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1 Introduction

In this paper we investigate sums of the form

an :=
∑
k≥1

knFk

2k+1
. (1)
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For any given n, such a sum can be determined [3] by applying the x d
dx

operator

n times to the generating function

G(x) :=
∑
k≥1

Fkx
k =

x

1− x− x2
,

then evaluating the resulting expression at x = 1/2. This leads to a0 = 1,

a1 = 5, a2 = 47, and so on. These sums may be used to determine the expected

value and higher moments of the number of flips needed of a fair coin until two

consecutive heads appear [3]. In this article, we pursue the reverse strategy of

using probability to derive an and develop an exponential generating function

for an in Section 3. In Section 4, we present a method for finding an exact,

non-recursive, formula for an.

2 Probabilistic Interpretation

Consider an infinitely long binary sequence of independent random variables

b1, b2, b3, . . . where P (bi = 0) = P (bi = 1) = 1/2. Let Y denote the random vari-

able denoting the beginning of the first 00 substring. That is, bY = bY +1 = 0 and

no 00 occurs before then. Thus P (Y = 1) = 1/4. For k ≥ 2, we have P (Y = k) is

equal to the probability that our sequence begins b1, b2, . . . , bk−2, 1, 0, 0, where no

00 occurs among the first k− 2 terms. Since the probability of occurence of each

such string is (1/2)k+1, and it is well known [1] that there are exactly Fk binary

strings of length k − 2 with no consecutive 0’s, we have for k ≥ 1,

P (Y = k) =
Fk

2k+1
.
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Since Y is finite with probability 1, it follows that

∑
k≥1

Fk

2k+1
=
∑
k≥1

P (Y = k) = 1.

For n ≥ 0, the expected value of Y n is

an := E(Y n) =
∑
k≥1

knFk

2k+1
. (2)

Thus a0 = 1. For n ≥ 1, we use conditional expectation to find a recursive formula

for an. We illustrate our argument with n = 1 and n = 2 before proceeding with

the general case.

For a random sequence b1, b2, . . ., we compute E(Y ) by conditioning on b1 and

b2. If b1 = b2 = 0, then Y = 1. If b1 = 1, then we have wasted a flip, and we are

back to the drawing board; let Y ′ denote the number of remaining flips needed. If

b1 = 0 and b2 = 1, then we have wasted two flips, and we are back to the drawing

board; let Y ′′ denote the number of remaining flips needed in this case. Now by

conditional expectation we have

E(Y ) =
1

4
(1) +

1

2
E(1 + Y ′) +

1

4
E(2 + Y ′′)

=
1

4
+

1

2
+

1

2
E(Y ′) +

1

2
+

1

4
E(Y ′′)

=
5

4
+

3

4
E(Y )

since E(Y ′) = E(Y ′′) = E(Y ). Solving for E(Y ) gives us E(Y ) = 5. Hence,

a1 =
∑
k≥1

kFk

2k+1
= 5.
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Conditioning on the first two outcomes again allows us to compute

E(Y 2) =
1

4
(12) +

1

2
E
[
(1 + Y ′)2

]
+

1

4
E
[
(2 + Y ′′)2

]
=

1

4
+

1

2
E(1 + 2Y + Y 2) +

1

4
E(4 + 4Y + Y 2)

=
7

4
+ 2E(Y ) +

3

4
E(Y 2).

Since E(Y ) = 5, it follows that E(Y 2) = 47. Thus,

a2 =
∑
k≥1

k2Fk

2k+1
= 47.

Following the same logic for higher moments, we derive for n ≥ 1,

E(Y n) =
1

4
(1n) +

1

2
E[(1 + Y )n] +

1

4
E[(2 + Y )n]

=
1

4
+

3

4
E(Y n) +

1

2

n−1∑
k=0

(
n
k

)
E(Y k) +

1

4

n−1∑
k=0

(
n
k

)
2n−kE(Y k).

Consequently, we have the following recursive equation:

E(Y n) = 1 +
n−1∑
k=0

(
n
k

)
[2 + 2n−k]E(Y k)

Thus for all n ≥ 1,

an = 1 +
n−1∑
k=0

(
n
k

)
[2 + 2n−k]ak. (3)

Using equation (3), one can easily derive a3 = 665, a4 = 12, 551, and so on.

3 Generating Function and Asymptotics

For n ≥ 0, define the exponential generating function

a(x) =
∑
n≥0

an

n!
xn.
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It follows from equation (3) that

a(x) = 1 +
∑
n≥1

(
1 +

∑n−1
k=0

(
n
k

)
[2 + 2n−k]ak

)
n!

xn

= ex + 2a(x)(ex − 1) + a(x)(e2x − 1).

Consequently,

a(x) =
ex

4− 2ex − e2x
. (4)

For the asymptotic growth of an, one need only look at the leading term of

the Laurent series expansion [4] of a(x). This leads to

an ≈
√

5− 1

10− 2
√

5

(
1

ln(
√

5− 1)

)n+1

n!. (5)

4 Closed Form

While the recurrence (3), generating function (4), and asymptotic result (5) are

satisfying, a closed form for an might also be desired. For the sake of completeness,

we demonstrate such a closed form here.

To calculate

an =
∑
k≥1

knFk

2k+1
,

we first recall the Binet formula for Fk [3]:

Fk =
1√
5

(1 +
√

5

2

)k

−
(

1−
√

5

2

)k
 (6)

Then (6) implies that (1) can be rewritten as

an =
1

2
√

5

∑
k≥1

kn

(
1 +
√

5

4

)k

− 1

2
√

5

∑
k≥1

kn

(
1−
√

5

4

)k

. (7)
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Next, we remember the formula for the geometric series:

∑
k≥0

xk =
1

1− x
(8)

This holds for all real numbers x such that |x| < 1. We now apply the x d
dx

operator

n times to (8). It is clear that the left-hand side of (8) will then become

∑
k≥1

knxk.

The right-hand side of (8) is transformed into the rational function

1

(1− x)n+1
×

n∑
j=1

e(n, j)xj, (9)

where the coefficients e(n, j) are the Eulerian numbers [2, Sequence A008292],

defined by

e(n, j) = j · e(n− 1, j) + (n− j + 1) · e(n− 1, j − 1) with e(1, 1) = 1.

(The fact that these are indeed the coefficients of the polynomial in the numerator

of (9) can be proven quickly by induction.) From the information found in [2,

Sequence A008292], we know

e(n, j) =
j∑

`=0

(−1)`(j − `)n
(

n+1
`

)
.

Therefore,

∑
k≥1

knxk =
1

(1− x)n+1
×

n∑
j=1

 j∑
`=0

(−1)`(j − `)n
(

n+1
`

)xj. (10)
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Thus the two sums

∑
k≥1

kn

(
1 +
√

5

4

)k

and
∑
k≥1

kn

(
1−
√

5

4

)k

that appear in (7) can be determined explicitly using (10) since

∣∣∣∣∣1 +
√

5

4

∣∣∣∣∣ < 1 and

∣∣∣∣∣1−
√

5

4

∣∣∣∣∣ < 1.

Hence, an exact, non-recursive, formula for an can be developed.
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