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Abstract
In this note we investigate arithmetic properties of the Motzkin
numbers. We prove that among all fractional sequences of Motzkin
type, the only integral ones are integral multiples of the sequence of
Motzkin numbers; in fact, we prove a stronger result. We show that
the sequence of Motzkin numbers is nonperiodic modulo any prime.

Introduction

Let n be any positive integer. The n-th Motzkin number, denoted from here
on by m,, counts the number of lattice paths in the cartesian plane starting
at (0, 0), ending at (n, 0), and which use line steps equal to either (1, 0)
(level step), or to (1, 1) (up step), or to (1, — 1) (down step), and which
never pass below the z-axis. Clearly, m; = 1, my = 2, and it is known that
the three-term recurrence

(n4+2)m, = 2n+ 1)my_1 + 3(n — 1)my,_o

holds for all n > 3. It is convenient to set mgy := 1, and the recurrence
is then valid for all n > 2. It is also known (and easy to derive from the
combinatorial interpretation of m,,) that the generating function m = m(z) =
Ynsompx” =1+ + 222 + - - - satisfies the equation

?’m’+ (z—1)m+1=0 (1)

and therefore that
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Information and references on Motzkin numbers can be found in Bernhart
[1], Donaghey and Shapiro [3], EIS [7], and Stanley [8]. The sequence of
Motzkin numbers begins

(Mn)nso = (1,1,2,4,9,21,51,127, 323, 835, 2188, 5798, 15511, . . )

and is listed as sequence A001006 in EIS [7].

From a number theoretical perspective, it is natural to pose the following
question. Let (M,),>o be any sequence of rational numbers starting with
two initial values My and M; and such that the recurrence

(n+2)M, = (2n+ 1)My_; + 3(n — 1) M,,_, (3)

holds for all n > 2. What are the odds that all the numbers M, which arise
in this way are integers? That is, what are the odds that with the integers
M, 1 and M, already constructed, the linear combination (2n+1)M,,_; +
3(n — 1) M, 5 is always a multiple of n + 27 If My = M; = 1 then we know,
apriorically, that M, is always a positive integer as being the cardinality of
a finite set, but what about if we start with values My # M;?

From now on, we use the notation

M (s A) = (M (1, A))nz0 = (Mn)n>o

for any sequence of rational numbers which satisfies recurrence (3) for all
n > 2 and My = u, My = X\. We call such sequences M (u,\) Motzkin-
type sequences. So m, = M,(1,1) for every n > 0. For any integer k
we write P(k) for the largest prime factor of k£ with the convention that
P(0) = P(£1) = 1.

We have the following result.

Theorem 1.

Let M(p, A) = (My)n>0 be any Motzkin-type sequence of rational numbers
with My = p # A = M;. For any n write M,, = a,, /b, where a, and b, are
coprime integers with b, > 1. Then limsup,,_, ., P(b,) = cc.

In particular, the only Motzkin-type sequences of integers are the integral
multiples of the sequence (my),>0, i.€., the sequences M (a, a) where a is an
integer.



Let T > 1 be any integer and let (u,),>0 be any sequence of integers. We say
that (up)n>0 is eventually periodic modulo T if there exists positive integers
no and n; such that the congruence u, = un.,, (mod T) is satisfied for all
n > ng.

Theorem 2.

For any prime number p, the Motzkin sequence M(1,1) = (my)n>0 s not
eventually periodic modulo p.

The cases p = 2 and p > 2 are in the proof handled in different ways. Inter-
estingly, (my)n>0 modulo 2 is related to the famous Thue-Morse sequence
(we discuss this relation in the concluding comments).

The Proofs

The Proof of Theorem 1. We start by noticing that to prove the assertion
of Theorem 1 it suffices to prove:

There exist rational numbers o # 8 such that the sequence M («, ) contains
rational numbers whose denominators are divisible by arbitrarily large primes.

Indeed, if M (u, A) is any Motzkin-type sequence with p # A, then

M(p, N) = =08 - M(1,1) + £5 - M(a, ).
Since M(1,1) is integral and "ﬁ # 0, we conclude that also the denominators
in M(u, \) are divisible by arbitrarily large primes.

Now we find such « and 8. For a power series F(z) = ag + ayz + - - - and
an integer n > 0 we denote by [2"]F the coefficient a, of 2™. Let (M,)n>0
be a Motzkin-type sequence and M = M(z) = ", Mp2"2 be its modified
generating function. It is easily checked that the relation (3) for n > 2 is
equivalent to

[z"] (1 — 22 — 32*)M' + (32 + 1)M =0 for n > 2.

Denoting g = g(z) = 1 — 2z — 32? and completing M(z) to S = S(z) =
a + bz + M(z), we have for every a and b the relation

1
95" = 54'S = (a+b) + (2My + 3a - b)a + (3M; — 3Mo)a”.



We want to select a, b, My, and M; so that S(0) = 0 and the right hand side
of the last identity equals g(x). This gives a simple system of linear equations
whose solution is

(a, b, My, My) = (0, 1, —1/2, —3/2).

We show that a = M, = —% and g = M; = —% have the stated property;
the sequence begins

M(—%,—%):(—l _%’_%’ 99 54 _ 801 _ 17953 _ 43011 _ 10035 )

27 T 507 350

72007 507 350 7280 0 280 28 ")
With this choice the differential equation for S becomes

1
95' =595 =g

and can be rewritten as
d(S)_ 1
r\Va) ~ Vi
The solution (in the ring of formal power series) is

S =vi- [ %

where the formal integral has constant term 0 because S(0) = 0. Expanding

1 1
=V1-2x—32%= cpx” and — = = d,z",
V9 nZZO V9 V1—2x— 322 nzzo

we get

S(2) = (X ena) - (X tam).

n>0 n>1 T

Since [z™]S = M,,_o, we have for m > 2 the formula

m—1 m—1
Cd,,1 d,1 Cd,,1
m=2 n—o M —nNn m +n:1 m-—-n ()

From (2) we have y/g(z) =z — 1+ 22%-m(z) = -1 —x + - -- and thus all
cn are integers. This implies that also all d,,, as coefficients in the reciprocal
series, are integers.



We shall show that if m = p > 3 is a prime number, then d,_; is not a
multiple of p. Assume that we have proved this. Then d”’%l is in lowest terms

and its denominator is a multiple of p. Clearly, Z,’;ll c"i"_;;‘l brought to
lowest terms is a rational number whose denominator is not divisible by p.
By (4), the sum M,_5 is a rational number whose denominator is a multiple

of p. Since p > 3 is an arbitrary prime, Theorem 1 follows.

It remains to prove that d,_; is not a multiple of p for any prime p > 3. We
have

dy = [2"](1 -2z —32%) 72 = [2"](1 + ) Y?(1 — 3z) /2

e
_ (—4?" g(_?’)i (2;) <2n - 21')' )

n—1

For any prime p > 2 and 2 =0,1,...,p — 1 it is easy to see that

21 -1
(;) Z 0 mod p if and only if 7 < pT

Thus in (5) for n = p — 1 all products of the two binomial coefficients are
divisible by p except for the single product corresponding to i = (p — 1)/2.
Indeed, dp_1 # 0 mod p for any prime p > 3. Theorem 1 is therefore proved.

Remark. We leave for the interested reader to check as an exercise that we
proved more than what is asserted in Theorem 1: For every Motzkin-type
sequence M (\, ) with p # A there is an ng such that for every prime p > ny
the fraction M,_»(A, 1) has denominator divisible by p. In fact, a quick look
at formula (3) reveals that if one wants to create a “large” prime in the
denominator of M, then probably the best “guess” is to take n+ 2 (i.e., the
coefficient of M,, in formula (3)) to be a prime number. Thus, all we have
showed is that this “guess” is indeed correct for all sufficiently large prime
numbers p.

The Proof of Theorem 2. We have to distinguish two cases depending on
whether p is odd or even.

1. p > 2. In the ring of formal power series with integral coefficients we call
two power series f and g to be congruent modulo p if f — g is a power series
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all whose coefficients are multiples of p. Assume now that p > 2 and that
there exist positive integers ng and n; such that m,, = m,,, (mod p) for all
n > ng. Using (2) and the periodicity assumption we have, modulo p,

V1—-2x—322 = 1—$—22mn:ﬂ”+2

n>0
no—1 no+ni—1
= 1-2-2) mua"? -2 > mua"t?. ) g™,
n=0 n=no n>0

Multiplying both sides of the above congruence with 1 — 2™ we get
(1 —2™)V1—2x — 322 = P(z) (mod p), (6)

where P(z) is the polynomial

no—1 no+ni—1
lT—2")(1-2-2> mpz"?) -2 > mua"t.
n=0 n=no

Squaring both sides of (6) we get
(1 —2")%(1 — 2z — 32%) = P(x)? (mod p).

This congruence shows that in F,[z], where F, is the finite field with p
elements, we have

(1—2™)*(1 — 2z — 32°) = P(z)>.

Since F,[z] is an UFD, it follows that 1 — 2™ divides P(z). Writing P(z) =
(1—2™)R(x) with R € F,[z], we get that 1 —2z—3z% = R(x)?. If p = 3, then
1 — 22 — 32%> = 1+ z cannot be the square of a polynomial in F3[z] (because
it has odd degree). If p > 3, then 1 — 2z — 322 is a polynomial of degree 2
whose discriminant 16 = 2* is not a multiple of p. Thus 1 — 2z — 322 has
two distinct roots (in the algebraic closure of F,,) and cannot be the square
of some other polynomial either. Theorem 2 is therefore proved in the case
p > 2.

2. p=2. It folows from (1) that for n > 0 we have

n—2
My = My + Y MiMn—g—i.
=0
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Modulo p = 2 this gives

— Mp—1 for odd n
"7 mpo1+ My for even n.

It suffices to look only on the parity of ms, and hence for n > 0 we define
k, € {0,1} to be the parity of mg,. Then we have in Fy the recurrence
ko = 1 and, for n > 0,
ki = kn1 + k|(n-1)2]- (7)
Thus
(kn)nZO =(1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,1,1,0,...). (8)
For integers n > 1 we denote as(n) the maximum integer m > 0 such that
2™ divides n. From (7) it follows by an easy induction that for every n > 0

kn =1+ as(n+1) (mod 2). 9)

Hence m,, is eventually periodic modulo 2 if and only if as(n) is. But it
is easy to prove that as(n) is not eventually periodic modulo 2. Suppose,
for the contradiction, that there are positive integers ng and n; such that
as(n 4+ n1) = as(n) (mod 2) for every n > ng. Let ny = 2% with b odd.
We take an integer c such that ¢ > a and 2° > ny. For every n > 0 we
should have ¢ = (2°) = @(2° + nny) (mod 2). But ay(2°+ 2 %n,) =
9(2(1+b?)) = c+1 because 1+b? = 2 (mod 4). Thus m,, is not eventually
periodic modulo 2 and the proof of Theorem 2 is complete.

Comments

One can prove that the binary sequence K = (k)n>0, see (8), can be gen-
erated instead of (7) or (9) more effectively by starting with the one-term
sequence 1 and then repeatedly replacing in one step all 0’s and all 1’s ac-
cording to the rules 1 — 10 and 0 — 11. We get

1

10

1011

10111010
1011101010111011



Hence K is closely related to the classical Thue-Morse sequence T = (t,)n>0 =
(1,0,0,1,0,1,1,0,...) that is generated from 1 by the rules 1 +— 10 and
0 +— 01. It is known (see Lothaire [5] and Berstel [2] for more information
on T') that T contains no three consecutive repetitions of any interval. In
particular, 7" is very far from being eventually periodic. K has similar prop-
erties — we can prove that K contains no four consecutive repetitions of any
interval.

The results from the present note extend easily to other sequences which
naturally arise in enumerative combinatorics. One of such sequences is the
Schroder sequence (s,)p>1 (A001003 of EIS [7]). For n > 1, the number s,
counts the number of lattice paths in the cartesian plane starting at (0, 0),
ending at (2n, 0), and which use line steps equal to either (2, 0) (level step),
or to (1, 1) (up step), or to (1, — 1) (down step), and which never pass
below the z-axis. It is well-known ([8]) that the Schréder numbers satisfy
s1 =89 =1 and ns, = 3(2n — 3)s,_1 — (n — 3)s,,_2 for all n > 3 and that

stn_1—3m—\/1—6m+a¢2
S 2x '

n>1

We can prove in a way similar to the proof of Theorem 2 that (sp)n>1 is
not eventually periodic modulo p for any prime number p. An argument
similar to the one used in the proof of Theorem 1 can be used to yield that
if S := (Sp)n>1 is any sequence of rational numbers satisfying the Schréder
recurrence nS, = 3(2n — 3)S,_1 — (n — 3)S,_9 for all n > 3 but with S; #
Ss, then the sequence S contains rational numbers whose denominators are
divisible by arbitrarily large primes. This suggests that an analysis of the
arithmetical properties of sequences of rational numbers (Uy,),>o which obey
a recurrence relation of the type f(n)U, = g(n)U,—1+h(n)U,_s for all n > 2,
where f, g, and h are linear (or higher degree) polynomials with rational
coefficients in the variable n, might be worthwhile, but we shall treat this
problem with a different occasion.
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