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Series and parallel connections are usually first encountered in the study of elec-
trical circuits. Our approach is to first examine a relevant class of partially ordered
sets (posets) and then to define series-parallel networks by analogy [1]. Interesting
asymptotic constants appear everywhere, similar to those associated with counting
various species of trees [2|. We also talk briefly about the enumeration of Boolean
(or switching) functions under different notions of equivalence.

0.1. Series-Parallel Posets. We introduce two procedures for combining two
posets (5, <) and (5, <) to obtain a new poset, assuming that SN .S" = {:

e the disjoint sum S @ S’ is the poset on S U S such that x < yin S ¢ S if
either z,y € Sandz <yin S,or x,y € S’ and x < y in 5

e the linear product S ® S’ is the poset on S U S’ such that x <y in S® S if
r,yeSandx<yinS,orz,ye S andx<yin S, orx e Sandye 5.

Clearly & is commutative but ® is not. A series-parallel poset is one that can be
recursively constructed by applying the operations of disjoint sum and linear product,
starting with a single point [3].
Define a poset to be N-free if there is no subset {a,b,c,d} whose only nontrivial
relations are given by
a < c, a<d, b < d.

It can be proved that a finite poset is series-parallel if and only if it is N-free [4, 5, 6.
Hence there are 15 series-parallel posets with 4 points (see the 16 posets in Figure 2
of [7| and eliminate the poset that looks like an “N”).

There are two cases we shall consider. The number f,, of unlabeled series-parallel
posets with n points has (ordinary) generating function [3, 8, 9]

F(z) =Y fur" =142+ 222+ 52° + 152% + 482° + 1672° + 60227 4 22562° + - --
n=0
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which satisfies the functional equation

-1 k 1 k
F(x) = exp Lz:l% <F(a¢ )+ F ) + x" — 2)]
Alternatively, if the sequence {fn} is defined by 1/F(z) =20, faz™, then
F(a:) _ H (1 _ ajj)*(fj+fj+5j,1)
j=1

where 0, = 1 when j = k and 6,z = 0 otherwise. Using such properties, it follows
that
fn ~ ﬂ : 77,73/2 o

where o = 0.2163804273... is the unique positive root of F(z) = ¢ and ¢ is the
Golden mean, and where

g = J (wgl_ o ll f ~+ i at F' () (1 — ﬁ)] = 0.2291846208...

=2

The number g, of labeled series-parallel posets with n points has (exponential)
generating function |1, 3, 8, 9]

= Ynon 3 5 19 5, 195 , 2791 ., 51303 , 1152019
Gla) = 2 e med gt pr T g o o
372 (-1 00 kf—l—l (-1
— {1In(1 _ _ _RE Tk
oo = (Tt

where the notation P(z){™" denotes the reversion of the power series P(z). Well-
established theory [10, 11, 12] gives that

Gn~menlon 2T

where £ = In(p) — 2 + 3 = 0.2451438475... and

§

S (.2137301074...
2v5(2 — )7

’)’]:

Now let us define an equivalence relation on the set of series-parallel posets with n
points, induced simply by declaring S®.S” and S’® S to be equivalent. (See Figure 1.)
The equivalence classes correspond to what are called two-terminal series-parallel
networks with n edges [13, 14, 15, 16, 17, 18, 19|, with the understanding that
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Figure 1: There are 10 non-equivalent (unlabeled) series-parallel posets with 4 points.
Note the analogy with Figure 2.

e points of a poset are mapped in a one-to-one manner to edges of the corre-
sponding network

e two points of the poset are comparable if and only if the analogous edges of the
network are connected in series

e two points of the poset are incomparable if and only if the analogous edges of
the network are connected in parallel.

(See Figures 2 and 3.) The leftmost and rightmost points are the terminals (two
distinguished points playing a role similar to that of the root of a rooted tree). A
network, however, is not necessarily a graph since it may possess multiple parallel
edges. Observe that an interchange of parts of the network, either in series or in par-
allel, is immaterial. In other words, when we count series-parallel networks, our tally
is unaffected by a permutation of variables in the indicated Boolean representations.

0.2. Series-Parallel Networks. The number u, of unlabeled series-parallel net-
works with n edges has generating function [20]

Uz) = > upa” =14z + 22" + 42® 4+ 102" + 242° + 662° + 180z" + 5222° + - --
n=0

which satisfies the functional equation

U(x) = exp li o (U % - 1)]

k=1
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Figure 2: There are 10 unlabeled series-parallel networks with 4 edges, that is, uy =
10. The “essentially parallel” networks constitute the first row and the “essentially
series” networks constitute the second row.
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Figure 3: There are 8 labeled series-parallel networks with 3 edges, that is, v3 = 8.
The “essentially parallel” networks constitute the first row and the “essentially series”
networks constitute the second row.
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Alternatively, we have

U(a’;) _ H (1 _ ajj>7(u]*+5j,1)/2

j=1
Using these properties, it follows that [15, 21, 22, 23]

-3/2  ,.—n

Up ~ AT K

where x = 0.2808326669... = (3.5608393095...)"! is the unique positive root of
U(x) =2 and

1—k

A= J - [ T LS R ()| = 0.4127628892... = 2- (0.2063814446...)
=2

7=

This also gives the number of non-equivalent Boolean functions of n variables, built
only with + (disjunction) and - (conjunction).

The number v, of labeled series-parallel networks with n edges has generating
function [1, 24]

= 4 9, 8, 52, 472, 5304 , 78416
V — non =2 =3 e, a4 &5 6 7
D B Tt T Ll a i TR T

. 1)
= @2ln(l+z) -z = (Z(—l)’““%xk)

k=1
By techniques similar to those used to analyze {g,}, we have [21, 25|

3/2 -n

v, ~T-nl-n g

where o = 2In(2) — 1 = 0.3862943611... = (2.5886994495...)"! and

7= 4/2 = 0.3506584008... = 2- (0.1753292004...)

e

Related work involves bracketing of n-symbol products [26] and phylogenetic trees
127].

0.3. Series-Parallel Networks Without Multiple Parallel Edges. If we pro-
hibit multiple parallel edges, so that the networks under consideration are all graphs,
different constants arise. (See Figure 4).

The number ¢, of such unlabeled series-parallel networks with n edges has gener-
ating function 28]

Q(z) = guz" =14z +2” + 22° + 4a" 4 82° + 182° + 402" + 94a® + 2242° + - - -
n=0
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Figure 4: There are 8 unlabeled series-parallel networks with 5 edges that obey the
prohibition against multiple parallel edges, that is, g5 = 8. The “essentially parallel”
networks constitute the first row and the “essentially series” networks constitute the
second row.

which satisfies the functional equation

Q(z) = exp ijl 2—11{; (") — o™ + 2 - 1)]

Alternatively, we have

o0

Qz) = H(1_ >(%+<%1 5,2)/2

=1
Using these properties, it follows that [21]

-3/2 an

where g = 0.3462834070... is the unique positive root of Q(x) =2 and

Gn ~ V-1

1
:J [1+ +Z/~LQ ] = 0.3945042461... = 2 - (0.1972521230...)

=2

The number 7, of such labeled series-parallel networks with n edges has generating
function [29]

. 1, 4, 20, 156, 1472 , 17396
R — non =2 3 It —vYr..5 6 7
(1) = 2. 5@ CHzf’;+3!I+4!5’3+5!”3+ o LT v

—3k+1 k) cu

= (@ +1)exp(~2) - ) (Z T
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Proceeding as before, we have [21]
rp~wenlon 20
where 0 =4/e — 1 =0.4715177646... and

1 [et
w= & = 0.3193679560... = 2- (0.1596839780...)

e

It follows that the probability that a random n-edge series-parallel network has
no multiple parallel edges is asymptotically
AN

(X) (ﬁ) — (0.9557648142...)(0.8109908278...)"

if the network is unlabeled and

(%) (%) — (0.9107665899...)(0.8192572794...)"

if the network is labeled. We hope to report on later on other relevant material in

21].

0.4. Boolean Functions. We have already enumerated the number u,, of distinct
Boolean functions of n variables, built only with + and -, under the action of the
symmetric group S,.

Of course, the set of all Boolean functions also includes those involving comple-
mentation of variables (—.X). Let us examine briefly this larger set [30, 31]. Define
two Boolean functions to be equivalent if they are identical up to a bijective renam-
ing of the variables. The number of equivalence classes in this case is asymptotically
132, 33, 34|

2% /n!

hence no new constants arise. Define two Boolean functions to be congruent if they
are identical up to a bijective renaming of the variables and an additional complemen-
tation of some of the variables. The number of congruence classes is asymptotically

2% =" /nl

Other results of this kind are also known, but none contain new constants.

Let us return to our original set of Boolean functions of n variables and let [Fy
denote the binary field. S, is a subgroup of the group T,, of invertible linear transfor-
mations I — [, namely, the n X n matrices that have exactly one 1 in each row and
each column. What can be said about the number #, of distinct Boolean functions,
built only with + and -, under the action of the (larger) group 7,7 Our experience
with u, leads us to conjecture that the asymptotics of %, will be quite interesting.
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0.5. Irreducible Posets. Another unsolved problem involves the number a,, of
unlabeled (,®)-irreducible posets with n points. It is known that

A(z) = 3 apz" = a4a'+1205+1042° 495627+ 10037 +1265782°+ 197100520+ - -
n=0

and, further, that

P(z) = exp lfj : <P(a:k) + gy Al - 2)]

k=1

where

P(z) =3 pax" =14z + 22” + 52° + 162" 4 632" 4 3182° + 20452" + 16999z° + - - -
n=0

is the generating function of (arbitrary) unlabeled posets [3, 7, 9]. What can be said
about the asymptotics of a,,7 Even a nice functional equation for A(x) in-and-by-itself
is probably impossible.
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