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Abstract

We study the parameterized complexity of three NP�hard graph completion problems�

The MINIMUM FILL�IN problem is to decide if a graph can be triangulated by adding at most k

edges� We develop an O�k�mn � f�k�� algorithm for this problem on a graph with n vertices and m

edges� In particular� this implies that the problem is �xed�parameter tractable �FPT��

The PROPER INTERVAL GRAPH COMPLETION problem� motivated by molecular biology� asks

if a graph can be made proper interval by adding no more than k edges� We show that the problem

is FPT by providing a simple search�tree�based algorithm that solves it in linear time� Similarly� we

show that the parameterized version of the STRONGLY CHORDAL GRAPH COMPLETION problem

is FPT by giving an O�m logn��time algorithm for it�
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AMS �MOS� subject classi�cation� ��Q��� ��R��� ��C��

Key words� Design and analysis of algorithms� parameterized complexity� chordal graphs�

proper interval graphs� strongly chordal graphs� minimum �ll	in� physical mapping of DNA


Abbreviated title� Parameterized Completion


�Portions of this paper were presented at the ��th Annual IEEE Symp� on the Foundations of Computer

Science� Santa Fe� NM ���� ���	�
yDepartment of Computer Science� Princeton University� Princeton� NJ �
��� USA� Research at Princeton

University partially supported by the NSF� Grant No� CCR�
������� and the Oce of Naval Research� Contract

No� N���������J������ hkl�cs�princeton�edu�
zDepartment of Computer Science� Sackler Faculty of Exact Sciences� Tel Aviv University� Tel�Aviv

����
 ISRAEL� Research supported in part by a grant from the Ministry of Science and the Arts� Israel�

shamir�math�tau�ac�il
xDepartment of Computer Science� Princeton University� Princeton� NJ �
��� USA and NEC Institute�

Princeton� NJ� Research at Princeton University partially supported by the NSF� Grant No� CCR�
������� and

the Oce of Naval Research� Contract No� N���������J������ ret�cs�princeton�edu�

�



� Introduction�

The focus of this paper is the parameterized complexity of several graph completion problems


Many well	known NP	hard problems can be stated with a parameter k so that they have

polynomial	time algorithms when k is �xed
 �For example� given a graph� decide if it has a

vertex cover of size at most k� an independent set of size at least k� or pathwidth at most

k
� The way the complexity depends on k varies dramatically� however
 Some problems �eg


VERTEX COVER and PATHWIDTH� can be solved in linear time when k is �xed� but for

others �like INDEPENDENT SET� the best known algorithms require �nk� steps
 How the

complexity depends on k can be crucial for applications in which small� �xed parameter values

are important� as in the problems we study here


Downey and Fellows initiated a systematic complexity analysis of such problems ��� �� ��


They called those parameterized problems that have algorithms of complexity O�f�k�n�� �with

� a constant� �xed parameter tractable �FPT�� and de�ned a hierarchy of parameterized decision

problem classes� FPT � W ��� � W ��� � � � �� with appropriate reducibility and completeness

notions
 They also conjectured that each of the containments in this hierarchy is proper
 �cf
 ���

�� �� for de�nitions and details
� Thus� for example� VERTEX COVER and PATHWIDTH are

in FPT ��� ��� ��� but INDEPENDENT SET is W ���	complete ���� and BANDWIDTH is W�t�	

hard for all t ���


Let � be a family of graphs such that Kn � � for every n
 The �	COMPLETION problem

is de�ned as follows
 Given a graph G � �V�E� �nd a smallest set of edges A such that

G � �V�E � A� � �
 The parameterized version of the �	COMPLETION problem� denoted

by �	COMPLETION�k�� asks whether there exists an edge set A such that jAj � k and

G � �V�E �A� � �


In this paper we study the parameterized complexity of �	COMPLETION�k� for three

graph families �� namely� chordal� proper interval and strongly chordal graphs


A graph is chordal �or triangulated� if every cycle of length four or more contains a chord �an

edge between nonadjacent vertices on the cycle�
 The CHORDAL COMPLETION problem is

also known as the MINIMUM FILL	IN problem and has received a lot of attention in the past

due to its importance in sparse matrix computation �cf
 �����
 Rose ���� has shown that for a

sparse� symmetric matrix� �nding an order of Gaussian elimination steps on diagonal elements

that minimizes the number of non	zeros generated in the elimination process �assuming no lucky

cancelation of non	zeros� is equivalent to solving the minimum �ll	in problem on a corresponding

graph


Yannakakis ���� has shown that minimum �ll	in is NP	complete
 We focus here on CHORDAL
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COMPLETION�k� or FILL	IN�k�� the parametrized version of the problem as de�ned above


Here k is �xed �to be thought of as a small constant� and is not part of the input
 For a graph

with n vertices and m edges� the problem can be solved by enumeration in O�n�km�	time� but

we seek an algorithm with better dependence on k
 In section � we describe two such algorithms


We �rst present a fairly simple� O�ck�m� n��	time search	tree	based algorithm� which already

implies that the problem is in FPT
 The same technique was previously used by Downey and

Fellows ���� to prove parameterized tractability of VERTEX COVER� DOMINATING SET IN

PLANAR GRAPH� FEEDBACK VERTEX SET� and FACE COVER NUMBER OF PLANAR

GRAPH
 We then develop a more involved algorithm that gives a stronger complexity result�

its multiplicative factor depending on k is polynomial� and the exponential in k appears only

as an additive factor
 Speci�cally� this algorithm has complexity O�k�nm� f�k��


The second part of the paper deals with the parameterized complexity of the PROPER

INTERVAL GRAPH COMPLETION �PIGC� problem
 An interval graph is a graph for which

one can assign an interval on the real line to each vertex so that two vertices are adjacent if

and only if their intervals intersect
 It is a unit interval graph if all intervals assigned have

equal length
 It is proper interval if it has an assignment in which no interval properly contains

another
 The last two notions are equivalent for �nite graphs ����
 Interval completion problems

arise in molecular biology and in the Human Genome Project
 In physical mapping of DNA�

a set of long contiguous intervals of the DNA chain �called clones� is given� together with

experimental information on their pairwise overlaps
 The goal is to build a map describing the

relative position of the clones ��� ��� ��� ��
 We concentrate here on the biologically important

case in which all clones have equal length
 In the presence of �false negative� errors �unidenti�ed

overlaps� the problem of building a map with fewest errors is equivalent to PIGC
 This problem

is NP	hard ����
 But what about its complexity for a small �xed number of errors� Let PIGC�k�

be the parameterized version of the problem� in which one asks for an augmenting set with no

more than k edges if one exists
 We prove parameterized tractability of PIGC�k� by providing

a linear	time algorithm for �xed k


The third part of the paper considers the parameterized version of the STRONGLY CHOR	

DAL COMPLETION problem� denoted by SCC�k�
 The class of strongly chordal graphs was

de�ned and characterized by Farber ����
 Denote by N�v� the set of neighbors of a vertex

v� including v itself
 A perfect elimination ordering of a graph G � �V�E� is an ordering

v�� v�� � � � � vn of V with the property that for each i� j and l� if i � j� i � l� and vl� vj � N�vi��

then vl � N�vj�
 Rose ���� has shown that a graph is chordal i� it admits a perfect elimination

ordering
 A strong elimination ordering of a graph G � �V�E� is an ordering v�� v�� � � � � vn of

V with the property that for each i� j� k and l� if i � j�k � l� vk� vl � N�vi�� and vk � N�vj��
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then vl � N�vj�
 A graph is strongly chordal if it admits a strong elimination ordering
 It is

easy to see that every strong elimination ordering is also a perfect elimination ordering� and

thus every strongly chordal graph is also a chordal graph
 In addition every interval graph is

strongly chordal
 One can obtain a strong elimination order for an interval graph G by �xing

a representation R of G and ordering the vertices in increasing right	endpoint order of their

intervals in R
 Interest in strongly chordal graphs arises in several ways
 First� the problems of

locating minimum weight dominating sets and minimum weight independent dominating sets in

strongly chordal graphs with real vertex weights can be solved in polynomial time� whereas each

of these problems is NP	hard for chordal graphs ����
 Second� these graphs have surprisingly

nice structural properties and are intimately related to the class of totally balanced matrices ���


We show that SCC�k� is �xed parameter tractable by describing an O�m logn�	time algorithm

for it


Section � contains the algorithms for chordal completion
 Section �
� describes the simple

search	tree	based algorithm and Section �
� gives the details of the more involved O�k�nm �

f�k��	time algorithm
 Section � extends the search tree algorithm of Section �
� to solve

PIGC�k� and Section � extends it to solve SCC�k�
 These extensions require additional ideas

in order to handle the obstructions characterizing each particular graph family
 Section �

contains a summary and suggestions for some further research


� Minimum Fill�In�

In this section we present two algorithms for FILL	IN�k�
 In Section �
� we begin by describing

an O�ckm�	time time algorithm for the problem
 Then in Section �
� we use additional new

ideas to develop an O�k�nm� f�k��	time algorithm
 Both algorithms can actually enumerate

all minimal k	triangulations of the input graph within the same time bounds


We will use the following notation
 Let G � �V�E� be an undirected graph
 For X � V � we

denote by GX the subgraph of G induced by the vertex set X 
 We de�ne the length of a path

�cycle� as the number of edges on the path �cycle�
 A triangulation of a graph G � �V�E� is a

set of edges F where E � F � � and �G � �V�E � F � is a chordal graph
 We will also say that

the set of edges F triangulates G
 If jF j � k then F is a k�triangulation
 We shall also refer

to �G as a triangulation of G� when there is no confusion
 We assume without loss of generality

that G is connected and n � �� thus n � O�m�
 A triangulation F is minimal if no proper

subset of F triangulates G
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��� A linear algorithm for �xed k�

A triangulation of a chordless cycle C is a set T of chords of C such that there is no induced

chordless cycle in C�T 
 We shall characterize and count the number of minimal triangulations

of a cycle C
 We call a cycle an l�cycle if it contains l vertices
 A triangle is a �	cycle
 The

proof of the following lemma is straightforward by induction


Lemma ��� A minimal triangulation T of an n�cycle C consists of n� � chords� It partitions

C into n � � triangles� Any two of these triangles are either disjoint or share a chord� Every

chord in T is shared by exactly two triangles�

The following lemma is well known �cf
 ���� and the proof of Lemma �
�� which is similar�


Lemma ��� There is a ��� correspondence between the minimal triangulations of a cycle with

l vertices and the binary trees with l � � internal nodes�

Denote by cl the l	th Catalan number� i
e
� cl �
�
�l
l

�
�

l��

 Note that cl � �l 
 Denote the

number of binary trees with n internal nodes by bn
 The value bn satis�es the recurrence b� � ��

bn �
P

i�j�n�� bibj for n � �
 The solution to this recurrence is bn � cn �cf
 �����
 Thus the

following lemma is implied by Lemma �
�


Lemma ��� The number of minimal triangulations of an l�cycle is cl�� � �l���

The algorithm will traverse part of a search tree in which each node corresponds to a

supergraph of G
 This search tree is de�ned as follows
 The graph G itself corresponds to the

root of the tree
 In order to generate the children of an internal node x that corresponds to a

graph G�� one needs to �nd a chordless cycle C in G�
 Node x will have a child for each minimal

triangulation of C
 The graph corresponding to a child is obtained by adding the corresponding

minimal triangulation to G�
 If jCj � l� by Lemma �
� node x will have cl�� children
 Each leaf

of the tree corresponds to a chordal supergraph of G
 Note that every minimal triangulation of

G is represented by at least one leaf


One can �nd a chordless cycle C in a nonchordal graph with m edges in O�m� n� time by

the maximum cardinality search �MCS� algorithm described in ���� ���
 Using the algorithm

described in ���� and the mapping described in Lemma �
�� one can generate all minimal

triangulations in O�jCj� time per triangulation
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The algorithm actually visits only the nodes of the search tree that correspond to super	

graphs of G with no more than k additional edges
 If one such node is a leaf then we have

found a k	triangulation
 Otherwise� no such triangulation exists


Theorem ��� All minimal k�triangulations of a graph G can be found in O���km� time�

Proof Let T be the subtree of the search tree traversed by the algorithm
 For a node x � T

let Gx � �V�Ex� be the corresponding supergraph of G� dx the maximum length of a path from

x to a leaf of T and ax � max�fjElj� jExj j l is a leaf descendant of xg�
 Denote by lx the total

number of leaves among the descendants of x
 By induction we prove that lx � �dx�ax 
 Thus

the total number of nodes in T is bounded by � � ��k
 For each such node a linear amount of

time is spent� consisting of the time to generate it and the time to �nd a chordless cycle in the

graph corresponding to it


Here is the induction argument
 Assume the claim is true for all the children of a node

x
 Let l be the length of the cycle detected at x
 Let dmax � maxfdy j y is a child of xg and

Let amax � maxfay j y is a child of xg
 Using the induction hypothesis the number of leaf

descendants of any of the cl�� children of x is bounded by �
dmax�amax 
 Thus the total number

of leaf descendants of x is bounded by �l���dmax�amax � �dmax���amax�l�� � �dx�ax 
 The last

equality follows from the fact that the size of a minimal triangulation of a chordless l	cycle is

l � � as stated in Lemma �
�


The algorithm for enumerating minimal k	triangulations can actually list the same trian	

gulation several times
 We can eliminate this redundancy by storing solutions in a table and

checking each new solution to see if it has been found already
 If we use a k	dimensional search

tree to store solutions� the extra time per search tree node to test for redundancy is O�k log k�


Using universal hashing ���� or dynamic perfect hashing ����� the extra time per search tree

node is O�k�� but the algorithm becomes randomized
 These ideas apply equally well to the

other enumeration algorithms proposed in this paper


��� An algorithm with a polynomial multiplicative factor�

To achieve an O�k�nm � f�k�� time bound for minimal k	triangulation we �rst describe an

algorithm such that if G can be triangulated with no more than k edges� the algorithm partitions

the vertex set of G into two subsets A� B� such that the size of A is O�k�� and there are no

chordless cycles in G that contain vertices in B
 Then we prove that obtaining a k	triangulation

of G is equivalent to obtaining a �k � a�	triangulation of A for some a � �
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Partitioning the graph The algorithm uses three main procedures� denoted by P�� P�� P��

executed in sequence
 These procedures are described below


P�� Extracting independent chordless cycles �

This procedure starts with B � V�A � � and repeatedly �nds a chordless cycle in GB using

the MCS algorithm and moves its vertices to A
 Note that when P� is �nished� the induced

subgraph on B is chordal


Let C�� � � � � Cj be the cycles extracted
 The minimum number of chords needed to tri	

angulate each Ci is jCij � �
 The algorithm maintains a dynamic lower bound cc on the

minimum number of chords needed to triangulate G
 After detecting the chordless cycle Ci it

increases cc by jCij � �
 Thus� if at some point cc � k the algorithm can stop with a nega	

tive answer
 Otherwise procedure P� ends when there are no more chordless cycles in B and

cc �
Pj

i���jCij � �� � k


The complexity of this part is O�km�
 The MCS algorithm runs in linear time and the

number of cycles detected is not greater than k since each cycle adds at least one to the

dynamic lower bound cc
 The size of the set A after performing this procedure is O�k�


P�� Extracting related chordless cycles with independent paths�

This procedure looks for chordless cycles that intersect both parts of the current partition� A

and B� and contain at least two consecutive vertices in B� as long as such cycles exist
 Let C

be such a cycle� jCj � l
 If l � k � � the algorithm stops with a negative answer
 Otherwise

every maximal subpath of C containing only vertices from B is moved into A if its length is at

least one
 The increase to cc depends on the structure of C
 We need the following lemma in

order to specify this increase precisely


Lemma ��� Let C be a chordless cycle and let p be a path in C of length l with � � l � jCj���

If l � jCj � �� then in every minimal triangulation of C there are at least l� � chords incident

with at least one vertex of p� If l � jCj � � then in every minimal triangulation of C there are

at least l chords incident with at least one vertex on p�

Proof If l � jCj � � then every chord in a minimal triangulation of C is incident with some

vertex of p� thus the �rst part of the lemma holds
 We prove the second part by induction on

the path length
 Obviously there must be a chord incident with at least one of the vertices on

p� thus the lemma holds for paths of length one
 Assume the result is true for every path with

length less than l
 Let p be a path with length l
 Let �a� b� be a chord incident with p dividing

the cycle C into two cycles C�� C�


Case �� a� b � p
 Let l� be the length of the subpath of p that connects a and b
 Without loss
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of generality we can assume that l� � jC�j � �
 Let p� be the path between the endpoints of

p passing through �a� b� in C�� and let l� � jp�j
 There must be at least l� � � chords incident

with p in C�� and according to the induction hypothesis l� chords incident with p
� in C�
 Thus

the total number of chords incident with p will be at least �l� � �� � l� � � � l


Case �� a � p� b 	� p
 Let p� � p � C�� p� � p � C�
 For at least one i � �� �� jpij � jCij � �


W
l
o
g
 assume that jp�j � jC�j � �
 By applying the induction hypothesis and using the

previous part of the lemma we �nd that the total number of chords incident with p is at least

l� � �l� � �� � � � l


Suppose that C is a chordless l	cycle that contains j � � disjoint maximal subpaths

p�� � � � � pj � each of length at least one� that are in B
 Let li � jpij� i � �� � � � � j
 Obviously

if l� � l � � then j � �� i
e
 there is only one such subpath
 Otherwise li � l � � for every

� � i � j
 Using the previous lemma we can increase our lower bound cc as follows
 If there

is only one such subpath� cc is increased by either �l� � �� if l� � l � � or l� if l� � l � �


Otherwise cc is increased by the larger of �

�

Pj
i�� li �the factor

�

�
is needed because a chord can

be counted twice in the sum� and maxfli j � � i � jg
 P� terminates whenever either cc is

greater than k� in which case it stops with a negative answer� or when there are no more cycles

of the appropriate kind


In order to complete the description of P� we need to specify how to detect a chordless cycle

C with consecutive vertices in B if such a cycle exists
 The following observation is useful


Observation ��� There exists a chordless cycle C with at least two consecutive vertices in

B if and only if there exists an edge �x� y�� x � A� y � B and a path between a vertex in

�N�y��N�x���B and a vertex in N�x��N�y� that avoids any other vertices in N�x��N�y��

One can detect whether such a path exists as follows� Delete N�x� � N�y� and �N�y� �

N�x���A from G
 Find the connected components of G induced on the other vertices
 Check

whether there is a vertex in �N�y��N�x���B and a vertex inN�x��N�y� in the same connected

component
 This process requires O�m� time per edge �x� y� and can be implemented so that

if the path exists then the process will output a chordless cycle through �x� y� for which the

other neighbor of y is also in B


Recall that the size of A after the execution of P� is O�k�
 The number of vertices added to

A after the detection of each cycle by P� is at most twice the increase to cc
 Since cc is never

greater than k the total number of vertices in A when P� ends remains O�k�


P�� Adding essential edges in GA�

For every nonadjacent pair of vertices y� z � V de�ne Ay�z to be the set of all vertices x such

�



that y� x� z appear consecutively on some chordless cycle in G


Lemma ��� If for some pair y� z � A� �y� z� 	� E� jAy�z j � �k then the edge �y� z� is in every

k�triangulation of G�

Proof Assume that �y� z� is not in a k	triangulation G � �V�E� of G
 Then there must be

a chord in E � E incident with each vertex in Ay�z 
 Since no more than two such vertices can

share a chord� jE �Ej � k� which is a contradiction


Edges �y� z� satisfying the lemma are called essential
 For a triple y� x� z such that �y� x� � E�

�x� z� � E� �y� z� 	� E one can determine whether y� x� z appear consecutively on some chordless

cycle in linear time� They appear consecutively on a chordless cycle if and only if y and z are

in the same connected component after deleting N�x�� fy� zg from G


P� �rst calculates the sets Ay�z for every pair y� z � A� �y� z� 	� E
 Then for each pair

y� z � A such that jAy�z j � �k� we add �y� z� to G�
 Finally� we add to A all vertices in each

computed set Ay�z such that jAy�z j � �k


We now analyze the overall complexity of the partitioning scheme


Lemma ��� �� The execution of P� takes O�knm� time� �� The execution of P� takes O�k�nm�

time�

Proof �� For each edge �x� y�� x � A� y � B� it takes linear time to �nd a chordless cycle

through �x� y� with consecutive vertices in B
 The size of A is always O�k�� thus the total

number of edges incident with vertices of A is always O�kn�
 For each such edge we may have

to run the test mentioned above once� giving a total time complexity O�knm�


�� Since the size of A when P� begins its execution is O�k�� the number of triples y� x� z such

that �y� x�� �z� x�� E� �y� z� 	� E� y� z � A� is O�k�n�
 For each triple we need to check whether

there exists a path between y and z after deleting N�x�� fy� zg from G
 As mentioned above�

this can be done by identifying connected components of G on the remaining vertices and then

checking whether y and z are in the same connected component


Thus the overall complexity of the partitioning procedure is dominated by the complexity

of P�� which is O�k�nm�
 Before the call to P� the size of the set A is O�k�
 Procedure P� may

add O�k� additional vertices to A for each pair of vertices in A prior to its execution� so that

we end up with O�k�� vertices in A


Let Es be the set of essential edges detected by P�� and let G
� � �V�E�Es�
 Denote by A��

B� the partition of the vertex set before the execution of P� and by A� B the �nal partition
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The following lemma will be useful in establishing the correctness of the partitioning scheme

and the completion algorithm


Lemma ��	 Let G � �V�E� be a graph and v � V � Let F be a set of edges between vertices of

G such that

�� Each e � F is a chord in a chordless cycle Ce of G�

�� F �E � ��

	� v is not an endpoint of any e � F �

Denote by G� the graph obtained from G by adding the edges in F � If there exists a chordless cy�

cle C in G� with v�� v� v� occurring consecutively on C then either there exists a chordless cycle

in G on which v�� v� v� occur consecutively� or there exists a chordless cycle De � v� x�� � � � � xt� v

in G such that the path p � x�� � � � � xt is part of a cycle Ce for some e � F � and p contains one

of the endpoints of e�

Proof For an e � �x� y� � F let P �
e and P �

e denote the two paths on Ce between x and y�

with x and y removed from each path
 Since Ce is chordless� for every e such that v � Ce� v is

not adjacent to any vertex either on P �
e or on P �

e 


Case �� For every e � F such that v 	� Ce� there exists a path Pe � fP �
e � P

�
e g such that v is not

adjacent in G to any vertex on Pe
 Consider the cycle C
 Replacing every edge e � F along C

by Pe� one gets a cycle C� in G �not necessarily chordless or simple� with the property that v is

not adjacent to any vertex in C�� fv�� v�g
 Since edges in F are not incident with v� the edges

�v� v�� and �v� v�� exist in G
 Since C is chordless� �v�� v�� 	� E
 Thus C� contains a chordless

cycle in G on which v�� v� v� occur consecutively


Case �� For some e � �x� y� � F � v is adjacent to a vertex u� � P �
e and a vertex u� � P �

e 


Since C is chordless in G�� v must be nonadjacent either to x or to y in G
 W
l
o
g
 assume

v is not adjacent to x and that u� and u� are the closest to x among all vertices on P �
e and

P �
e respectively that are adjacent to v
 De is the chordless cycle in G consisting of the path

between u� and u� through x on Ce and v


The correctness of the partitioning scheme is captured by the following theorem


Theorem ���
 When the partitioning procedure ends� the graph G� has no chordless cycles

with vertices in B�

Proof The proof is by contradiction
 Suppose that there is a chordless cycle C � G� such

that C �B 	� � and let v be a vertex in C �B
 Denote by v� and v� the two neighbors of v on

C
 Cycle C must contain at least one essential edge since otherwise C exists in G and either v

��



would have been moved to A or �v�� v�� would have been added as an essential edge
 Let F be

the set of essential edges on C
 By the de�nition of an essential edge� for each e � �x� y� � F

there is a chordless cycle Ce in G in which e is a chord
 Moreover� if P �
e and P �

e are the two

paths connecting x and y on Ce then either P
�
e or P �

e consists of a single vertex ze � B�
 Since

v is in B it is not incident with any essential edge
 Applying Lemma �
� we �nd that one of

the following things must happen


�� There exists in G a chordless cycle on which v�� v� v� occur consecutively
 Thus either v

should have been in A or �v�� v�� should have been added as an essential edge� and we obtain

a contradiction


�� There exists a chordless cycle De in G on which v and ze occur consecutively for some e � F 


Since both v and ze are in B�� they both should have been moved to A by P�� and again we

obtain a contradiction


Triangulating the graph All that remains is to show that once we have partitioned the

graph� it su�ces to look for �k � a�	triangulations of the smaller graph with vertex set A�

where a is the number of essential edges added during the partitioning algorithm
 This is the

content of Theorem �
�� below
 In order to prove the theorem we need some background and

preliminary results


We de�ne the elimination of a vertex v from G as the operation that deletes v from G and

adds an edge between every nonadjacent pair among v�s neighbors
 Let � � v�� � � � � vn be an

ordering of the vertices of a graph G � �V�E�
 We denote by Gi� � � i � n the graph obtained

from G after eliminating the �rst i vertices in � �G� � G�
 Let x and y be two vertices in

G � �V�E�
 An x�y separator of G is a set S � V � fx� yg such that when S is deleted from G�

x and y occur in di�erent connected components


The following characterization of minimal triangulations was proved by Ohtsuki� Cheung

and Fujisawa


Theorem ���� ����� A triangulation F of G � �V�E� is minimal if and only if� for each

�x� y� � F � there exists no x� y separator S of G such that S is a clique of the triangulated graph
�G � �V�E � F ��

Using this theorem we prove the following lemma that is needed for the proof of Theo	

rem �
��


Lemma ���� Let F be a minimal triangulation of a graph G � �V�E�� Any edge in F is a

chord in a chordless cycle of G�

��



Proof Let v�� � � � � vn be a perfect elimination ordering of �G � �V�E�F �
 We use this ordering

to eliminate vertices from G
 Since F is minimal� for each edge e � �u� w� � F there exists an

index k� k � �� such that e � Gk but e 	� Gk��


We claim that u and w are connected in Gk�� by a path such that none of its vertices is

adjacent to vk
 Here is the proof of the claim
 Assume that no such path exists
 Then the set

NGk��
�vk� � fu� wg separates u and w in Gk��
 But it follows from the de�nition of a perfect

elimination ordering that this set is a clique in �Gk��
 Since F is a minimal triangulation of G

we must also have that �Gk�� is a minimal triangulation of Gk��
 This contradicts Theorem �
��

and the claim follows


We obtain that e is a chord of a chordless cycle in Gk��
 This cycle consists of u� vk and w

occurring consecutively and a shortest path between u and w that avoids the neighborhood of

vk in Gk��
 We �nish the proof by showing that e is also a chord of a chordless cycle of G
 This

is done by arguing that if C is a chordless cycle in Gj for some j� � � j � n then there exists

a chordless cycle C� in Gj�� that is either identical to C or contains one additional vertex
 If

all the edges in C are in Gj��� then C
� � C is a chordless cycle in Gj��
 Otherwise there is an

edge �x� y� in C that is not in Gj��
 For each such edge both its endpoints must be adjacent to

vj 
 Of the vertices on C only x and y can be adjacent to vj � since otherwise C is not chordless

in Gj 
 Take C� to be C with the vertex vj added between x and y


Theorem ���� Let A�B be a partition of the vertex set V of a graph G � �V�E� such that

the vertices of every chordless cycle in G are contained in A� A set of edges F is a minimal

triangulation of G if and only if F is a minimal triangulation of GA�

Proof Let F be a minimal triangulation of GA
 We need to prove that �G � �V�E � F � is

chordal
 Assume that �G is not chordal
 Let C be a chordless cycle in �G
 Since �G induced on

A is chordal� C � B 	� �
 By assumption� G does not contain chordless cycles with vertices in

B� hence C must not exist in G and thus it contains at least one edge from F and jC �Aj � �


Let v be a vertex in C �B
 According to Lemma �
�� each edge e � F is a chord in a chordless

cycle Ce of G whose vertices are in A
 Since F is a minimal triangulation of GA� v is not an

endpoint of any edge in F 
 Using Lemma �
� we conclude that there must be a chordless cycle

with v on it in G� contradicting the assumptions of the theorem


To prove the other direction let F be a minimal triangulation of G
 There exists F � � F that

is a minimal triangulation of GA
 According to the �rst part of the proof F
� also triangulates

G
 Since F is minimal we conclude that F � � F 


Overall Running Time The �nal step of the algorithm is to look for �k�a�	triangulations

��



in vertex set A� as justi�ed by Theorem �
��
 One can �nd one or all such triangulations by

the algorithm described in Section �
�
 Since the size of A is O�k��� the running time for this

step is O�k���k�
 The total time for the three	step partitioning process is O�k�nm�� giving a

time bound for the entire algorithm of O�k�nm� k���k�


� Unit Interval Completion

A proper interval supergraph G � �V�E � F � of a graph G � �V�E� with jF j � k is called a

k�proper interval supergraph of G


The algorithm presented in Section �
� can be easily modi�ed to produce all possible k	

proper interval supergraphs of a graph� using the following observations
 Proper interval graphs

are exactly the chordal graphs that do not contain any of the three obstructions in Figure �

as an induced subgraph ����
 Deng� Hell and Huang ��� have recently described an algorithm

that checks whether a graph G is a proper interval graph
 In case G is indeed a proper interval

graph the algorithm can provide a proper interval representation for G
 The running time of

the algorithm is O�m�� and it does not use complicated data structures such as PQ	trees ���


It is straightforward to check that in case the input graph is not a proper interval graph� one

can use the information maintained by the algorithm to extract either a chordless cycle or one

of the obstructions in Figure � in linear time


The k	completion algorithm will traverse part of a search tree de�ned as follows
 The graph

G itself corresponds to the root of the tree
 Let x be a node of the search tree corresponding

to a supergraph Gx of G that is not a proper interval graph
 The children of x are obtained

as follows
 The algorithm by Deng� Hell and Huang is applied to Gx to �nd either a chordless

cycle or one of the obstructions in Figure �
 If a chordless cycle C is found in Gx then every

minimal triangulation of C gives rise to a child of x as in Section �
�
 In case an obstruction is

found� x has a child for every edge e between vertices of the obstruction that is not part of the

obstruction
 The supergraph corresponding to such a child is Gx�feg
 Thus if the obstruction

found is a tent the node has six children� if it is a claw it has three and if it is a net it has nine


Each leaf in the search tree thus de�ned corresponds to a proper interval supergraph of G


Note that every minimal proper interval supergraph of G is represented by at least one leaf
 As

in section �
� the nodes of the search tree that are actually traversed correspond to supergraphs

with no more than k additional edges
 If one such node is a leaf then we have found a k	proper

interval supergraph
 Otherwise� no such supergraph exists


We summarize the result presented in this section in the following theorem
 Its proof is

��



analogous to the proof of Theorem �
� and hence omitted


Theorem ��� All k�proper interval supergraphs of a graph can be found in O���km� time�

Remark Rose� Tarjan and Lueker proved that if G � �V�E� is triangulated and G �

�V�E � F �� with F 	� �� F � E � � is triangulated� then there exists an edge e � F such

that G � �V�E � feg� is also triangulated ���� Lemma ��
 Using this lemma� while traversing

the search tree as described above one can avoid generating non	triangulated children of nodes

that correspond to triangulations of G
 Each minimal proper interval completion of G is still

guaranteed to be represented by at least one leaf
 In this version of the algorithm one uses the

MCS algorithm to detect chordality and �nd a chordless cycle as long as a chordal supergraph

has not been reached
 When reaching a chordal supergraph� the algorithm by Deng� Hell and

Huang is applied to get one of the obstructions in Figure �
 The children of the node are then

generated as described above
 Finally the MCS algorithm is applied to each of the children

in order to avoid traversing those that are not chordal
 Those that are chordal are further

expanded
 Such an implementation would use the algorithm of Deng� Hell and Huang only on

chordal graphs and hence a somewhat simpler version of it would su�ce
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� Strongly Chordal Completion

A chord �v� w� in an even cycle C is odd if the paths connecting v and w on C contain an odd

number of edges


The following characterization of strongly chordal graphs is due to Farber ����


Theorem ��� A graph G is strongly chordal if and only if G is chordal and every even cycle

of length at least six in G has an odd chord�

An odd chord in an even cycle C partitions C into two smaller even cycles C� and C�


Any odd chord in C� or C� is an odd chord in C as well
 A 
�cycle decomposition of an even

chordless cycle C is a minimal set T of odd chords in C such that there is no induced even

chordless cycle of length at least six in C � T 


Next we characterize and count the number of minimal �	cycle decompositions of an even

cycle C
 Let jCj � n


The proof of the following lemma is straightforward by induction


Lemma ��� A minimal 
�cycle decomposition T of an even n�cycle C consists of �n
�
� ��

chords� It partitions C into �n
�
� �� 
�cycles� Every two of these 
�cycles are either disjoint or

share a chord� Every chord is shared by exactly two 
�cycles�

A ternary tree is a tree in which each internal node has three children
 The following theorem

establishes a correspondence between the set of �	cycle decompositions of an even n	cycle and

the set of ternary trees with n � � leaves and n
�
� � internal nodes
 This correspondence is

similar to the one stated in Lemma �
� between minimal triangulations of a chordless n	cycle

and binary trees with n� � leaves


Lemma ��� The number of 
�cycle decompositions of an even n�cycle C is equal to the number

of ternary trees with n
�
� � internal nodes�

Proof For every even n	cycle C construct an invertible mapping from the set of �	cycle

decompositions of C to the set of ternary trees with n
�
� � internal nodes� as follows
 The

construction is by induction on the length of the cycle
 Assume that one has constructed an

invertible mapping for every cycle C� where jC�j � n��
 Let C be an n	cycle and let e be a �xed

edge on C
 Let T be a �	cycle decomposition of C� and let Ce � fe� e�� e�� e�g be the �	cycle in

��



C � T which includes e
 If ei� i � f�� �� �g is a chord� let Ci be the cycle C � Ce � feig
 The

�	cycle decomposition T induces a �	cycle decomposition Ti of Ci
 The tree which corresponds

to T has a root �associated with the edge e�� the i	th child of the root is a leaf if ei � C or the

root of the ternary tree which corresponds to Ti under the mapping associated with Ci if ei is

a chord
 It is straightforward to verify that the mapping de�ned above is indeed invertible


Denote the number of ternary trees with n internal nodes by tn
 The value tn satis�es the

following recurrence� t� � � and tn � �fi�j�k�n��gtitj tk if n � �
 According to Graham�

Knuth and Patashnick ���� p
 ���� the solution to this recurrence is

tn �

�
�n � �

n

�
�

�n� �

which is no greater than ��n � �n
 Together with Lemma �
� we obtain

Lemma ��� The number of 
�cycle decompositions of an even n�cycle C is no greater than

�
n
�
���

��� Finding an even cycle without odd chords

The neighborhood matrix of a graph is a symmetric �	� matrix with rows and columns indexed

by the set of vertices of the graph and with an entry of � if and only if the corresponding

two vertices are equal or adjacent in the graph
 A doubly lexical ordering of a matrix is an

ordering of the rows and of the columns so that the rows� as vectors� are lexically increasing

and the columns� as vectors� are lexically increasing
 Lexical ordering of vectors is the standard

dictionary ordering� except that vectors will be read from highest to lowest coordinate
 Thus row

vectors will be compared from right to left� and column vectors from bottom to top
 A matrix

M is symmetric if its rows and columns are indexed by the same set S and M�s� t� � M�t� s�

for all s� t � S
 A symmetric ordering of such anM is an ordering of S
 It is not true that every

symmetric matrix has a symmetric doubly lexical ordering
 But it was proved by Lubiw ����

that a symmetric matrix that has a dominant diagonal� meaning that M�s� s� �M�s� t� for all

s� t � S� has a symmetric doubly lexical ordering
 In particular� the neighborhood matrix of

any graph has a symmetric doubly lexical ordering


A cycle matrix is a �	� n 
 n matrix� n � �� with exactly two ��s in each row and in each

column and such that no proper submatrix has this property
 A totally balanced matrix is a �	�

matrix with no cycle submatrices


Farber ���� proved the following characterization of strongly chordal graphs


��



Theorem ��� A graph is strongly chordal if and only if its neighborhood matrix is totally

balanced�

A  is an ordered �	�	valued �
 � matrix with exactly one �� in the bottom right corner�

 �

�
� �

� �

�

Lubiw proved the following property���� �
�� of a doubly lexical �	� matrixM with rows R and

columns C


Theorem ��� Let M be an ordered doubly lexical ��� matrix with rows R and columns C� Any

�
 � submatrix of M formed by r� � r� � R and c� � c� � C with M�r�� c�� �M�r�� c�� � ��

M�r�� c�� � � is� for some k � �� embedded in a k 
 k submatrix of M formed by r� � r� �

� � � � rk � R and c� � c� � � � � � ck � C with M�ri� ci��� �M�ri��� ci� � � for i � �� � � � � k���

M�rk� ck� � �� and M�ri� cj� � � for other i� j except possibly i � j � �� In particular any  

submatrix is embedded in a cycle submatrix� See Figure ��

c� c� c� c� ci ck

r� � � � �

r� � � � �

r� � � � � �

r� � � � � �

� � �

� � �

ri � � �

� � � �

� � �

rk � �

Figure �� Every  submatrix can be embedded in a cycle submatrix


Together with the observation that in any ordering of a cycle submatrix there is a  sub	

matrix� Theorem �
� reestablishes the following result


Theorem ��� ���	� �� A ��� matrix has a  �free ordering if and only if it is totally balanced�

Moreover� a doubly lexical ordering of a totally balanced matrix is  �free�

��



The following theorem makes a link between cycle submatrices in a neighborhood matrix of

a graph G and chordless cycles or even cycles without odd chords in G


Theorem ��� Let M be a neighborhood matrix of a graph G and N a k 
 k cycle submatrix

of M with rows r� � r� � � � � � rk and columns c� � c� � � � � ck� Let VN � fvl j l � ri or l �

cj � � � i� j � kg� Then either the vertices of VN form an even cycle without odd chords or there

exists a subset C � VN that induces a chordless cycle�

Proof If ri 	� cj for every � � i� j � k� VN clearly forms an even cycle without odd chords


Assume ri � cj for some i and j
 This implies that N�i� j� �M�ri� cj� � �
 Let i� be the other

row in which column j has a one and j� the other column in which row i has a one
 N�i�� j�� � �

since otherwise we get a contradiction to the fact that N is a cycle submatrix
 Thus ri� 	� cj� 


Among the vertices in VN � vri is adjacent only to vri� and vcj� 
 These two are not adjacent

but there is a path connecting them in V � fvrig
 Thus there exists a chordless cycle C � VN

through vri 


Let M be a symmetric n 
 n neighborhood matrix of a connected graph G with m edges

and n vertices
 Using Paige and Tarjan�s implementation ���� of the algorithm described by

Lubiw ���� one can obtain a doubly lexical ordering of M in O�m logn� time
 Lubiw ���� also

shows how to search for a  submatrix in a doubly lexically ordered M in O�m� time
 Given

a  submatrix in a doubly lexically ordered M � a cycle submatrix that contains it can also be

found in O�m� time ����
 According to Theorem �
�� either the rows and columns of this cycle

submatrix induce an even cycle without odd chords� or a subset of them induce a chordless

cycle in G
 As suggested by the proof of Theorem �
� this cycle can be extracted from the cycle

submatrix in O�m� time


��� The k�completion algorithm

As in Sections �
� and � the k	completion algorithm will traverse part of a search tree in which

each node corresponds to a supergraph of G
 This search tree is de�ned as follows
 The graph

G itself corresponds to the root of the tree
 In order to generate the children of an internal

node x that corresponds to a graph G� one needs to �nd either a chordless cycle or an even

cycle without odd chords in G�
 In case a chordless cycle C is found� node x will have a child

for each minimal triangulation T of C
 If an even cycle without odd chords� C� is found� x

will have a child for each �	cycle decomposition of C
 The graph corresponding to a child is

obtained by adding the corresponding minimal triangulation or �	cycle decomposition to G�
 If

C is a chordless l	cycle� by Lemma �
� node x will have at most cl�� children
 If C is an even

��



l	cycle without odd chords then x will have t l
�
�� children
 Each leaf of the tree corresponds to

a strongly chordal supergraph of G
 Note that every such supergraph of G that is minimal is

represented by at least one leaf


Remark In the case that a chordless cycle C is found in the graph corresponding to a node

x� it will be more e�cient to generate a child only for each triangulation T of C such that C�T

has no even cycles without odd chords


One can �nd a chordless cycle C in a nonchordal graph with m edges and n vertices in O�m�

time by using the MCS algorithm described in ���� ���
 An even cycle without odd chords can be

found in a chordal graph that is not strongly chordal in O�m logn� time using Paige and Tarjan�s

implementation ���� of Lubiw�s algorithm ���� as described in Section �
�
 Obviously� one can

use Paige and Tarjan�s algorithm for both tasks in order to simplify the implementation� while

getting some penalty in the performance
 The algorithm described in ���� can be easily extended

to enumerate all ternary trees with n internal nodes� spending O�n� time for each
 Applying

Lemma �
� one obtains an algorithm that enumerates all �	cycle decompositions of an even cycle

C in O�jCj� time for each
 It is straightforward to check that a more involved enumeration

procedure that enumerates all minimal strongly chordal triangulations of a chordless even cycle

C in O�jCj� time for each could be designed as well� based on the ideas in ����


The nodes of this search tree that are actually traversed correspond to supergraphs of G

with no more than k additional edges
 If one such node is a leaf then we have found a strongly

chordal supergraph with no more than k additional edges
 Otherwise� no such supergraph

exists
 The proof of the following theorem is analogous to the proof of Theorem �
�


Theorem ��	 All minimal strongly chordal supergraphs of a graph G with no more than k

additional edges can be found in O���km logn� time�

Remark An alternative implementation that avoids traversing nonchordal children of chordal

supergraphs can be designed as described in the remark at the end of Section �


Remark For dense matrices� Spinrad describes a faster algorithm which can obtain a doubly

lexical ordering in O�n�� time ����
 Hence the complexity of the algorithm described above can

be improved for dense graphs to O���kmin�n�� m logn�� time


��



� Concluding Remarks

We have presented polynomial algorithms for the �xed	parameter version of three graph comple	

tion problems� CHORDAL COMPLETION�k�� STRONGLY CHORDAL COMPLETION�k�

and PROPER INTERVAL COMPLETION�k�
 Note that the class of proper interval graphs is

a subset of the strongly chordal graphs� which are a subset of the chordal graphs


Another important graph family that we have not discussed in this paper is interval graphs


The INTERVAL COMPLETION�k� problem has an important application in molecular biology�

as discussed in Section �
 Its NP	completeness was proved in ����
 NP	completeness is also

implied by the proof of Yannakakis ���� for chordal graph completion� as the graphs generated

in that proof are chordal if and only if they are interval
 To date the complexity status of the

parametric version of the problem is open
 It is not known whether the problem is in FPT

or hard for some level of the W	hierarchy
 The obstructions that have to exist in a chordal

graph that is not interval are described in ����
 An arbitrarily large obstruction X could exist

in a graph that is not interval but could be made interval with the addition of any one out of

O�jX j� edges
 This causes di�culties when one tries to apply the techniques of this paper to

this graph class


When the input is restricted to bounded	degree interval graphs for some �xed bound d� the

obstruction size is bounded by O�d� and the search tree technique applies to get a quadratic

FPT result using the characterization of ����
 It is an open problem whether this obvious bound

can be improved


For the molecular biology application in physical mapping� one can assume that the ratio

of sizes of the largest and the smallest clones is at most a small constant c �in practice� c � ��

su�ces�
 Fishburn and Graham ���� �see also ���� �
��� provided characterizations for interval

graphs which have such length restrictions
 Their results� together with the characterizations

of ����� imply that the obstruction size is O�c� and thus for this case too the search tree technique

applies and the k	completion problem is FPT
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