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ABSTRACT. By counting the numbers of periodic points of all periods for some interval maps,
we obtain infinitely many new congruence identities in number theory.

Let S be a nonempty set and let f be a map from S into itself. For every positive
integer n, we define the n'” iterate of f by letting f' = f and f* = fo f*~! for n > 2.
For y € S, we call the set { f*(y)|k >0} the orbit of y under f. If f™(y) =y for some
positive integer m, we call y a periodic point of f and call the smallest such positive
integer m the least period of y under f. We also call periodic points of least period 1
fixed points. It is clear that if y is a periodic point of f with least period m, then, for
every integer 1 <k <m—1, f¥(y) is also a periodic point of f with least period m and
they are all distinct. So, every periodic orbit of f with least period m consists of exactly
m points. Since distinct periodic orbits of f are pairwise disjoint, the number (if finite)
of distinct periodic points of f with least period m is divisible by m and the quotient
equals the number of distinct periodic orbits of f with least period m. Therefore, if there
is a way to find the numbers of periodic points of all periods for a map, then we obtain
infinitely many congruence identities in number theory. This is an interesting application
of dynamical systems theory to number theory which is not found in [1,2].

Let ¢(m) be an integer-valued function defined on the set of all positive integers. If

m = p]flpgz ---pFr where the p;’s are distinct prime numbers, » and k;’s are positive
integers, we let ®1(1,¢) = ¢(1) and let ®1(m, p) =
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where the summation is taken over all integers 41,42, -+ ,4; with 1 <4y <

11 <t <---<ij
g <---<i; <r.Ifm= 2k0p’f1p§2 .- pkr where the p;’s are distinct odd prime numbers,
and kg > 0,r > 1, and the k;’s > 1 are integers, we let ®o(m, @) =
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If m = 2% where k > 0 is an integer, we let ®o(m, @) = ¢(m) — 1.

Let f be amap from the set S into itself. For every positive integer m = plfl p’§2 ol
where p;’s and k;’s are defined as above, if ¢(m) represents the number of distinct
solutions of the equation f™(x) = x (i.e. the number of fixed points of f™(z)) in
S, then in the above formula for ®;(m, ), the periodic points of f with least period

n o <M, where 1 <t¢; <k; ,1<s<j are integers, have been counted

Y ptia
T

Py Piy j

j  times in the evaluation of ¢(;*),1 <u < j,
(%) times in the evaluation of <;5(p,"; ), 1<u<wv<y,

(é) times in the evaluation of gb(m), 1<u<v<w<y,

m

(]:) times in the evaluation of O(—2—).
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Totally, they have been counted o .

i+ @) = () 4+ (C)70) = (=1 =1 = 1
times. Therefore, ®;(m, ¢) is indeed the number of periodic points of f with least period
m. Similar argument applies to ®5. So, we obtain the following result:

Theorem 1. Let S be a nonempty set and let g be a map from S into itself such that,
for every positive integer m, the equation ¢"(z) = = (or ¢™(x) = —x respectively) has
only finitely many distinct solutions. Let ¢(m) (or v(m) respectively) denote the number
of these solutions. Then, for every positive integer m, the following hold:
(1) The number of periodic points of g with least period m is ®;(m, ¢). Consequently,
®1(m, ) =0 (mod m).
(2) If 0 S and ¢ is odd, then the number of symmetric periodic points (i.e. periodic
points whose orbits are symmetric with respect to the origin) of g with least period
2m is ®o(m,1)). Consequently, ®5(m, ) =0 (mod 2m).

Successful applications of the above theorem depend of course on a knowledge of the
function ¢ or . For continuous maps from a compact interval into itself, the method
of symbolic representations as introduced in [3,4,5] is very powerful in enumerating the
numbers (and hence generating the function ¢ or ) of the fixed points of all positive
integral powers of the maps. However, to get simple recursive formulas for the function
¢ or 1, an appropriate map must be chosen. The method of symbolic representations is
simple, powerful, and easy to use. Once you get the hang of it, the rest is only routine. See
[3,4,5] for some examples regarding how this method works. In the following, we present
some new sequences which are found neither in [2] nor in ”superseeker@research.att.com”.
Proofs of these results can be followed from those of [3,4,5].
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Theorem 2. Forintegers n >4 and 1 <m <n—1, let f,, ,(z) be the continuous map
from [1,n] onto itself defined by: f,,, n(1) = m+1, fr,n(2) =1, frun(m) = m—1, f, n(m+
1) =m+2, fonn—1) =n, frun(n) =m, and f,, ,(x) is linear on [j,j + 1] for every
integer 7 with 1 <j <n-—1. Also let f(x) be the continuous map from [1, 4] onto itself
defined by: f(1) = f(3) =4, f(2) =1, f(4) =2, and f(z) is linear on [1,2],[2, 3], and on
[3,4]. For integers n > 3, we also define sequences < a,, , > as follows:

ok+1 _ 1, for 1<k<n-—1
U = n—1
" 3 k-1 — Z Qp k—i, TOr n <k.
=2

Then the following hold:

(a) For any positive integer k, asj is the number of distinct fixed points of the map
f¥(z) in [1,4], and for any positive integer &, any integers n >4 and 1 <m <n-—1,
the number of distinct fixed points of the map f% . (z) in [1,n] is a,  which is
clearly independent of m for all 1 < m < n—1. Consequently, for any integer n > 3,
if ¢q, (k) = any and @, is defined as in Theorem 1, then ®4(k, ¢,,) =0 (mod k)
for all integers k£ > 1.

(b) For every integer n > 3, the generating function G, (=) of the sequence < a, j >

IS Gg, (2) = (32 — Z_: kz")/(1— 32+ Z_: 2.
k=2 k=2

Theorem 3. For every integer n > 1, let g, (z) be the continuous map from [1,2n + 1]
onto itself defined by: ¢,(1) = n+1,0,(2) = 2n+ L,g,(n+1) = n+2,9g,(n +2) =
n,9n(2n +1) =1, and g,(x) is linear on [j, 5 + 1] for every integer j with 1 < j < 2n.
We also define sequences < b,, ;, > as follows:

(bn2k—1 =1, for 1<k<n
bpok—1 =2""""12k — 1) + 1, for n+1<k<2n
bok = 2T — 1, for 1 <k<2n

2n
bn,k = 3bn,k—2 - Z bn,k—zi, for £ > 4n + 1.

\ =2

Then, for any integers £ > 1 and n > 1,b,, ; is the number of distinct fixed points of the
map g¢*(z) in [1,2n+1]. Consequently, if ¢, (k) = b, and ®; is defined as in Theorem
1, then ®,(k,¢p,) =0 (mod k) for all integers k& > 1. Moreover, the generating function

2n 2n
Gy, (2) of the sequence < by > is Gy, (2) = (z+ Y _(—1)Fkz") /(1 — 2 =) (-1)F2F).
h=2 k=2

Remark. In Theorem 3, when n = 1, the sequence < b, ; > becomes the Lucas sequence:
1,3,4,7,11, - --.
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Theorem 4. Forintegers n >2,2<j<2n+1,and 2<m <2n+1, let hj,, ,(x) be
the continuous map from [1,2n + 2] onto itself defined by: hj (1) = j, hjmn(z) =1
for all even integersx in [2,2n], hjmn(z) = 2n + 2 for all odd integersz in [3,2n + 1],
hjmmn(2n+2) =m, and h; , ,(x) is linear on [j,j+ 1] for every integer j with 1 < j <
2n 4 1. We also define sequences < c; ., > as follows:

2n + 1, for k=1
. _ (2n +1)% — 2[2n — (j — m)], for k =2
Ik T (24 1)3 = 6n2n+ 1 — (5 — m)], for k=3

2n+1)¢jmmnir—1— [2n— (G —m)|cjmmk—2 — ( —M)Cjmnk—3, TFOrk>4.

Then, for any integers n > 2,2 <j<2n+1,2<m <2n4+1,and k > 1, ¢ mnk IS
the number of distinct fixed points of the map A% . (z) in [1,2n 4+ 2]. Consequently, if
Bcjmn (k) = Cjmmi and @ is defined as in Theorem 1, then ®,(k, ¢, ,,,,) =0 (mod
k) for all integers k£ > 1. Moreover, the generating function G, ,, . (z) of the sequence
< Cimmk > 18 Ge, . (2) ={(2n+ 1)z = 22n — (j —m)]z* = 3(j —m)2* } /{1 - (2n +
Dz+[2n— (j —m)]z% + (j —m)23 }.

Remarks. (1) For fixed integers n > 2,q,r, and s, let ¢(k) be the map on the set of all
positive integers defined by: ¢(1) = 2n+1,¢(2) = (2n + 1)? — 2¢,¢(3) = (2n + 1)3 — 6r
and ¢(k) = 2n+1)p(k—1) —qp(k —2) —sp(k —3) for all integers k& > 4. Then Theorem
4 implies that, for some suitable choices of ¢,r, s, and a map f, ¢(k) are the numbers
of fixed points of f¥(z) and hence, for ®; defined as in Theorem 1, ®;(k,¢) = 0 (mod
k) for all integers k£ > 1. If we only consider ¢(k) as a sequence of positive integers and
disregard whether it represents the numbers of fixed points of all positive integral powers
of some map, we can still ask if ®;(k,¢) =0 (mod k) for all integers k > 1. Extensive
computer experiments suggest that this seems to be the case for some other choices of
q,r, and s. Therefore, there should be a number-theoretic approach to this more general
problem as does in Theorem 5 below.

(2) Note that, in Theorem 4 above, when j = 2 nd m = 2n + 1, we actually have
c22n+1nk = (2n — 1)* + 2 which satisfies the difference equation C2.2n+1,mk+1 = (2n —
1)c2 2n+1.n,k —4(n — 1) for all positive integers k.

The following result concerning the linear recurrence of second-order can be obtained by
counting the fixed points of all positive integral powers of maps similar to those considered
in Theorem 4. The number-theoretic approach can also be found in [6,7].

Theorem 5. Forintegers n > 2 and 1 —n < m <n, let < d,, ,, > be the sequences
defined by

n, for k=1
A = § n?+2m, for k=2
ndm7nak_1 + mdm,n,kz—Z, for k Z 3_

For any integers n > 2,1 —n < m < n and k& > 1, if ¢4, (k) = dpnr and @,
is defined as in Theorem 1, then ®(k, ¢4, ,) = 0 (mod k) for all integers & > 1.
Moreover, the generating function Gy, ,(z) of the sequence < dp, nx > is Gg,, . (2) =
(nz +2mz2)/(1 — nz — mz?).

m,n



The following result is taken from [4, Theorem 3|. More similar examples can also be
found in [4].

Theorem 6. For every integer n > 2, let p,,(z) be the continuous odd map from [—n, n]
onto itself defined by p, (i) =i+ 1 for every integer i with 1 <i<n—1, p,(n) = —1,
and p,(x) is linear on [j,j+ 1] for every integer j with —n < j <n — 1. We also define
sequences < s, ; > as follows:

1, for 1<k<n-—1
2k (2k) + 1, for n<k<2n-1
Sn,k = 2n—1
3Sn k—1 — Z Sn.k—i for 2n < k.
1=2

Then, for any integers n > 2 and k > 1, ag, ;IS the number of distinct fixed points of the
map p%(x) in [-n,n], where ay,  is defined as in Theorem 2, and s,, ;. is the number of

distinct solutions of the equation pX(z) = —x in [—n,n]. Consequently, if s, (k) = s,
and ®, is defined as in Theorem 1, then ®5(k,¢s, ) = 0 (mod 2k). Moreover, the
n—1
generating function G;, (z) of < s, > is Gs, (2) = [z —222 — 23 + Z(k: —4)2% + (3n —
k=
2n—1 2n—1 °
92" — Y (2n—k)2F]/(1-32+ ) 2¥). (When n =2, ignore —222, and when n = 3,
k=n+1 k=2
ignore —z?).

Remark. Numerical computations suggest that the maps 15, in Theorem 6 also satisfy
Oy (k,1s,) =0 (mod k) for all integers k > 1. However, our method cannot verify this.
There may be an algebraic-theoretic verification of it.

References

1. J. C. Lagarias, Number theory and dynamical systems, in ”The unreasonable e [edtiveness in number
theory”, Proceedings of symposia in applied mathematics vol. 46, American Mathematical Society,
1992, pp. 35-72.

2. N. J. A. Sloane and S. Ploule]lThe encyclopedia of integer sequences, Academic Press, New York,
1995.

3. B.-S. Du, The minimal number of periodic orbits of periods guaranteed in Sharkovskii’s theorem, Bull.
Austral. Math. Soc. 31 (1985), 89-103, Corrigendum:32(1985), 159.

4. B.-S. Du, Symmetric periodic orbits of continuous odd functions on the interval, Inst. Math. Acad.
Sinica 16 (1988), 1-48.

5. B.-S. Du, A simple method which generates infinitely many congruence identities, Fibonacci Quarterly
27 (1989), 116-124.

6. R. S. Melham and A. G. Shannon, Some congruence properties of generalized second-order integer
sequences, Fibonacci Quarterly 32 (1994), 424-428.

7. P. S. Bruckman, Advanced problem H-517, Fibonacci Quarterly 34 (1996), 473.



