}
1

{n}n

∑
i

{
n

i− k

}
(−1)i−k

{−a− n+ i} ·

(QR)(
k+1
2 )+(i−k+1

2 ) ·Q−n(−a−n+i)

Interchanging the order of summation gives

S =
{n− a}2n+1

{n}n

∑
i

(−1)i

{−a − n+ i} ·Q−n(−a−n+i) · (QR)(
i+1
2 )·

∑
k

{
n

k

}{
n

i− k

}
(−1)k · (QR)k2−i·k

We use the definition of the binomial coefficients, (20.18), to recognize the second
sum as an example of the symmetric Kummer expression, (20.33–34). Hence the
odd sums vanishes, and the even sums can be written with 2j substituted for i
according to (20.33).∑

k

{
n

k

}{
n

i− k

}
(−1)k · (QR)k2−i·k =

1
{i}i

∑
k

{
i

k

}
{n}k{n}i−k(−1)k · (QR)−k·(i−k) =

1
{2j}2j

∑
k

{
2j
k

}
{n}k{n}2j−k(−1)k · (QR)−k·(2j−k) =

1
{2j}2j

(−1)j{2n, 2}j{2j − 1, 2}j · (QR)−j2
=

{2n, 2}j

{2j, 2}j
· (−1)j · (QR)−j2

With this reduction we obtain

S =
{n− a}2n+1

{n}n

∑
j

{2n, 2}j

{2j, 2}j

(−1)j

{−a− n+ 2j} · (QR)j2+j ·Q−n(−a−n+2j)

On this sum we may apply lemma (20.1) with c = −a−n
2 . That proves the theorem.
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The quasi–balanced Kummer identity.

Theorem 20.7.

For arbitrary a and arbitrary integers n ≥ m ≥ 0 and p

n∑
k=m

{
n−m

k −m

}
{n−m+ a− p}k−m{n−m− a}n−k(−1)k−m·

(QR)(k−m)·(k−n−a)Q(k−m)·p =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{2n− 2m− 2p, 2}n−m−p

{n−m− p}n−m−p
· for p ≥ 0

·
p∑

j=0

{
p

j

}
{n−m− a− 1 + j, 2}n−m ·Q(p−j)·(n−m−p)+(p+1−j

2 )R−p·j+(j+1
2 )

{2n− 2m, 2}n−m

{n−m− p}n−m−p
R−p·(a+n−m)+(1−p

2 ) · for p < 0

·
−p∑
j=0

{−p
j

}
· (−1)j · {n−m− p− a− 1 − j, 2}n−m−p ·Qj·(n−m)+(j+1

2 ) ·R(j
2)

(20.44)

Proof. It is enough to prove the theorem for m = 0.
1) p ≥ 0:

Let

(20.45) S(n, p, a) =
∑

k

{
n

k

}
{n+a−p}k{n−a}n−k(−1)kQk·(k−n−a+p)Rk·(k−n−a)

We split this sum in two by (4.2) applied to

(20.46) {n− a}n−k = {n− a− 1}n−kR
n−k + {n− k}{n− a− 1}n−k−1Q

k−a

Then we get the following two sums

S(n, p, a) =
∑

k

{
n

k

}
{n− p+ a}k{n− a− 1}n−k(−1)k·

Qk·(k−n+p−a)Rk·(k−n−a−1)Rn

+{n}
∑

k

{
n− 1
k

}
{n− p+ a}k{n− a− 1}n−k−1(−1)k·

Qk·(k−n+p−a+1)−aRk·(k−n−a)

(20.47)
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And we split the sum of S(n, p, a+ 1) by applying (20.9) to

(20.48) {n− p+ a+ 1}k = {n− p+ a}kQ
k + {k}{n− p+ a}k−1R

n−p+a+1−k

Then we get the following two sums

S(n, p, a+ 1) =
∑

k

{
n

k

}
{n− p+ a}k{n− a− 1}n−k(−1)k·

Qk·(k−n+p−a)Rk·(k−n−a−1)

+ {n}
∑

k

{
n− 1
k − 1

}
{n− p+ a}k−1{n− a− 1}n−k(−1)k·

Qk·(k−n+p−a−1)R(k−1)·(k−n−a−1)−p

= S(n, p+ 1, a+ 1)+

− {n}
∑

k

{
n− 1
k

}
{n− p+ a}k{n− a− 1}n−k−1(−1)k·

Qk·(k−n+p−a+1)−aRk·(k−n−a)Qp−nR−p

(20.49)

The two second sums are proportional by the factor Qp−nR−p, and the two first
sums are both proportional to S(n, p+ 1, a+ 1).

By eliminating the two second sums we obtain the formula

(20.50) (Qn−p +Rn−p)S(n, p+ 1, a+ 1) = R−pS(n, p, a) +Qn−pS(n, p, a+ 1)

Iteration of this formula m times yields the expression

m∏
j=1

(
Qn−p+j +Rn−p+j

) · S(n, p, a) =

∑
i

{
m

i

}
Q

Pi
j=1(n+j−p)R

Pm−i
j=1 (j−p)S(n, p−m, a−m+ i)

(20.51)

For m = 0 we get a trivial identity, and for m = 1 we get (20.50) for p − 1 and
a− 1.

We prove (20.51) by induction after m. We apply (20.50) to
S(n, p−m, a−m+ i) and obtain
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m+1∏
j=1

(
Qn−p+j +Rn−p+j

) · S(n, p, a) =

∑
i

{
m

i

}
Q

Pi
j=1(n+j−p)R

Pm−i
j=1 (j−p)Rm+1−pS(n, p−m− 1, a−m− 1 + i)

+
∑

i

{
m

i

}
Q

Pi
j=1(n+j−p)R

Pm−i
j=1 (j−p)Qn+m+1−pS(n, p−m− 1, a−m+ i) =

∑
i

{
m

i

}
Q

Pi
j=1(n+j−p)R

Pm−i
j=1 (j−p)Rm+1−pS(n, p−m− 1, a−m− 1 + i)

+
∑

i

{
m

i− 1

}
Q

Pi−1
j=1(n+j−p)R

Pm−i+1
j=1 (j−p)Qn+m+1−p·

S(n, p−m− 1, a−m− 1 + i) =(∑
i

Q
Pi

j=1(n+j−p)R
Pm+1−i

j=1 (j−p)S(n, p−m− 1, a−m− 1 + i)

)
·

({
m

i

}
Ri +

{
m

i− 1

}
Qm+1−i

)
=

∑
i

{
m+ 1
i

}
Q

Pi
j=1(n+j−p)R

Pm+1−i
j=1 (j−p)S(n, p−m− 1, a−m− 1 + i)

(20.52)

by substitution of i+ 1 for i and using (20.20).
Now we apply (20.52) to m = p, and rewrite the product using (20.16) as

(20.53)
p∏

j=1

(
Qn−p+j +Rn−p+j

)
=

p−1∏
j=0

(
Qn−j +Rn−j

)
=

{2n, 2}p

{n}p

Furthermore we reverse the order of summation and apply (20.37) to
S(n, 0, a− i). This yields

S(n, p, a) =
{n}p

{2n, 2}p
·
∑

i

{
p

i

}
Q(p−i)·(n−p)+(p+1−i

2 )R−p·i+(i+1
2 )·

{n− a+ i− 1, 2}n
{2n, 2}n

{n}n

(20.54)

Canceling common factors proves (20.44).
2) p < 0:
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Let

(20.55) S(n, a, p, x) :=
∑

k

{
n

k

}
{n+a−p}k ·{n−a}n−k ·xk ·(QR)k·(k−n−a) ·Qk·p

We split the sum S(n+ 1, a, p+ 1, x) in two by (20.9) applied to

(20.56) {n+1−a}n−k+1 = {n−a}n−k+1 ·Qn−k+1+{n−k+1}·{n−a}n−k ·Rk−a

Then we get

S(n+ 1, a, p+ 1, x) =∑
k

{
n+ 1
k

}
· {n− p+ a}k · {n− a}n−k+1 · (x ·R/Q)k·

(QR)k·(k−n−a−2) ·Qk·(p+2)+n+1+

{n+ 1} ·
∑

k

{
n

k

}
· {n− p+ a}k · {n− a}n−k · xk · (QR)k·(k−n−a) ·Qk·p ·R−a

= S(n+ 1, a+ 1, p+ 2, x ·R/Q) ·Qn+1 + S(n, a, p, x) · {n+ 1} ·R−a

(20.57)

And we split S(n+ 1, a+ 1, p+ 1, x) by applying (20.9) to

(20.58) {n− p+ a+ 1}k = {n− p+ a}k ·Rk + {k} · {n− p+ a}k−1 ·Qk·p

Then we get

S(n+ 1, a+ 1, p+ 1, x) =∑
k

{
n+ 1
k

}
· {n− p− a}k · {n− a}n−k+1 · xk · (QR)k·(k−n−a−1) ·Qk·p+

{n+ 1} ·
∑

k

{
n

k − 1

}
· {n− p+ a}k−1 · {n− a}n−k+1 · xk·

(QR)k·(k−n−a−2) ·Qk·p+n−p+a+1

= S(n+ 1, a+ 1, p+ 2, x ·R/Q)+

{n+ 1} ·
∑

k

{
n

k

}
· {n− p+ a}k · {n− a}n−k · xk+1·

(QR)k·(k−n−a) ·Qk·p ·R−n−a−1

= S(n+ 1, a+ 1, p+ 2, x ·R/Q) + S(n, a, p, x) · x · {n+ 1} ·R−n−a−1

(20.59)

By elimination of S(n+ 1, a+ 1, p+ 2, x ·R/Q) we obtain the formula

(R−a · {n+ 1} − x ·Qn+1 ·R−a−n−1 · {n+ 1}) · S(n, a, p, x)

= S(n+ 1, a, p+ 1, x) −Qn+1 · S(n+ 1, a+ 1, p+ 1, x)

(20.60)
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which can be rewritten as
(20.61)

S(n, a, p, x) =
S(n+ 1, a, p+ 1, x) −Qn+1 · S(n+ 1, a+ 1, p+ 1, x)

{n+ 1} · (Rn+1 − x ·Qn+1)
·Ra+n+1

For x = −1 we have {n+ 1} · (Qn+1 +Rn+1) = {2 · (n+ 1)} so we obtain
(20.62)

S(n, a, p,−1) =
S(n+ 1, a, p+ 1,−1) −Qn+1 · S(n+ 1, a+ 1, p+ 1,−1)

{2 · n+ 2} ·Ra+n+1

Iteration of this formula m times yields the expression

S(n, a, p,−1) =

Rm·(a+m)+(m+1
2 )

{2 · (n+m), 2}m

∑
i

{
m

i

}
· (−1)i ·Qi·n+(i+1

2 ) ·R(i
2) · S(n+m, a+ i, p+m,−1)

(20.63)

For m = 0 (20.63) is a trivial identity, and for m = 1 we get (20.62).
We prove (20.63) by induction with respect to m. We apply (20.62) to

S(n+m, a+ i, p+m,−1) and obtain

S(n, a, p,−1) =
Rm·(a+n)+(m+1

2 )

{2 · (n+m), 2}m

∑
i

{
m

i

}
· (−1)i ·Qi·n+(i+1

2 ) ·R(i
2)+a+n+m+i+1·

S(n+m+ 1, a+ i, p+m+ 1,−1) −Qn+m+1 · S(n+m+ 1, a+ i+ 1, p+m+ 1,−1)
{2 · (n+m), 2}

=
R(m+1)·(a+n)+(m+2

2 )

{2 · (n+m+ 1), 2}m+1
·
∑

i

S(n+m+ 1, a+ i, p+m+ 1,−1) · (−1)i·
({

m

i

}
·Qi·n+(i+1

2 ) ·R(i
2)+i +

{
m

i− 1

}
·Qi·n+(i

2)+m+1 ·R(i
2)
)

=
R(m+1)·(a+n)+(m+2

2 )

{2 · (n+m+ 1), 2}m+1
·
∑

i

S(n+m+ 1, a+ i, p+m+ 1,−1) · (−1)i·

Qi·n+(i+1
2 ) ·R(i

2) ·
{
m+ 1
i

}

(20.64)
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Choosing m = −p in (20.63) and using the formula (20.37) we obtain

S(n, a, p,−1) =

R−p·(a+n)+(1−p
2 )

{2 · (n− p), 2}−p
·
∑

i

{−p
i

}
· (−1)i ·Qi·n+(i+1

2 ) ·R(i
2) · S(n− p, a+ i, 0,−1)

=
R−p·(a+n)+(1−p

2 )

{2 · (n− p), 2}−p
·
∑

i

{−p
i

}
· (−1)i ·Qi·n+(i+1

2 ) ·R(i
2)·

{n− p− a− 1 − i, 2}n−p · {2 · (n− p), 2}n−p

{n− p}n−p

=
R−p·(a+n)+(1−p

2 ) · {2 · n, 2}n

{n− p}n−p
·

∑
i

{−p
i

}
· (−1)i ·Qi·n+(i+1

2 ) ·R(i
2) · {n− p− a− 1 − i, 2}n−p

(20.65)

This completes the proof.

A basic transformation of a II(2, 2, z) sum.

Theorem 20.8. For arbitrary a, b, x and y and nonnegative integers n and m,
we have

n∑
k=m

{
n−m

k −m

}
{a}k−m{b}n−kx

k−myn−k(QR)−(k−m)·(n−k)

(20.66)

=
n∑

k=m

{
n−m

k −m

}
{n−m− a− b− 1}k−m{b}n−k(−x)k−m

·Q(k−m)·(a−n+m+1)+(k−m
2 )R(k−m)·(b−n+k)−(n−m

2 )+a·(n−m) ·
n−k−1∏

j=0

(y ·Rj−a − x ·Qj−b)

n∑
k=m

{
n−m

k −m

}
{a}k−m{b}n−kx

k−myn−k(QR)−(k−m)·(n−k)

(20.67)

=
n∑

k=m

{
n−m

k −m

}
{a}k−m{n−m− a− b− 1}n−k(−y)n−k

·Q(n−k)·(b−n+m+1)+(n−k
2 )R(n−k)·(a−k+m)−(n−m

2 )+b·(n−m) ·
k−m−1∏

j=0

(x ·Rj−b − y ·Qj−a)
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or, equivalently,

n∑
k=m

{
n−m

k −m

}
{a}k−m{b}n−kx

k−myn−k · (QR)−(k−m)·(n−k) ·Qb·(k−m) ·Ra·(n−k)

=
n∑

k=m

{
n−m

k −m

}
{n−m− a− b− 1}k−m{b}n−k(−x)k−m

· (QR)−(k−m)·(n−k−b) ·Qa·(k−m)−(k−m
2 ) ·Ra·(n−m)−(n−m

2 ) ·
n−k−1∏

j=0

(y ·Rj − x ·Qj)

(20.68)

The form (20.66) is symmetric in Q and R, and reversal of the direction of
summation corresponds to the exchange of a with b and x with y.

Proof. It is sufficient to prove (20.66) for m = 0. In the left hand expression we
substitute the formula (20.11) in the form

{a}k = (−1)k · {−a+ k − 1}k(QR)k·a−(k
2)

Next we apply the Chu–Vandermonde (6.1) on the factorial to get

{−a+k−1}k =
∑

j

{
k

j

}
{n−a−b−1}j{b−n+k}k−jQ

(n−a−b−1−j)(k−j)R(b−n+j)j

Substitution in the left hand expression yields after exchanging the order of sum-
mation∑

j

{n− a− b− 1}j(−x)j
∑

k

{
n

k

}{
k

j

}
{b}n−k{b− n+ k}k−j · (−x)k−jyn−k

·Q−k(n−k)+ka−(k
2)+(n−a−b−1−j)(k−j)R−k(n−k)+ka−(k

2)+(b−n+j)j

Now we apply the formula (20.21) on{
n

k

}{
k

j

}
=
{
n

j

}{
n− j

k − j

}

and the formula (20.14) on

{b}n−k{b− n+ k}k−j = {b}n−j

to obtain the expression

∑
j

{
n

j

}
{n− a− b− 1}j{b}n−jQ

(a−n+1)j+(j
2)R(b−n+j)j−(n

2)+a·n·

· (−x)j ·
∑

k

{
n− j

k − j

}
· (−x)k−jyn−k ·Q(k−j

2 )−b·(k−j)R(n−k
2 )−a·(n−k)
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Now we apply the basic binomial theorem (20.24) to obtain (20.66).
The formula (20.67) follows from (20.66) by reversing the order of summation,

exchanging a with b and x with y.
Substitution of x := x · Qb/Ra in (20.66) and multiplication with Ra·(n−m)

gives (20.68).

A basic Gauß’ theorem.

Theorem 20.9. For arbitrary a and integer p, and nonnegative integers m ≤ n
we have

n∑
k=m

{
n−m

k −m

}
{2a, 2}k−m{n−m− p− 2a− 1}n−k·

· (QR)k2+(n−2k)·(a+m)+n·p−(n
2)Q−k·(p+1)+m·a+(m+1

2 )R−n·k+(k
2)+n·(a+m)−p·m =

(−σ(p))n−m

�n−m
2 �∑

j=�n−m−|p|
2 �

{ |p|
n−m− 2j

}
{n−m}n−m−2j{2(a+ (p ∧ 0)), 2}j{−1, 2}j·

Q(a+(p∧0)−2j)·(n−m−2j)R(|p|−n+m+2j)·2j+(n−m)·(p∧0)

(20.69)

Proof. We substitute b := a + p in the right side of (20.67). Substitution of
x := −Rp and y := 1 gives the left side of (20.36), so we can apply the quasi–
symmetric Kummer formula. Eventually we apply (20.16) to the product.

A basic Bailey’s theorem.

Theorem 20.10. For arbitrary a and integer p, and nonnegative integers m ≤ n
we have

n∑
k=m

{2(n−m), 2}k−m

{k −m}k−m
{a}k−m{m− n+ p− 1}n−k·

· (QR)(n−m)·(n−a−k)−n·(p+k)+(k−m
2 )+(n+1

2 )Qk·p+(k
2)Rk·(k−m)+a·(n−k)+m·p+(m

2 ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−m {2(n−m− p), 2}n−m−p

{n−m− p}n−m−p
· for p ≥ 0

·
p∑

j=0

{
p

j

}
{2(n−m) − p− a− 1 + j, 2}n−m ·Q(p−j)·(n−m−p)+(p+1−j

2 )R−p·j+(j+1
2 )

(−1)n−m {2(n−m), 2}n−m

{n−m− p}n−m−p
R−p·(a+p)+(1−p

2 ) · for p < 0

·
−p∑
j=0

{−p
j

}
· (−1)j · {2(n−m− p) − a− p− 1 − j, 2}n−m−p ·Qj·(n−m)+(j+1

2 ) ·R(j
2)

(20.70)
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Proof. We substitute b := 2(n−m) − a− p in the right side of (20.67) and chose
x := −(QR)n−m−a · R−p and y := 1. Then we apply (20.16) on the product, and
we apply the quasi–balanced Kummer identity (20.44) with a := a+ p− n+m.

Notes.

In the ordinary – non–basic – case the Binomial theorem and the Chu–
Vandermonde convolution are very well known results [29,112]. Theorem 8.1 – the
Chu–Vandermonde convolution with arbitrary step length – is also a generalization
of the Binomial theorem. We have neither seen this nor the generalization to
commutative rings before.

The symmetric Kummer identity and the balanced Kummer identity are spe-
cial cases of Kummer’s theorem for Gaußian hypergeometric series [112], theorem
8.3,

2F1[a, b; 1 + a− b;−1] =
∞∑

n=0

(a)n(b)n(−1)n

n!(1 + a− b)n

= 2−a Γ( 1
2)Γ(1 + a− b)

Γ( 1+a
2 )Γ(1 + a

2 − b)

=
Γ(1 + a− b)Γ(1 + a

2 )
Γ(1 + a)Γ(1 + a

2
− b)

The first of the two evaluations of 2F1[a, b; 1 + a − b;−1] yields the symmetric
Kummer identity if we substitute −n for a. The second evaluation yields the
balanced Kummer identity if we substitute −n for b.

We believe that the quasi–symmetric and the quasi–balanced Kummer identi-
ties are new, although special cases with numerically small values of the parameter
p may be found e.g. in H. W. Gould’s table of Combinatorial Identities, [64].

Special cases of the transformation formula in section 13 can be found in
Gould [64]. The general form, however, we have not seen before.

Using this transformation formula we have the Gauß identity and the Bai-
ley identity almost as corollaries of the quasi–symmetric and the quasi–balanced
Kummer identity.

When the parameter p vanishes the Gauß identity is a special case of Gauß’
evaluation of

2F1[a, b; 1+a+b
2 ; 1

2 ] =
Γ( 1

2
)Γ( 1+a+b

2
)

Γ( 1+a
2

)Γ( 1+b
2

)

and Bailey’s identity is a special case of Bailey’s evaluation of

2F1[a, 1 − a; b; 1
2 ] =

Γ( b
2 )Γ( 1+b

2 )
Γ(a+b

2 )Γ( 1−a+b
2 )
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The basic binomial theorem is due to Cauchy [26] and Heine [75]. Heine also
proved the basic version of Gauß’ summation formula for hypergeometric series
[75].

The basic version of Kummer’s theorem is due to Bailey [21] and Daum [30].
The basic version of Gauß’ second theorem and Bailey’s theorem are due to

Andrews [19].
Further references may be found in G. Gasper and M. Rahman, [44].
In 1921 F. H. Jackson, [78], [105], p. 94, proved a basic version of Dougall’s

theorem.
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Saalschütz, L. 92

Santmyer, J. M. 73
shift 12
sign 11
Slater, L. J. 95, 115 ff., 123, 132
Stanton, D. 95
Staver, T. B. 61
stepsize 11
Stirling 23
symmetric 51
systems of equations 33
Tian–Ming, W. 104
transformations of type II(2, 2, z) 75
transformations of type II(3, 3, 1) 92
type 46
Vandermonde, A. T. 64, 186
Watson, G. N. 92
Watson’s formula 99, 102
well–balanced 5, 52
Whipple, F. J. W. 92
Whipple’s formula 103
Wilf, H. 137
Wronskian 29
Xin–Rong, M. 104
Zeilberger, D. 137
Zeilberger’s algorithm 137 ff

205



206 MOGENS ESROM LARSEN

REFERENCES

1. Niels Henrik Abel, Démonstration d’une expression de laquelle la formule binome
est un cas particulier, dans: Œuvres complètes Rédigées par ordre du roi, par B.
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77. John Hoe, Les Systèmes d’Équations Polynômes dans le Siyuan Yujian (1303),
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