
Isolating critical cases for reciprocals using integer factorization

John Harrison
Intel Corporation, JF1-13

2111 NE 25th Avenue
Hillsboro OR, USA

johnh@ichips.intel.com

Abstract

One approach to testing and/or proving correctness of
a floating-point algorithm computing a function

�
is based

on finding input floating-point numbers � such that the ex-
act result

��� ��� is very close to a “rounding boundary”, i.e.
a floating-point number or a midpoint between them. In
the present paper we show how to do this for the reciprocal
function by utilizing prime factorizations. We present the
method and show examples, as well as making a fairly de-
tailed study of its expected and worst-case behavior. We
point out how this analysis of reciprocals can be useful
in analyzing certain reciprocal algorithms, and also show
how the approach can be trivially adapted to the reciprocal
square root function.

1 Background

Suppose we have a floating-point algorithm computing
a function that approximates a true mathematical function�����
	��

. For example, consider the following algorithm
for the Intel Itanium architecture designed to compute
a floating-point square root � � using an initial reciprocal
square root approximation followed by a sequence of fused
multiply-adds. (In the actual implementation, the initial ap-
proximation instruction deals with special cases including
���� .)

��� ��� frsqrta
� ������ ��� ��� ��� ���
� ��� !� "�� ���$# �%�&���' � �

�
���)(*"��+��� �

�
�%�,(-"��&�%�

.�� "
� ��$# � �

�
�/!� � � � �

(*"
�
�
�

� � � �
(-"
�
�
�0 � " � �� # � � � � 12� 3� # � � � �4!� �65 � � (*" � � � �75 � � (1 � � �8!� 1 5
� # �75+��5� � �9� �75:(1 5;�65

If an algorithm is, like this one, implemented by compos-
ing basic floating-point operations (rather than, say, some
more complicated analysis of bit-patterns), then the value
computed can usually be represented as the result of round-
ing some approximation

�=<>�@? �:A ���B? � , the value before the
final rounding. In this case, the final

�
results from round-

ing the exact value
� 5 (1 5 � 5 .

The algorithm will therefore round correctly for all in-
puts

?
such that

�=<>�B? � and
���B? � round to the same num-

ber (for all the rounding modes under consideration). In
the concrete square root example, this means that � � and� 5 (1 5 � 5 should always round the same way.

A sufficient condition for equivalent rounding behavior
is that the two values

�=<��@? � and
���B? � should never be sep-

arated by a rounding boundary, i.e. a floating-point num-
ber (for directed rounding) or a midpoint (for round-to-
nearest). That is, there is never a rounding boundary C
with

���B? �*DECFD �=<��@? � or
�7<G�B? �-DECHD ���B? � , un-

less
�7<G�B? �, ���@? � . (Not quite a necessary condition in the

round-to-nearest mode since if one is exactly equal to the
rounding boundary and the other on the “right” side, the
correct result will be obtained.) This is usually hard to es-
tablish by analytic reasoning. However, it is usually easy to
establish some sort of relative error bound I such that:

J � < �B? � # ���@? � J DKI J ���B? � J
Therefore, misrounding can occur only when

J ���B? � # C J DLI J ���@? � J
It is therefore interesting for purposes of both testing

and proving correctness to deliberately concoct test points?
to make the relative distance from a rounding boundaryJ ���@? � # C J M�J ���B? � J as small as possible. Indeed, irrespec-

tive of the details of the algorithms we are concerned with,
these test points might be expected to display greatest sen-
sitivity to the accuracy of

�=<G�B? � and so show up errors most
easily.

For some basic algebraic functions, such special
?

can
be found analytically using number-theoretic techniques
[14, 11], in such a way that the very worst examples (having
the smallest relative distance from a rounding boundary) are
isolated. For transcendental functions, this is more difficult,
but one can still generate good cases by exploiting local lin-
earity and solving congruences. For double-precision it is
feasible, though costly, to isolate the very worst examples
[6].

One use of the points so obtained is to test floating-point
functions. Indeed, Parks [11] reports that such testing ex-
posed a bug in a commercial microprocessor. A more am-
bitious goal, realized for square root algorithms by Cornea
[1], is to isolate a sufficiently large set of points that the cor-
rect behavior of the algorithm on these, in conjunction with
an analytical proof that covers all other cases, gives a com-
plete correctness proof of the algorithm in all cases. For
example, if we can prove analytically that for all floating-
point numbers

?
we have:

J � < �@? � # ���@? � J D I J ���B? � J

and that some set
� � contains all points

?
where

J C #���B? � J D I J ���B? � J for some rounding boundary C , the cor-
rectness of the algorithm in all cases is equivalent to the
correctness just for the points in

� � . If such sets can be
found easily and they are not too large, this gives a very
effective methodology for proofs of algorithms. The goal
of this paper is to show how to isolate such special cases
for the reciprocal (and reciprocal square root) function and
demonstrate their applicability in such correctness proofs of
algorithms.

2 Critical cases for quotient and reciprocal

We will in what follows consider a single floating-point
format with precision � , which contains all the floating-
point numbers concerned and is also the destination for-
mat for the result. We also ignore the possibility of over-
flow and underflow in computation sequences. This keeps
the presentation simpler and accords well with the intended
applications where all input numbers are double-extended
and additional exponent range (but not precision) is avail-
able for intermediate computations. The results that follow
can straightforwardly be refined for mixed-precision appli-
cations.

It’s instructive to examine the problem for the general
case of quotients, and then contrast the restriction to the
reciprocal. In general, we seek floating-point numbers

?
and

�
such that

? M �
lies close to some � that is either itself

a floating-point number or a midpoint between two floating-
point numbers. Without loss of generality, we can assume:

? ����� � �	��
 � D �� ���� ������� �	��
 � D � � ���
� ����� C �	� DKC�� �	��� �

where � is the floating-point precision and � , � and C , as
well as the various 1�� , are integers. Note that even values
of C correspond to floating-point numbers and odd values
correspond to midpoints. We are interested in how small
the relative difference

J ? M � # � J M�J ? M � J can become. This
relative difference can be rewritten as:

J ? M � # � JJ ? M � J J � # � � M ? J J � # �
�� C � M � J

where � 1�� # � 1�� (1�� � , and so
J C � # ��� � J� � �

Given the ranges of the values � , � and C , we have

� � ��
 � DKC � � � � ��� �
and

� ������
 � D � � � � � �����
It turns out that the only interesting cases are when � �

or � � (3� . For if � D � # � then � (� D � � # � so we
have

� � � D � � � � � # � �!� � � ��
 � D C �
(remember that the values � , � and C are integers so when
� ��" they are actually D ��" # �) and so

J C � # ��� � J� � �
� � M � � � ��� � M �%$ �
&�

.
Similarly if � � (*� we have:

C � D � � � # � � � � �'� � # � �(� � � ��� � D � ��� � � � � � ��� �

and therefore

J C � # ��� � J� � �
� � ��� � (� � # � � M � � � ���!$ � �'� � M � � ��� � �
*)+��� ��,

Finally, if � # � (* then
� � � $ � C � and so

J C � # ��� � J� � � $ � M �
In all these cases, the distance is at least

�-
.)/�'� ��, . There-
fore, when seeking cases where the distance is of order

�&
 � �
(for realistic �) we need only consider �1032 �.45� (���6 . This

being the case, the denominator
� � � is constrained to within

a factor of
'
, so the essential problem is to find how small

J C � # � � � J

can become for � 0 2 �*4 � (���6 . Since the value is an integer,
we can try to find small values by explicit consideration of
the various possibilities in succession:

C � � � � (��
C � � � � # �
C � � �'� � � (
�
C � � �'� � � # �
C � � � � (*�
C � � � � # �
C � � �'� � � (K�
C � � �'� � � # �
C � � � � (-
�����

It seems that the number of possible solutions of these
equations is too large for this to be a practical approach.
On the other hand, if we fix any one of the values � , � and
C , the problem becomes tractable. If we fix either C or

�
then the problem becomes a set of linear congruences (with
additional range restrictions filtering the possible solution
set), which are easy to solve. If we consider the special case
of the reciprocal, then we fix �* ����
 � . This problem is
also tractable, as we shall see, but has a somewhat different
character. We just need to consider

C � � � ��
 � (��
C � � � � (��

for successive small integers
�
. In fact, the situation is even

better, because once again no small values can arise in the
former case because of the range limitation, except for the
trivial C � � � ��
 � ; the next case must be

� ��� (
� � ����
 � � � ��
 � (����
 � . So we need only be concerned with solutions
to

C � � � � (��

for integers
����
 � D � � ��� and

�	� D C � �	��� � . Indeed,
for small

�
, it is easy to see that the two upper bounds imply

the lower ones.

3 Factorization distribution

Our approach to the problem of finding all solutions to
C � � � � (�� (with � and

�
fixed) is quite straightforward.

We find the prime factorization of
� � � (��

, and consider all
possible ways of distributing these prime factors into two
parts C and

�
subject to the appropriate range limitation

C � ���'� � and
� � ���

. In general, we will refer to a
factorization � � � of � with � �	� and

� ��
 as an� � 4
 � -balanced factorization.
Consider, for illustration, the case � /

and
� 0

2� � 4 � � 4 � 6 . In each case we find the prime factorization
of
� � � (��

:

� � � (�� � 0 � � ' �� � � # � � � . � 0 � �+ � � � (*� � � � /�4G � � � # � � � �� � 4G8� � � (- ' � 8G8� � � # ' � 8G

In the cases
� � � (� , � � � (� , � � � (and

� � � # , the largest
factor is already $ ����� � �&�G4

, so there is no possible
distribution obeying the range restrictions. For

� � � # � there
is exactly one such distribution:

C � � 4G8 � � � � �� � 4�8 � ' /
Note that the ‘symmetrical’ distribution is not admissi-

ble because
4�8 $ ��� . For

� � � # � , there are four possible
distributions:

C � � � � � �& � � � . � 0 � �G� 0 � �.
C � � � � . � 0 � � � � �& � � � . � G8
C � � � 0 � �+ � � � � � . � 8�� � ' .
C � � � . � �+ � � � � � 0 � /�. � /�

Note that the corresponding C are all odd, and therefore
represent midpoints. Thus, we can say that

J � M � # � J #' M � � � J � M � J for any midpoint � except in the cases where�
’s significand

�
is in the set 2 �. 4 G8 4 ' . 4 ' / 4 /� 6 ; for

� ' /
we get a

� M � � � relative distance and for 35, 39, 45 and 63
we get

� M � � � . Since the above lists exhausts all C , even or
odd, we see that

J � M � # � J # ' M � � � J � M � J for any floating-
point number � , except for the special cases when

�
is a

power of 2 and so its reciprocal is exactly representable (i.e.� M � �).

4 Implementation

The implementation of the above idea is straightforward,
given any reasonable programming language. We have used
Objective CAML, a very high-level functional language that
we have previously used extensively for implementation of
theorem proving code:

http://www.ocaml.org/

This already has a multiprecision integer and rational
function datatype available. It does not, however, have a
built-in library for factoring numbers, and we did not want
to write our own code for this operation — since the num-
bers can be as large as

� � ���
(for quad precision reciprocals),

factorization is a non-trivial problem. We used the factoring
code included in the PARI / GP system:

http://www.parigp-home.de/

The documentation says:

factorint)������	��
����� ���
, : factors the integer n using a combination of

the Shanks SQUFOF and Pollard Rho method (with modifications due to Brent),

Lenstra’s ECM (with modifications by Montgomery), and MPQS (the latter adapted

from the LiDIA code with the kind permission of the LiDIA maintainers), as well as

a search for pure powers with exponents � �
�

.

We are not experts in the topic of factorization, but have
been quite impressed with how fast it usually factors num-
bers. Only for quad precision, when the numbers are of the
order

� � ���
, does it start to slow down noticeably. Rather

than a strict primality test, the factors are only subjected to
a strong probabilistic primality test. Therefore, out of para-
noia, we have developed our own code to certify primality,
by constructing prime certificates in the style of Pratt [12],
appealing to Lucas’s theorem. That is, to certify that each� occurring in PARI/GP’s factorization is prime, we show
that there is a primitive root � modulo � such that � ��
 ��� �������� � � but � ����� "!� � ������� � � for any prime factor �
of � # � . (The primitive root � is found randomly, and the
factors � of � # � are found by using PARI/GP’s factor-
ization recursively, certifying those factors as primes too.)
This certification slows down the factorization process by a
moderate amount, so we sometimes switch it off when ex-
perimenting.

Once we have the prime factors, we need to test all ways
of distributing them over two numbers subject to range re-
strictions. As noted, we need only apply the upper range
restrictions C � ����� � and

� � ���
. Roughly, we just

naively enumerate all possibilities. In order to cut off
choice points as soon as possible, we start distributing from
the largest prime factors, i.e. consider the prime factors�$# �� � �%#'&� � ����� � �$#�() in decreasing order � � $ � � $ ����� $ �) .
We first consider all * �

(�
ways of distributing �%# �� into

two parts. If any of these distributions already violate the
range restriction, they are abandoned. Otherwise, for each
one, we consider the * � (� ways of distributing �%# &� , and
so on. The algorithm is very straightforward to program
recursively in OCaml.

It might be doubted whether such a naive distribution al-
gorithm is acceptably efficient. At least it has been adequate
to obtain some results quite quickly for the main precisions
that interest us, � 032 � ' 4 .G 4 /� 4 �G�+ -6 . We first look at some
of these results and then turn to a detailed performance anal-
ysis.

5 Results

Table 1 presents a small sample of the results obtained
using the methods outlined above. For each of the four ma-
jor precisions � � ' 4 .� 4 / ' 4 �G�& , we list the 66 floating-
point significands whose reciprocals are closest either to
floating-point numbers or midpoints. This distance, as a
multiple of the corresponding

�-
 � �
, is given in the ‘

"
’

columns. When, as often happens, several reciprocals have
the same ‘

"
’ value we order them in decreasing order, and

cut the table off on that basis. The asterisk means that the
distance is from a floating-point number (and hence may
be unimportant if we are concerned only with round-to-
nearest).

Larger lists for
"

up to a few thousand can be generated
for all these precisions without requiring more than a few
days of runtime on a modern machine. And of course, it is
trivial to parallelize the task since it consists of a separate
subtask for each

"
considered.

6 Applications

We can use the techniques set out above in the design and
verification of algorithms for correctly rounded reciprocals.
These might be substituted by the programmer, or by the
compiler if it can recognize that in an expression � M � , the
constant � is guaranteed to be

�
. (This could be generalized

to any power of
�
.) For example, the following algorithm is

normally used for double-extended precision division (pre-
cision � / ') on Intel Itanium processors.

��� ��� frcpa
� � ���� " � # � ��� � � �� ��� !� " � "�" " 5 "�" (-"' � �

�
�G� (���&" 5 "�+ " � " � (-".�� � � �G� (� �

",+ -+� 3� # � � �/!� 1 � # � � � � � �
� (�- � � �0 � �G5 � � (1 � � - 3� # � � �4!� � � �

(�-2�G5

Single precision Double precision Extended precision Quad precision
Mantissa � Mantissa � Mantissa � Mantissa �
0x800000 ��� 0x10000000000000 ��� 0x8000000000000000 ��� 0x10000000000000000000000000000 ���
0xFFFFFF � 0x1FFFFFFFFFFFFF � 0xFFFFFFFFFFFFFFFF � 0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFF �
0xFE01FF � 0x1FFFFFF8000001 � 0xD6329033D6329033 � 0x1FFFFFFFFFFFFFE00000000000001 �
0xFC3237 � 0x1FD8CD299E8D79 � � 0xB7938C6947D97303 � 0x1B52F1BB6F8DC3F0D920E2F3D449B �
0xF0FF0F � 0x1FC94266515BC9 � � 0x99D0C486A0FAD481 � 0x19C1ECF3420D27F8729BA7E1AB31D �
0xF02A3B � 0x1F739BD459BEA2 � 0x989E556CADAC2D7F � 0x17ABDE305BAC595488190B4AD7657 �
0xF00FF1 � 0x1F65FAD23B0D86 � 0x8E05E117D9E786D5 � 0x14367E6C7D1CD9E2833D2900EE8D5 �
0xEE4BC5 � 0x1EF7930608393E � 0xFFFFFFFFFFFFFFFE � � 0x1FFBA28E4810FB56A9FDD85058227 � �
0xEC7EC7 � 0x1EDA43AEE3120F ��� 0xFFFFFFFE00000002 ��� 0x1FF0231E35F73DFF14F89AADF10C2 �
0xE25473 � 0x1ED31F284BA183 � � 0xFFFFF000007FFFFE � � 0x1FE5A1913A4EF66DEF762D8053282 �
0xE1368B � 0x1E9A9473949BF6 � 0xFF801FFA00FFE002 � � 0x1FE1696E4EFFB6A84655C0D432D92 �
0xE05475 � 0x1E8D517D09C5C2 � 0xFF007FC01FF007FE � � 0x1FDA070427995BB524AB4B13DC457 � �
0xDE86A9 � 0x1E756F08DF1792 � 0xFE421D63446A3B34 � 0x1FAA42B2AE532A32F819FE18EDEAF � �
0xDC23DD � 0x1E4599DD926B71 ��� 0xFDC1EAD583108905 ��� 0x1F97117BE0A19F4B8279CEBB8A682 �
0xD43D43 � 0x1E20ADBC4078A2 � 0xFC41DF1077C41DF3 ��� 0x1F76B18346B7182CE92732C773FB2 �
0xD25D25 � 0x1DE4A0D00FA9B2 � 0xFC07FFE03FFF01FE ��� 0x1F742DB89E4A0B81D5A2FE647E4EB ���
0xD0DD0D � 0x1DE441D5331432 � 0xFC07F01FC07F01FE � � 0x1F490212CC8000000003E92042599 � �
0xD0AC19 � 0x1DA83EEDD80267 � � 0xFBFC17DFE0BEFF04 � 0x1F40436566B31BF75C99DF44F291F � �
0xC23DC3 � 0x1DA210DAEB138E � 0xFB20F95555168D17 � � 0x1F361A9D498B669732A60AFCF9461 � �
0xC100C1 � 0x1D7F8AC20F7A3F � � 0xFB0089D7241D10FC � 0x1F25136B121FE2DD08B9975B8DBD2 �
0xB84A93 � 0x1D7B72B82BAE23 � � 0xFA0BF7D05FBE82FC � 0x1F1DFB37ABDE94B6800C5550CD152 �
0xAD1367 � 0x1D5B9032F086BE � 0xF98AF433A85E62BF ��� 0x1F182E16A52503DCEDEBC24CA2B4E �
0xAB8BE1 � 0x1D5616F7BA44B9 ��� 0xF96BA24DC930852A ��� 0x1F140333F6B5946A06272DBD508B7 ���
0xA6449F � 0x1C8ECFA282734B ��� 0xF93AB02081C9D1D6 ��� 0x1F0DD51725F05CC5C752AA05A4311 ���
0xA24CF7 � 0x1C69BF28EBA166 � 0xF912590F016D6D04 � 0x1F001BEA0DE009CE597A0A8CE4B02 �
0xA0DDD1 � 0x1C67CF42F20D11 � � 0xF858A9FE5A20550D � � 0x1EC36516E1240A243EF66232D4BA7 � �
0x9BEAAF � 0x1C4D3AABD478F6 � 0xF84CEE8E701FC266 � � 0x1EBC4C4507F9CE8304761C8F703D2 �
0x986799 � 0x1C2693DCF34742 � 0xF774DD7F912E1F54 � 0x1E9EDBD047D1D813FB315AB469B2E �
0x909909 � 0x1BEA3278B789D2 � 0xF7444DFBF7B20EAC � 0x1E89A9332E4A8C84E2AA22A6DF7F1 � �
0x8EFA43 � 0x1BB2278C9B2F97 � � 0xF6F0243D8121FB7A � � 0x1E8119576512C73436A03607DCB9B � �
0x87CC45 � 0x1B962F9EBB9659 ��� 0xF6640F754B4E709A ��� 0x1E765D90D920CEEEBD7F5E0E0BBA9 ���
0x869913 � 0x1B227794E85702 � 0xF39EB657E24734AC � 0x1E5DF4E7C4BB29C00588956CF0009 ���
0xCA6691 � � 0x1B0FD7099EB189 � � 0xF36EE790DE069D54 � 0x1E587973506590E472C4A72A35CF1 � �
0xA1E58F � � 0x1B0942AAAE0BD3 � � 0xF363A464E2DCD8EB � � 0x1E40DECFCF36257C367CACDAD3F77 � �
0xFFFFFE � � 0x1AE6849E786AD2 � 0xF286AD7943D79434 � 0x1E2BE9D384CE2D85FD8013E21ECF2 �
0xFFE002 � � 0x1ABBEB8E009CE1 � � 0xEF9DA1D868469215 � � 0x1E15BB4DD7AA987E15487C533C649 � �
0xAAAAAC � 0x1AA7C88EE59082 � 0xEDF09CCC53942014 � 0x1E0C9181ECD8418355A1A49887852 �
0x8C1284 � 0x1A6F41DAB98CB2 � 0xEDE957FFFFC485AA ��� 0x1E0697C8651B43A9309DE9E6F021E �
0x801001 � � 0x1A2CE4D7478A06 � 0xEDE95090B57B7A56 � � 0x1DEE59C5D9CC8CB8613C8C6AD453F � �
0x800001 ��� 0x1A149BAD85DE72 � 0xEDBAA0922AFB6EAA ��� 0x1DBA39CE33CA8DEF599F5DA2A534F ���
0x94F105 	 0x1A0E795098FF63 � � 0xEC4B058D0F7155BC � 0x1DAC85098ABA5E144E44187FB5467 � �
0x92ABAB 	 0x1A0B8FFFFCBE8E � 0xEC1CA6DB6D7BD444 � 0x1D99C15392893EA6B5200AB3E8819 � �
0xE401C8
 0x19F142D24E1352 � 0xEB443F5A21FAD10E � � 0x1D983DBB99EAC626064F81D7BF4D2 �
0xE071F9
 � 0x19BD2D9FD24AD7 � � 0xEA6EE2D972746ED1 � � 0x1D86CC4938A03D4525C152AB8505E �
0xD6D764
�� 0x19B8D7C084EE43 ��� 0xEA40E197842DA6AF ��� 0x1D573D7B5CFE2D277AD5E05BAC65E �
0xD443F2
�� 0x199E1B447E99C2 � 0xE934A8E070ACB65D ��� 0x1D4D79E1F152354E10F583D4A65C9 ���
0xCFBA38
 0x19939800033273 ��� 0xE84BDA12F684BDA3 ��� 0x1D4CF86C34F75247D8FA16202FA29 ���
0xB5C2F1
 � 0x1975E059B82E49 � � 0xE775FF856986AE74 � 0x1D4562A76F879A38EEE86F526D231 � �
0xB447BC
 � 0x1960A45D1A71E6 � 0xE6944AE6502F8A22 � � 0x1D3168C71EC1068F69A433D0DF9B7 � �
0xAE4F88
 0x19385F4F83B2B1 � � 0xE5CB972E5CB972E4 � 0x1D26EDCA8F70B604EC3E7797A93A1 � �
0x9A5F6E
 � 0x190759A7F39561 � � 0xE597116BD81B26A3 � � 0x1D16B51A196CFFF2477078355A9AE �
0x988597
 � 0x18F187FFFCE1CF � � 0xE58C38D1342FBE3A � � 0x1D12CF093CC27703DA21DC7D68CE7 � �
0x91FEDC
�� 0x18DFA37A569E47 ��� 0xE58469F0234F72C4 � 0x1CEC5ADBF01E9685CD487AD8F3327 ���
0xFFFFFD � 0x1879574AF5FBB1 ��� 0xE511C4648E2332C4 � 0x1CE72221273FE0035FEC64CBB3DBF ���
0xA013D1 ��� 0x184A12EFEF626E � 0xE3FC771FE3B8FF1C � 0x1CE4C2D686D170738B75E2AFECF3E �
0xF56DA7 �� � 0x18401CBCDB5596 � 0xE3C845B18BD25EC6 � � 0x1CD0C2468D84F6ACF871D5E1FCBA9 � �
0x858376 �� � 0x181EFE51EAD722 � 0xE318DE3C8E6370E4 � 0x1CCB50FE42CD1B95A59CA8AD6EB99 � �
0xCF7D05 �� 0x1806C89FCB9452 � 0xE301201062C997DE � � 0x1CABCCB01B54CE7E2A63A99B9D9C2 �
0xEE5223 ��� � 0x17F52093014F0E � 0xE23B9711DCB88EE4 � 0x1C9ED60CFD93F55F117571C3FDA0E �
0xE528AB ��� � 0x17D93736C115FF � � 0xE231188C46231187 � � 0x1C820E19C1A66CE04C62A562E9111 � �
0xBF3621 ��� � 0x17A6B0778D60C1 � � 0xE1F00785C1FF0F82 � � 0x1C673D52FCD6E005D2A2B3D40EDCF � �
0xAB5ED9 ����� 0x178CB7D5D6E322 � 0xE159BE4A8763011C � 0x1C670773DF1678DF0A4336D3FE21E �
0x8EFE15 ����� 0x17641C46F799EE � 0xE0A72F05397829CA ��� 0x1C4D4290F01337DEE39B3A7862BDE �
0x897ECD ��� � 0x175D929C3C2FC9 � � 0xE0A720FAC6F829CA � � 0x1C4BD3136A6DB6DB6DB351F3546E2 �
0xFFFFFC �� � 0x1733B8284238F1 � � 0xE073C0EE938231F9 � � 0x1C49777FF62E0B0DA1A4CDB58587F � �
0xF83F04 �� � 0x17255CA25B68E1 � � 0xDF738B7CF7F482E4 � 0x1C4814DFE06ECB4EB88D00BA934F2 �

Table 1. Some numbers with reciprocals closest to numbers(
<
) and midpoints

As usual in algorithms of this kind, each operation uses a
fused multiply-add (not a separate multiplication and addi-
tion), all steps but the last are performed in round-to-nearest
mode with additional exponent range precluding the possi-
bility of intermediate overflow or underflow, and the last
operation is done in the intended rounding mode and target
precision.

Embedded in this algorithm is the computation of a very
accurate reciprocal approximation

� 5
. Originally, in the de-

sign of algorithms of this kind, the correctness of the fi-
nal rounding of � was justified by a theorem whose pre-
condition requires perfect rounding of

� 5
[9], and only

later was it noted by the present author that a relative er-
ror

� 5 � � � � (I � for
J I J � �
-�

suffices, which can be
satisfied by a relatively weak error condition on

� � and the
analysis of a few special cases [3, 8]. However, if we are
in a situation where � �

we might consider, instead of
using the entire sequence, unpicking the algorithm for re-
ciprocation to be used directly, since its latency is shorter
by 1 operation, and it uses only 9 floating-point operations
instead of 14:�G� ��� frcpa

� � ���� " � # � ��� �� " � " " " 5 " " (*"' � �
�

��� (-���+" 5 ",+ " � " � (*".�� � � � � (-� �
" +

/�� 1 � # � � �0 � � � � (1 � �
Now the question of whether

�
is always correctly

rounded becomes critical. First we will consider round-to-
nearest. The initial approximation returned by frcpa will
satisfy

�G� � � � � (I � � for some
J I � J D �
���� ��� �

. A rou-
tine relative error analysis, assuming each rounding

- � �@? �
yields

? � � (I � for some
J I J D �-
 ���

, shows that
� <

, the
value of

�
before the last rounding, satisfies

� <
�
� � �)(I �

where
J I J D �
 � �

5
�
5��

. Therefore, the only cases where in-
correct rounding can occur are those closer than this rela-
tive distance to a midpoint. The potentially failing signif-
icands

�
can be isolated by finding all

� � � + 4 � ��� � -balanced
factorizations C � � � � � (L" for integers

J " J D � ' (since� ' (� $ �
 � �
5
�
5�� M �
 � � �) and C odd. The set of

�
values

that we need to consider are the following 134 (ordered in
decreasing size, not according to their closeness to a mid-
point):

0xFFFFFFFFFFFFFFFF 0xFFFFFFFFFFFFFFFD 0xFE421D63446A3B34
0xFBFC17DFE0BEFF04 0xFB940B119826E598 0xFB0089D7241D10FC
0xFA0BF7D05FBE82FC 0xF912590F016D6D04 0xF774DD7F912E1F54
0xF7444DFBF7B20EAC 0xF39EB657E24734AC 0xF36EE790DE069D54
0xF286AD7943D79434 0xEDF09CCC53942014 0xEC4B058D0F7155BC
0xEC1CA6DB6D7BD444 0xE775FF856986AE74 0xE5CB972E5CB972E4
0xE58469F0234F72C4 0xE511C4648E2332C4 0xE3FC771FE3B8FF1C

0xE318DE3C8E6370E4 0xE23B9711DCB88EE4 0xE159BE4A8763011C
0xDF738B7CF7F482E4 0xDEE256F712B7B894 0xDEE24908EDB7B894
0xDE86505A77F81B25 0xDE03D5F96C8A976C 0xDDFF059997C451E5
0xDB73060F0C3B6170 0xDB6DB6DB6DB6DB6C 0xDB6DA92492B6DB6C
0xDA92B6A4ADA92B6C 0xD9986492DD18DB7C 0xD72F32D1C0CC4094
0xD6329033D6329033 0xD5A004AE261AB3DC 0xD4D43A30F2645D7C
0xD33131D2408C6084 0xD23F53B88EADABB4 0xCCCE6669999CCCD0
0xCCCE666666633330 0xCCCCCCCCCCCCCCD0 0xCBC489A1DBB2F124
0xCB21076817350724 0xCAF92AC7A6F19EDC 0xC9A8364D41B26A0C
0xC687D6343EB1A1F4 0xC54EDD8E76EC6764 0xC4EC4EC362762764
0xC3FCF61FE7B0FF3C 0xC3FCE9E018B0FF3C 0xC344F8A627C53D74
0xC27B1613D8B09EC4 0xC27B09EC27B09EC4 0xC07756F170EAFBEC
0xBDF3CD1B9E68E8D4 0xBD5EAF57ABD5EAF4 0xBCA1AF286BCA1AF4
0xB9B501C68DD6D90C 0xB880B72F050B57FC 0xB85C824924643204
0xB7C8928A28749804 0xB7A481C71C43DDFC 0xB7938C6947D97303
0xB38A7755BB835F24 0xB152958A94AC54A4 0xAFF5757FABABFD5C
0xAF4D99ADFEFCAAFC 0xAF2B32F270835F04 0xAE235074CF5BAE64
0xAE0866F90799F954 0xADCC548E46756E64 0xAD5AB56AD5AB56AC
0xAD5AAA952AAB56AC 0xAB55AAD56AB55AAC 0xAAAAB55555AAAAAC
0xAAAAAAAAAAAAAAAC 0xAAAAA00000555554 0xA93CFF3E629F347D
0xA80555402AAA0154 0xA8054ABFD5AA0154 0xA7F94913CA4893D4
0xA62E84F95819C3BC 0xA5889F09A0152C44 0xA4E75446CA6A1A44
0xA442B4F8DCDEF5BC 0xA27E096B503396EE 0x9E9B8FFFFFD8591C
0x9E9B8B0B23A7A6E4 0x9E7C6B0C1CA79F1C 0x9DFC78A4EEEE4DCB
0x9C15954988E121AB 0x9A585968B4F4D2C4 0x99D0C486A0FAD481
0x99B831EEE01FB16C 0x990C8B8926172254 0x990825E0CD75297C
0x989E556CADAC2D7F 0x97DAD92107E19484 0x9756156041DBBA94
0x95C4C0A72F501BDC 0x94E1AE991B4B4EB4 0x949DE0B0664FD224
0x942755353AA9A094 0x9349AE0703CB65B4 0x92B6A4ADA92B6A4C
0x9101187A01C04E4C 0x907056B6E018E1B4 0x8F808E79E77A99C4
0x8F64655555317C3C 0x8E988B8B3BA3A624 0x8E05E117D9E786D5
0x8BEB067D130382A4 0x8B679E2B7FB0532C 0x887C8B2B1F1081C4
0x8858CCDCA9E0F6C4 0x881BB1CAB40AE884 0x87715550DCDE29E4
0x875BDE4FE977C1EC 0x86F71861FDF38714 0x85DBEE9FB93EA864
0x8542A9A4D2ABD5EC 0x8542A150A8542A14 0x84BDA12F684BDA14
0x83AB6A090756D410 0x83AB6A06F8A92BF0 0x83A7B5D13DAE81B4
0x8365F2672F9341B4 0x8331C0CFE9341614 0x82A5F5692FAB4154
0x8140A05028140A04 0x8042251A9D6EF7FC

One can show by explicit computation that the algorithm
works correctly on these values. It therefore rounds cor-
rectly on all values in round-to-nearest.

For directed rounding modes, the situation is less good.
Once again the relative error condition gives rise to a set
of test points, this time 227 of them. The algorithm works
correctly on 220 of them, but not on floating-point numbers
with one of the following 7 significands, the last of these
representing exact powers of 2, for which the true result is
exactly representable. Cognoscenti who perform a back-of-
envelope calculation will not be surprised by the failure on
exactly representable results, since correctness here would
require

� � already to be the correct result, which our relative
error cannot quite guarantee.

0x8c82da588adc6416 0x84fdf027ef813f7b 0x827b9b8059090ab2
0x8080402010080401 0x8000080000400001 0x8000000000000001
0x8000000000000000

This analysis indicates that the algorithm will produce
correctly rounded results if the ambient rounding mode is
known to be round-to-nearest, but will not always guaran-
tee correct rounding in other rounding modes. Moreover,
note that for the same reason, the ‘inexact’ flag will be in-
correctly set in round-to-nearest mode in the special cases
where

�
is a power of 2. (As noted, the penultimate approx-

imation
� � cannot be the exact reciprocal in such cases, for

otherwise we would obtain 1
� and correct rounding in all

modes.) However, if this is considered important, it would
be easy to detect and fix the problem with special case code
without affecting overall latency.

7 Feasibility study

Although the previous sections show that the method is
usefully applicable to some real problems, it’s worth ana-
lyzing how practical the approach is likely to be in general.
In attempting to use the method, three potential practical
problems might arise

� Too many special points are isolated for further analy-
sis to be feasible

� The factorization of some of the numbers is not feasi-
ble

� The distribution of prime factors is not feasible

We will not analyze the feasibility of factorization, since
we do not understand the details of its implementation. We
will however make the empirical observation that all fac-
torizations for precisions up to � / '

seem to be very
straightforward for PARI / GP, taking a fraction of a sec-
ond, while those for � �G�&

usually take several seconds
and, exceptionally, minutes.

Average density of balanced factorizations

It is not difficult to see that “on average” we obtain a
fairly modest number of balanced factorizations per value
examined. First note that the number of

� � 4
 � -balanced
products of numbers D � is the number of lattice points
contained both within the rectangle �6D ? D � , ��D � D

and under the curve

? � � . We can get a good estimate by
ignoring “edge effects” and just considering the plane area,
integrating to obtain:

�6� �=�: � � � (ln
� �

� � �

Differentiating with respect to � yields the expected den-
sity, i.e. the average number of

� � 4
�� -balanced product
representations of a number close to � :

� � �=� ln
� �
 M �=�

Of course, these gross averages do not reflect small-
scale fluctuations. Nevertheless, the agreement is fairly
good with some empirical results obtained by sampling.
In the following table, we examine the density of

� � � 4 � � � -
balanced products for several � , looking in each case at

 ��
regions close to

) � ��� �5 � � � �
for � D��3D !�

and sampling� � � ' successive points in each. The final figures at the

bottom give the mean value. This indicates how accurate
the sampling process is on average; perfectly representative
sampling would give exactly 1 here. (We avoid sampling at)5 � �	� because that would lead to strong correlations between
the sets of numbers at different � .)

ln) � & � � � , � � ��� � � + 5 � � � �
4.1588 4.4785 4.6835 3.3300
3.0602 2.8496 5.6621 3.2734
2.5494 2.4570 2.7070 2.2753
2.2129 2.0332 2.2421 2.2089
1.9616 2.0000 1.6953 2.3417
1.7609 1.9101 1.5664 1.5585
1.5939 1.5742 1.9140 1.2128
1.4508 1.3632 1.4765 1.5625
1.3256 1.3144 1.0839 1.2558
1.2144 1.2050 1.2187 1.2890
1.1143 1.0175 1.0996 1.4296
1.0233 1.0273 0.9335 0.9687
0.9400 0.7539 0.9062 0.8828
0.8630 0.7636 0.8613 0.8789
0.7915 0.6875 0.7187 0.6875
0.7248 0.6933 0.6621 0.7832
0.6623 0.6621 0.5976 0.7656
0.6035 0.5878 0.5468 0.6445
0.5479 0.5546 0.6210 0.5683
0.4953 0.4941 0.5136 0.6289
0.4453 0.4394 0.3847 0.3652
0.3976 0.3984 0.4453 0.4277
0.3522 0.3417 0.3476 0.3242
0.3087 0.3203 0.2890 0.3593
0.2670 0.2382 0.2285 0.2773
0.2270 0.2480 0.2070 0.3007
0.1885 0.1347 0.2207 0.2148
0.1515 0.1347 0.1640 0.1562
0.1158 0.0839 0.0976 0.1015
0.0813 0.0917 0.1054 0.0761
0.0480 0.0449 0.0371 0.0527
0.0157 0.0078 0.0078 0.0156
1.0000 0.9660 1.0701 0.9755

So much for the average case. What about the worst
case? This seems a more difficult question to address theo-
retically, but in the next section we will show how to obtain
a pessimistic upper bound.

Feasibility of distribution algorithm

Although the final number of values produced depends
on the number of balanced factorizations, the process by
which the balanced factorizations are enumerated involves
examination of many dead-end paths, so the runtime of the
distribution process may be very large relative to the final
number of possibilities produced. A reasonable, though
pessimistic, bound on the runtime of the distribution algo-
rithm for a value � is

" � �=� , the total number of divisors of � ,
regardless of balance. For even without early cutoffs owing
to range limitations, the algorithm cannot examine, given

���� � �)� � � �$#
	�
more than

" � �=� �� � �)� � �
� �)(* � � �

possibilities, since each factor � # 	� can, without range cut-
offs, be distributed in

� (* � ways.
It is well known that the average number of divisors

" � �=�
of a number near � is approximately

" � �=�6 ln
� �=� . This

can easily be derived using the same sort of argument as we
used above for balanced products [2]. This suggests that on
average, the distribution process will not have many cases
to examine; even for quad precision, we have � D � �

5 �
and

so ln
� �=�)D �&/ � .

What about the worst case? The number of divisors of a
number can be much larger than ln

� �=� . In fact [2], almost

all numbers (in a precise sense) have about ln
� �=� ln) � , divi-

sors, with the larger overall average of ln
� �=� resulting from

a small proportion of numbers with many more divisors.
Asymptotically, it is known [2] that

" � �=� has an upper limit
of exactly

� ln)�� , � ln) ln) � , , , or more precisely, that if I1$ �
then

" � �=�� �) � � � , ln)�� , � ln) ln)�� , , for all sufficiently large
� , while

" � �=� $ �) �
 � , ln)�� , � ln) ln)�� , , for infinitely many � .
This asymptotic limit needs refinement to be useful to us

for the concrete ranges we are interested in. We can obtain a
more refined estimate of the maximum

" � �=� for all � below
some limit

�
we are interested in as follows. The key to

efficient search is to seek the minimal � with the maximal
number of divisors possible for � D �

. The minimality
constraint forces strong patterns onto the prime factoriza-
tion. Suppose that � has the following prime factorization:

���� � �)� � � � # 	�
Let � � � ��� be two primes (not necessarily appearing

with nonzero index in the above factorization) such that��� � � ��� � ��� � �� for some nonnegative integer � . Then
it is easy to see that if � has the minimality property, the
following relationships hold between the * ’s:

� * � D * � D � � (�� � * � (*� �
For if the first inequality failed we could get a smaller

number with at least as many divisors by replacing � # 	� � #���
with � # 	 � �� � #	�
 �� , while if the second inequality failed we

could likewise replace it with � # 	
.) � � ��,� � #�� � �� .
This observation includes the case where � � is the first

prime beyond those appearing in the factorization, and in
this case * � D � � . For example, if

� 0 # appears in the fac-
torization, so must

 � # and
� � # , while if no power of

� 0
ap-

pears in the factorization then the highest possible power of�
appearing is

� �
, and the highest power of

is
 �

. Note in
particular that the factorization of the minimal � must con-
tain the first � consecutive primes without gaps, for some
� .

These observations cut down the search space dramat-
ically enough that we can easily perform an exhaustive

search for the precise worst numbers up to quite large val-
ues, say

� 5 � � �
. The following table shows, for various val-

ues of � up to 230, the minimal � D ���
with the largest

number of divisors possible in that range. For each such � ,
we show log � � �=� and log � � " � �=� � (where

" � �=� is the number
of divisors of �), as well as the ratio with the expected limit
superior

- � �=� log � � " � �=� � M � ln � �=� M ln � ln � �=� � � and the ac-
tual factorization of � .

� log &�
��� log &�
���
���������
��� Factorization of that worst ���� ��� � � ��� ��� ��� �"! &�# # ���& � ����� �� ��� ��� ��� � & � & # & �	$�$�$ � ## � & ��� �� �"��� # � ��� � # � & ! # # � & �%$&$&$ �"� �� # ��� '(� � & � � � ��� � & ' & ! # � & �%$&$&$ & #�(� ���� '" �� �� �(� ��� � � & & � # # � & � & � �%$&$&$ # �!(� �(��� �(! �"!�� � � ��� &��' & ! # � # � & � �%$&$&$ # ��"� !(��� & �"'�� &� ��� &'�' & � # � & � & � �%$&$&$� #'(� �"��� '(' & ��� #�# ��� ��" & ' # � � # � & � �%$&$&$� ���(� '(��� �(� & & � �&� ��� &! # & ' # � # � & � �%$&$&$"����"�(� �(��� '(' & # � �(� ��� &� # & � # � � # � & � � & � # $�$&$�! �� ��� �"�(��� !" & ��� #�# ��� � # & ' # � � # � & � �%$&$&$(� �� & � � ����� '�� & !�� �&� ��� # � & � # ! � # � & � � & � # $�$&$"� #� # � � & ��� '�� & '�� ��! ��� & � & � # ! � # � & � � & � # & �(�	$&$�$"�(��� �� � # ��� �(� # ��� � & ��� & � & ��� # � � � & � � & � # & �(��$&$&$"' #�"�(� �� ���� �� # �&� !�! ��� �"! & � # � � # � & � � & � # & �(�	$&$�$��&��"!(� �"�(��� �"� #�# � �� ��� &��' & ' # ! � # � # � � & � # & �(�	$&$�$ �"� ��(�"� �"!(��� ' # # �� !�! ��� &�(& � # � � # � & � � & � # & �(�	$&$�$ �"����"'(� �(�"��� �(� # !�� �� ��� # ��' & ' # ! � # � # � � & � # & �(�	$&$�$ �"�(��"�(� �"'(��� ' & # ��� ��! ��� # � # & � # � � � & � � & � # & �(� & ���)$&$&$ � � #& �(� �"�(��� '(' # ��� � & ��� # '�' & ��� # ! � # � # � � & � # & �(� & �"�)$�$&$ � & �& ��� & �(��� � # &��� # ��� # ' # & ��� # ! � # � # � � & � # & �(��$&$&$ � # �& & � & ����� '�� �&� ' # ��� # �(� & ' # � � � # � � & � # & �(� & ���)$&$&$ � # �& # � & & ��� � & # � & � ��� # �(� & ��� # � � # � # � � & � # & �(��$&$&$ �"� �
We can see that even for double-extended precision, the

number of factorizations that could possibly need to be ex-
amined is about

� � �
. Although a fairly large number, this is

definitely feasible. (And of course in practice such cases are
exceptional and not all factorizations would be examined.)
For quad precision, on the other hand, it is entirely possible
for the search to be infeasible. We have not yet encountered
this phenomenon in practice, however.

Note that
" � �=� also gives an upper bound to the number

of balanced factorizations. It is, of course, pessimistic, but
testing on some of the values above suggests that the the
number of balanced factorizations is a reasonable propor-
tion (say

� �+*) of the total number of divisors. Naturally, it
would be better to refine all these estimates to consider only
numbers very close to the powers of

�
, which is what we are

really interested in.
The special numbers that we searched for above are par-

ticular cases of highly composite numbers [13]. For a de-
tailed survey of the subject see [10], while Achim Flam-
menkamp’s Web page seems to give a more efficient algo-
rithm for generating HCNs:

http://wwwhomes.uni-bielefeld.de/achim/highly.html

The sequence of highly composite numbers is A002182
in Sloane’s Encyclopedia of Integer Sequences.

8 Extension to reciprocal square root

It is interesting to note that a similar factor distribution
technique can be used to attempt to find exceptional cases

for the reciprocal square root. In this case, we seek floating-
point numbers or midpoints � and floating-point numbers

�
such that

J � # �� � JJ �� � J
is small. We can rewrite this as:

J � � � � #
�
� � �

J J � � � # � J

In the critical cases where � � � # � is very small, then
� � � (
� is almost exactly

�
and so:

J � � � # � J
J � � � # � JJ � � � (
� J A

J � � � # � J�
Once again, let us scale the values � and

�
to integers C

and
�
:

� ��� � � �	��
 � D � � ���
�3 ����� C �	� D C�� �	��� �

and then the distance we are interested in is then:

J C � � # ��� J� ��� �
where � # � � 1 � (1 � � . So we seek cases where

"
C � � # ��� is as small as possible. Keeping in mind the range
restrictions, we see that

� 5 ��
 � D C � � � �
5 ��� �

. As with
simple reciprocals, it is impossible to come very close to
the extremal powers of 2, but we do now need to consider
two cases, � � and � � (�� .

The reciprocal square root function is of some theo-
retical interest because it seems prima facie possible that" �C � � # ��� could be very small, perhaps even � � , yet no
precisions where it is much smaller than

���
have ever been

found, and one might expect on naive statistical grounds
that it is unlikely. (We only have

� � �
different choices of

pairs C and
�
, and are scattering the resulting C � � ’s some-

how over an interval of size about
� 5 �

.) Li [7] proves that
assuming the ABC conjecture from number theory holds,
the distance is indeed of order

���
for all sufficiently large� . Even if the ABC conjecture were proven, however, it’s

not clear whether it would be possible to constructivize the
proof in order to obtain useful bounds for specific preci-
sions. Iordache and Matula [4] observe that

" � is impos-
sible in general, allowing the accuracy required to be low-
ered slightly, but add that ‘trying to lower it is not an easy
problem, even for a fixed � ’. Although the present work
does not touch the general case, and nor can it fully bridge
the gap between expected and provable bounds, it does al-
low us quite easily to improve the provable bound for the
typical � we are interested in by a reasonable factor.

We can take over the prime distribution function with
little change. The only difference is that we now need to
distribute the prime factors among C � � . This has the imme-
diate consequence that only even powers of primes can be
allocated to the C � part, and so any prime appearing to an
odd power in the prime factorization of

� �%("
must be allo-

cated at least once to
�
. This is almost always enough to ren-

der the distribution immediately impossible. We have made
some searches for double-extended precision (� / ') and
quad precision (� ���+

). For double-extended, we have
shown that

" D � � � ' is impossible, and it would be easy
to continue the search much further. For quad precision, the
cost of factoring numbers is now a serious bottleneck, with a
single number sometimes taking a day of CPU time and one
of the factorizations for the

" / case apparently defeating
factorization in a reasonable time. Nevertheless we have
at least shown that

" � / is impossible, which represents
some improvement. For smaller precisions, it seems likely
that other algorithms based on an (intelligent) exhaustive
analysis of the whole space of significands would be more
efficient. For example Lang and Muller [5] have performed
a complete analysis of the double-precision case � .�
(and found that the minimal distance is about

�&
 � �
�
).

9 Conclusion

The methods described here allow reasonably effective
isolation of the ‘worst cases’ for the reciprocal function.
This opens the way to correctness proofs of reciprocal al-
gorithms using the same kind of two-part approach used by
Cornea [1] for square roots. In the absence of new theoret-
ical advances, the method described may also be the best
available means of improving the difficulty bounds on the
reciprocal square root functions for larger precisions. Al-
though our method has feasibility problems for the extreme
case of quad-precision reciprocal square roots, it would be
possible to explore alternative factoring algorithms. The
numbers we are interested in factoring are very close (in rel-
ative terms) to powers of 2, so it is possible that algorithms
such as the Special Number Field Sieve (SNFS) would give
much better results.

Acknowledgements

The author is grateful to the anonymous referees, who
made a number of excellent suggestions, and pointed out
connections of which the author had been unaware.

References

[1] M. Cornea-Hasegan. Proving the IEEE correct-
ness of iterative floating-point square root, divide

and remainder algorithms. Intel Technology Jour-
nal, 1998-Q2:1–11, 1998. Available on the Web as
http://developer.intel.com/technology/
itj/q21998/articles/art 3.htm.

[2] G. H. Hardy and E. M. Wright. An Introduction to the The-
ory of Numbers. Clarendon Press, 5th edition, 1979.

[3] J. Harrison. Formal verification of IA-64 division algo-
rithms. In M. Aagaard and J. Harrison, editors, Theorem
Proving in Higher Order Logics: 13th International Con-
ference, TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 234–251. Springer-Verlag, 2000.

[4] C. Iordache and D. W. Matula. On infinitely precise round-
ing for division, square root, reciprocal and square root re-
ciprocal. In I. Koren and P. Kornerup, editors, Proceed-
ings, 14th IEEE symposium on on computer arithmetic,
pages 233–240, Adelaide, Australia, 1999. IEEE Computer
Society. See also Technical Report 99-CSE-1, Southern
Methodist University.

[5] T. Lang and J.-M. Muller. Bounds on runs of zeros and
ones for algebraic functions. Research Report 4045, INRIA,
2000.

[6] V. Lefèvre and J.-M. Muller. Worst cases for correct round-
ing of the elementary functions in double precision. Re-
search Report 4044, INRIA, 2000.

[7] R.-C. Li. The ABC conjecture and correctly rounded recip-
rocal square root. Preprint, 2002.

[8] P. Markstein. IA-64 and Elementary Functions: Speed and
Precision. Prentice-Hall, 2000.

[9] P. W. Markstein. Computation of elementary functions on
the IBM RISC System/6000 processor. IBM Journal of Re-
search and Development, 34:111–119, 1990.

[10] J.-L. Nicholas. On highly composite numbers. In Ramanu-
jan Revisited: Proceedings of the Centenery Conference,
pages 215–244. Academic Press, 1988.

[11] M. Parks. Number-theoretic test generation for directed
rounding. IEEE Transactions on Computers, 49:651–658,
2000.

[12] V. Pratt. Every prime has a succinct certificate. SIAM Jour-
nal of Computing, 4:214–220, 1975.

[13] S. Ramanujan. Highly composite numbers. Proceedings of
the London Mathematical Society, 14:347–409, 1915.

[14] P. T. P. Tang. Testing computer arithmetic by elementary
number theory. Preprint MCS-P84-0889, Mathematics and
Computer Science Division, Argonne National Labs, 1989.

