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Abstract. By counting the numbers of periodic points of all periods for some interval maps,
we obtain infinitely many new congruence identities in number theory.

Let S be a nonempty set and let f be a map from S into itself. For every positive
integer n, we define the nth iterate of f by letting f1 = f and fn = f ◦ fn−1 for n ≥ 2.
For y ∈ S, we call the set { fk(y) | k ≥ 0 } the orbit of y under f . If fm(y) = y for some
positive integer m, we call y a periodic point of f and call the smallest such positive
integer m the least period of y under f . We also call periodic points of least period 1
fixed points. It is clear that if y is a periodic point of f with least period m, then, for
every integer 1 ≤ k ≤ m− 1, fk(y) is also a periodic point of f with least period m and
they are all distinct. So, every periodic orbit of f with least period m consists of exactly
m points. Since distinct periodic orbits of f are pairwise disjoint, the number (if finite)
of distinct periodic points of f with least period m is divisible by m and the quotient
equals the number of distinct periodic orbits of f with least period m. Therefore, if there
is a way to find the numbers of periodic points of all periods for a map, then we obtain
infinitely many congruence identities in number theory. This is an interesting application
of dynamical systems theory to number theory which is not found in [1,2].

Let φ(m) be an integer-valued function defined on the set of all positive integers. If
m = pk1

1 p
k2
2 · · · pkr

r , where the pi’s are distinct prime numbers, r and ki’s are positive
integers, we let Φ1(1, φ) = φ(1) and let Φ1(m,φ) =

φ(m) −
r∑

i=1

φ(
m

pi
) +

∑

i1<i2

φ(
m

pi1pi2

) −
∑

i1<i2<i3

φ(
m

pi1pi2pi3

) + · · ·+ (−1)rφ(
m

p1p2 · · · pr
),
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where the summation
∑

i1<i2<···<ij
is taken over all integers i1, i2, · · · , ij with 1 ≤ i1 <

i2 < · · · < ij ≤ r. If m = 2k0pk1
1 p

k2
2 · · · pkr

r , where the pi’s are distinct odd prime numbers,
and k0 ≥ 0, r ≥ 1, and the ki’s ≥ 1 are integers, we let Φ2(m,φ) =

φ(m) −
r∑

i=1

φ(
m

pi
) +

∑

i1<i2

φ(
m

pi1pi2

) −
∑

i1<i2<i3

φ(
m

pi1pi2pi3

) + · · ·+ (−1)rφ(
m

p1p2 · · · pr
),

If m = 2k, where k ≥ 0 is an integer, we let Φ2(m,φ) = φ(m) − 1.
Let f be a map from the set S into itself. For every positive integer m = pk1

1 p
k2
2 · · · pkr

r ,
where pi’s and ki’s are defined as above, if φ(m) represents the number of distinct
solutions of the equation fm(x) = x (i.e. the number of fixed points of fm(x)) in
S, then in the above formula for Φ1(m,φ), the periodic points of f with least period

m

p
ti1
i1

p
ti2
i2

···p
tij
ij

< m, where 1 ≤ tis
≤ kis

, 1 ≤ s ≤ j are integers, have been counted

j times in the evaluation of φ( m
piu

), 1 ≤ u ≤ j,(
j
2

)
times in the evaluation of φ( m

piupiv
), 1 ≤ u < v ≤ j,(

j
3

)
times in the evaluation of φ( m

piupiv piw
), 1 ≤ u < v < w ≤ j,

...(
j
j

)
times in the evaluation of φ( m

pi1pi2 ···pij
).

Totally, they have been counted
−j +

(
j
2

)
−

(
j
3

)
+ · · · + (−1)j

(
j
j

)
= [(1 − 1)j − 1] = −1

times. Therefore, Φ1(m,φ) is indeed the number of periodic points of f with least period
m. Similar argument applies to Φ2. So, we obtain the following result:

Theorem 1. Let S be a nonempty set and let g be a map from S into itself such that,
for every positive integer m, the equation gm(x) = x (or gm(x) = −x respectively) has
only finitely many distinct solutions. Let φ(m) (or ψ(m) respectively) denote the number
of these solutions. Then, for every positive integer m, the following hold:

(1) The number of periodic points of g with least period m is Φ1(m,φ). Consequently,
Φ1(m,φ) ≡ 0 (mod m).

(2) If 0 ∈ S and g is odd, then the number of symmetric periodic points (i.e. periodic
points whose orbits are symmetric with respect to the origin) of g with least period
2m is Φ2(m,ψ). Consequently, Φ2(m,ψ) ≡ 0 (mod 2m).

Successful applications of the above theorem depend of course on a knowledge of the
function φ or ψ. For continuous maps from a compact interval into itself, the method
of symbolic representations as introduced in [3,4,5] is very powerful in enumerating the
numbers (and hence generating the function φ or ψ) of the fixed points of all positive
integral powers of the maps. However, to get simple recursive formulas for the function
φ or ψ, an appropriate map must be chosen. The method of symbolic representations is
simple, powerful, and easy to use. Once you get the hang of it, the rest is only routine. See
[3,4,5] for some examples regarding how this method works. In the following, we present
some new sequences which are found neither in [2] nor in ”superseeker@research.att.com”.
Proofs of these results can be followed from those of [3,4,5].
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Theorem 2. For integers n ≥ 4 and 1 < m < n− 1, let fm,n(x) be the continuous map
from [1, n] onto itself defined by: fm,n(1) = m+1, fm,n(2) = 1, fm,n(m) = m−1, fm,n(m+
1) = m + 2, fm,n(n − 1) = n, fm,n(n) = m, and fm,n(x) is linear on [j, j + 1] for every
integer j with 1 ≤ j ≤ n− 1. Also let f(x) be the continuous map from [1, 4] onto itself
defined by: f(1) = f(3) = 4, f(2) = 1, f(4) = 2, and f(x) is linear on [1, 2], [2, 3], and on
[3, 4]. For integers n ≥ 3, we also define sequences < an,k > as follows:

an,k =





2k+1 − 1, for 1 ≤ k ≤ n− 1

3an,k−1 −
n−1∑

i=2

an,k−i, for n ≤ k.

Then the following hold:
(a) For any positive integer k, a3,k is the number of distinct fixed points of the map

fk(x) in [1, 4], and for any positive integer k, any integers n ≥ 4 and 1 < m < n−1,
the number of distinct fixed points of the map fk

m,n(x) in [1, n] is an,k which is
clearly independent of m for all 1 < m < n−1. Consequently, for any integer n ≥ 3,
if φan

(k) = an,k and Φ1 is defined as in Theorem 1, then Φ1(k, φan
) ≡ 0 (mod k)

for all integers k ≥ 1.
(b) For every integer n ≥ 3, the generating function Gan

(z) of the sequence < an,k >

is Gan
(z) = (3z −

n−1∑

k=2

kzk)/(1 − 3z +
n−1∑

k=2

zk).

Theorem 3. For every integer n ≥ 1, let gn(x) be the continuous map from [1, 2n+ 1]
onto itself defined by: gn(1) = n + 1, gn(2) = 2n + 1, gn(n + 1) = n + 2, gn(n + 2) =
n, gn(2n+ 1) = 1, and gn(x) is linear on [j, j + 1] for every integer j with 1 ≤ j ≤ 2n.
We also define sequences < bn,k > as follows:





bn,2k−1 = 1, for 1 ≤ k ≤ n

bn,2k−1 = 2k−n−1(2k − 1) + 1, for n+ 1 ≤ k ≤ 2n

bn,2k = 2k+1 − 1, for 1 ≤ k ≤ 2n

bn,k = 3bn,k−2 −
2n∑

i=2

bn,k−2i, for k ≥ 4n+ 1.

Then, for any integers k ≥ 1 and n ≥ 1, bn,k is the number of distinct fixed points of the
map gk

n(x) in [1, 2n+1]. Consequently, if φbn
(k) = bn,k and Φ1 is defined as in Theorem

1, then Φ1(k, φbn
) ≡ 0 (mod k) for all integers k ≥ 1. Moreover, the generating function

Gbn
(z) of the sequence < bn,k > is Gbn

(z) = (z +
2n∑

k=2

(−1)kkzk)/(1 − z −
2n∑

k=2

(−1)kzk).

Remark. In Theorem 3, when n = 1, the sequence < bn,k > becomes the Lucas sequence:
1,3,4,7,11, · · · .
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Theorem 4. For integers n ≥ 2, 2 ≤ j ≤ 2n+ 1, and 2 ≤ m ≤ 2n+ 1, let hj,m,n(x) be
the continuous map from [1, 2n + 2] onto itself defined by: hj,m,n(1) = j, hj,m,n(x) = 1
for all even integersx in [2, 2n], hj,m,n(x) = 2n + 2 for all odd integersx in [3, 2n + 1],
hj,m,n(2n+ 2) = m, and hj,m,n(x) is linear on [j, j+ 1] for every integer j with 1 ≤ j ≤
2n+ 1. We also define sequences < cj,m,n,k > as follows:

cj,m,n,k =





2n+ 1, for k = 1
(2n+ 1)2 − 2[2n− (j −m)], for k = 2
(2n+ 1)3 − 6n[2n+ 1 − (j −m)], for k = 3
(2n+ 1)cj,m,n,k−1 − [2n− (j −m)]cj,m,n,k−2 − (j −m)cj,m,n,k−3, for k ≥ 4.

Then, for any integers n ≥ 2, 2 ≤ j ≤ 2n + 1, 2 ≤ m ≤ 2n + 1, and k ≥ 1, cj,m,n,k is
the number of distinct fixed points of the map hk

j,m,n(x) in [1, 2n+ 2]. Consequently, if
φcj,m,n

(k) = cj,m,n,k and Φ1 is defined as in Theorem 1, then Φ1(k, φcj,m,n
) ≡ 0 (mod

k) for all integers k ≥ 1. Moreover, the generating function Gcj,m,n
(z) of the sequence

< cj,m,n,k > is Gcj,m,n
(z) = { (2n + 1)z − 2[2n − (j −m)]z2 − 3(j −m)z3 }/{ 1 − (2n +

1)z + [2n− (j −m)]z2 + (j −m)z3 }.

Remarks. (1) For fixed integers n ≥ 2, q, r, and s, let φ(k) be the map on the set of all
positive integers defined by: φ(1) = 2n+ 1, φ(2) = (2n + 1)2 − 2q, φ(3) = (2n + 1)3 − 6r
and φ(k) = (2n+1)φ(k−1)− qφ(k−2)− sφ(k−3) for all integers k ≥ 4. Then Theorem
4 implies that, for some suitable choices of q, r, s, and a map f , φ(k) are the numbers
of fixed points of fk(x) and hence, for Φ1 defined as in Theorem 1, Φ1(k, φ) ≡ 0 (mod
k) for all integers k ≥ 1. If we only consider φ(k) as a sequence of positive integers and
disregard whether it represents the numbers of fixed points of all positive integral powers
of some map, we can still ask if Φ1(k, φ) ≡ 0 (mod k) for all integers k ≥ 1. Extensive
computer experiments suggest that this seems to be the case for some other choices of
q, r, and s. Therefore, there should be a number-theoretic approach to this more general
problem as does in Theorem 5 below.

(2) Note that, in Theorem 4 above, when j = 2 nd m = 2n + 1, we actually have
c2,2n+1,n,k = (2n − 1)k + 2 which satisfies the difference equation c2,2n+1,n,k+1 = (2n −
1)c2,2n+1,n,k − 4(n− 1) for all positive integers k.

The following result concerning the linear recurrence of second-order can be obtained by
counting the fixed points of all positive integral powers of maps similar to those considered
in Theorem 4. The number-theoretic approach can also be found in [6,7].

Theorem 5. For integers n ≥ 2 and 1 − n ≤ m ≤ n, let < dm,n,k > be the sequences
defined by

dm,n,k =





n, for k = 1
n2 + 2m, for k = 2
ndm,n,k−1 +mdm,n,k−2, for k ≥ 3.

For any integers n ≥ 2, 1 − n ≤ m ≤ n and k ≥ 1, if φdm,n
(k) = dm,n,k and Φ1

is defined as in Theorem 1, then Φ1(k, φdm,n
) ≡ 0 (mod k) for all integers k ≥ 1.

Moreover, the generating function Gdm,n
(z) of the sequence < dm,n,k > is Gdm,n

(z) =
(nz + 2mz2)/(1 − nz −mz2).
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The following result is taken from [4, Theorem 3]. More similar examples can also be
found in [4].

Theorem 6. For every integer n ≥ 2, let pn(x) be the continuous odd map from [−n, n]
onto itself defined by pn(i) = i + 1 for every integer i with 1 ≤ i ≤ n − 1, pn(n) = −1,
and pn(x) is linear on [j, j + 1] for every integer j with −n ≤ j ≤ n− 1. We also define
sequences < sn,k > as follows:

sn,k =





1, for 1 ≤ k ≤ n− 1
2k−n(2k) + 1, for n ≤ k ≤ 2n− 1

3sn,k−1 −
2n−1∑

i=2

sn,k−i, for 2n ≤ k.

Then, for any integers n ≥ 2 and k ≥ 1, a2n,k is the number of distinct fixed points of the
map pk

n(x) in [−n, n], where a2n,k is defined as in Theorem 2, and sn,k is the number of
distinct solutions of the equation pk

n(x) = −x in [−n, n]. Consequently, if ψsn
(k) = sn,k

and Φ2 is defined as in Theorem 1, then Φ2(k, ψsn
) ≡ 0 (mod 2k). Moreover, the

generating function Gsn
(z) of < sn,k > is Gsn

(z) = [z − 2z2 − z3 +
n−1∑

k=5

(k− 4)zk + (3n−

4)zn −
2n−1∑

k=n+1

(2n− k)zk]/(1 − 3z +
2n−1∑

k=2

zk). (When n = 2, ignore −2x2, and when n = 3,

ignore −x3).

Remark. Numerical computations suggest that the maps ψsn
in Theorem 6 also satisfy

Φ1(k, ψsn
) ≡ 0 (mod k) for all integers k ≥ 1. However, our method cannot verify this.

There may be an algebraic-theoretic verification of it.
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