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Abstract

In this article, I suggest that calculus instruction should include a
wider variety of examples of convergent and divergent series than is
usually demonstrated. In particular, a number of convergent series,
such as

∑
k≥1

k3

2k , are considered, and their exact values are found in a

straightforward manner. We explore and utilize a number of math-
ematical topics, including manipulation of certain power series and
recurrences.

During my most recent spring break, I read William Dunham’s book

Euler: The Master of Us All [3]. I was thoroughly intrigued by the material

presented and am certainly glad I selected it as part of the week’s reading.

Of special interest were Dunham’s comments on series manipulations and

the power series identities developed by Euler and his contemporaries, for I

had just completed teaching convergence and divergence of infinite series in

my calculus class. In particular, Dunham [3, p. 47-48] presents Euler’s proof

of the Basel Problem, a challenge from Jakob Bernoulli to determine the
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exact value of the sum
∑
k≥1

1
k2 . Euler was the first to solve this problem by

proving that the sum equals π2

6
.

I was reminded of my students’ interest in this result when I shared it

with them just weeks before. I had already mentioned to them that exact

values for relatively few families of convergent series could be determined.

The obvious examples are geometric series
∑
k≥0

rk (with |r| < 1) and telescop-

ing series. I also remembered their disappointment when I observed that the

exact numerical value of most convergent series cannot be determined in a

straightforward way. I tried to excite them with the notion that the con-

vergence or divergence of a given series could be determined via the Integral

Test, Limit Comparison Test, Ratio or Root Test, but this was received with

little enthusiasm.

But now I return to Dunham’s book. In [3, p. 41], Dunham notes that

Jakob Bernoulli [2, p. 248-249] proved∑
k≥1

k2

2k
= 6(1)

and ∑
k≥1

k3

2k
= 26.(2)

Many teachers of calculus will recognize at least two things about (1) and (2).

First, these series are made-to-order examples to demonstrate convergence

with the Ratio Test. Such examples, where the summands are defined by

the ratio of a polynomial and an exponential function, can be found in a

number of calculus texts, such as [4] and [5]. Second - a much more negative

admission - is that we rarely teach students how to prove equalities like

(1) and (2). We usually stop at demonstrating that such series converge,

and move on to other matters. This is the case with the two calculus texts

mentioned above, and it is an unfortunate situation to say the least.

I contend that students of first-year calculus would be better served if we

provided a few more tools to them for finding exact values of convergent

infinite series. Oddly enough, the series in (1) and (2) are ideal for such a

task.
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My goal in this note is to present two approaches to finding the exact

value of

a(m, n) :=
∑
k≥1

kn

mk

with |m| > 1 and n ∈ N∪{0} (of which Bernoulli’s examples (1) and (2) are

special cases).

We begin by noting that, for each |m| > 1,
∣∣ 1
m

∣∣ < 1, so that a(m, 0) is a

convergent geometric series. Moreover,

a(m, 0) =
∑
k≥1

1

mk

=
1

m
+

∑
k≥2

(
1

m

)k

=
1

m
+

1

m

∑
k≥1

(
1

m

)k

=
1

m
+

1

m
a(m, 0).

Solving for a(m, 0), we see that it equals 1
m−1

. Of course, this result easily

follows from the usual formula for the sum of a convergent geometric series.

Next, we obtain a recurrence for a(m,n), n ≥ 1, in terms of a(m, j) for

j < n. Note that

a(m, n) =
∑
k≥1

kn

mk

=
1

m
+

∑
k≥2

kn

mk

=
1

m
+

1

m

∑
k≥1

(k + 1)n

mk

=
1

m

[
1 +

∑
k≥1

(k + 1)n

mk

]
.
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The argument up to this point is exactly that used in finding the formula for

a(m, 0) above. We now employ the binomial theorem, a tool that should be

in the repertoire of first-year calculus students.

a(m,n) =
1

m

1 +
∑
k≥1

(∑n
j=0

(
n
j

)
kj

)
mk


=

1

m

[
1 +

n∑
j=0

(
n

j

) ∑
k≥1

kj

mk

]

=
1

m

[
1 +

n−1∑
j=0

(
n

j

) ∑
k≥1

kj

mk
+

∑
k≥1

kn

mk

]

=
1

m

[
1 +

n−1∑
j=0

(
n

j

)
a(m, j) + a(m,n)

]

=
1

m
a(m, n) +

1

m

[
1 +

n−1∑
j=0

(
n

j

)
a(m, j)

]

Solving for a(m, n) yields(
1− 1

m

)
a(m, n) =

1

m

[
1 +

n−1∑
j=0

(
n

j

)
a(m, j)

]
or

a(m, n) =

(
1

m− 1

) [
1 +

n−1∑
j=0

(
n

j

)
a(m, j)

]
.(3)

As a sidenote, it is interesting to see from (3) that, for rational values of

m, the numerical value of a(m, n) must be rational for all n ≥ 0. This can

be proven via induction on n. We noted above that a(m, 0) = 1
m−1

which

is rational as long as m is rational. Then, assuming a(m, j) is rational for

0 ≤ j ≤ n− 1, (3) implies a(m, n) is also rational. Hence, no values such as
π2

6
will arise as values for a(m, n) whenever m is rational.

The recurrence in (3) can be used to calculate with relative ease the exact

value of

a(m, n) =
∑
k≥1

kn

mk
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for all |m| > 1 and n ∈ N ∪ {0}. For example, since

a(2, 0) =
∑
k≥1

1

2k
= 1,

we have

a(2, 1) =
∑
k≥1

k

2k

=

(
1

2− 1

) [
1 +

(
1

0

)
a(2, 0)

]
= 1 + 1 = 2,

and

a(2, 2) =
∑
k≥1

k2

2k

= 1 +

(
2

0

)
a(2, 0) +

(
2

1

)
a(2, 1)

= 1 + 1 + 2 · 2 = 6,

which is the result labeled (1). Finally,

a(2, 3) =
∑
k≥1

k3

2k

= 1 +

(
3

0

)
a(2, 0) +

(
3

1

)
a(2, 1) +

(
3

2

)
a(2, 2)

= 1 + 1 + 3 · 2 + 3 · 6 = 26,

which is (2).

Of course, recurrence (3) could be used to calculate a(m, n) for larger

values of m and n. However, this might prove tedious for extremely large

values of n. With this in mind, we now approach the calculation of a(m, n)

from a second point of view.

We begin with the familiar power series representation for the function
1

1− x
:

1

1− x
= 1 + x + x2 + x3 + x4 + . . . , where |x| < 1(4)
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Andrews [1] recently extolled the virtues of (4) in the study of calculus. Our

goal in this section is to manipulate (4) via differentiation and multiplication

to obtain a new power series of the form

fn(x) := x + 2nx2 + 3nx3 + 4nx4 + . . . =
∑
k≥1

knxk

for a fixed positive integer n. This is done by applying the x d
dx

operator

to 1
1−x

n times. Then a(m, n) equals fn

(
1

m

)
, which is easily computed

once fn(x) is written as a rational function. (Note that we define f0(x) by

f0(x) := x
(

1
1−x

)
=

∑
k≥1

xk.)

As an example, we apply the x d
dx

operator to 1
1−x

and get

x
d

dx

(
1

1− x

)
= x

d

dx
(1 + x + x2 + x3 + x4 + . . .)

or

f1(x) =
x

(1− x)2
= x + 2x2 + 3x3 + 4x4 + . . . =

∑
k≥1

kxk.

Hence, ∑
k≥1

k

2k
= f1

(
1

2

)
=

1
2(

1− 1
2

)2 = 2.

We can apply the x d
dx

operator to 1
1−x

twice to obtain f2(x) :

f2(x) = x
d

dx

(
x

d

dx

(
1

1− x

))
= x

d

dx

(
x

(1− x)2

)
=

x2 + x

(1− x)3
.

Thus,

f2(x) =
x2 + x

(1− x)3
= x + 22x2 + 32x3 + 42x4 + . . . =

∑
k≥1

k2xk.

6



Hence, ∑
k≥1

k2

2k
= f2

(
1

2

)
=

1
2

+
(

1
2

)2(
1− 1

2

)3 = 6

upon simplification. This, as we have already seen, is (1).

Additional applications of the x d
dx

operator can be performed to yield

f1(x) =
x

(1− x)2
=

∑
k≥1

kxk,

f2(x) =
x2 + x

(1− x)3
=

∑
k≥1

k2xk,

f3(x) =
x3 + 4x2 + x

(1− x)4
=

∑
k≥1

k3xk,

f4(x) =
x4 + 11x3 + 11x2 + x

(1− x)5
=

∑
k≥1

k4xk,

f5(x) =
x5 + 26x4 + 66x3 + 26x2 + x

(1− x)6
=

∑
k≥1

k5xk, and

f6(x) =
x6 + 57x5 + 302x4 + 302x3 + 57x2 + x

(1− x)7
=

∑
k≥1

k6xk.

We see that

fn(x) =
gn(x)

(1− x)n+1

for each n ≥ 1 where gn(x) is a certain polynomial of degree n. Indeed,

the functions gn(x) are well-known. Upon searching N.J.A. Sloane’s On-Line

Encyclopedia of Integer Sequences [6] for the sequence

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 66, 26, 1, . . . ,

which is the sequence of coefficients of the polynomials gn(x), we discover

that these are the Eulerian numbers e(n, j). They are defined, for each

value of j and n satisfying 1 ≤ j ≤ n, by

e(n, j) = je(n− 1, j) + (n− j + 1)e(n− 1, j − 1) with e(1, 1) = 1.(5)
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With this notation, it appears that, for n ≥ 1,

fn(x) =

n∑
j=1

e(n, j)xj

(1− x)n+1
.

Using (5), this assertion can be proven in a straightforward manner via in-

duction. Moreover, we know from [6, Sequence A008292] that

e(n, j) =

j∑
`=0

(−1)`(j − `)n

(
n + 1

`

)
.

This can be used to write the rational version of fn(x) for any n ≥ 1 in a

timely way. So, for example, we see that

f8(x) =
x8 + 247x7 + 4293x6 + 15619x5 + 15619x4 + 4293x3 + 247x2 + x

(1− x)9
,

which implies ∑
k≥1

k8

5k
= f8

(
1

5

)
=

1139685

2048
.

We have thus seen two different ways to compute the exact value of∑
k≥1

kn

mk
with |m| > 1 and n ∈ N ∪ {0}, one with a recurrence and one

with power series. I encourage us all to share at least one of these techniques

with our students the next time we are exploring infinite series.
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