A Probabilistic View of Certain Weighted Fibonacci Sums

Arthur T. Benjamin
Dept. of Mathematics, Harvey Mudd College, Claremont, CA 91711
benjamin@hmc.edu
Judson D. Neer
Dept. of Science and Mathematics, Cedarville University, 251 N. Main St., Cedarville, OH 45314-0601
jud@poboxes.com
Daniel E. Otero
Dept. of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207-4441
otero@xu.edu

James A. Sellers

Dept. of Mathematics, Penn State University, University Park, PA 16802
sellersj@math.psu.edu

1 Introduction

In this paper we investigate sums of the form

$$
\begin{equation*}
a_{n}:=\sum_{k \geq 1} \frac{k^{n} F_{k}}{2^{k+1}} . \tag{1}
\end{equation*}
$$

For any given n, such a sum can be determined [3] by applying the $x \frac{d}{d x}$ operator n times to the generating function

$$
G(x):=\sum_{k \geq 1} F_{k} x^{k}=\frac{x}{1-x-x^{2}},
$$

then evaluating the resulting expression at $x=1 / 2$. This leads to $a_{0}=1$, $a_{1}=5, a_{2}=47$, and so on. These sums may be used to determine the expected value and higher moments of the number of flips needed of a fair coin until two consecutive heads appear [3]. In this article, we pursue the reverse strategy of using probability to derive a_{n} and develop an exponential generating function for a_{n} in Section 3. In Section 4, we present a method for finding an exact, non-recursive, formula for a_{n}.

2 Probabilistic Interpretation

Consider an infinitely long binary sequence of independent random variables $b_{1}, b_{2}, b_{3}, \ldots$ where $P\left(b_{i}=0\right)=P\left(b_{i}=1\right)=1 / 2$. Let Y denote the random variable denoting the beginning of the first 00 substring. That is, $b_{Y}=b_{Y+1}=0$ and no 00 occurs before then. Thus $P(Y=1)=1 / 4$. For $k \geq 2$, we have $P(Y=k)$ is equal to the probability that our sequence begins $b_{1}, b_{2}, \ldots, b_{k-2}, 1,0,0$, where no 00 occurs among the first $k-2$ terms. Since the probability of occurence of each such string is $(1 / 2)^{k+1}$, and it is well known [1] that there are exactly F_{k} binary strings of length $k-2$ with no consecutive 0 's, we have for $k \geq 1$,

$$
P(Y=k)=\frac{F_{k}}{2^{k+1}} .
$$

Since Y is finite with probability 1 , it follows that

$$
\sum_{k \geq 1} \frac{F_{k}}{2^{k+1}}=\sum_{k \geq 1} P(Y=k)=1 .
$$

For $n \geq 0$, the expected value of Y^{n} is

$$
\begin{equation*}
a_{n}:=E\left(Y^{n}\right)=\sum_{k \geq 1} \frac{k^{n} F_{k}}{2^{k+1}} . \tag{2}
\end{equation*}
$$

Thus $a_{0}=1$. For $n \geq 1$, we use conditional expectation to find a recursive formula for a_{n}. We illustrate our argument with $n=1$ and $n=2$ before proceeding with the general case.

For a random sequence b_{1}, b_{2}, \ldots, we compute $E(Y)$ by conditioning on b_{1} and b_{2}. If $b_{1}=b_{2}=0$, then $Y=1$. If $b_{1}=1$, then we have wasted a flip, and we are back to the drawing board; let Y^{\prime} denote the number of remaining flips needed. If $b_{1}=0$ and $b_{2}=1$, then we have wasted two flips, and we are back to the drawing board; let $Y^{\prime \prime}$ denote the number of remaining flips needed in this case. Now by conditional expectation we have

$$
\begin{aligned}
E(Y) & =\frac{1}{4}(1)+\frac{1}{2} E\left(1+Y^{\prime}\right)+\frac{1}{4} E\left(2+Y^{\prime \prime}\right) \\
& =\frac{1}{4}+\frac{1}{2}+\frac{1}{2} E\left(Y^{\prime}\right)+\frac{1}{2}+\frac{1}{4} E\left(Y^{\prime \prime}\right) \\
& =\frac{5}{4}+\frac{3}{4} E(Y)
\end{aligned}
$$

since $E\left(Y^{\prime}\right)=E\left(Y^{\prime \prime}\right)=E(Y)$. Solving for $E(Y)$ gives us $E(Y)=5$. Hence,

$$
a_{1}=\sum_{k \geq 1} \frac{k F_{k}}{2^{k+1}}=5 .
$$

Conditioning on the first two outcomes again allows us to compute

$$
\begin{aligned}
E\left(Y^{2}\right) & =\frac{1}{4}\left(1^{2}\right)+\frac{1}{2} E\left[\left(1+Y^{\prime}\right)^{2}\right]+\frac{1}{4} E\left[\left(2+Y^{\prime \prime}\right)^{2}\right] \\
& =\frac{1}{4}+\frac{1}{2} E\left(1+2 Y+Y^{2}\right)+\frac{1}{4} E\left(4+4 Y+Y^{2}\right) \\
& =\frac{7}{4}+2 E(Y)+\frac{3}{4} E\left(Y^{2}\right) .
\end{aligned}
$$

Since $E(Y)=5$, it follows that $E\left(Y^{2}\right)=47$. Thus,

$$
a_{2}=\sum_{k \geq 1} \frac{k^{2} F_{k}}{2^{k+1}}=47 .
$$

Following the same logic for higher moments, we derive for $n \geq 1$,

$$
\begin{aligned}
E\left(Y^{n}\right) & =\frac{1}{4}\left(1^{n}\right)+\frac{1}{2} E\left[(1+Y)^{n}\right]+\frac{1}{4} E\left[(2+Y)^{n}\right] \\
& =\frac{1}{4}+\frac{3}{4} E\left(Y^{n}\right)+\frac{1}{2} \sum_{k=0}^{n-1}\binom{n}{k} E\left(Y^{k}\right)+\frac{1}{4} \sum_{k=0}^{n-1}\binom{n}{k} 2^{n-k} E\left(Y^{k}\right) .
\end{aligned}
$$

Consequently, we have the following recursive equation:

$$
E\left(Y^{n}\right)=1+\sum_{k=0}^{n-1}\binom{n}{k}\left[2+2^{n-k}\right] E\left(Y^{k}\right)
$$

Thus for all $n \geq 1$,

$$
\begin{equation*}
a_{n}=1+\sum_{k=0}^{n-1}\binom{n}{k}\left[2+2^{n-k}\right] a_{k} . \tag{3}
\end{equation*}
$$

Using equation (3), one can easily derive $a_{3}=665, a_{4}=12,551$, and so on.

3 Generating Function and Asymptotics

For $n \geq 0$, define the exponential generating function

$$
a(x)=\sum_{n \geq 0} \frac{a_{n}}{n!} x^{n} .
$$

It follows from equation (3) that

$$
\begin{aligned}
a(x) & =1+\sum_{n \geq 1} \frac{\left(1+\sum_{k=0}^{n-1}\binom{n}{k}\left[2+2^{n-k}\right] a_{k}\right)}{n!} x^{n} \\
& =e^{x}+2 a(x)\left(e^{x}-1\right)+a(x)\left(e^{2 x}-1\right)
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
a(x)=\frac{e^{x}}{4-2 e^{x}-e^{2 x}} . \tag{4}
\end{equation*}
$$

For the asymptotic growth of a_{n}, one need only look at the leading term of the Laurent series expansion [4] of $a(x)$. This leads to

$$
\begin{equation*}
a_{n} \approx \frac{\sqrt{5}-1}{10-2 \sqrt{5}}\left(\frac{1}{\ln (\sqrt{5}-1)}\right)^{n+1} n! \tag{5}
\end{equation*}
$$

4 Closed Form

While the recurrence (3), generating function (4), and asymptotic result (5) are satisfying, a closed form for a_{n} might also be desired. For the sake of completeness, we demonstrate such a closed form here.

To calculate

$$
a_{n}=\sum_{k \geq 1} \frac{k^{n} F_{k}}{2^{k+1}},
$$

we first recall the Binet formula for $F_{k}[3]$:

$$
\begin{equation*}
F_{k}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right) \tag{6}
\end{equation*}
$$

Then (6) implies that (1) can be rewritten as

$$
\begin{equation*}
a_{n}=\frac{1}{2 \sqrt{5}} \sum_{k \geq 1} k^{n}\left(\frac{1+\sqrt{5}}{4}\right)^{k}-\frac{1}{2 \sqrt{5}} \sum_{k \geq 1} k^{n}\left(\frac{1-\sqrt{5}}{4}\right)^{k} . \tag{7}
\end{equation*}
$$

Next, we remember the formula for the geometric series:

$$
\begin{equation*}
\sum_{k \geq 0} x^{k}=\frac{1}{1-x} \tag{8}
\end{equation*}
$$

This holds for all real numbers x such that $|x|<1$. We now apply the $x \frac{d}{d x}$ operator n times to (8). It is clear that the left-hand side of (8) will then become

$$
\sum_{k \geq 1} k^{n} x^{k}
$$

The right-hand side of (8) is transformed into the rational function

$$
\begin{equation*}
\frac{1}{(1-x)^{n+1}} \times \sum_{j=1}^{n} e(n, j) x^{j}, \tag{9}
\end{equation*}
$$

where the coefficients $e(n, j)$ are the Eulerian numbers [2, Sequence A008292], defined by

$$
e(n, j)=j \cdot e(n-1, j)+(n-j+1) \cdot e(n-1, j-1) \text { with } e(1,1)=1 .
$$

(The fact that these are indeed the coefficients of the polynomial in the numerator of (9) can be proven quickly by induction.) From the information found in [2, Sequence A008292], we know

$$
e(n, j)=\sum_{\ell=0}^{j}(-1)^{\ell}(j-\ell)^{n}\binom{n+1}{\ell} .
$$

Therefore,

$$
\begin{equation*}
\sum_{k \geq 1} k^{n} x^{k}=\frac{1}{(1-x)^{n+1}} \times \sum_{j=1}^{n}\left[\sum_{\ell=0}^{j}(-1)^{\ell}(j-\ell)^{n}\binom{n+1}{\ell}\right] x^{j} . \tag{10}
\end{equation*}
$$

Thus the two sums

$$
\sum_{k \geq 1} k^{n}\left(\frac{1+\sqrt{5}}{4}\right)^{k} \quad \text { and } \sum_{k \geq 1} k^{n}\left(\frac{1-\sqrt{5}}{4}\right)^{k}
$$

that appear in (7) can be determined explicitly using (10) since

$$
\left|\frac{1+\sqrt{5}}{4}\right|<1 \text { and }\left|\frac{1-\sqrt{5}}{4}\right|<1
$$

Hence, an exact, non-recursive, formula for a_{n} can be developed.

References

[1] A. T. Benjamin and J. J. Quinn, Recounting Fibonacci and Lucas Identities, College Mathematics Journal, Vol. 30, No. 5, pp. 359-366, 1999.
[2] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/~njas/sequences/, 2000.
[3] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, John Wiley and Sons, New York, 1989.
[4] H. S. Wilf, Generatingfunctionology, Academic Press, Boston, 1994.

AMS Subject Classification Number: 11B39.

