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Abstract

The algebraic structure underlying non-commutative Lie-Butcher series is the free
Lie algebra over ordered trees. In this paper we present a characterization of this
algebra in terms of balanced Lyndon words over a binary alphabet. This yields a
systematic manner of enumerating terms in non-commutative Lie-Butcher series.

1 Summary

Let g be the free Lie algebra over ordered trees, with a grading induced by
the number of nodes in the trees. In the first part of this paper we prove that
gj, the homogeneous component of degree j, has dimension

dim(gj) =
1

2n

∑

d|n
µ(n/d)

(
2d

d

)
.

For j = 1, 2, 3, . . . these numbers are 1, 1, 3, 8, 25, 75, 245, 800, 2700, 9225,
32065, . . .. This sequence counts the number of order conditions in the Crouch-
Grossman-Owren-Marthinsen methods for integrating differential equations
on manifolds. It does also count the number of balanced Lyndon words over
a binary alphabet.

In the last part of the paper we establish explicitly the 1–1 correspondence
between balanced binary Lyndon words and Hall basis elements for the free
Lie algebra of ordered trees.
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2 Introduction to Lie–Butcher theory

Lie series, dating back to Sophus Lie (1842-1899), is a version of Taylor series
adapted to general manifolds. Butcher series, invented by John Butcher [4,5]
and developed further in [8] (see also [9]) is an adaption of Taylor series
to the study of order conditions of Runge-Kutta methods. In recent papers
[6,12,15,19,10,17], efforts have been made to extend the theory of Runge-Kutta
methods from Rn to Lie groups and homogeneous spaces. Some very interest-
ing recent developments establish the connection between Butcher theory and
renormalization theory in physics [3]. In the light of this development it seems
important to further investigate the algebraic structure of non-commutative
Lie–Butcher series on manifolds.

Without going into details we will in this section briefly review some basic
results, yielding the connection between Lie-Butcher theory and the free Lie
algebra over ordered trees.

Definition 2.1 The set of ordered trees (OT) is defined by the following
rules:

(1) The one node tree is an ordered tree, • ∈ OT.
(2) If τ1, τ2, . . . , τk ∈ OT, then the ordered k-tuple τ = (τ1, τ2, · · · , τk) ∈ OT.

We call τi the branches of τ .

We let |τ | denote the degree of the tree (number of nodes)

| • |= 1

|(τ1, . . . , τk)|= |τ1|+ · · ·+ |τk|+ 1. (1)

The number of ordered trees of degree n + 1 is given by the Catalan numbers

C(n) =
(2n)!

n!(n + 1)!
.

The number of ordered trees with 1,2,3, . . . nodes is 1, 1, 2, 5, 14, 42, 132, . . ..

We will briefly introduce Lie-Butcher series, related to Runge-Kutta methods
on manifolds. Let M be a homogeneous space acted upon transitively from
left by a Lie group G, p 7→ g·p, where g ∈ G, p ∈M. Let g be the Lie algebra
of G and exp : g → G the exponential map. For V ∈ g and p ∈ M, we let
V ·p ∈ TpM denote the tangent

V ·p =
∂

∂s

∣∣∣∣∣
s=0

exp(sV )·p
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A differential equation on M can always be written in the form

y′(t) = f(y(t))·y(t) (2)

for some function f : M→ g.

Let FV(M) = (M→ V) denote all smooth functions from M to some vector
space 2 V . Any element V ∈ g induces a (right invariant) derivation V [·] :
FV(M) → FV(M) as

V [φ](p) =
∂

∂s

∣∣∣∣∣
s=0

φ(exp(sV )·p) for any φ ∈ FV(M) .

Similarly, higher order derivations are defined by iterating this definition,

(V ·W )[φ] = V [W [φ]].

Linear combinations of derivations, and the identity (0’th order derivation) are
defined in the obvious way. The resulting linear space of all 0’th and higher
order right invariant derivations is denoted G, the universal enveloping algebra
of g. We let Exp : g → G denote the formal exponential series

Exp(V ) =
∞∑

j=0

V j

j!
.

Given a point p ∈ M, the Lie series development of a function φ ∈ FV(M)
is given as

φ(exp(tV )·p) = Exp(tV )[φ](p).

In the commutative case where G = M = Rn, acting upon itself by transla-
tions, this is just Taylor series.

In the study of numerical methods for integrating (2), it is very useful to
characterize a curve z(t) ∈ M, z(0) = p, in terms of elementary differentials
of f .

Definition 2.2 Given a point p ∈ M and a smooth f : M → g. To every
τ ∈ OT there corresponds an elementary differential Fp(τ) ∈ g, defined as
follows

Fp (•) = f(p)

Fp ((τ1, τ2, . . . , τk)) = (Fp(τ1) · Fp(τ2) · · ·Fp(τk)) [f ](p).

There are various ways of characterizing a curve z(t) ∈M, z(0) = p.

2 In this paper we consider only V = R or V = g.
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• The approach in [16] is based on a time dependent infinitesimal generator.
Let a function a : OT → R define a curve ν(t, a, p) ∈ g as

ν(t, a, p) =
∑

τ∈OT

t|τ |−1α(τ)

(|τ | − 1)!
a(τ)Fp(τ).

We characterize z(t) as the solution of a differential equation

z′(t) = ν(t, a, p)·z(t), z(0) = p. (3)

We define α : OT → R to be the function satisfying the analytical solution
to (2) for a(τ) = 1 for all τ . In [19] it is shown that α(•) = 1, and for
τ = (τ1, τ2, · · · , τk)

α(τ) =
k∏

i=1

(∑i
j=1 |τj| − 1

|τi| − 1

)
α(τi)

• A pullback series is the basis for the analysis of Crouch-Grossman and
Owren-Marthinsen [6,19]. Let a function b : OT → R define a higher order
differential operator µ(t, b, p) ∈ G as

µ(t, b, p) =
∑

τ=(τ1,τ2,...,τk)∈OT

t|τ |−1α(τ)

(|τ | − 1)!
b(τ) (Fp(τ1)·Fp(τ2) · · ·Fp(τk)) .

The curve z(t) is characterized by the requirement that

φ (z(t)) = µ(t, b, p)[φ](p) for any φ ∈ FR(M).

In a formal sense, the pullback series is the exponential of the infinitesimal
generator. It can be shown that for a given z(t) we have

µ(1, b, p) = Exp

(
ν(s, a, p) +

∂

∂s

)∣∣∣∣∣
s=0

,

where ν(s, a, p) is defined in (3). This yields

b ((τ1, τ2, . . . , τk)) = a(τ1)a(τ2) · · · a(τk).

From this we see that the analytical solution y(t) is again characterized by
b(τ) = 1.

• The development of z(t) is given as a curve σ(t) ∈ g such that z(t) =
exp(σ(t)) · p. The computation of σ(t) from the infinitesimal generator
ν(t, a, p) is accomplished by Magnus series [13,21,10]. In this computa-
tion, also commutators of elementary differentials appears. If a curve z(t)
can be represented as (3), then there exists a function c : fla(OT) → R such
that

σ(t) =
∑

h∈H(fla(OT))

t|h|α(h)

(|h|)! c(h)Fp(h),
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01 0011 000111 001011 001101
[ , ]

00001111 00010111 00011011 00011101
[ , ]

00100111

00101011 00101101
[ , ]

00110101
[[ , ], ]

0000011111 0000101111

0000110111 0000111011 0000111101
[ , ]

0001001111 0001010111

0001011011 0001011101
[ , ]

0001100111 0001101011 0001101101
[ , ]

0001110011
[ , ]

0001110101
[[ , ], ]

0010001111 0010010111 0010011011

0010011101
[ , ]

0010100111 0010101011 0010101101
[ , ]

0010110011
[ , ]

0010110101
[[ , ], ]

0011001101
[ ,[ , ]]

0011010101
[[[ , ], ], ]

Fig. 1. Basis elements for the free Lie algebra of ordered trees up to order 5, and
their corresponding binary balanced Lyndon words.

where H(fla(OT)) denotes a Hall basis for the free Lie algebra of ordered
trees, to be defined below. (We do not discuss the extension of α from OT to
H(fla(OT)) here). Each h ∈ H(fla(OT)) is a (formal) commutator of trees,
Fp(h) denotes the corresponding commutator of elementary differentials and
|h| denotes the sum of the degree of all trees in the commutator. It should
be noted that in the commutative theory all non-trivial commutators vanish
and σ(t) reduces to the classical B-series as defined in [9].

As we see from this review, the free Lie algebra of ordered trees plays a central
role in the Lie-Butcher theory. Our goal in this paper is to present a basis for
this algebra, see Figure 1 for a graphical presentation of the lowest order
elements.

3 The free Lie algebra of ordered trees

Definition 3.1 A Lie algebra g is free over the set I if:

i) For every i ∈ I there corresponds an element Xi ∈ g.
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ii) For any Lie algebra h and any function i 7→ Yi ∈ h, there exists a unique
Lie algebra homomorphism π : g → h satisfying π(Xi) = Yi for all i ∈ I.

This is written as g = fla(I).

A concrete representation of g as a vector space over (formal) Lie brackets of
elements in I, is discussed in Section 5.

The degree function (1) on OT is naturally extended to g, for any bracket
[τ1, τ2] we define

|[τ1, τ2]| = |τ1|+ |τ2|.
Counting theorems for such graded free Lie algebras are developed in [18]. Let
gj denote the homogeneous component of degree j, defined as the subspace
of g spanned by commutators of degree j. The following theorem is shown
in [18]:

Theorem 3.2 Let g be the graded free Lie algebra generated by elements i ∈ I,
each element with degree |i| ∈ Z+. Then

dim(gn) = νn =
1

n

∑

d|n


∑

j

λ−d
j


 µ(n/d) (4)

where µ is the Möbius function and λj are the roots of the polynomial

p(x) = 1−∑

i∈I

x|i|. (5)

In the case of fla(OT), there are C(i− 1) generators of grade i, thus

p(x) = 1−
∞∑

j=0

C(j)xj+1.

The sum
∑

j λ−d
j should be interpreted as the trace of the n’th power of the

inverse of the companion matrix of p(x), in our case given as

M =




C(0) C(1) C(2) · · ·
1

1

1
. . .




.

By recursion one finds that the nonzero diagonal elements of Md are given as

Md
i,i = NCT(d− 1, d− 1− i), for i = 0, . . . d− 1,
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where

NCT(n,m) =
m∑

k=0

C(n− k)C(k)

is the new Catalan triangle (Sequence A028364 in [11]). Thus

∑

j

λ−d
j = trace(Md) =

d−1∑

i=0

i∑

k=0

C(d− 1− k)C(k) =
1

2

(
2d

d

)
.

We arrive at the following result:

Lemma 3.3 Let g be the free Lie algebra over ordered trees, and let gj be its
homogeneous component of grade j. Then

dim(gj) =
1

2n

∑

d|n
µ(n/d)

(
2d

d

)
.

For j = 1, 2, 3, . . . these numbers are 1, 1, 3, 8, 25, 75, 245, 800, 2700, 9225,
32065, . . .. This integer sequence occurs in a number of contexts, it is the
number of order conditions for Crouch-Grossman-Owren-Marthinsen methods,
it counts the number of balanced binary Lyndon words of length 2n, and there
are even interesting connections to knot theory [2], and renormalization theory.
(See also sequence A022553 in [11]).

In the final part of this paper we will explicitly establish the connection be-
tween fla(OT) and balanced binary Lyndon words.

4 Lyndon words

Let A = {0, 1} denote the binary alphabet. Let A+ be the collection of all
non-empty words over A. For a word w ∈ A+ we define the partial degree |w|`
with respect to a letter ` ∈ A the number of occurrences of ` in w, while the
balance is given as

bal(w) = |w|1 − |w|0 .

A binary word is balanced if bal(w) = 0.

Definition 4.1 Let < denote the following ordering of A+.

• If bal(v) < bal(w) then v < w.
• If bal(v) = bal(w) then v < w if and only if v comes before w in lexico-

graphical order (the order which the words appear in a dictionary).

Definition 4.2 A Lyndon word w ∈ A+ is a word

w = `1`2 . . . `r, `i ∈ A,
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which is smaller than all its non-trivial right factors, i.e.

w < `j`j+1 . . . `r for all 1 < j ≤ r.

The set of all Lyndon words is denoted L(A).

A balanced word w ∈ A+ is called non-negative if all the non-trivial right
factors have non-negative balance, and it is called positive if they all have a
positive balance. Note that due to our ordering of A+, any Lyndon word is
non-negative, and that every positive balanced word is a Lyndon word.

Lemma 4.3 Every non-negative balanced word w has a unique factorization
in positive balanced words. We call this the positive factorization

pfac(w) = w1w2 · · ·wk

where wi are positive.

Proof. Let w = `1`2 . . . `r where `i ∈ A. We obtain the positive factorization
by splitting w at all the points j where bal(`j`j+1 . . . `r) = 0. 2

Lemma 4.4 There is a 1–1 correspondence between positive balanced binary
words and trees τ ∈ OT.

Proof. First we define the map bin : OT → A+ recursively as

bin(•) = 01

bin((τ1, . . . , τk)) = 0 bin(τ1) · · · bin(τk)1 (6)

By recursion we see that bal(bin(τ)) = 0 and that all non-trivial right factors
of bin(τ) are non-balanced, hence w = bin(τ) is always a positive balanced
binary Lyndon word.

Now let w be a positive balanced word. We must have w = 0w̃1 where w̃ is
non-negative. Let w1w2 · · ·wk = pfac(w̃). We find that every positive w can
be written w = 0w1w2 · · ·wk1 where w1, . . . , wk are positive and k ≥ 0. Define
the map tree() taking a positive w to a tree as follows:

tree(w) =





• if w = 01

(tree(w1), . . . , tree(wk)) if w = 0w1 · · ·wk1, for positive wi.
(7)

It follows from recursion that tree(bin(τ)) = τ for all τ ∈ OT. 2
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Consider OT as an alphabet. From the ordering of binary words defined above,
we induce an ordering of OT. We extend this to the lexicographical ordering
of all words over OT.

Lemma 4.5 Let
τ = τ1τ2 · · · τk , τi ∈ OT

be a word over OT. Then τ is a Lyndon word with respect to lexicographical
ordering of OT if and only if the word

w = bin(τ1) bin(τ2) · · · bin(τk)

is a balanced binary Lyndon word with respect to the ordering of Definition 4.1.

Proof. Consider the word w = bin(τ1) bin(τ2) · · · bin(τk) where τi ∈ OT. Since
every bin(τi) is a positive balanced word, w is a nonnegative balanced word,
and by Lemma 4.3 it is represented in its unique positive factorization. Thus
w is a Lyndon word with respect to the ordering of Definition 4.1 if and
only if it is lexicographically less than all its nontrivial balanced positive right
factors, or equivalently τ = τ1τ2 · · · τk is a Lyndon word with respect to the
lexicographical ordering of OT. 2

We have established a natural 1–1 correspondence between balanced binary
Lyndon words and Lyndon words over the (infinite) alphabet OT. The con-
struction of a basis for the free Lie algebra fla(OT) now follows from the
standard theory of Hall bases, to be reviewed in the next section.

5 Hall bases for free Lie algebras

Let A = OT be the alphabet of ordered trees and let A+ be all non-empty
words with lexicographical ordering. It is well known that the set of all Lyndon
words in A+ induces a basis for the free Lie algebra generated by A. In order
to explain this result we need some definitions. For a thorough exposition of
the general theory, see [20].

Recall that the free magma, M(A), consists of A and all binary bracketed
expressions in A. Formally we say that M(A) consists of all well-formed ex-
pressions, where

(1) Any letter τ ∈ A is a well formed expression.
(2) If τ1 and τ2 are well formed expressions, then [τ1, τ2] is well formed.

The foilage is the mapping f : M(A) → A+ obtained by removing all the
brackets,
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f(a) = a for all a ∈ A

f([τ1, τ2]) = f(τ1)f(τ2) for all τ1, τ2 ∈ M(A).

The lexicographical ordering of A+ induces an ordering of M(A). For m1,m2 ∈
M(A) we say that m1 < m2 if f(m1) < f(m2).

The free Lie algebra over the alphabet A and the field R is a vector space g

obtained by taking all (finite) R-linear combinations of elements in M(A) and
extending the bracket [·, ·] to g by the following rules:

(1) Skew symmetry: [V, W ] = −[W,V ] for all V, W ∈ g.
(2) Bilinearity: [V,W + Z] = [V,W ] + [V, Z] and [V, rW ] = r[V, W ] for all

V,W,Z ∈ g, r ∈ R.
(3) Jacobi identity: [V, [W,Z]] + [W, [Z, V ]] + [Z, [V, W ]] = 0 for all V, W,Z ∈

g.

Obviously M(A) is spanning g. To construct a basis we must systematically
remove terms which are linearly dependent. This is achieved by a Hall basis,
defined as a subset H ⊂ M(A) according to

(1) A ⊂ H.
(2) For any m = [m1,m2] ∈ H\A one has m2 ∈ H and

m < m2.

(3) For any m = [m1,m2] ∈ M(A)\A, one has m ∈ H if and only if

m1,m2 ∈ H and m1 < m2

and

either m1 ∈ A or m1 = [m3,m4] and m4 ≥ m2.

Elements of H are called Hall elements. In this paper we have based the
construction on the lexicographical ordering of M(A). Different orderings give
rise to different Hall bases. Thus, e.g. the Hall basis defined in [18] is obtained
from this definition, using a different ordering of M(A).

To obtain a basis of g from the Lyndon words in A+, we must turn Lyndon
words into Hall elements, by inserting brackets in the right places. We seek a
bracketing map b : L(A) → M(A) such that f(b(`)) = ` and b(L(A)) = H ⊂
M(A) is a Hall basis.

A sequence of Hall elements {h1, h2, . . . , hn} ⊂ H ⊂ M(A) is called a standard
Hall sequence if for any i, either hi is a letter, or hi = [h′i, h

′′
i ] where h′′i ≥

hi1 , . . . , hn. The sequence {h1, h2, . . . , hn} is decreasing if hi ≥ hi+1 for i =
1 . . . n− 1, otherwise let hj be the rightmost element such that hj < hj+1. We
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define a mapping between standard sequences

λ({h1, h2, . . . , hn}) =




{h1, h2, . . . , hn} if the sequence is decreasing

{h1, h2, . . . , [hj, hj+1], . . . , hn} otherwise.
(8)

By repeatedly applying the map λ, the result becomes a decreasing standard
sequence of Hall words. Let λ∗ denote iterated application of λ until a decreas-
ing sequence is obtained. Note that a sequence of letters is a standard Hall
sequence. We define the standard bracketing of a word w = `1`2 . . . `n, where
`i ∈ A are letters, as the decreasing standard sequence

b(w) = λ∗({`1, . . . , `n}). (9)

The sequence b(w) = {h1, . . . , hr} can be uniquely characterized as the de-
creasing sequence of Hall elements {h1, . . . , hr} such that

w = f(h1)f(h2) · · · f(hr).

It can be shown that if w ∈ L(A) is a Lyndon word, then b(w) is containing
a single Hall element. Furthermore, the image under b of L(A) is a Hall basis
for the free Lie algebra over A (see [20]). Thus we arrive at the main theorem
of this paper.

Theorem 5.1 There is a natural 1–1 correspondence between the set of bal-
anced binary Lyndon words and a Hall basis H for the free Lie algebra fla(OT).
The correspondence is given by the following algorithm, taking a balanced bi-
nary Lyndon word w ∈ {0, 1}+ to a basis element h ∈ H:

(1) Compute the positive factorization of w

w1w2 · · ·wk = pfac(w).

(2) Compute the standard bracketing of {w1, . . . , wk}
h = b(w1, w2, . . . , wk).

This theorem simplifies the construction of software for Lie-Butcher series,
since the set of all balanced binary Lyndon words is very easy to generate and
represent. In Figure 1 we see the the first terms in fla(OT), sorted according
to the grade.

6 Generating balanced Lyndon words

There are numerous approaches for generating Lyndon words, say of length
≤ n, over an alphabet A. One option is to use the algorithm of Duval [7] (also
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described in [20]). Given any Lyndon word of length≤ n, this algorithm always
finds the next word w.r.t. lexicographical ordering in the desired subset of
Lyndon words. This algorithm can be modified to the set of balanced Lyndon
words, but it seems more efficient to make use of the following elimination
property: Let z denote the last letter in the alphabet A. Then

L(A) = L(A′) ∪ {z} (10)

where A′ = (A\ z)z∗, and z∗ = z+∪{∅}. This property is used in [1] where an
algorithm for computing all Lyndon words of a given multidegree is presented.

We follow the lines of Section 4. First we generate the positive balanced words
of degree ≤ n (where the degree of a word w is |w|1), and then generate all
Lyndon words of degree ≤ n over the alphabet consisting of positive balanced
words of degree ≤ n. The positive balanced words are easily obtained by the
following recursion step that starts with the word w = 1:

(1) if w is balanced, then stop and add w to the list of balanced words.
(2) if w has degree n, then repeat the step for 0w.
(3) otherwise, repeat the step for 0w and 1w.

Let Ln(A) denote the Lyndon words of degree ≤ n over the alphabet A. The
property (10) then applies:

Ln(A) = Ln(A′) ∪ {z} (11)

where in A′, we only need to consider the words of degree ≤ n. Using this
property repeatedly, we can find all Lyndon words, but we can only eliminate
one generator per step. To reduce the number of steps, we make the following
simple observation: Let w ∈ A. If the sum of the degree of w and the smallest
degree over all words in A is greater than n, then

Ln(A) = Ln(A \ w) ∪ {w} (12)

Example 6.1 Let a and b denote the positive balanced words 0011 and 01
respectively, and suppose we wish to find all Lyndon words of degree ≤ 5 over
A = {a, b}. Using the above two properties, we get:

L5(A) = L5({a, ab, ab2, ab3}) ∪ {b}
= L5({a, ab}) ∪ {ab2, ab3, b}
= L5({a, a2b}) ∪ {ab, ab2, ab3, b}
= L5({a}) ∪ {a2b, ab, ab2, ab3, b}
= {a, a2b, ab, ab2, ab3, b}

The approach in this example can easily be applied to construct fast algorithms
for generating all binary balanced Lyndon words of a given maximal degree.
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We note also that this procedure implicitly gives the standard bracketing of
the words involved. For an alphabet A with largest letter z, we have (analogous
to (10)):

H(fla(A)) = H(fla({(−ad z)
k(a) | k ≥ 0, a ∈ A \ z})) ∪ {z}

Thus in Example 6.1, the bracketings of the words in L5(A) \ b are generated
by the elements a, [a, b], [[a, b], b] and [[[a, b], b], b], and so on. We have used
here the equivalence of Hall sets and Lazard sets, and refer to [20] for further
reading.
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