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Abstract

We let A(n) equal the number of n× n alternating sign matrices and we denote the mth Jacobsthal

number by Jm. From the work of a variety of sources, we know that

A(n) =

n−1∏
`=0

(3` + 1)!

(n + `)!
.

The values of A(n) are, in general, highly composite. The primary goal of this paper is to prove that

A(n) is odd if and only if n is a Jacobsthal number, thus showing that A(n) is odd infinitely often.

1 Introduction

In this paper we relate two seemingly unrelated areas of mathematics: alternating sign matrices and Jacob-
sthal numbers. We begin with a brief discussion of alternating sign matrices.

An n×n alternating sign matrix is a n×n matrix of 1s, 0s, and −1s satisfying two very special properties:

• the sum of the entries of each row and column must be 1, and

• the signs of the nonzero entries in every row and column must alternate.

Indeed, these alternating sign matrices include the permutation matrices, in which each row and column
contains only one nonzero entry, a 1.

As an example, we exhibit here the seven 3× 3 alternating sign matrices.(
1 0 0
0 1 0
0 0 1

)
,

(
1 0 0
0 0 1
0 1 0

)
,

(
0 0 1
1 0 0
0 1 0

)
,

(
0 0 1
0 1 0
1 0 0

)
,

(
0 1 0
1 0 0
0 0 1

)
,

(
0 1 0
0 0 1
1 0 0

)
,

(
0 1 0
1 −1 1
0 1 0

)

Throughout this paper, we let A(n) denote the number of n × n alternating sign matrices. The de-
termination of a closed formula for A(n) was undertaken by a variety of mathematicians over the last 25
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years or so. David Bressoud’s recent text [1] chronicles these endeavors and discusses in a very readable way
the underlying mathematics. The interested reader is encouraged to peruse this text. The reader is also
encouraged to see the recent survey article [2] by Bressoud and Propp.

As noted in [1], the formula for A(n) is given by the following:

A(n) =
n−1∏
`=0

(3` + 1)!
(n + `)!

(1)

It is clear from this formula that, for most values of n, A(n) will be highly composite. Indeed, the
presence of factorials in the numerator whose input values are much larger than those in the denominator
of the formula guarantees this phenomenon.

At this point, we display a small table of values for A(n). Note the high degree of compositeness about
which we alluded above.

n A(n) Prime Factorization of A(n)
1 1 1
2 2 2
3 7 7
4 42 2 · 3 · 7
5 429 3 · 11 · 13
6 7436 22 · 11 · 132

7 218348 22 · 132 · 17 · 19
8 10850216 23 · 13 · 172 · 192

9 911835460 22 · 5 · 172 · 193 · 23
10 129534272700 22 · 3 · 52 · 7 · 17 · 193 · 232

11 31095744852375 32 · 53 · 7 · 192 · 233 · 29 · 31
12 12611311859677500 22 · 33 · 54 · 19 · 233 · 292 · 312

13 8639383518297652500 22 · 35 · 54 · 232 · 293 · 313 · 37
14 9995541355448167482000 24 · 35 · 53 · 23 · 294 · 314 · 372

15 19529076234661277104897200 24 · 33 · 52 · 294 · 315 · 373 · 41 · 43
16 64427185703425689356896743840 25 · 32 · 5 · 11 · 293 · 315 · 374 · 412 · 432

17 358869201916137601447486156417296 24 · 3 · 72 · 11 · 292 · 314 · 375 · 413 · 433 · 47
18 3374860639258750562269514491522925456 24 · 73 · 13 · 29 · 313 · 376 · 414 · 434 · 472

19 53580350833984348888878646149709092313244 22 · 73 · 132 · 312 · 376 · 415 · 435 · 473 · 53
20 1436038934715538200913155682637051204376827212 22 · 74 · 132 · 31 · 375 · 416 · 436 · 474 · 532

21 64971294999808427895847904380524143538858551437757 75 · 13 · 374 · 416 · 437 · 475 · 533 · 59 · 61
22 4962007838317808727469503296608693231827094217799731304 23 · 3 · 76 · 373 · 415 · 437 · 476 · 534 · 592 · 612

Table 1: Values for A(n)

These values are found as sequence A005130 in Sloane’s On–Line Encyclopedia of Integer Sequences [8].
Other sequences of values related to alternating sign matrices can be found at [8] as well.

A careful examination of this table reveals something quite interesting. Namely, the first few values of n

for which A(n) is odd are 1, 3, 5, 11, and 21. When we utilize a computer algebra package to evaluate (1),
we find that a longer version of the list above is

1, 3, 5, 11, 21, 43, 85, 171.

These numbers are certainly well–known, often called the Jacobsthal numbers, and are found as sequence
A001045 in Sloane’s On–Line Encyclopedia of Integer Sequences [8]. They are defined by the recurrence

Jn+2 = Jn+1 + 2Jn (2)

with initial values J0 = 1 and J1 = 1. Here Jn denotes the nth Jacobsthal number.
This sequence of numbers has a rich history, especially in view of its relationship to the Fibonacci numbers.

For examples of recent work involving the Jacobsthal numbers, see [3], [4], [5], and [6].
The primary goal of this paper is to prove that if n is a positive integer, then A(n) is odd if and only if

n is a Jacobsthal number.
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2 The Necessary Machinery

In order to show that A(Jm) is odd for each positive integer m, we simply need to show that the number of
factors of 2 in the prime decomposition of A(Jm) is zero.

To accomplish this, we develop formulas for the number of factors of 2 in

N(n) =
n−1∏
`=0

(3` + 1)! and D(n) =
n−1∏
`=0

(n + `)!

respectively. Once we prove that the number of factors of 2 is the same for both N(Jm) and D(Jm) and not
the same for N(n) and D(n) if n is not a Jacobsthal number, we will have our result.

The most classic formula for counting the number of factors of a prime p in N ! is arguably the most
powerful piece of machinery used in this paper. We state it here.

Lemma 2.1. The number of factors of a prime p in N ! is equal to∑
k≥1

⌊
N

pk

⌋
.

Proof. The proof of this result can be found in a variety of elementary number theory books. For example,
see [7, Theorem 2.29].

With Lemma 2.1 in hand, we now see that the number of factors of 2 in N(n) is given by

N#(n) =
n−1∑
`=0

∑
k≥1

⌊
3` + 1

2k

⌋

=
∑
k≥1

n−1∑
`=0

⌊
3` + 1

2k

⌋
=

∑
k≥1

N#
k (n)

where

N#
k (n) =

n−1∑
`=0

⌊
3` + 1

2k

⌋
. (3)

Moreover, the number of factors of 2 in D(n) is given by

D#(n) =
n−1∑
`=0

∑
k≥1

⌊
n + `

2k

⌋

=
∑
k≥1

n−1∑
`=0

⌊
n + `

2k

⌋
=

∑
k≥1

D#
k (n)

where

D#
k (n) =

n−1∑
`=0

⌊
n + `

2k

⌋
. (4)

Formulas (3) and (4) will be explored in great detail below.
Before closing this section of necessary machinery, we quickly develop a closed form formula for the mth

Jacobsthal number Jm. The technique used below is a common one, and can be found in [9].
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Theorem 2.2. The mth Jacobsthal number Jm is given by

Jm =
2m+1 + (−1)m

3
.

Proof. We assume that Jm = αm for some nonzero real number α. Then from (2) we know that

αm+2 = αm + 2αm.

Dividing both sides of this equation by αm yields:

α2 = α + 2

α2 − α− 2 = 0

(α− 2)(α + 1) = 0

Hence, we know α = 2 or α = −1. At this point, we have Jm = c1(2)m + c2(−1)m for some reals c1 and c2.

We can use the facts that J0 = 1 and J1 = 1 to determine that c1 = 2
3 and c2 = 1

3 . This then implies the
desired result.

3 Formulas for N#
k (n) and D#

k (n)

We now turn our attention to the development of “nice” formulas for N#
k (n) and D#

k (n).

Lemma 3.1. The smallest value of ` for which⌊
3` + 1

2k

⌋
= m,

where m and k are positive integers and k ≥ 2, is
m
3 2k if m ≡ 0 (mod 3)
m−1

3 2k + Jk−1 if m ≡ 1 (mod 3)
m−2

3 2k + Jk if m ≡ 2 (mod 3).

Proof. Suppose m ≡ 0 (mod 3) and ` =
m

3
2k. Then

⌊
3` + 1

2k

⌋
=

⌊
3
(

m
3 2k

)
+ 1

2k

⌋
=
⌊

m2k

2k
+

1
2k

⌋
= m,

and no smaller value of ` yields m since the numerators differ by multiples of three.

If m ≡ 1 (mod 3) and ` =
m− 1

3
2k + Jk−1, then

⌊
3` + 1

2k

⌋
=

⌊
3
(

m−1
3 2k + Jk−1

)
+ 1

2k

⌋

=

 (m− 1)2k + 3
(

2k+(−1)k−1

3

)
+ 1

2k


=

⌊
(m− 1)2k + 2k + (−1)k−1 + 1

2k

⌋
= m, if k ≥ 2,
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and no smaller value of ` yields m.

If m ≡ 2 (mod 3) and ` =
m− 2

3
2k + Jk, then⌊

3` + 1
2k

⌋
=

⌊
3
(

m−2
3 2k + Jk

)
+ 1

2k

⌋

=

 (m− 2)2k + 3
(

2k+1+(−1)k

3

)
+ 1

2k


=

⌊
(m− 2)2k + 2k+1 + (−1)k + 1

2k

⌋
= m,

and no smaller value of ` yields m.

Lemma 3.2. For any positive integer k, Jk−1 + Jk = 2k.

Proof.

Jk−1 + Jk =
2k + (−1)k−1

3
+

2k+1 + (−1)k

3

=
2k + 2k+1 + (−1)k−1 + (−1)k

3

=
2k(1 + 2)

3
= 2k

Lemma 3.3. For any positive integer k,

2k−1∑
v=0

⌊
3v + 1

2k

⌋
= 2k.

Proof. If k = 1, then the sum in the statement of the Lemma is
1∑

v=0

⌊
3v + 1

2

⌋

which is equal to
⌊

1
2

⌋
+
⌊

4
2

⌋
= 2 and we have our result.

If k ≥ 2, then by Lemma 3.1, Jk−1 is the smallest value of v for which
⌊

3v + 1
2k

⌋
= 1 and Jk is the

smallest value of v for which
⌊

3v + 1
2k

⌋
= 2. Thus,

2k−1∑
v=0

⌊
3v + 1

2k

⌋
= 0× Jk−1 + 1× [(Jk − 1)− (Jk−1 − 1)] + 2× [(2k − 1)− (Jk − 1)]

= Jk − Jk−1 + 2(2k − Jk)

= 2k+1 − Jk − Jk−1

= 2k+1 − 2k by Lemma 3.2

= 2k.
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Theorem 3.4. Let n = 2kq + r where q is a nonnegative integer and 0 ≤ r < 2k. Then we have

N#
k (n) =

(
n− r

2k+1

)
(3(n− r)− 2k) + tail(n) (5)

where

tail(n) =

{ 3qr if 0 ≤ r ≤ Jk−1

3qr + (r − Jk−1) if Jk−1 < r ≤ Jk

(3q + 2)r − 2k if Jk < r < 2k.
(6)

Proof. To analyze the sum

N#
k (n) =

n−1∑
`=0

⌊
3` + 1

2k

⌋
we let ` = 2ku + v, where 0 ≤ v < 2k. Then⌊

3` + 1
2k

⌋
=
⌊

3(2ku + v) + 1
2k

⌋
=
⌊

2k(3u)
2k

+
3v + 1

2k

⌋
= 3u +

⌊
3v + 1

2k

⌋
.

Thus,

2kq−1∑
`=0

⌊
3` + 1

2k

⌋
=

q−1∑
u=0

2k−1∑
v=0

(
3u +

⌊
3v + 1

2k

⌋)

=
q−1∑
u=0

(3u)2k +
2k−1∑
v=0

⌊
3v + 1

2k

⌋
=

q−1∑
u=0

((3u)2k + 2k) by Lemma 3.3

= 2k

q−1∑
u=0

(3u + 1)

= 2k(3(0 + 1 + · · ·+ (q − 1)) + q)

= 2k

(
3
(

(q − 1)q
2

)
+ q

)
= 2kq

(
3
(

n− r − 2k

2k+1

)
+ 1
)

= q

(
3(n− r − 2k)

2
+ 2k

)
=

(q

2

)
(3(n− r − 2k) + 2k+1)

=
(

n− r

2k+1

)
(3(n− r)− 2k).

If r = 0, we have our result. If r > 0 and k = 1, then r = 1 and we have one extra term in our sum,
namely, ⌊

3(2q) + 1
2

⌋
= 3q

and again we have our result since r = 1. If r > 0 and k ≥ 2, then by Lemma 3.1, 2kq is the smallest value

of ` for which
⌊

3` + 1
2k

⌋
= 3q, 2kq + Jk−1 is the smallest value of ` for which⌊

3` + 1
2k

⌋
= 3q + 1,
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and 2kq + Jk is the smallest value of ` for which⌊
3` + 1

2k

⌋
= 3q + 2.

Hence,

2kq+r−1∑
`=2kq

⌊
3` + 1

2k

⌋
=

{ 3qr if r ≤ Jk−1

3qJk−1 + (3q + 1)(r − Jk−1) if Jk−1 < r ≤ Jk

3qJk−1 + (3q + 1)(Jk − Jk−1) + (3q + 2)(r − Jk) if Jk < r < 2k.

So, if n = 2kq + r where 0 ≤ r < 2k,

N#
k (n) =

n−1∑
`=0

⌊
3` + 1

2k

⌋

=
2kq−1∑
`=0

⌊
3` + 1

2k

⌋
+

2kq+r−1∑
`=2kq

⌊
3` + 1

2k

⌋

=
(

n− r

2k+1

)
(3(n− r)− 2k) + tail(n),

where

tail(n) =

{ 3qr if r ≤ Jk−1

3qJk−1 + (3q + 1)(r − Jk−1) if Jk−1 < r ≤ Jk

3qJk−1 + (3q + 1)(Jk − Jk−1) + (3q + 2)(r − Jk) if Jk < r < 2k.

The second expression in tail(n) is clearly equal to 3qr + r − Jk−1. For the third expression, we have

3qJk−1 + (3q + 1)(Jk − Jk−1) + (3q + 2)(r − Jk) = 3qr + Jk − Jk−1 + 2r − 2Jk

= (3q + 2)r − 2k by Lemma 3.2.

Theorem 3.5. Let n = 2kq + r where q is a nonnegative integer and 0 ≤ r < 2k. Then we have

D#
k (n) =


(

n− r

2k+1

)
(3(n + r)− 2k) if 0 ≤ r ≤ 2k−1(

n− (2k − r)
2k+1

)
(3(n− r) + 2k+1) if 2k−1 < r < 2k.

(7)

Proof. We begin with the definition

D#
k (n) =

n−1∑
`=0

⌊
n + `

2k

⌋
and rewrite it as

D#
k (n) =

2n−1∑
`=0

⌊
`

2k

⌋
−

n−1∑
`=0

⌊
`

2k

⌋
.

In both sums, ⌊
`

2k

⌋
= s

if 2ks ≤ ` < 2k(s + 1), so if n = 2kq + r, where 0 < r ≤ 2k, we have
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n−1∑
`=0

⌊
`

2k

⌋
= 2k [1 + 2 + · · ·+ q − 1] + qr

= 2k

[
(q − 1)q

2

]
+ qr

= q

(
2k

2
q − 2k

2
+ r

)
= q

(
2k

2

(
n− r

2k

)
− 2k

2
+ r

)
= q

(
n− r − 2k

2
+ r

)
= q

(
n + r − 2k

2

)
.

If 0 < r ≤ 2k−1, then 2n− 1 = 2k(2q) + (2r − 1), which means

2n−1∑
`=0

⌊
`

2k

⌋
= 2k[1 + 2 + · · ·+ (2q − 1)] + (2r − 1 + 1)(2q)

= 2k

(
(2q − 1)(2q)

2

)
+ 2r(2q)

= 2q

(
2k

2

(
2
(

n− r

2k

)
− 1
)

+ 2r

)
= 2q

(
2n− 2r − 2k

2
+ 2r

)
= 2q

(
2n + 2r − 2k

2

)
= q(2n + 2r − 2k).

Hence, in this case,

D#
k (n) =

n−1∑
`=0

⌊
n + `

2k

⌋

=
2n−1∑
`=0

⌊
`

2k

⌋
−

n−1∑
`=0

⌊
`

2k

⌋
= q(2n + 2r − 2k)− q

(
n + r − 2k

2

)
= q

(
4n + 4r − 2k+1 − n− r + 2k

2

)
=

q

2
(3(n + r)− 2k)

=
(

n− r

2k+1

)
(3(n + r)− 2k).

If 2k−1 < r ≤ 2k, say, r = 2k−1 + s where 0 < s ≤ 2k−1, then
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2n− 1 = 2(2kq + r)− 1

= 2k(2q) + 2(2k−1 + s)− 1

= 2k(2q + 1) + 2s− 1.

Thus,

2n−1∑
`=0

⌊
`

2k

⌋
= 2k[1 + 2 + · · ·+ 2q] + (2s− 1 + 1)(2q + 1)

= 2k

(
(2q)(2q + 1)

2

)
+ 2s(2q + 1)

= (2q + 1)

(
2 · 2k

(
n−r
2k

)
2

+ 2s

)
= (2q + 1) (n− r + 2s)

= (2q + 1)(n− r + 2(r − 2k−1))

= (2q + 1)(n + r − 2k).

So, in this case,

D#
k (n) =

n−1∑
`=0

⌊
n + `

2k

⌋

=
2n−1∑
`=0

⌊
`

2k

⌋
−

n−1∑
`=0

⌊
`

2k

⌋
= (2q + 1)(n + r − 2k)− q

(
n + r − 2k

2

)
= (n + r − 2k)

(
2q + 1− q

2

)
= (n + r − 2k)

(
3q

2
+ 1
)

=
(

n + r − 2k

2k+1

)
(3(n− r) + 2k+1).

The alert reader will note that in the statement of the Theorem, we have the cases separated as 0 ≤ r ≤
2k−1 and 2k−1 < r < 2k whereas in the proof, the cases are 0 < r ≤ 2k−1 and 2k−1 < r ≤ 2k. However, both

are equivalent since
n− 0
2k+1

(3(n + 0)− 2k) =
n− (2k − 2k)

2k+1
(3(n− 2k) + 2k+1). Thus, we have our result.

4 A(Jm) is odd

Now that we have closed formulas for N#
k (n) and D#

k (n), we can proceed to prove that A(Jm) is odd for all
Jacobsthal numbers Jm.

Theorem 4.1. For all positive integers m, A(Jm) is odd.

9



Proof. The proof of this theorem simply involves plugging Jm into the formulas (5) and (7) and showing that
N#

k (Jm) = D#
k (Jm) for all k. This implies that N#(Jm) = D#(Jm), which means the number of factors of

2 in A(Jm) is zero. Our theorem is then proven.
We now break the proof into two cases, based on whether or not the parity of k is equal to the parity of

m.

• Case 1: The parity of m equals the parity of k.

In this case we have

2k(Jm−k − 1) + Jk = 2k

(
2m−k+1 + (−1)m−k

3
− 1
)

+
2k+1 + (−1)k

3

=
2m+1 + 2k − 3 · 2k + 2k+1 + (−1)k

3
since (−1)m−k = 1

=
2m+1 + (−1)m

3
since (−1)k = (−1)m

= Jm

Thus, in the notation of Theorems 3.4 and 3.5, q = Jm−k − 1 and r = Jk. We now calculate N#
k (Jm)

and D#
k (Jm) using Theorems 3.4 and 3.5.

N#
k (Jm) =

(
Jm − Jk

2k+1

)(
3(Jm − Jk)− 2k

)
+ 3(Jm−k − 1)Jk + (Jk − Jk−1)

=
1

2k+1

(
2m+1 + (−1)m

3
− 2k+1 + (−1)k

3

)(
3
(

2m+1 + (−1)m

3
− 2k+1 + (−1)k

3

)
− 2k

)
+ (3Jm−k − 1)Jk − 2k by Lemma 3.2

=
1

3 · 2k+1

(
2m+1 − 2k+1

) (
2m+1 − 2k+1 − 2k

)
+
(

3
(

2m−k+1 + (−1)m−k

3

)
− 1
)(

2k+1 + (−1)k

3

)
− 2k since (−1)m = (−1)k

=
1
3
(
22m−k+1 − 2m+2 + 2k+1 − 2m + 2k

)
+

1
3
(2m−k+1(2k+1 + (−1)k)− 3 · 2k) since (−1)m−k = 1

=
1
3
(
22m−k+1 − 2m + (−1)k2m−k+1

)
after much simplification. Next, we calculate D#

k (Jm), recalling that 2k−1 < r = Jk < 2k.

D#
k (Jm) =

(
Jm − 2k + Jk

)
2k+1

(
3(Jm − Jk) + 2k+1

)
=

1
2k+1

(
2m+1 + (−1)m

3
+

2k+1 + (−1)k

3
− 2k

)(
3
(

2m+1 + (−1)m

3
− 2k+1 + (−1)k

3

)
+ 2k+1

)
=

1
3 · 2k+1

(
2m+1 + 2k+1 + 2(−1)k − 3 · 2k

) (
2m+1 − 2k+1 + 2k+1

)
since (−1)m = (−1)k

=
1
3
(
22m−k+1 + 2m+1 + 2m−k+1(−1)k − 3 · 2m

)
=

1
3
(
22m−k+1 − 2m + (−1)k2m−k+1

)
10



after simplification. We see that N#
k (Jm) = D#

k (Jm) in this case.

• Case 2: The parity of m is not equal to the parity of k.

In this case we have

2k(Jm−k) + Jk−1 = 2k

(
2m−k+1 + (−1)m−k

3

)
+

2k + (−1)k−1

3

=
2m+1 − 2k + 2k + (−1)k−1

3
= Jm.

Thus, in the notation of Theorems 3.4 and 3.5, q = Jm−k and r = Jk−1. We now calculate N#
k (Jm)

and D#
k (Jm) using Theorems 3.4 and 3.5.

N#
k (Jm) =

(
Jm − Jk−1

2k+1

)(
3(Jm − Jk−1)− 2k

)
+ 3Jm−kJk−1

=
1

2k+1

(
2m+1 + (−1)m

3
− 2k + (−1)k−1

3

)(
3
(

2m+1 + (−1)m

3
− 2k + (−1)k−1

3

)
− 2k

)
+ 3

(
2m−k+1 + (−1)m−k

3

)(
2k + (−1)k−1

3

)
=

1
3 · 2k+1

(
2m+1 − 2k

) (
2m+1 − 2 · 2k

)
+

1
3
((2m−k+1 − 1)(2k + (−1)k−1)) since (−1)m = (−1)k−1 and (−1)m−k = −1

=
1
3
(22m−k+1 − 2m+1 − 2m + 2k + 2m+1 − 2k + 2m−k+1(−1)k−1 + (−1)k)

=
1
3
(22m−k+1 − 2m + 2m−k+1(−1)k−1 + (−1)k)

after much simplification.

Now we calculate D#
k (Jm), recalling that 0 < r < 2k−1.

D#
k (Jm) =

(Jm − Jk−1)
2k+1

(3(Jm + Jk−1)− 2k)

=
1

2k+1

(
2m+1 + (−1)m

3
− 2k + (−1)k−1

3

)(
3
(

2m+1 + (−1)m

3
+

2k + (−1)k−1

3

)
− 2k

)
=

1
3 · 2k+1

(2m+1 − 2k)(2m+1 + 2(−1)k−1) since (−1)m = (−1)k−1

=
1
3
(22m−k+1 − 2m + 2m−k+1(−1)k−1 + (−1)k)

after simplification. We see that N#
k (Jm) = D#

k (Jm) in this case.

This completes the proof that A(Jm) is odd for all Jacobsthal numbers Jm.
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5 The Converse

We now wish to prove the converse of Theorem 4.1. That is, we want to prove that A(n) is even if n is not
a Jacobsthal number. As a guide in how to proceed, we include a table of values for N#

k (n) and D#
k (n) for

small values of n and k. This table suggests that N#
k (n) ≥ D#

k (n) for all positive integers n and k. It also
suggests that for each value of n, there is at least one value of k for which N#

k (n) is strictly greater than
D#

k (n) except when n is a Jacobsthal number. (To aid in readability, we have boldfaced the rows of values
which begin with a Jacobsthal number.)

n N#
1 (n) D#

1 (n) N#
2 (n) D#

2 (n) N#
3 (n) D#

3 (n) N#
4 (n) D#

4 (n) N#
5 (n) D#

5 (n) N#
6 (n) D#

6 (n)
1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 1 0 0 0 0 0 0 0 0 0
3 5 5 2 2 0 0 0 0 0 0 0 0
4 10 10 4 4 1 0 0 0 0 0 0 0
5 16 16 7 7 2 2 0 0 0 0 0 0
6 24 24 11 10 4 4 1 0 0 0 0 0
7 33 33 15 15 6 6 2 0 0 0 0 0
8 44 44 20 20 8 8 3 0 0 0 0 0
9 56 56 26 26 11 11 4 2 0 0 0 0

10 70 70 33 32 14 14 5 4 0 0 0 0
11 85 85 40 40 17 17 6 6 0 0 0 0
12 102 102 48 48 21 20 8 8 1 0 0 0
13 120 120 57 57 25 25 10 10 2 0 0 0
14 140 140 67 66 30 30 12 12 3 0 0 0
15 161 161 77 77 35 35 14 14 4 0 0 0
16 184 184 88 88 40 40 16 16 5 0 0 0
17 208 208 100 100 46 46 19 19 6 2 0 0
18 234 234 113 112 52 52 22 22 7 4 0 0
19 261 261 126 126 58 58 25 25 8 6 0 0
20 290 290 140 140 65 64 28 28 9 8 0 0
21 320 320 155 155 72 72 31 31 10 10 0 0
22 352 352 171 170 80 80 35 34 12 12 1 0
23 385 385 187 187 88 88 39 37 14 14 2 0
24 420 420 204 204 96 96 43 40 16 16 3 0
25 456 456 222 222 105 105 47 45 18 18 4 0

Table 2: Values for N#
k (n) and D#

k (n)

(We note in passing that the sequence of values given by N#
1 (n) is A001859 in Sloane’s On–Line Encyclopedia

of Integer Sequences [8].)
In order to prove the first assertion (that N#

k (n) ≥ D#
k (n)), we separate the functions defined by the

cases in equations 5 and 7 into individual functions denoted N
#(1)
k (n), N#(2)

k (n), . . . , D#(2)
k (n). That is,

N
#(1)
k (n) :=

(
n− r

2k+1

)
(3(n− r)− 2k) + 3qr

N
#(2)
k (n) :=

(
n− r

2k+1

)
(3(n− r)− 2k) + 3qr + (r − Jk−1)

N
#(3)
k (n) :=

(
n− r

2k+1

)
(3(n− r)− 2k) + (3q + 2)r − 2k

D
#(1)
k (n) :=

(
n− r

2k+1

)
(3(n + r)− 2k)

D
#(2)
k (n) :=

(
n− (2k − r)

2k+1

)
(3(n− r) + 2k+1)

For a given value of n, N#
k (n) will equal N

#(i)
k (n) for some i ∈ {1, 2, 3} and D#

k (n) will be D
#(j)
k (n) for

some j ∈ {1, 2} depending on the value of r. We should remember that not all combinations of i and j are
possible (for example, there is no value of n such that i = 1 and j = 2). In Lemmas 5.1 through 5.4, we
show that N

#(i)
k (n) ≥ D

#(j)
k (n) for all possible combinations of i and j (that correspond to some integer n)

which implies that N#
k (n) ≥ D#

k (n) for all positive integers n.
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Lemma 5.1. For all integers n and k, N
#(1)
k (n) = D

#(1)
k (n).

Proof. We first note that, in the notation of Theorem 3.4,
n− r

2k+1
=

2kq

2k+1
=

q

2
.

Then,

N
#(1)
k (n) =

(
n− r

2k+1

)
(3(n− r)− 2k) + 3qr

=
(

n− r

2k+1

)(
3(n− r)− 2k + 3qr

(
2
q

))
since

n− r

2k+1
=

q

2

=
(

n− r

2k+1

)
(3n− 3r − 2k + 6r)

=
(

n− r

2k+1

)
(3n + 3r − 2k)

=
(

n− r

2k+1

)
(3(n + r)− 2k)

= D
#(1)
k (n).

Lemma 5.2. For all integers k and all integers n such that r > Jk−1 (in the notation of Theorem 3.4),

N
#(2)
k (n) ≥ D

#(1)
k (n).

Proof.

N
#(2)
k (n) =

(
n− r

2k+1

)
(3(n− r)− 2k) + 3qr + (r − Jk−1)

>

(
n− r

2k+1

)
(3(n− r)− 2k) + 3qr since r > Jk−1

= N
#(1)
k (n)

= D
#(1)
k (n) by Lemma 5.1.

This proves our result.

Lemma 5.3. For all integers k and all integers n such that r ≤ Jk (in the notation of Theorem 3.4),

N
#(2)
k (n) ≥ D

#(2)
k (n).

Proof. We see that r ≤ Jk = 2k − Jk−1 by Lemma 3.2. Thus, 2kq + r ≤ 2k(q + 1) − Jk−1. This implies
n ≤ 2k(q + 1)− Jk−1, so 2n− 2k(q + 1) ≤ n− Jk−1. Hence,

N
#(2)
k (n) =

(
n− r

2k+1

)
(3(n− r)− 2k) + 3qr + (r − Jk−1)

=
q

2
(3(2kq)− 2k) + 3q(n− 2kq) + n− 2kq − Jk−1

= 3(2k−1)q2 − 2k−1q + 3qn− 3(2k)q2 + n− 2kq − Jk−1

= q2(−3(2k−1)) + q(−3(2k−1) + 3n) + n− Jk−1

≥ q2(−3(2k−1)) + q(−3(2k−1) + 3n) + 2n− 2k(q + 1) by the above argument
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= 3qn− 3(2k−1)q − 3(2k−1)q2 + 2n− 2k − 2kq

=
2n− 2k − 2kq

2k+1
(3(2kq) + 2k+1)

= D
#(2)
k (n).

Lemma 5.4. For all positive integers n and k, N
#(3)
k (n) = D

#(2)
k (n).

Proof.

N
#(3)
k (n) =

(
n− r

2k+1

)
(3(n− r)− 2k) + (3q + 2)r − 2k

=
(q

2

)
(3(2kq)− 2k) + 3q(n− 2kq) + 2(n− 2kq)− 2k

= 3(2k−1)q2 − 2k−1q + 3qn− 3(2kq2) + 2n− 2k+1q − 2k

= q2(−3(2k−1)) + q(3n− 5(2k−1)) + 2n− 2k

= q2(−3(2k−1)) + q(3n− 3(2k−1)− 2k) + 2n− 2k

= 3qn− 3(2k−1)q − 3(2k−1)q2 + 2n− 2k − 2kq

=
n− 2k + n− 2kq

2k + 1
(3(2kq) + 2k+1)

= D
#(2)
k (n).

Remark 5.5. To summarize, Lemmas 5.1 through 5.4 tell us that for any positive integer n,

N#
k (n) ≥ D#

k (n).

For Propositions 5.6 through 5.9 we make the assumption that J` < n < J`+1 for some positive integer `.

Proposition 5.6. For ` and n, as given above, N#
`+1(n) = n− J`.

Proof. By Lemma 3.1,
n−1∑
i=0

⌊
3i + 1
2`+1

⌋
= 0× (J`) + 1× ((n− 1)− (J` − 1))

= n− J`.

Proposition 5.7. D#
k (n) = 0 if n < 2k−1. In particular, D#

`+1(n) = 0 if n < 2`.

Proof. If n < 2k then, in the notation of Theorem 3.5, n = r and q = 0, so by Theorem 3.5, D#
k (n) = 0.

Proposition 5.8. D#
`+1(n) = 2(n− 2`) if 2` ≤ n < J`+1.

Proof. If 2` ≤ n < J`+1 then, in the notation of Theorem 3.5, q = 0 and r = n. Since n ≥ 2`, we are in the
second case of Theorem 3.5 so

D#
`+1(n) =

n− 2`+1 + n

2`+2
(0 + 2`+2)

= 2n− 2`+1

= 2(n− 2`).
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Proposition 5.9. For n and ` as given above, 2(n− 2`) < n− J`.

Proof. We begin by showing that J`+1 − 2` = 2` − J`. We have,

J`+1 − 2` =
2`+2 + (−1)`+1

3
− 2`

=
4 · 2` − 3 · 2` − (−1)`

3

=
3 · 2` − 2 · 2` − (−1)`

3

= 2` − 2`+1 + (−1)`

3
= 2` − J`,

and hence,

2(n− 2`) = n− 2` + n− 2`

< n− 2` + J`+1 − 2`

= n− 2` + 2` − J` from the above argument

= n− J`

so we have our result.

We are now ready to prove our Theorem.

Theorem 5.10. A(n) is even if n is not a Jacobsthal number.

Proof. Our goal is to show that there is some k such that N#
k (n) is strictly greater than D#

k (n) since, by
Remark 5.5, we have shown that N#

k (n) ≥ D#
k (n) for all positive integers k and n.

Given n, not a Jacobsthal number, there exists a positive integer ` such that J` < n < J`+1. Then
N#

`+1(n) = n−J` by Proposition 5.6, and since n > J`, N#
`+1(n) > 0. On the other hand, by Proposition 5.7,

if n < 2`, then D#
`+1(n) = 0. If 2` ≤ n < J`+1, then by Proposition 5.8, D#

`+1(n) = 2(n − 2`) which is
strictly less than n−J` = N#

`+1(n) by Proposition 5.9. Hence, in every case, N#
`+1(n) is strictly greater than

D#
`+1(n) so there is at least one factor of two in A(n) and we have our result.

6 A Closing Thought

We close by noting that we can prove a result stronger than Theorem 5.10. If J` < n < J`+1, then

N#
`+1(n)−D#

`+1(n) =
{

n− J` if J` < n ≤ 2`

J`+1 − n if 2` ≤ n < J`+1

by Propositions 5.6, 5.7, 5.8 and Lemma 3.2.
Let ord2(n) be defined as the highest power of 2 that divides n. By Remark 5.5, N#

k (n) − D#
k (n) ≥ 0

for all n and for all k, so that

ord2(A(n)) ≥
{

n− J` if J` < n ≤ 2`

J`+1 − n if 2` ≤ n < J`+1
,

which strengthens Theorem 5.10.
Finally, we see that ord2(A(2`)) = J`−1 since, for all k < ` + 1, N#

k (2`) = N
#(1)
k (2`) = D

#(1)
k (2`) =

D#
k (2`), and 2` − J` = J`+1 − 2` = J`−1. So, for example, we know that A(210) is divisible by 2J9 , which

equals 2341, and that A(210) is not divisible by 2342.
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