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Abstract

Arbitrary powers of the generating function ¢(z) of Catalan’s numbers are written as ¢"(z) :=
—(ﬁ)” Sn,g(ﬁ) + (ﬁ)”’1 Sn,l(ﬁ) c(x) , with Chebyshev’s polynomials of the second kind
Sn(y) = Un(y/2) which are also defined for real (or complex) n. This formula leads to four sets of
identities involving Catalan numbers.

The nth derivative of this generating function ¢(z) is expressed as
Ld'c(z) _ (an—1(z) + bn(z) c(x))/(z(1 — 42))", with certain polynomial systems {a,} and {b,}

n! dzm
which are given explicitly. The coefficients of the {a,} polynomials furnish a triangle of numbers
A(n, k) which generalizes Catalan’s numbers. It is related to a convolution of the Catalan sequence
with 2k-fold convolutions of the central binomial coefficient sequence. Also, an associated rectangular
array A(n, k) of numbers is defined. The triangle of numbers of the {b,} coefficients is related to the
(2k + 1)-fold convolution of the central binomial number sequence. This formula for the derivatives of

¢(z) implies identities involving Catalan’s numbers as well as central binomial coefficients.

1 Introduction and Summary

Catalan’s sequence of numbers {C,}5° = {1,1,2,5,14,42,...} (nr.1459 and A000108 of [10] )
emerges in the solution of many combinatorial problems (see [1],[2],[3],[11] (also for further references).
It also shows up in the asymptotic moments of zeros of scaled Laguerre and Hermite polynomials [6].
The ordinary generating function c(z) = >.5° C,, " is the solution of the quadratic equation = ¢?(z) —
c(x)+1 = 0 with ¢(0) = 1. Therefore, every positive integer power of ¢(z) can be written as

() = pn-1(@)1 + gn1(2) c(z) (1)
with certain polynomials p,_; and g,—_1, both of degree (n — 1), in 1/z. In section 2 they are shown to
be related to Chebyshev’s polynomials of the second kind:

Pooi () = —(%)n Sn_z(%) () = (%)"—1 Sn_l(%) = g, (@)
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with Sy, (y) = Up(y/2). It is therefore possible to extend the range of the power n to integers (or to real or
complex numbers). Because powers of a generating function correspond to convolutions of the generated
number sequence the given decomposition of ¢™(z) will determine convolutions of the Catalan sequence.
In passing, an explicit expression for general convolutions in the form of nested sums will also be given.
Contact with the works of refs. [4],[9],[12], [3] will be made.

Together with the known (e.g. [2],[8]) result (valid for real n)

n = i ) . n n+2k\ n n—1+2k
'(z) = 162:% Ci(n) z° ,with Cg(n) := TR ( i > = i ( i , (3)

one finds from the alternative expression (1) for positive n two sets of identities:

(P1) i(—l)l("‘l‘p+l> C = ("‘“’) , (4)

1=0 p—l p

forn € {2,3,..}, p€{0,1,2,...[5] — 1}, and

ey n—1-—1
(P2) > (-1 ( l > Chin 11 = Coln) (5)

forneN,keNg.

For negative powers in (1) two other sets of identities result:

min(\_"—;lj,k—l) o "k —
(P3) (—1)! (” 11 l> Choott = (—1)i+ ( K 1> , (6)

5] L ok
(Py > (1) (” , l) Chrt = ~Cilom) = & (2’“ U 1>, (7

forne N, ke N with k> |2]+1. 2

Another expression for the coefficients of negative powers of ¢(z) is

min(n,k) n
Ce(-n) = Y (-1 (l) Cr—1(n) , (8)
=1
for n,k € N, and Cy(—n) =1, C,(0) = 0,0 . Also, from (3) Cr(—n) = —Ci_n(n) for n,k € N with
k> n.
Section 3 deals with the derivatives of ¢(x) where the following basic equation is used.

de(x) B 1
dx =cl@) = z(1 —4z)

(1 + (—1+ 2z) c(a:)) . 9)

2These identities can be continued for appropriate values of real n.



This eq. is equivalent to the simple recurrence relation valid for C,,: 3
n+2)Chy1 — 22n+1)C, =0, n=-1,0,1,..., with C_, =-1/2 . (10)

The result for the n-th derivative is of the form

%j;fb(l‘) = (1 _14$))n (an—l(x) + by () c(x)), (11)

with certain polynomials a,_1 of degree n — 1 and b,, of degree n. These polynomials are found to be

bp(z) = Y0 _o(=1)™B(n,m) "™ with

o = (2) ()

which defines a triangle of numbers for n,m € N, n > m > 0. Its head is depicted in TAB. 1 with
B(n,m) =0 for n < m. Another representation for these b, polynomials is also found, viz

bp(x) = —ZXH: Cr_1 oF (4 —1)"F . (13)
k=0

Equating both forms of b, (z) leads to a formula involving convolutions of Catalan numbers with powers
of an arbitrary constant A := (4z — 1)/z . This formula is given in section 3 as eq.(71).

The other family of polynomials is a, () = > F_o(—=1)¥ A(n+1,k+1) 2" * with the triangular array
A(n,m) defined for m = 0 by A(n,0) = C),, and for n € N,m € N with n > m > 0 by the numbers

A(n,m) — %(mn_ 1> [4n—m+1 . (2:>/<25’;n_—11)>:| ‘ (14)

The head of this triangular array of numbers is shown in TAB.2 with A(n,m) = 0 for n < m. These
results are solutions to recurrence relations which hold for b, (z) and a,(x) and their respective coefficients
B(n,m) and A(n,m).

The triangle of numbers A(n,m) is related to a rectangular array of numbers A(n, m), with A(0,0) =
1, A(n,0) = —C, forn € N, and for m € N,n € Ny by

m—1

N -1
A(n,m) = —A(n—m,m) + 22(”’”)“(“ > , (15)
or with (14), for m € N,n € Ny, by
x L{n+m\r(2(n+m) 2(m —1) ;1 m—1
A = = — gt . 16
(n,m) 2<n—|—1>[< n+m >/< m—1 n—i—m] (16)
Part of the array A(n,m) is shown in TAB. 3, where it is called C4(n,m).

It turns out that the mth column of the number triangle A(n,m) is for m = 0, 1, ... determined by the

generating function c(z)(1=%z)™. The mth column of the number triangle B(n,m) is, for m = 0,1, ...,

generated by \/ﬁ (1f4x)m

3Eq.(9) can, of course, also be found from the explicit form c(z) = (1 —+/1 — 4z )/(2z).



Because differentiation of c(z) = %%, Ck z* leads to

1 d'e(z) = & ) - _ @2+
m e = kz::oC(n,k) xk , with C(n,k) = m jl—[l(k—i-j) Cn+k = n!k!(n+k+1)! , (17)

with C(0,k) = Cf , one finds, together with (11), the following identities, for n € N,
pe{0,1,2,..n—1}

D1 Y (-1 G <pﬁk>/<2(:_—;:_rkk)> _ %(pi 1){22(p+1)/<2:> .y (2(:_—;7_—5))}

k=0

and, for n € N,k € Ny ,
n . k - n
(D2): 3 (~1) ((?)/(?)) S (”: » 1) Chrjt = Cln, k)/<2n> . (19)
§=0 1=0

The remainder of this paper provides proofs for the above given statements. Section 2 deals with integer
(and real) powers of the generating function ¢(z). Convolutions of general sequences are expressed there
in terms of nested sums. In Section & derivatives of ¢(x) are treated.

2 Powers
The equation x ¢?(z) — ¢(z) + 1 = 0 whose solution defines the generating function of Catalan’s numbers
if ¢(0) = 1 can be considered as characteristic equation for the recursion relation

TTpel — T + ™h—1 = 0, n=0,1,... | (20)

with arbitrary inputs r_1(z) and ro(z). A basis of two linearly independent solutions is given by the
Lucas-type polynomials {U,} and {V,}, with standard inputs 4 y =0, Uy =1, (U2 = —z), and
V_1=1,Vy=2, (Vi =1/z), in the Binet form

_ di(z) — D (x)
Hal®) = e @) 2
Va(z) = (z) + () = %(Un_l(x) Uy (7)) | (22)

with the two solutions of the characteristic equation, viz cy(x) := (1 £ 1 —4z )/(2z) . c¢(x) := c_(x)
satisfies ¢(0) = 1, and c4(z) = 1/(zc(z)), as well as cy(z) + ¢(z) = 1/z . From the recurrence (20)
it is clear that for positive n # 0 U, is a polynomial in 1/z of degree n — 1. If ¢4 (z) —c_(z) =0,
i.e. x = 1/4, eq.(21) is replaced by U,(1/4) = 2"(n + 1) . The second eq. in (22) holds because both
sides of the eq. satisfy recurrence (20) and the inputs for Vy and V; match. One may associate with the
recurrence relation (20) a transfer matrix

Clz) = (1{‘” _B/x> . Det C(z) = 1/z . (23)
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With this matrix one can rewrite (20) as

( i > - C(w)(’””1> - C"(@) ( o) ) (24)
Tn—1 Tn—2 r—1(z)

Because C" = C C"! with input C! = C(x) given by (23), one finds from the recurrence relation
(20) with 1, = Uy,
Un(x) —% un,1($)
C'(z) = . (25)
Un—1() _% n—2(2)
Note that for z = 1 one has c+(1) = (1 +4v/3)/2 , which are 6th roots of unity, and the related period
6 sequences are {U,(1)}>, = {0,1,1,0,—1,—1,}, as well as {V,(1)}§* = {2,1,—1,-2,—1,1,}. This
follows from eqs. (21) and (22). It is convenient to map the recursion relation (20) to the familiar one
for Chebyshev’s Sp(z) = Up(z/2) polynomials of the second kind, viz

Sp(z) = = Sp—1(x) — Sp2(x) , S.1=0, So=1, (26)

with characteristic equation A\*> — A+ 1 = 0 and solutions Ay (z) = £(1 £ /1 — (2/z)? ) , satisfying
Ar(z) A_(z) =1 and Ay (z) + A_(z) = z . The relation to c4(z) is

VI er(z) = Me(1/V7) . (27)
The Binet form of the corresponding two independent polynomial systems is
Ni(z) — A (=)

Sl = X A @) 2
2 To(x/2) = Ni(z) + Nl(x), (29)
and T,,(z/2) = (Sp(z) — Sp—2(x))/2 are Chebyshev’s polynomials of the first kind.
The extension to negative integer indices runs as follows
U_p(z) = —a""Up_o(x), (30)
(@) = —Su(a) . (31)

This follows from (21) and (28). Note that from (20) U, is for positive n a monic polynomial in 1/z of
degree n, and for negative n in general a non-monic polynomial in x of degree |—%]. It is possible to
extend the range of n to complex numbers using the Binet forms.

Connection between both systems of polynomials is made, after using (21), (27) and (28),by
1 n
Un(z) = (7) Sul1/v/3) - (32)

This holds for n € Z, in accordance with (30) and (31).

After these preliminaries we are ready to state:

Proposition 1: The nth power of ¢(z), the generating function of Catalan’s numbers, can, for n € Z,
be written as

M(z) = —i Uy (@) + Up 1(z) c(x) (33)
1

T

= ()" S a(UVE) + ()" Su (V) ). (34

B



Proof: Due to c?(z) = (c(z) — 1)/z and ¢ *(z) = 1 — z c(z) one can, for n € Z, write c"(z) =
Pn-1(z) —|— Gn—1(x) c¢(z) . From c"(z) = c(x) "~ 1(:1:) one is led to ¢, 1 = pn_ 2+— Gn-2 and
Pn— 1—__ n—2,0T gpn—1 = (qn 2~ qn— 3)/15 with input ¢ 1_0 qo = 1. Therefore, ¢, 1( ) Un— 1( )
and py, 1( ) = — Uy, o(x)/z . (34) then follows from (32). * O

Note 1: An alternative proof of proposition 1 can be given starting with eqs.(28) and (29) which show,
together with Ay (z) — A_(z) = V22 — 4 , that

Ni(z) = Tu(z/2) £ \/(2/2)? =1 Sp_i(z) , (35)
or, from ++/(z/2)? —1 = Ay(z) —x/2 and the S, recurrence relation (26)

Ne(m) = Tu(@/2) — 5 (Sn(®) + Sn2(z)) + Sno1(x) Ai(2) (36)
= — n_Z((L‘) + Sn—l(x) )xi((L‘). (37)

Now (34) follows from (27). This also proves that one may replace in proposition 1 c(z) by cy(z) =
1/(zc(x)) from which one recovers the ¢~" formula for n € N in accordance with (30) and (31).

Note 2: For the transfer matrix C(x), defined in (25), one can prove for n € N in an analogous manner

Z2 S (V) 1+ (2
1

by employing the Cayley-Hamilton theorem for the 2 x 2 matrix C with r C = + = det C which
states that C satisfies the characteristic equation C? — % C+Li1=0.

T

C" = —( )"t Sne1(1/Vz) Ca), (38)

Powers of a function which generates a sequence generate convolutions of this sequence. Therefore,
proposition 1 implies that convolutions of the Catalan sequence can be expressed in terms of Catalan
numbers and binomial coefficients. Before giving this result we shall present an explicit formula for the
nth convolution of a general sequence {C,} generated by c(z) = >.7°, C; 2! . Usually the convolution
coefficients Cy(n), defined by ¢*(z) = Y72, Ci(n) 2! , are written as

Ci(n) = Z Ci, Ciy---C;, , withi; € Np . (39)
E? 14 =1
An explicit formula with (I — 1) nested sums is the content of the next lemma.

Lemma 1: General convolutions

For [l =2,3,...
. l Lbk C C[] 1
am) = g7 A(I] 3°) <nb{ihh> H( =) (40)
k=21ir=ay 7j=2 C J*
with
k—1
by=1/2 , by = (1= jiy/k, (41)
Jj=2
“Because S, ( ZL"/% j(";j)y"_% the explicit form of these polynomials (2) is p,—1(z) =
Z]Li{)% 1(_1)”_1(“ ]2 Na= =17 p 1 =1, po =0, and g1 ( EL(" D2y ("7;7]')90_(”_1_” , q-1 =0.

For negative index one has, due to (31), p_(n41)(z) = (\/_) 1/\/_ ZL"/% —1)7 (”;j) 2/, and g_(pq1)(z) =
_(\/E)M—l o 1(1/\/— - —»x EL(n 1)/2J )j (nf]kj) .



L—n—Yi5(—1) Z'j)])

-1

ap=0 , fork=23,..,1 —1; a = max((),[ (42)

n!
(n—14+ 5o —1) i)l — g i)t

The first product in (40) is understood to be ordered such that the sums have indices i9,3,...5; when
written from the left to the right. In addition: Cy(n) = CF and Cy(n) =n Cj ' C; .

<n, L {ij}h> =

(43)

Proof: Cj(n) of (39) is rewritten first as
Ci(n) = Y (n,0,{ij}h) C& C---C' , i €N | (44)

where the sum is restricted by
(4) : gy =1 and () : > ij =mn. (45)

(n,1,{ij}}) is a combinatorial factor to be determined later on. (E.g. for n = 3, = 5 one has 4
terms in the sum: i5 = 1,590 = 2 ;44 = 1,01 = 1,50 = 1; 43 = 1,50 = 1,590 = 1; 43 = 1,50 = 2,
with other indices vanishing, and the combinatorial factors are 3,6, 6,3, respectively.) (ii) restricts the
sum to terms with n factors, and (i) produces the correct weight [. These restrictions are solved by
@) : in = =Yt ,ji; and (@) :  dp = m—di— Y0 = n—l+Y5,(G—1) ;.
From iy > Oji.e. 1 — Y ;_5ji; >0, one infers iy < [L] , thus iy € [0, [£] ]. For given iy in this range
i3 < Ll_%] , etc., in general 0 < 4 < [(I — f;% j i;)/k] for k = 2,3,...,1 with the sum replaced
by zero for k = 2. This accounts for the upper boundaries |by| in (41). Now, because ig > 0 (i)
implies a lower bound for 7;, the index of the last sum, viz i; > [(I —n — ;12 (7 —1)4;)/( —1)] with
the ceiling function [-]. In any case i; > 0, therefore, the lower boundary for the i;-sum is a; as given
in (42). All restrictions have then be solved and the lower boundaries of the other sums are given by
ap = 0, for K = 49,...,4;1 . As to the combinatorial factor, it now depends only on n,l,{z’j}é and is
written as < n, [, {23}52 >. It counts the number of possibilities for the occurence of the considered term

-1 .
of the sum which is given by (/") ("Z_lm) e (n_ziil:2 ) = n!/(Hé-ZO il (n— Zé‘:o i;)! . Inserting 4o and
i1 from (') and (i'), respectively, remembering (i), produces < n,l,{i;}} > as given in (43). Finally,
> <l {ij}h > Clo i ---C’lil is transformed into (I — 1) nested sums with boundaries a; and |by |
after replacement of 7; and 7g. This completes the proof of (40) for the non-trivial [ > 2 cases. m|

Corollary 1: Catalan convolutions
For Catalan’s sequence {Cy, }5° the n-th convolution sequence is for n € N given by Cyp(n) =1, Ci(n) =n
and, for [ = 2,3,.. , by

L

I Lbe] ! ,

am) = (IT X)) <ntfiy> T1(55) - (46)
kZZik:ak j:2 J*

with (41), (42) and (43).

Proof: This is lemma 1 with Cy =1=C} . O

Example 1: Cy(3) = 3C; + 6C3 + 3C5 + 3Cy = 90.

Corollary 2: With the Catalan generating function c(x) and the definition ¢ ™" (z) =: 3.7°, Cj(—n) z',



for n € N, one has for [ = 2,3, ...

I [bk] 1(k 1)ig -1 .
it-m = ='(IL > S ) <nnging > ey (47)
=0 J=

with (41), (42), (43) and Catalan’s numbers Cj. In addition: Cy(—n) =1 ,Ci(—n) = —n .

Proof: Lemma 1 is used for powers of ¢(z) replaced by those of ¢ '(z) = 1 —x ¢(x) , with the Catalan
generating function ¢(z). Hence ¢™'(z) = 372, Ck(—1) ¥ with

1 for k=0 . .
Cr(—1) = { Oy fork=1.2 . " Then in lemma 1 C is replaced by Ci(—1). O
Example 2: Cy(-3) = —-3C5 + 6Cy — 3 + 3 = —3.

Convolutions of Catalan’s sequence have been encountered in various contexts. For example, in the
enumeration of non-intersecting path pairs on a square lattice [9], [12], [3], and in the problem of inverting
triangular matrices with Pascal triangle entries [4] (and earlier works cited there). °

Lemma 2: Explicit form of Catalan convolutions [9],[12], [4],[2],[8],[3]

For n € R, 1 € Ng:

n (20+n—1 n n+2[ n 204+n—1
) =7 ( -1 > n+2l< z > l+n< z > 48)

Proof. Three equivalent expressions have been given for convenience. See [2], p. 201, eq.(5.60), with
Ba(z) = ¢(z) ,t = 2,k — I,r — n . The proof of this eq.(5.60) appears as (7.69) on p.349, with
m=2,n=1[€R.

The same formula occurs as exercise nr. 213 in Vol.1 of [8] for 5 = 2 as a special instant of exercises nrs.
211, 212. Put a =n and n = in the solution of exercise nr. 213 on p. 301.

In order to prove this lemma from [9] or [12] one can use Cj(n) = E;-n:i%(l’n) () Ci(j) obtained from
c(z) =: 14 é(z) with & (z) = Y22, Cr(n) zF~" . The result in [9] and [12] is, with this notation,
) = By, = bl,j) = l(l2l]) . Inserting this in the given sum, making use of the identity
i (" = n(?:ll) and the Vandermonde convolution identity, leads to lemma 2 at least for positive integer

j
n but one can continue this formula to real (or complex) n

In [4] one finds this result as eq.(3.1), p.402, for i = 1: s1(l,n) = Ci(n) .

In [3] 2d2_pn41 = Ci(n) with the result given in theorem 2.3, eq. (2.6), p.71. O

®Shapiro’s Catalan triangle has entries B, = £ (nsz) for n > k > 1, and B, = [z"] (a:k ék(a:)) , with [z"]f(z)
denoting the coefficient of " in the expansion of f(z) around x = 0. Here é(z) = (c(x) — 1)/x = c*(x) . (See [9],
propositions (2.1) and (3.3) with i; € N, not No .) In [12] this triangle of numbers from [9] reappears as b(n, k) and it is
shown there that B, = b(n,k) = [z"](z c*(z))* , in accordance with the identity é(z) = c*(z). Therefore, only even
powers of ¢(z) appear in Shapiro’s Catalan triangle. In [3] Ci(n) appears as special case 2da—r 14+1. In [4] all powers of ¢(z)
show up as convolutions for the special case of the S; sequence there. The entries of the S;—array, p. 397, are [x"]ck“(x)
for n, k € No.



We now compute the coefficients Cj(n) = [z!]c"(z) (see footnote 5 for this notation) from our formula
given in proposition 1. This can be done for n € Z.

First consider n € Ny. For n = 0 and n = 1 there is nothing new due to the inputs S o =—-1,5 ;=0
and Sy = 1. Cj(n) = 0 for negative integer /. Therefore, terms proportional to 1/z! with [ € N have to
cancel in (34). For n = 2,3, ... terms of the type 1/z"~7 occur for j € {1,2,...,|n/2|} . The coefficient
of 1/2" 77 in p,_i(z) is (—1)7(”;117]) (see footnote 4 for the explicit form of p,_;). For the 1/z"~/

coefficient in g,_1(z) ¢(x) one finds the convolution E{;&(—l)j_l_l ("J:({:IZ)) C; . Compensation of both
coefficients leads to identity (P1) given in (4), after (j — 1) has been traded for p. Thus:

Proposition 2: Identity (P1)
Forn =2,3,...andp = 0,1,..., 5] — I identity (P1), given in eq.(4) holds.
Example 3: n=2k, p=k—1,andn=2k+1, p=k—1 for keEN

o (=D () G = ) o (=1 Gt G =k

For n = 2,3,... terms in (1), or (31), proportional to z* with & € Ny arise only from ¢, 1(z) c¢(z), and

they are given by the convolution (cf. footnote 4) ZZL(:%_I)/ZJ (1) (n_ll_l) Ciin-1-1 - For n =1 this is

Ck. The Lh.s. of (1) contributes Ck(n), and Ci(1) = Ck. Therefore:
Proposition 3: Identity (P3)

For n € N ,k € Ny identity P(2), given in eq.(5) with (3) holds.
Example 4: k=0, (n—1) = n: 2" (<) (") Coy = €, — 1

Now consider negative powers in (1), i.e. ¢ "(z) ,n € N . No negative powers of z appear (cf.
footnote 4 for the explicit form of p_(,,;1y(z) and q_(;,4.1)(x) ). The coefficient of z¥, k € Ny , of the rhs.

of (1) is (—1)¥ (";k) - E}i’g‘”/” (—1)! (nfll*l) Cr—1-1 , where the first term, arising from p_,11)(z),
contributes only for k € {0,1,...,[n/2]} . The lhs. of (1) has [zF]c™™(z) = Ck(—n) . From the last eq.
in (48) one finds Cy(—n) = =& (Qkfknfl) = (-1)F 2o (";k) . In the last eq. the upper index in the
binomial has been negated (cf. [2], (5.14)). Two sets of identities follow, depending on the range of k:

Proposition 4: Identity (P3)

Forn € N, k€ {0,1,...,[5]|} identity (P3), given in eq.(6) holds.
Proposition 5: Identity (P4)

Forn € N, k€ N with £ > [§] + 1 identity (P4), given in eq.(7) holds.

In (P4) only the g_(,41)(7) c(x) part of (1) contributed and we used the first expression for Ck(—n) in
(48). In (P3), where also p_,41)(z) contributed, we used the negated binomial coefficient for Ci(—n)
and absorption in the resulting one.

Note that (48) implies Cy(—n) = —Ci_p(n) for k,n € N ,and k> n . C(0) = oy .
If one uses the binomial formula for ¢c™"(z) = (1 —z ¢(z))® and ¢"(z) = 352, Ck(n) =¥ one arrives
at eq.(8).



We close this section by presenting some sequences of positive integers which are defined with the
help of the U,, polynomials (21).

an(m) = Up(1/m) = (Vm )" Sp(vm ). (49)

The last eq. is due to (32). It will be shown that a,(m) is for each m = 4,5,... and n = —1,0,... a
non-negative integer. Also negative integers —m, m € N are of interest. In this case we add a sign
factor.

bu(m) = (=1)" Un(=1/m) = (—ivm )" Su(ivm ) . (50)

From the S,, recursion relation (26) one infers those for the a,(m) and b, (m) sequences.
an(m) = m (ap—1(m) — ap—2(m)) , a_1(m)=0 , ap(m)=1, (51)

bp(m) = m (bp—1(m) + bp_2(m)) , b_1(m)=0 , by(m)=1. (52)

This shows that b, (m) constitutes a non-negative integer sequences for positive integer m. It describes
certain generalized Fibonacci sequences ( see e.g. [5] with by(m) = Wy,11(0,1;m,m) ). Of course, one
can define in a similar manner generalized Lucas sequences using the polynomials {V,} given in (22).
Each a,(m) sequence (which is identified with W, (0, 1;m,—m) of [5]) turns out to be composed of two
simpler sequences, viz ag,(m) =: m* ag(m) and agr_1 =: mF Br(m) , k € Ny. These new sequences,
which are, due to (49) and (50), given by oy = Sop(v/m ) and Sr(m) = Sap—1(v/m )/v/m , satisfy

therefore the following relations.

Br+1(m) = (m—=2) Br(m) — Br_1(m) , Po(m)=0 , Bi(m)=1, (53)

and
ar-1(m) = Be(m) + Br_1(m) . (54)

From (53) it is now clear that (,(m) is a non-negative integer sequence for m = 4,5, ... (In [5] £,(m) =
Wp(0,1;m —2,—1) .) This property is then inherited by the a,,(m) sequences due to (54), and then by
the composed sequence a,(m). (Of course, one could also consider sequences built from negative and
positive numbers, but we refrain from doing so here).

The ordinary generating functions are ©
00 1 s 1+
. e— n — . = n —
gs(m; z) : ;::0 falm) 2" = g1 0 9e(mi®) nz::O (M) 2 = e et 1
(55)
o0 . 1 s 1
ga(max) 712:% an(m)x 1—maz+mz2 gb(max) HZ% n(m)x 1l—mx—m 2 ( )

®The {B8,(m)} sequences for m = 4,5,6,7,8,10 appear in the book [10]. The case m = 4 produces the sequence of
non-negative integers, m = 5 are the even indexed Fibonacci numbers. The m = 9 sequence appears only in Sloane’s
On-Line-Encyclopedia [10] as A004187. The {a.(m)} sequences for m =4,5,6 and 8 appear in the book [10]. m = 4 yields
the positive odd integer sequence, m = 5 the odd indexed Lucas number sequence. The m = 7 sequence appears now as
A030221 in the data bank [10]. The composed sequences {a,(m)} are not in the book but some of them are found in the
data bank [10]. m = 4 is the sequence (n + 1) 2" , A001787, and m = 5,6, 7 appear now as A030191, A030192, A030240,
respectively. As mentioned above {b,4+1(1)} is the Fibonacci sequence. The instances m = 2 and 3 appear as A002605 and
A030195, respectively, in the data bank [10].
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3 Derivatives

The starting point is eq.(9) which can either be verified from the explicit form of the generating function

c(x) (cf footnote 3), or by converting the recursion relation (10) for Catalan’s numbers into an eq. for
n+1 n

their generating function. A computation of m % = n%rl (L jx,f(x) ) with Ansatz (11)

and eq. (9) produces the following mixed relations between the quantities a,(z) and b, (x) and their first

derivatives, valid for n € Ny,

(n+1) ay(z) = z(1 —4z) a,_1(z) + bu(z) + nBz—1) ap_1(z) (57)
(n+1) byyi(x) = z(1 —4x) b, (x) + (—(n+1) +2(1 +4n)z) bu(x) , (58)
with inputs a_1(z) =0 and by(z) =1 .

From (58) and the input it is clear by induction that b,(z) is a polynomial in z of degree n. With
this information (57) and the input show, again by induction, that the same statement holds for a,(z).
Therefore we write, for n € N , 7

an(z) = Z(—l)k a(n, k) "% | (59)

bu(z) = > (=1)* B(n, k) 2", (60)
k=0

with the triangular arrays of numbers a(n, k) and B(n, k) with row number n and column number k < n.

We first solve the b, (z) eq.(58) by inserting (60) and deriving the recursion relation for the coefficients
B(n,m) after comparing coefficients of "', 20, and 2" for k =0,1,...,n — 1.

"t (n+1) B(n+1,0) = 2(2n+ 1) B(n,0) , (61)
0 B(n+1,n+1) = B(n,n), (62)
AL (n+1) Bn+1,k+1) = (k+1) B(n,k) + 22(n+k) +3) B(n,k+1).  (63)

With the input B(0,0) = 1 one deduces from (61) for the leading coefficient of b, (x)

B(n.0) o 2n =1 (2n)! _ <2n> (64)

n! n! n! n
and from (62)
B(n,n) =1 , ie. by(0)=(-1)". (65)
In order to solve (63) we inspect the B(n,m) triangle of numbers TAB. 1, and conjecture that for n,m € N
B(n,m) = 4 B(n—1,m) + B(n—1,m—1), (66)
with input B(n,0) = (2:) from (64).

If we use this conjecture in (63), written with n - n—1, k — m — 1 we are led to consider the simple

recursion
n+1—m

B(n,m) = m

B(n,m —1), (67)

"The triangular array a(n, k) will later be enlarged to another one which will then be called A(n, k).
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with input B(n,0) = (2:) from (64).

The solution of this recursion is, for n,m € Ny , 8

1 n! 2n m! n! 2n 2n n 2m
B(n,m) = 2m(2m — ! (n — m)! <n> - (2m)! (n —m)! <n> - <n> <m>/<m> (68)

This result satisfies (61), i.e. (64), as well as (62), i.e. (65). It is also the solution to (63) provided we prove

the conjecture (66) for B(n,m) of (68). This can be done by using the form B(n,m) = %
and extracting this expression on the rhs. of (66). Then one is left to prove 1 = % "2_”":1 + 2277';:11 ,

which is trivial. Thus we have proved:
Proposition 6: Explicit form of by, (x)

B(n,m) given by eq. (68) is the solution to eqs.(61), (62), and (63). Hence b, (z), defined by (60) with
B(n,m) from (68), solves eq. (58) with by(z) =1

One can derive another explicit representation for the b, (z) polynomials by converting the simple recur-

rence relation (67) into the following eq. for b,(z) defined by (60).

(1—4z) V. (z) + 2(2n — 1) bu(z) + 2 (2”> g = 0. (69)

n
Now this first order linear and inhomogeneous differential eq. for b,(x) can be solved.
Proposition 7: Alternative form for b, (z)

The solution to eq.(69) with input b, (0) = (—1)" is given by eq.(13), with C_; = —1/2 and the Catalan
numbers C}, for k£ € Ny.

Proof: This eq. is of the standard type y' + f(z) y = g(z) withy = b, , f(z) =2(2n —1)/(1 — 4z
and g(z) = 2(n + 1)Cpa™/(1 — 4z) . F(z) := [dz f(z) = —3(2n— 1) In(1l — 4z) + const(n). y
exp(—F(z)) {Const(n) —2 (n +1)Cpl,(z)} with I,(z) := [dz /(1 — 4z)"t'/? and exp(—F(z))
(1 —4x)»1/2 | The integral I,(z) can be computed by repeated partial integration, and it is found to

)

be

1 & Cok-1 ok
In(@) = —— 3 (-1)F ZE= "R/ (1 = da) 2 (70)
k=0 n

where we used C_; := —1/2 , compatible with the recursion (10). This leads to the desired result for
y = by(x) if the integration constant Const(n) is put to zero in order to satisfy b,(0) = (=1)" and a
resummation k¥ — k — n is performed. a

Comparing this alternative form (13) for b, (x) with the one given by (60), together with (68), proves the
following identity in n and A := (42 — 1)/z. The term k£ = 0 in the sum (13) has been written separately.

Corollary 3: Convolution of Catalan sequence and powers of A

n—1 n
) =X S =g (%f) > (1) (4 ) (Z)/(Z,f)), ()

k=0

SWith the Pochhammer symbol (a), := I'(n + a)/T(a) this result can also be written as
B(n,m) = ((2m+1)/2)pn—m 4™ "/(n —m)! .
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for n € N and A # oo . Observe that s,()) is the convolution of the Catalan sequence with the
sequence of powers of A. Therefore, the (ordinary) generating function for the sequence s, () is g(A\; x) :=

Yato sn(A) 2" = c(z)/(1-Az).°

The case A = 0 (z = 1/4) is also covered by this formula. It produces from s,(0) = C,, the following
identity.

Example 5: Case A =0 (v =1/4) 1°

- n 2k 1
> ()t (k) 4k/<k> T o1 (72)

k=0
We note that from (13) one has —2b,,,1(1/4) = C,, /4" . 11

If one puts in (13) 4z — 1 =z, i.e. x = 1/3, one can identify the partial sum of Catalan numbers, s, /(1)
12 as follows.

- 1
sn(l) =) Ci = S = 3" by (1/3) ). (73)
k=0
If one puts A =1 in Corollary & one finds also

25, 1(1) = 1 + (2:> znj (—1)k+1 (Z) 3’6/(1’“) . (74)

k=

Example 6:

0
Another interesting example is the case A = 4 (x = 00). Here one finds a simple result for the convolution
of Catalan’s sequence with powers of 4, viz '3

Example 7: A =4 (z = o0)

n

2 sp_1(4) = 4" — (2”> . (75)

The sequence for A = —1 (z = 1/5) is also non-negative, as can be seen by writing sor(—1) =
Co+ YK o (Cy—Cy_y) for k€ N and sgpy1(—1) =S8, (Cyp1 —Cy), and using AC,, := Cp,—Cp | =

n—1 14
32=L 1 >0

Recursion (66) for B(n,m) can be transformed into an eq. for the (ordinary) generating function for the
sequence appearing in the mth column of the B(n,m) triangle

Gp(m;x) := Z B(n,m) z" , (76)

n>m

9From the generating function the recurrence relation is found to be s, (\) = A sp—1(A)+Ch , s—1(A) = 0. The connection
to the b, (z) polynomial is s, (\) = %()\""'1 — (A=2)"T by (1/(4 - )\)))

'9This identity occurs in one of the exercises 2.7, 2, p.32, in [7].

"' The large n behaviour of this sequence is known to be C, /4" ~ % n3—1/2 , ¢f. [2], Exercise 9.60.

2 This sequence {1,2,4,9,23, 65,197, 626, 2056, ...}, appears as A014137 in the on-line encyclopedia [10].

13This sequence {1,5,22, 93,386, 1586, 6476, ...} appears in the book [10] as Nr. 3920 and as A000346 in the on-line
encyclopedia. It will show up again in this work as A(n + 1,1), the second column in the A(n, m) triangle (c¢f. TAB.2).

“This is the sequence {1,0,2,3,11, 31,101,328, 1102, 3760, ...} which appears now as 4032357 in the on-line encyclopedia
[10] .
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with input Gp(0;z) = Y00, (27?) z" = 1/4/1—4x , the generating function for the central binomial
numbers. (66) implies for m € N 1

T
1—4x

)m 1 )

Gp(m;z) = ( i

Therefore, we have proved:

Proposition 8: Column sequences of the B(n,m) triangle

The sequence {B(n,m)}52, , defined, for fixed m € Ny , by (68) for n € Ny is the convolution
of the central binomial sequence {(215)}80 and the mth convolution of the (shifted) power sequence
{0,1,41,42 ...

In a similar vein we solve the a,,(z) eq.(57) with b, (z) given by (60) and (68). The coefficients a(n, k),
defined by (59), have to satisfy, after comparing coefficients of 2", 2°, and 2" * for k = 1,2,....,n — 1 and
n € Np:

z" a(n,0) = 4a(n—1,0) + C,, (78)
2 (n+1)amn,n) =1+ nan—1n-1), (79)
vk (n+1)alnk) = kaln—1,k—1) + 4n+1+k)aln—1,k) + B(n,k). (80)

We have used (64), i.e. B(n,0) = (n+1) C, in (78), as well as (65), i.e. B(n,n) =1, in (79). From (78)
one finds with input a(0,0) = 1 6

a(n,0) = an Cp 4%, (81)
k=0
and from (79)
a(n,n) =1, or a,(0) = (=" . (82)

It is convenient to define a(n—1,—1) := C,, , n € Ny. Then the sequence {a(n,0)}> is, with a(—1,0) :=
0, the convolution of the sequence {a(k, —1)}> and the shifted power sequence {0,1,4',42,...}. Before
solving (80) with inserted B(n, k) from (68) we therefore add to the trianglular array of numbers a(n,m)
the m = —1 column and an extra row for n = —1, and define a new enlarged triangular array for
n,m € Ny as

A(n,m) = a(n—1,m—1) (83)

with A(n,0) = a(n —1,-1) = C,, and A(0,m) = a(—1,m — 1) = dy,m . An inspection of the A(n,m)
triangular array, partly depicted in TAB. 2, leads to the conjecture

An,m) = 4 Aln—1,m) + A(n—1,m—1), (84)

with A(n,0) = C, and A(n,m) =0 for n < m . ' This conjecture is correct for A(n + 1,1) = a(n,0)
found in (81), as well as for A(n+ 1,n+ 1) = a(n,n) =1 known from (82). The (ordinary) generating
function for the sequence appearing in the mth column,

Galmyz) = Z: A(n,m) z" , (85)

YFor L Gp(m;z) see (92).
4(n,0) = s,(4) of (71) with solution (75).

'"This recursion relation can be employed to extend the array A(n,m) to negative integer m values.
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satisfies due to (84) Ga(m;z) = == Ga(m —1;1) , remembering that A(m — 1,m) = 0, or because of
Ga(0;z) = c(z)

Ga(myz) = (1 _x4$)m c(x) . (86)

Because of (77) and /1 —4x ¢(z) = 2 — c¢(z) these generating functions of the conjectured A(n,m)
column sequences obey

Ga(m;z) = (2—c(z)) Gp(m;z) . (87)

If we use the conjecture (84) in (80) which is written with (83) in the form (n+1) A(n+1,m+1) =
m A(n,m) + 4n+m+1) A(n,m+1) + B(n,m), for n € No, m € {1,2,..,n — 1} , we have

mAn+1,m+1) — (n+1) A(n,m) + B(n,m) = 0. (88)
This recursion relation can be written with the help of the generating functions (76) and (85) as
d m
($% +1) Ga(myz) — ~ Galm+1;2) = Gp(m;z) (89)

or with (86) (i.e. the conjecture) as

) Ga(miz) = Gp(miz) . (90)

Together with (87) this means

m
1—4x

oo (2= @) Gulmsn) = [(p — D@ - @) +1] Gulmio) o)

If we can prove this eq. with Gg(z) given by (77) we have shown that (80) is equivalent to the conjecture
(84). In order to prove (91) we first compute from (77), for m € Ny ,

d m 2z +m
QU%GB(W,IE) =(2+ ;) Gp(m+Lz) = — Gp(m;z) . (92)
With this result (91) reduces to
, 1-2z
(—x (@) + (2-c(x)) - 1) Gp(m;z) = 0, (93)
1—-4z

and with (9) the factor in front of Gg(m;z) finally vanishes identically for z # 1/4. Therefore, we have
proved the following two propositions.

Proposition 9: Column sequences of the A(n,m) triangular array

The triangular array of numbers A(n,m), defined for n,m € Ny by eq.(84), A(n,0) =C,, A(n,m) =0
for n < m has as mth column sequence {A(n,m)}>2, . the convolution of Catalan’s sequence and the
mth convolution of the shifted power sequence {0,1,4!,42 ...}.

Proof: (86) with (85). O
Proposition 10: Triangular A(n,m) array

The triangular array A(n,m) of proposition 9 coincides with the one defined by (83) and (78), (79) and
(80) with B(n, m) given by (68).
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Proof: a(n,0) = A(n+1,1) and a(n,n) = A(n+ 1,n+1) =1 of (78) and (79), i.e. (81) and (82),
respectively, coincide with (84). (80) is rewritten with the aid of (83) as (88), and (88) has been proved
by (89) to (93). m]

It remains to find the explicit expression for the a,(z) coefficients a(n, k) defined by (59). Because of
(83) we try to find a formula for A(n,m) . By propositions 9 and 10 we may consider the recursion (84)
with inputs A(n,0) = C, , A(n,m) =0 for n <m, and A(n,n) =1 from (83) and (82).

Proposition 11: Explicit form of a,(x)
A(n,m) given by A(n,0) = C,, , A(n,m) =0 for n < m, and (14) is the solution to (84) with A(n,n) =1.
Therefore, ay,(z) is given by (59) with a(n,k) = A(n+ 1,k +1) from (14).

Proof: The first term of A(n,m), % gn—m+1 (mril
identity (,,",) = (:1_,11) + (:;12) (Pascal’s triangle). For the second term of A(n,m) in (14) one has
to prove

W) ) =GR O = g () 25 o

or after division by (2(7?__11))

2n —1 n n—1 n—1\ 2m—3
= 9 o= 2
n (m—l) (m—l) + (m—2> m—1" (95)

which reduces to the trivial identity 2n — 1 =2 (n —m + 1) 4+ 2m — 3.

) , satisfies the recursion (84) because of the binomial

Both terms together, i.e. (14), satisfy the input A(n,n) = 1. O

Note 3: A(n,m) was found originally after iteration in the form (withn >m >0 and (—1)!!:=1)

n > I 2 —m) +2k—1)
m—1 (2m — 3)!

A(n,m) = 2-4"™ < Crn—m - (96)

A(n,0) = C,, . It is easy to establish equivalence with (14).

In the original derivation of the A(n,m) formula (14) it turned out to be convenient to introduce a
rectangular array of integers A(n,m) for n,m € Ny as follows. A(0,0) :=1, A(n,0) := —C),, forn € N,

~

and for m € N and n € Ny A(n,m) is defined by (15), or equivalently, by (16). The A(n,m) recursion
(84) translates (with the help of the above mentioned Pascal-triangle identity) to

~

A(n,m) = 4 A(n—1,m) + A(n,m—1) . (97)

This leads, after iteration and use of A(0,m) =1 from (15) with A(n,n) =1, to

A(n,m) = 4" i: A(k,m —1)/4% . (98)
k=0

Thus, the following proposition holds.

Proposition 12: Column sequences of the A(n,m) = C4(n,m) array
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The mth column sequence of the A(n,m) array, {A(n,m)}?ﬁzo , is the convolution of the sequence
{A(n,0)}g* ={1,-1,-2,-5,...} , generated by 2—c(z), and the mth convolution of the power sequence

{4535° .
Proof: Tteration of (98) with the A(n,0) input. O
Corollary 4: Generating functions for columns of the A(n,m) = C4(n,m) array

The ordinary generating function of the mth column sequence of the A(n,m) array (16) is for m € Nj

given by
00 R . 1 m
G i(m;z) = nz::O A(n,m) z" = (2 —c(z)) (1 — 4:17) . (99)
Proof: Proposition 12 written for generating functions. o

Because of the convolution of the (negative) Catalan sequence with powers of 4 we shall call this array
A(n,m) also C4(n,m). A part of it is shown in TAB.3. 8

Finally, we derive identities by using, for n € Ny, eq.(17) for the lhs. of (11) and the results for a, 1
and b, for the rhs.

Because there are no negative powers of z on the lhs. of (11), such powers have to vanish on the rhs.
This leads to the first family of identities. Because (1 —4z)™" = Y 72, % 4% gF | with Pochhammer’s
symbol defined in footnote 8, this means that [zP] (a,—1(z) + by (z) c(z)) , the coefficient proportional to
2P, has to vanish for p =0,1,...,n — 1, n € N. This requirement reads

(—D)" P an—1,n—1—p) + Xp:(—l)"—k B(n,n—k) Cp_ =0. (100)
k=0

The sum is restricted to & < p(< n) because no C; number with negative index is found in c¢(z) .
Inserting the known coefficients this produces identity (D1) of (18).

Proposition 13: Identity (D1) of (18)
Forn e N and p € {0,1,...,n — 1} identity (D1), given by (18), holds.

Proof: With (83) (100) becomes

Z (—l)p*k Cp—r B(n,n—k) = A(n,n—p), (101)
k=0

which is (D1) of (18) if the summation index k is changed into p — k, and symmetry of the binomial
coefficients is used. O.

18The second column sequence is given by A(n,1) = C4(n,1) = ( and appears as nr.2848 in the book [10], or as
A001700 in the on-line encyclopedia [10]. The sequence of the third column {A(n,2) = C4(n,2)}?® = {1,7,38,187,...} is
from (98) and (96) with (15) determined by 4™ > _ (2’“,:1)/4’“ = (2n+3) 2n+1) C, — 2" | and is listed as 4000531
in the mentioned on-line encyclopedia. There the fourth column sequence is now listed as A029887.

2”:—1)
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Example 8: (D1) identity forp=n—1¢€ Ny

n-l n 1 2n 2n
> (=1)F <k+1> T 4”/<n> -1 = 2A(n,1)/<n> . (102)

k=0

The second family of identities, (D2) of (19), results from comparing powers z* with k& € Ny on
both sides of eq.(11) after expansion of (1 —4z)™" as given above in the text before eq. (100). Only
the second term by, (z) c(x) contributes because a,—1(z)/z™ has only negative powers of z. Thus, with
definition (17) one finds for k£ € Ny and n € N,

k
) = Y L= S (1" Blrn—) Co i (103)
=0 C =0

which is, after interchange of the summations and insertion of B(n,n — j) from (12) the desired identity
(D2) if also the summation index j is changed to n — q.

Thus we have shown:

Proposition 14: Identity (D2) of (19)

For k € No and n € N identity (D2) of (19) with C(n, k) defined by (17) holds.
Example 9: Identity (D2) for k=0, n e N

- S (n+1)
jzo(—l)J <j+1> =1, (104)

which is elementary.
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19With this identity we have found a sum representation for the convolution of the Catalan sequence and powers of 4:
— —1 P -1 .
sno1(4) =470 ST Cp/aE = 5 (1) YoiZo(=DF (1) s (o (75) with (71)).

18



TAB.1:

B(n,m) Central Binomial Triangle

n\m 0 1 2 3 4 5 6 7 8 9 10
0 1 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0
2 6 6 1 0 0 0 0 0 0 0 0
3 20 30 10 1 0 0 0 0 0 0 0
4 70 140 70 14 1 0 0 0 0 0 0
5 252 630 420 126 18 1 0 0 0 0 0
6 924 2772 2310 924 198 22 1 0 0 0 0
7 3432 12012 12012 6006 1716 286 26 1 0 0 0
8 12870 51480 60060 36036 12870 2860 390 30 1 0 0
9 48620 218790 291720 204204 87516 24310 4420 510 34 1 0

10 184756 923780 1385670 1108536 554268 184756 41990 6460 646 38 1

TAB.2: A(n,m) Catalan triangle

n\m 0 1 2 3 4 5 6 7 8 9 10
0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
2 2 5 1 0 0 0 0 0 0 0 0
3 5 22 9 1 0 0 0 0 0 0 0
4 14 93 58 13 1 0 0 0 0 0 0
5 42 386 325 110 17 1 0 0 0 0 0
6 132 1586 1686 765 178 21 1 0 0 0 0
7 429 6476 8330 4746 1477 262 25 1 0 0 0
8 1430 26333 39796 27314 10654 2525 362 29 1 0 0
9 4862 106762 185517 149052 69930 20754 3973 478 33 1 0

10 16796 431910 848830 781725 428772 152946 36646 5885 610 37 1

TAB.3: C4(n,m) Catalan array
n\m 0 1 2 3 4 5 6
0 1 1 1 1 1 1 1
1 -1 3 7 11 15 19 23
2 -2 10 38 82 142 218 310
3 -5 35 187 515 1083 1955 3195
4 -14 126 874 2934 7266 15086 27866
5 -42 462 3958 15694 44758 105102 216566
6 -132 1716 17548 80324 259356 679764 1546028
7 -429 6435 76627 397923 1435347 4154403 10338515
8 -1430 24310 330818 1922510 7663898 24281510 65635570
9 -4862 92378 1415650 9105690 39761282 136887322 399429602
10 -16796 352716 6015316 42438076 201483204 749032492 2346750900
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