CONGRUENCE IDENTITIES ARISING FROM DYNAMICAL SYSTEMS

Bau-Sen Du
Inst it ute of M at hematics
Academia Sinica
Taipei 11529, Taiwan
mabsdu@sinica.edu.t w
(Appl. M ath. Letters, 12(1999), 115-119.)

Abstract

By counting the numbers of periodic points of all periods for some interval maps, we obtain infinitely many new congruence identities in number theory.

Let S be a nonempty set and let f be a map from S into itself. For every positive integer n, we define the $n^{t h}$ iterate of f by letting $f^{1}=f$ and $f^{n}=f \circ f^{n-1}$ for $n \geq 2$. For $y \in S$, we call the set $\left\{f^{k}(y) \mid k \geq 0\right\}$ the orbit of y under f. If $f^{m}(y)=y$ for some positive integer m, we call y a periodic point of f and call the smallest such positive integer m the least period of y under f. We also call periodic points of least period 1 fixed points. It is clear that if y is a periodic point of f with least period m, then, for every integer $1 \leq k \leq m-1, f^{k}(y)$ is also a periodic point of f with least period m and they are all distinct. So, every periodic orbit of f with least period m consists of exactly m points. Since distinct periodic orbits of f are pairwise disjoint, the number (if finite) of distinct periodic points of f with least period m is divisible by m and the quotient equals the number of distinct periodic orbits of f with least period m. Therefore, if there is a way to find the numbers of periodic points of all periods for a map, then we obtain infinitely many congruence identities in number theory. This is an interesting application of dynamical systems theory to number theory which is not found in $[1,2]$.

Let $\phi(m)$ be an integer-valued function defined on the set of all positive integers. If $m=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where the p_{i} 's are distinct prime numbers, r and k_{i} 's are positive integers, we let $\Phi_{1}(1, \phi)=\phi(1)$ and let $\Phi_{1}(m, \phi)=$

$$
\phi(m)-\sum_{i=1}^{r} \phi\left(\frac{m}{p_{i}}\right)+\sum_{i_{1}<i_{2}} \phi\left(\frac{m}{p_{i_{1}} p_{i_{2}}}\right)-\sum_{i_{1}<i_{2}<i_{3}} \phi\left(\frac{m}{p_{i_{1}} p_{i_{2}} p_{i_{3}}}\right)+\cdots+(-1)^{r} \phi\left(\frac{m}{p_{1} p_{2} \cdots p_{r}}\right),
$$

[^0]where the summation $\sum_{i_{1}<i_{2}<\cdots<i_{j}}$ is taken over all integers $i_{1}, i_{2}, \cdots, i_{j}$ with $1 \leq i_{1}<$ $i_{2}<\cdots<i_{j} \leq r$. If $m=2^{k_{0}} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where the p_{i} 's are distinct odd prime numbers, and $k_{0} \geq 0, r \geq 1$, and the k_{i} 's ≥ 1 are integers, we let $\Phi_{2}(m, \phi)=$
$$
\phi(m)-\sum_{i=1}^{r} \phi\left(\frac{m}{p_{i}}\right)+\sum_{i_{1}<i_{2}} \phi\left(\frac{m}{p_{i_{1}} p_{i_{2}}}\right)-\sum_{i_{1}<i_{2}<i_{3}} \phi\left(\frac{m}{p_{i_{1}} p_{i_{2}} p_{i_{3}}}\right)+\cdots+(-1)^{r} \phi\left(\frac{m}{p_{1} p_{2} \cdots p_{r}}\right)
$$

If $m=2^{k}$, where $k \geq 0$ is an integer, we let $\Phi_{2}(m, \phi)=\phi(m)-1$.
Let f be a map from the set S into itself. For every positive integer $m=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where p_{i} 's and k_{i} 's are defined as above, if $\phi(m)$ represents the number of distinct solutions of the equation $f^{m}(x)=x$ (i.e. the number of fixed points of $f^{m}(x)$) in S, then in the above formula for $\Phi_{1}(m, \phi)$, the periodic points of f with least period $\frac{m}{p_{i_{1}}^{t_{i}} p_{i_{2}}^{t_{2}} \cdots p_{i_{j}}^{t_{i_{j}}}}<m$, where $1 \leq t_{i_{s}} \leq k_{i_{s}}, 1 \leq s \leq j$ are integers, have been counted
j times in the evaluation of $\phi\left(\frac{m}{p_{i_{u}}}\right), 1 \leq u \leq j$,
$\binom{j}{2}$ times in the evaluation of $\phi\left(\frac{m}{p_{i_{u}} p_{i_{v}}}\right), 1 \leq u<v \leq j$,
$\binom{j}{3}$ times in the evaluation of $\phi\left(\frac{m}{p_{i_{u}} p_{i_{v}} p_{i_{w}}}\right), 1 \leq u<v<w \leq j$,
$\binom{j}{j}$ times in the evaluation of $\phi\left(\frac{m}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{j}}}\right)$.
Totally, they have been counted

$$
-j+\binom{j}{2}-\binom{j}{3}+\cdots+(-1)^{j}\binom{j}{j}=\left[(1-1)^{j}-1\right]=-1
$$

times. Therefore, $\Phi_{1}(m, \phi)$ is indeed the number of periodic points of f with least period m. Similar argument applies to Φ_{2}. So, we obtain the following result:
Theorem 1. Let S be a nonempty set and let g be a map from S into itself such that, for every positive integer m, the equation $g^{m}(x)=x$ (or $g^{m}(x)=-x$ respectively) has only finitely many distinct solutions. Let $\phi(m)$ (or $\psi(m)$ respectively) denote the number of these solutions. Then, for every positive integer m, the following hold:
(1) The number of periodic points of g with least period m is $\Phi_{1}(m, \phi)$. Consequently, $\Phi_{1}(m, \phi) \equiv 0(\bmod m)$.
(2) If $0 \in S$ and g is odd, then the number of symmetric periodic points (i.e. periodic points whose orbits are symmetric with respect to the origin) of g with least period $2 m$ is $\Phi_{2}(m, \psi)$. Consequently, $\Phi_{2}(m, \psi) \equiv 0(\bmod 2 m)$.

Successful applications of the above theorem depend of course on a knowledge of the function ϕ or ψ. For continuous maps from a compact interval into itself, the method of symbolic representations as introduced in $[3,4,5]$ is very powerful in enumerating the numbers (and hence generating the function ϕ or ψ) of the fixed points of all positive integral powers of the maps. However, to get simple recursive formulas for the function ϕ or ψ, an appropriate map must be chosen. The method of symbolic representations is simple, powerful, and easy to use. Once you get the hang of it, the rest is only routine. See $[3,4,5]$ for some examples regarding how this method works. In the following, we present some new sequences which are found neither in [2] nor in "superseeker@research.att.com". Proofs of these results can be followed from those of $[3,4,5]$.

Theorem 2. For integers $n \geq 4$ and $1<m<n-1$, let $f_{m, n}(x)$ be the continuous map from $[1, n]$ onto itself defined by: $f_{m, n}(1)=m+1, f_{m, n}(2)=1, f_{m, n}(m)=m-1, f_{m, n}(m+$ $1)=m+2, f_{m, n}(n-1)=n, f_{m, n}(n)=m$, and $f_{m, n}(x)$ is linear on $[j, j+1]$ for every integer j with $1 \leq j \leq n-1$. A lso let $f(x)$ be the continuous map from [1, 4] onto itself defined by: $f(1)=f(3)=4, f(2)=1, f(4)=2$, and $f(x)$ is linear on $[1,2],[2,3]$, and on [3,4]. For integers $n \geq 3$, we also define sequences $\left\langle a_{n, k}\right\rangle$ as follows:

$$
a_{n, k}= \begin{cases}2^{k+1}-1, & \text { for } 1 \leq k \leq n-1 \\ 3 a_{n, k-1}-\sum_{i=2}^{n-1} a_{n, k-i}, & \text { for } n \leq k\end{cases}
$$

Then the following hold:
(a) For any positive integer $k, a_{3, k}$ is the number of distinct fixed points of the map $f^{k}(x)$ in $[1,4]$, and for any positive integer k, any integers $n \geq 4$ and $1<m<n-1$, the number of distinct fixed points of the map $f_{m, n}^{k}(x)$ in $[1, n]$ is $a_{n, k}$ which is clearly independent of m for all $1<m<n-1$. Consequently, for any integer $n \geq 3$, if $\phi_{a_{n}}(k)=a_{n, k}$ and Φ_{1} is defined as in Theorem 1 , then $\Phi_{1}\left(k, \phi_{a_{n}}\right) \equiv 0(\bmod k)$ for all integers $k \geq 1$.
(b) For every integer $n \geq 3$, the generating function $G_{a_{n}}(z)$ of the sequence $<a_{n, k}>$ is $G_{a_{n}}(z)=\left(3 z-\sum_{k=2}^{n-1} k z^{k}\right) /\left(1-3 z+\sum_{k=2}^{n-1} z^{k}\right)$.

Theorem 3. For every integer $n \geq 1$, let $g_{n}(x)$ be the continuous map from $[1,2 n+1]$ onto itself defined by: $g_{n}(1)=n+1, g_{n}(2)=2 n+1, g_{n}(n+1)=n+2, g_{n}(n+2)=$ $n, g_{n}(2 n+1)=1$, and $g_{n}(x)$ is linear on $[j, j+1]$ for every integer j with $1 \leq j \leq 2 n$. We also define sequences $\left.<b_{n, k}\right\rangle$ as follows:

$$
\left\{\begin{aligned}
b_{n, 2 k-1} & =1, & & \text { for } 1 \leq k \leq n \\
b_{n, 2 k-1} & =2^{k-n-1}(2 k-1)+1, & & \text { for } n+1 \leq k \leq 2 n \\
b_{n, 2 k} & =2^{k+1}-1, & & \text { for } 1 \leq k \leq 2 n \\
b_{n, k} & =3 b_{n, k-2}-\sum_{i=2}^{2 n} b_{n, k-2 i}, & & \text { for } k \geq 4 n+1 .
\end{aligned}\right.
$$

Then, for any integers $k \geq 1$ and $n \geq 1, b_{n, k}$ is the number of distinct fixed points of the $\operatorname{map} g_{n}^{k}(x)$ in $[1,2 n+1]$. Consequently, if $\phi_{b_{n}}(k)=b_{n, k}$ and Φ_{1} is defined as in Theorem 1, then $\Phi_{1}\left(k, \phi_{b_{n}}\right) \equiv 0(\bmod k)$ for all integers $k \geq 1$. M oreover, the generating function $G_{b_{n}}(z)$ of the sequence $<b_{n, k}>$ is $G_{b_{n}}(z)=\left(z+\sum_{k=2}^{2 n}(-1)^{k} k z^{k}\right) /\left(1-z-\sum_{k=2}^{2 n}(-1)^{k} z^{k}\right)$.

Remark. In Theorem 3, when $n=1$, the sequence $\left\langle b_{n, k}\right\rangle$ becomes the Lucas sequence: $1,3,4,7,11, \cdots$.

Theorem 4. For integers $n \geq 2,2 \leq j \leq 2 n+1$, and $2 \leq m \leq 2 n+1$, let $h_{j, m, n}(x)$ be the continuous map from $[1,2 n+2]$ onto itself defined by: $h_{j, m, n}(1)=j, h_{j, m, n}(x)=1$ for all even integers x in $[2,2 n], h_{j, m, n}(x)=2 n+2$ for all odd integers x in $[3,2 n+1]$, $h_{j, m, n}(2 n+2)=m$, and $h_{j, m, n}(x)$ is linear on $[j, j+1]$ for every integer j with $1 \leq j \leq$ $2 n+1$. We also define sequences $\left\langle c_{j, m, n, k}\right\rangle$ as follows:

$$
c_{j, m, n, k}= \begin{cases}2 n+1, & \text { for } k=1 \\ (2 n+1)^{2}-2[2 n-(j-m)], & \text { for } k=2 \\ (2 n+1)^{3}-6 n[2 n+1-(j-m)], & \text { for } k=3 \\ (2 n+1) c_{j, m, n, k-1}-[2 n-(j-m)] c_{j, m, n, k-2}-(j-m) c_{j, m, n, k-3}, & \text { for } k \geq 4 .\end{cases}
$$

Then, for any integers $n \geq 2,2 \leq j \leq 2 n+1,2 \leq m \leq 2 n+1$, and $k \geq 1, c_{j, m, n, k}$ is the number of distinct fixed points of the map $h_{j, m, n}^{k}(x)$ in $[1,2 n+2]$. Consequently, if $\phi_{c_{j, m, n}}(k)=c_{j, m, n, k}$ and Φ_{1} is defined as in Theorem 1 , then $\Phi_{1}\left(k, \phi_{c_{j, m, n}}\right) \equiv 0(\bmod$ k) for all integers $k \geq 1$. Moreover, the generating function $G_{c_{j, m, n}}(z)$ of the sequence $<c_{j, m, n, k}>$ is $G_{c_{j, m, n}}(z)=\left\{(2 n+1) z-2[2 n-(j-m)] z^{2}-3(j-m) z^{3}\right\} /\{1-(2 n+$ 1) $\left.z+[2 n-(j-m)] z^{2}+(j-m) z^{3}\right\}$.

Remarks. (1) For fixed integers $n \geq 2, q, r$, and s, let $\phi(k)$ be the map on the set of all positive integers defined by: $\phi(1)=2 n+1, \phi(2)=(2 n+1)^{2}-2 q, \phi(3)=(2 n+1)^{3}-6 r$ and $\phi(k)=(2 n+1) \phi(k-1)-q \phi(k-2)-s \phi(k-3)$ for all integers $k \geq 4$. Then Theorem 4 implies that, for some suitable choices of q, r, s, and a map $f, \phi(k)$ are the numbers of fixed points of $f^{k}(x)$ and hence, for Φ_{1} defined as in Theorem $1, \Phi_{1}(k, \phi) \equiv 0(\bmod$ k) for all integers $k \geq 1$. If we only consider $\phi(k)$ as a sequence of positive integers and disregard whether it represents the numbers of fixed points of all positive integral powers of some map, we can still ask if $\Phi_{1}(k, \phi) \equiv 0(\bmod k)$ for all integers $k \geq 1$. Extensive computer experiments suggest that this seems to be the case for some other choices of q, r, and s. Therefore, there should be a number-theoretic approach to this more general problem as does in Theorem 5 below.
(2) Note that, in Theorem 4 above, when $j=2$ nd $m=2 n+1$, we actually have $c_{2,2 n+1, n, k}=(2 n-1)^{k}+2$ which satisfies the difference equation $c_{2,2 n+1, n, k+1}=(2 n-$ 1) $c_{2,2 n+1, n, k}-4(n-1)$ for all positive integers k.

The following result concerning the linear recurrence of second-order can be obtained by counting the fixed points of all positive integral powers of maps similar to those considered in Theorem 4. The number-theoretic approach can also be found in $[6,7]$.
Theorem 5. For integers $n \geq 2$ and $1-n \leq m \leq n$, let $\left\langle d_{m, n, k}\right\rangle$ be the sequences defined by

$$
d_{m, n, k}= \begin{cases}n, & \text { for } k=1 \\ n^{2}+2 m, & \text { for } k=2 \\ n d_{m, n, k-1}+m d_{m, n, k-2}, & \text { for } k \geq 3 .\end{cases}
$$

For any integers $n \geq 2,1-n \leq m \leq n$ and $k \geq 1$, if $\phi_{d_{m, n}}(k)=d_{m, n, k}$ and Φ_{1} is defined as in Theorem 1 , then $\Phi_{1}\left(k, \phi_{d_{m, n}}\right) \equiv 0(\bmod k)$ for all integers $k \geq 1$. M oreover, the generating function $G_{d_{m, n}}(z)$ of the sequence $<d_{m, n, k}>$ is $G_{d_{m, n}}(z)=$ $\left(n z+2 m z^{2}\right) /\left(1-n z-m z^{2}\right)$.

The following result is taken from [4, Theorem 3]. More similar examples can also be found in [4].

Theorem 6. For every integer $n \geq 2$, let $p_{n}(x)$ be the continuous odd map from $[-n, n]$ onto itself defined by $p_{n}(i)=i+1$ for every integer i with $1 \leq i \leq n-1, p_{n}(n)=-1$, and $p_{n}(x)$ is linear on $[j, j+1]$ for every integer j with $-n \leq j \leq n-1$. We also define sequences $<s_{n, k}>$ as follows:

$$
s_{n, k}= \begin{cases}1, & \text { for } 1 \leq k \leq n-1 \\ 2^{k-n}(2 k)+1, & \text { for } n \leq k \leq 2 n-1 \\ 3 s_{n, k-1}-\sum_{i=2}^{2 n-1} s_{n, k-i}, & \text { for } 2 n \leq k\end{cases}
$$

Then, for any integers $n \geq 2$ and $k \geq 1, a_{2 n, k}$ is the number of distinct fixed points of the $\operatorname{map} p_{n}^{k}(x)$ in $[-n, n]$, where $a_{2 n, k}$ is defined as in Theorem 2, and $s_{n, k}$ is the number of distinct solutions of the equation $p_{n}^{k}(x)=-x$ in $[-n, n]$. Consequently, if $\psi_{s_{n}}(k)=s_{n, k}$ and Φ_{2} is defined as in Theorem 1 , then $\Phi_{2}\left(k, \psi_{s_{n}}\right) \equiv 0(\bmod 2 k)$. Moreover, the generating function $G_{s_{n}}(z)$ of $<s_{n, k}>$ is $G_{s_{n}}(z)=\left[z-2 z^{2}-z^{3}+\sum_{k=5}^{n-1}(k-4) z^{k}+(3 n-\right.$ 4) $\left.z^{n}-\sum_{k=n+1}^{2 n-1}(2 n-k) z^{k}\right] /\left(1-3 z+\sum_{k=2}^{2 n-1} z^{k}\right)$. (W hen $n=2$, ignore $-2 x^{2}$, and when $n=3$, ignore $-x^{3}$).

Remark. Numerical computations suggest that the maps $\psi_{s_{n}}$ in Theorem 6 also satisfy $\Phi_{1}\left(k, \psi_{s_{n}}\right) \equiv 0(\bmod k)$ for all integers $k \geq 1$. However, our method cannot verify this. There may be an algebraic-theoretic verification of it.

R ef er ences

1. J. C. Lagarias, Number theory and dynamical systems, in "The unreasonable effectiveness in number theory", Proceedings of symposia in applied mathematics vol. 46, American Mathematical Society, 1992, pp. 35-72.
2. N. J. A. Sloane and S. Plouffe, The encyclopedia of integer sequences, Academic Press, New York, 1995.
3. B.-S. Du, The minimal number of periodic orbits of periods guaranteed in Sharkovskii's theorem, Bull. A ustral. Math. Soc. 31 (1985), 89-103, Corrigendum:32(1985), 159.
4. B.-S. Du, Symmetric periodic orbits of continuous odd functions on the interval, Inst. Math. Acad. Sinica 16 (1988), 1-48.
5. B.-S. Du, A simple method which generates infinitely many congruence identities, Fibonacci Quarterly 27 (1989), 116-124.
6. R. S. Melham and A. G. Shannon, Some congruence properties of generalized second-order integer sequences, Fibonacci Quarterly 32 (1994), 424-428.
7. P. S. Bruckman, Advanced problem H-517, Fibonacci Quarterly 34 (1996), 473.

[^0]: 1991 M athematics Subject Classification. Primary 11B50. Secondary 05A 15, 58F 20.
 K ey words and phrases. periodic points, periodic orbits, least period, symmetric periodic points.
 The author wants to thank Professor Peter J au-Shyong Shiue for his many invaluable suggestions and encouragements in writing this paper.

