Generating effective symmetry-breaking
predicates for search problems *

Ilya Shlyakhter

MIT Lab for Computer Science, Software Design Group

Abstract

Consider the problem of testing for the existence of an n-node graph G satisfying
some condition P, expressed as a Boolean constraint among the nxn Boolean entries
of the adjacency matrix M. This problem reduces to satisfiability of P(M). If P
is preserved by isomorphism, P(M) is satisfiable iff P(M) A SB(M) is satisfiable,
where SB(M) is a symmetry-breaking predicate — a predicate satisfied by at least
one matrix M in each isomorphism class. P(M) A SB(M) is more constrained than
P(M), so it’s solved faster by backtracking than P(M) — especially if SB(M) rules
out most matrices in each isomorphism class. This method, proposed by Crawford
et al [1], applies not just to graphs but to testing existence of a combinatorial object
satisfying any property that respects isomorphism, as long as the property can be
compactly specified as a Boolean constraint on the object’s binary representation.

We present methods for generating symmetry-breaking predicates for several
classes of combinatorial objects: acyclic digraphs, permutations, functions, and
arbitrary-arity relations (direct products). We define a uniform optimality measure
for symmetry-breaking predicates, and evaluate our constraints according to this
measure. Results indicate that these constraints are either optimal or near-optimal
for their respective classes of objects. We also evaluate some previously published
predicates according to our measure, and confirm that these predicates eliminate
most isomorphism.

1 Introduction

Consider a universe U of combinatorial objects representable by m-bit binary
numbers. We will speak interchangeably of an object and its binary repre-
sentation. Let U be divided into equivalence classes of isomorphic objects. A

* Expanded version of a paper published in Electronic Notes on Discrete Mathe-
matics, Volume 9, June 2001, available online at
http://www.elsevier.nl/locate/endm/volume9.free

Preprint submitted to Elsevier Science 24 June 2002

permutation 6 of the m bits is a symmetry of the universe iff applying 6 to
any object X € U yields an object isomorphic to X. The set of all symmetries
is the symmetry group of the universe U, denoted by Sym.

For example, n-node digraphs can be represented by n x n adjacency matri-
ces, and two matrices A, B are isomorphic iff there exists a permutation # of
the n nodes such that 6(A) = B, where (0(A));; = Agq)o¢)- Note that 6 is
a permutation of the n nodes of the digraph, but it also acts on the n?-bit
adjacency matrices, because each permutation of the nodes induces a corre-
sponding permutation of the adjacency matrix bits [2]. The symmetry group
Sym has order n! and is isomorphic to o,, the symmetric group of order n.

Suppose you need to find an object X from a universe U, satisfying a prop-
erty P(X) (or determine that no such object exists). Suppose also that P
is preserved under isomorphism, i.e. is constant on each isomorphism class.
Enumerating all elements of U and testing P on each is clearly wasteful: it’s
enough to test P on one object per isomorphism class. For some classes of
objects, procedures exist for isomorph-free exhaustive generation [3-5]. Faster
generation procedures may be developed at the cost of generating more than
one labeled object per isomorphism class and/or repeating objects.

If no object in U satisfies P, the generate-and-test approach must explicitly
generate a complete representation of at least one representative per isomor-
phism class to verify unsatisfiability. On the other hand, backtracking methods
[6] can rule out entire sets of objects without explicit generation, by determin-
ing that no object extending a partial binary representation satisfies P. If P
can be encoded as a polynomial-size Boolean constraint on the bits of the
fixed-length binary representation (as opposed to black-box computer code),
backtracking methods for satisfiability can be used. Such methods can signifi-
cantly outperform explicit generate-and-test approaches, as demonstrated by
satisfiability encoding of planning problems [7].

Crawford et al [1] have proposed an approach to taking advantage of isomor-
phism structure in this framework. We define a symmetry-breaking predicate
on U, SB(X), which is true on at least one representative object per iso-
morphism class. We then test for satisfiability of P'(X) = P(X) A SB(X).
Since P is constant on each isomorphism class, P’ is satisfiable iff P satisfi-
able. Moreover, P’ is solved much faster than P by backtracking, because it is
more constrained: the algorithm will backtrack if none of the extensions of its
current partial instantiation are isomorphism class representatives selected by
SB. Experiments show that symmetry-breaking predicates can reduce search
time by orders of magnitude with no changes to the search algorithm [1,2].

The difficulty of this approach lies in generating the symmetry-breaking pred-
icate. In general, generating a complete symmetry-breaking predicate (true

of exactly one representative per isomorphism class) is NP-complete [1]; the
practical choice is between partial symmetry-breaking predicates, true of at
least one (typically more than one) representative per isomorphism class. To
be effective, the predicate must rule out a large fraction of objects from each
isomorphism class. On the other hand, the predicate must be compact; other-
wise, checking the predicate’s constraints at each search node will slow down
the search, erasing the benefit of expanding fewer search nodes. Balancing
these contradictory requirements is the subject of this paper.

The rest of the paper is organized as follows. Section 2 summarizes prior ap-
proaches and points out their deficiencies. Section 3 describes the generation
of symmetry-breaking predicates for several classes of combinatorial objects.
Section 4 gives a uniform optimality measure for symmetry-breaking predi-
cates, and evaluates the predicates from Section 3 according to this measure.
Section 5 describes directions for future work.

2 Prior work

In his original paper on symmetry-breaking predicates, Crawford proposes the
following general framework for predicate generation. Fix an ordering of the
bits in the object’s binary representation. This induces a strict lexicographical
ordering on all objects. Construct a symmetry-breaking predicate which is true
on the lexicographically smallest object in each isomorphism class, as follows.

Let V' be a fixed ordering of the bits of the binary representation. Then

A V<o)

QcSym

is a symmetry-breaking predicate, true of only the lexicographically smallest
object in each symmetry class. This predicate explicitly requires that any sym-
metry map either fix the the representative object, or map it to a lexicograph-
ically higher object — i.e. that the representative object be lexicographically
smaller than any isomorphic object.

Unfortunately, in many important cases Sym is very large. For example, for
n-node digraphs |Sym| = n!, because any permutation of the graph’s nodes
(and the corresponding permutation of adjacency matrix entries) leads to an
isomorphic graph. Crawford suggests mitigating the problem by replacing Sym
with a polynomial-size subset Sym' € Sym, thus requiring that the object be
lexicographically smallest with respect to only some of the symmetries.

Crawford gives no formal guidance on choosing the subset of symmetries to
break or the fixed variable numbering to use. This paper begins to fill the gap

by describing polynomial-size symmetry-breaking predicates for some common
combinatorial objects. For some objects, we refine Crawford’s algorithm by
determining Sym’ and V. For others, we present new predicate constructions,
giving the first concrete alternatives to Crawford’s lexicographic approach.

Crawford uses empirical measurements to gauge the effectiveness of his symmetry-
breaking predicates. While such end-to-end tests are certainly useful, they give
no hint of optimality of a given predicate, and reflect peculiarities of a partic-
ular backtracking algorithm (such as the dynamic variable-ordering heuristic
[6]) besides the inherent complexity reduction brought by the predicate. We
present an alternative approach which directly measures predicate pruning
power, and gives an optimality measure relative to a complete symmetry-
breaking predicate.

3 Generating symmetry-breaking predicates

In this section, we present methods for generating symmetry-breaking pred-
icates on several classes of combinatorial objects: acyclic digraphs, permuta-
tions, direct products, and functions. These objects commonly occur in formal
descriptions of system designs [8], the analysis of which motivates this work.
Each subsection deals with one class of combinatorial objects, describing the
binary representation, the isomorphism classes, and the construction of the
symmetry-breaking predicate in terms of the binary representation.

3.1 Acyclic digraphs

Let U be the set of n x n adjacency matrices representing acyclic digraphs.
T'wo matrices representing isomorphic digraphs are isomorphic. The symmetry
group Sym has order n!.

Any acyclic digraph has an isomorphic counterpart that is topologically sorted
with respect to a given node ordering. In terms of adjacency matrices, this
means that every isomorphism class of adjacency matrices representing acyclic
digraphs includes an upper-triangular matrix (since the lower triangle repre-
sents “backwards” edges from higher-numbered to lower-numbered nodes).
Our symmetry-breaking predicate simply requires all entries below the diag-
onal to be false. This does not completely eliminate all isomorphic matrices,
but as measurements in section 4.1 show, eliminates most.

Additionally, this symmetry-breaking predicate, together with the requirement
that diagonal entries be false (eliminating self-loops), implies the acyclicity

constraint, so no additional constraints on the matrix are needed. By contrast,
expressing the acyclicity constraint on general digraphs requires a constraint
of size Q(MatMult(n)logn), where MatMult(n) is the complexity of matrix
multiplication. Shorter constraints require less time to check at every search
node, leading to faster search. In general, in cases where not all binary rep-
resentations represent valid combinatorial objects from our universe U, con-
straints restricting the object to valid values are separate from the symmetry-
breaking predicate. This example illustrates a new use of symmetry-breaking
predicates: to reduce the size of original problem constraints.

Note that this symmetry-breaking predicate does not use Crawford’s method-
ology. It’s not even clear that a single fixed variable ordering exists which
corresponds to this predicate. The next section on permutations gives another
example of a symmetry-breaking predicate not based on lexicographic com-
parison.

3.2 Permutations

Let U be the set of n xn binary matrices representing permutations of n items.
Matrix A represents the permutation mapping ¢ to j iff A;; is true. A matrix
A represents a valid permutation (is a permutation matriz) iff every column
and every row has exactly one true bit.

Two permutations are isomorphic if they have the same cycle structure, i.e.
the same multiset of cycle lengths. Thus, an isomorphism class of permutation
matrices corresponds to one permutation on a set of n indistinguishale objects.
We define a canonical representative of each isomorphism class, and give a
polynomial-size Boolean predicate on permutation matrices which is true only
of the canonical representatives. We thus achieve full symmetry-breaking with
a polynomial-size predicate.

The canonical form is most easily explained using cycle notation for permu-
tations [9]. We require that each cycle consist of a continuous segment of
items, that each item map to the immediately succeeding one or (for highest-
numbered item in a cycle) to the smallest item in the cycle, and that longer
cycles use higher-numbered items than shorter ones. For example, the per-
mutation (12)(345) is in canonical form, but the isomorphic permutations
(123)(45), (12)(354) and (15)(234) are not. Formally, given an n x n permuta-
tion matrix A, we have the following predicate in terms of the Boolean entries

A

i

(Vi, j|(G > i+1) = =45;) \\

(Y, 7]((F >) AN Ajs) = ((Ab=i—1) Ak k1) /\(/\k:(j+1)..(2j7i)_‘Ak,j))))

In this predicate, the condition (j > i+ 1) = —A;; requires that an item
mapped to a higher-numbered item map to the immediately succeeding item:
e.g. 3 must map either to 4 (in which case 3 is not the highest-numbered
item in its cycle), or to an item numbered not higher than 3 (in which case
3 is the highest-numbered item in its cycle). The condition Ne=i..(j—1) Ak k41,
implied by a backward edge A;;(i < j), says that every backward edge im-
plies the corresponding forward cycle: e.g. if 5 maps to 3 then 5 must be the
highest-numbered item in the cycle and the cycle must be (345). The condition
Ak=(j+1)..(2j—i) " Ak,j, implied by the presence of a cycle (ii+1...5-13),
requires the immediately succeeding cycle to be no shorter, in effect sorting
cycles by increasing length: e.g. the cycle (345) excludes the cycles (6) and
(67). Together with the original constraints restricting A to be a permuta-
tion matrix, these constraints permit exactly one permutation with a given
multiset of cycle lengths, i.e. one permutation from each isomorphism class.

The size of this predicate O(n?), which matches the order of growth of the
original constraints. It may be possible to reduce this order of growth by
introducing auxiliary Boolean variables, but since n is typically small (under
15) in our analyses, cubic growth has been acceptable.

3.8 Relations

Consider the direct product D = Dy x ... X Dy, of k disjoint finite nonempty
sets (we call them domains). We define our universe U to be P(D), the power
set of D. Each element of U, called a relation, can be represented by le | D;|
bits. Each bit corresponds to an ordered k-tuple (dy,...,dx), d; € D;, and
is true in the binary representation of a relation iff the relation contains the
corresponding ordered k-tuple. We will speak interchangeably of the bits and
corresponding ordered k-tuples.

Isomorphism classes are defined by treating elements within each domain as
indistinguishable. The symmetry group Sym of our universe U is isomor-
phic to direct product of k symmetric groups: Sym = op,| X ... X 0O|p,|.
An element © = (6y,...,6;) of Sym maps a relation r to a relation ', such
that r' contains an ordered tuple (di,...,dy) iff r contains the ordered tuple

0,1 (dy), ..., 0, (dy)).

With |Sym| = [TF_, | D;|!, direct application of Crawford’s method is impracti-
cal. Nevertheless, it is possible to break all symmetries which permute a single
domain with a linear-size predicate. Even though such symmetries represent

only a tiny fraction of all symmetries, experiments show that this predicate
rules out most of the isomorphic objects.

We start with an example for the case k = 2, then generalize to arbitrary k.
Consider a binary relation r € A x B, A = {ag,a1,as}, B = {bg, b1,b2}. Let

us use the following orderly numbering V' for bits of the binary representation
of r:

by by bo
a 1 2 3
aa 4 5 6
a 7 8 9

Under this numbering, Crawford’s symmetry-breaking condition for the sym-
metry exchanging ay with a; and fixing all other elements (denoted ag <> a;)
is

123456789 < 456123789

which simplifies to 123 < 456. Together with the condition for a; <> as, we
have

123 <456 <78

w
Nej

which breaks all symmetries permuting only A. Similarly, the conditions for
by <> by and by <> by together simplify to

147 < 258 < 369

~J

breaking all symmetries which permute only B. Together, these conditions
allow only those relations for which permuting either the rows or the columns
(but not both simultaneously) leads to a lexicographically higher (or the same)
relation, according to the given bit ordering. These conditions still allow values
of » mapped to lexicographically lower values by symmetries which permute
both A and B.

In general, consider a relation » € Dy X Dy X ... X Di. We use Craw-
ford’s lexicographic method with the following numbering. Denoting the ele-
ments of D; as a;0,a;1, ..., a;p,—1, we number the bit corresponding to tuple

(al,el,. . .,ak,ek), 0< e < |Dz|7 as

k k

> (eix [T [Ds])

i=1 j=i+1

Now consider a transposition 0 = a;, <> a;,4+1. The effect of this transposition
on the binary representation of r is to fix all k-tuples except those with p or
p + 1 as their 7’th coordinate, and among the tuples with p or p + 1 as their
1'th coordinate, to swap k-tuples differing only in their 7’th coordinate. Within
each pair of swapped tuples, the tuple with p + 1 in 7’th coordinate is num-
bered higher than the tuple with p in ¢’th coordinate. Therefore, Crawford’s
V < 0(V) condition reduces to P < P’, where P lists the bits correspond-
ing to k-tuples with p in ¢’th coordinate, in increasing order by number in
our numbering, and P’ lists the bits corresponding to k-tuples with p + 1 in
v'th coordinate, in increasing order by number in the numbering. Then the
right-hand side of Crawford’s V' < §(V') condition for a;, <> a;,4+1 equals the
left-hand side of the condition for a;,1; <+ @12, S0 asserting the condition
for adjacent pairs of elements breaks all permutations which permute only D;.

The size of this predicate, expressed in conjunctive normal form (CNF), is
linear in the size of each domain. The size of a single n-bit comparator
is O(n) [1]. For each domain D;, we have |D;| — 1 comparators of length
et ic1it1,.. | D], for a total comparator size of O(k x [If, |D;]). Mea-
surements of symmetry-breaking coverage provided by this predicate is given
in section 4.2.

3.4 Functions

A function is a restricted kind of relation: a two-dimensional relationr € Ax B
with each element of A (the domain) related to ezactly one element of B
(the range). Two functions are isomorphic iff they have the same multiset
of preimage sizes. In analyses of relational specifications [8], functions occur
more frequently than general relations. For functions, we give a polynomial-
size symmetry-breaking predicate which breaks all symmetries.

First, we break all symmetries permuting only A by sorting the rows of r
as binary numbers, as in the preceding section. For notational convenience,
here we make the leftmost column (the bits corresponding to by) the least
significant bit. Second, we sort the columns by the count of ¢true bits. Formally,
the constraints on r read

(Vi € {0,...,]A| - 2}

(Ti,\B\flri,\BMZ o TITi0 < Ti41,|B|-1Ti4+1,|B|-2 - - -Ti+1,17"i+1,0)) /\
(V5 € {0, 1Bl = 2}|(|{ilrs 3| < ilrsz1}D)

We show that together, these constraints define a complete symmetry-breaking
predicate.

Since r represents a function, there are |B| possible values for a row of r.
Sorting the rows of r makes identical rows adjacent, so that the preimage
of each b; € B occupies a continous segment of A. In addition, for i < j,
rows mapped to b; represent smaller binary numbers than rows mapped to
b;. Therefore, elements of A mapped to b; € B have lower indices in A than
elements of A mapped to bji;. Alternatively, listing the elements of A in
increasing order by index, we first list the elements that map to by (if any),
followed by the elements that map to b; (if any), and so on, with the elements
that map to bjp—; (if any) at the end of the list.

We now show that adding the second requirement, that the columns be sorted
by cardinality (the count of ¢rue bits in the column), forces a canonical form.
Since all matrices in an isomorphism class have the same multiset of preimage
sizes (i.e. column cardinalities), sorting the columns by cardinality uniquely
determines the cardinality of each column. In other words, all matrices in
an isomorphism class satisfying the column-sorting condition have the same
cardinalities in the corresponding columns. But given the constraints described
in the preceding paragraph, this uniquely determines the image in B of each
a; € A. If ¢; = | {i|r;;}|, i-e. ¢; is the cardinality of th j’th column, then the
first ¢y elements of A must map to by € B, the next ¢; elements of A must
map to b, € B, and so on.

For example, here are three isomorphic function matrices satisfying the row-
sorting condition:

by by by b by by b1 by b3 by by b1 by b3 by

a1l 0000 a 0100000100
a1 0000 a 01000 a 00010
a1 0000 a200100 a200010
a3 001 00 a3z 00100 a30000°1
a; 00001 az 00100 az 00001
as 00001 as 00010 a3 00001

Only the rightmost one also orders the column cardinalities, and is the only
matrix in the isomorphism class allowed by our symmetry-breaking predicate.

The row-sorting constraint can be expressed as a CNF formula of size O(|A||B|),
as described in section 3.3. The column cardinality sorting constraint can be
expressed by building a standard binary adder for each column, which adds
the entries of that column as one-bit binary numbers. Such an adder for one
column has size O(]|A|log|A|). We then use the standard binary comparator
among the column adders to assert the column-sorting condition. The entire
predicate then has size O(|A||B| + |A[*log|Al).

4 Measuring effectiveness of symmetry-breaking predicates

Symmetry-breaking predicates are designed to speed up search, so it would
seem natural to judge their effectiveness by measuring the reduction in search
time. This approach has several problems, however. Search times can be highly
dependent on the particular backtracking algorithm, and on parameter set-
tings such as the splitting heuristic [6]. The addition of the symmetry-breaking
predicate changes the whole search tree (since splitting choices are determined
by the entire constraint set), so the comparison to the original constraint prob-
lem is not completely clean. Machine-dependent effects such as cache locality
can also bias the measurements. Most importantly, end-to-end measurements
provide no clue to optimality: how much of the reduction afforded by symme-
try are we actually utilizing?

As an alternative measure of efficiency, we can directly measure the pruning
power of a symmetry-breaking predicate by counting the number of objects
satisfying the predicate. For a complete symmetry-breaking predicate, this
number is the number of isomorphism classes. For a partial symmetry-breaking
predicate, this number will be higher; the question is, how much higher? Where
the number of isomorphism classes is known, we can obtain a precise measure
of optimality of our partial symmetry-breaking predicate by comparing its
pruning effect with the maximum possible pruning effect.

Table 1 describes the numbers computed to measure coverage of partial symmetry-
breaking predicates.

The numbers of isomorphism classes are taken from [10], [11], [12] and [13].
The number of objects allowed by the predicate is computed by generating
the corresponding satisfiability instance, and counting its solutions with the
RELSAT solution counter [14]. Correctness of the implementation was verified
by doing complete symmetry-breaking for several classes of objects by Craw-
ford’s explicit lexicographical method method, and checking that the number
of allowed instances matches the number of isomorphism classes.

10

Table 1

Values used to measure coverage of partial symmetry-breaking predicates.

value formula meaning
labeled |U| the number of distinct binary representations
unlabeled from [10,11] the number of isomorphism classes
allowed | {X € U|SB(X)}| | # of objects allowed by symmetry-breaking predicate
coverage % percentage of excludable objects actually excluded
slack u‘fﬁzgggd maximum possible improvement factor
Table 2

Acyclic digraphs: symmetry-breaking coverage.

n labeled unlabeled | allowed | coverage | slack
3 25 6 8 89.47% 1.3
4 543 31 64 93.55% 2.1
5 29,281 302 1024 97.51% 3.4
6 3,781,50 5,984 32,768 99.29% 5.5
7 | 1,138,779,265 | 243,668 | 2,097,152 | 99.84% 8.6

4.1 Acyclic digraphs

Table 2 gives coverage information for the DAG-specific symmetry-breaking
predicate described in section 3.1.

4.2 Relations

Table 3 shows the results for binary relations, using the symmetry-breaking
predicate described in section 3.3. For each n, the table gives aggregate re-
sults over k; x ko binary relations such that k£ < k, and k; + ky = n. The
“unlabeled” counts in this table were obtained in 5 seconds using Brendan
McKay’s bipartite graph generator “makebg” [13]. The “allowed” counts were
obtained in 8 minutes using the solution-counting function of the RELSAT
satisfiability solver [14]. Both computations were done on a Linux machine
with two Pentium III processors and 512MB of memory.

11

Table 3

Relations: symmetry-breaking coverage.

n labeled unlabeled | allowed | coverage | slack
8 102,528 565 1,059 99.516% | 1.87
9 1,327,360 1,518 3,834 99.825% | 2.53
10 52,494,848 9,713 38,254 99.946% | 3.94
11 | 1,359,217,664 39,379 229,347 | 99.986% | 5.82
12 | 107,509,450,752 | 416,032 | 3,978,677 | 99.997% | 9.56
Table 4
Digraphs without self-loops: symmetry-breaking coverage.
n labeled unlabeled | allowed | coverage | slack
3 64 16 21 89.58% 1.3
4 4,096 218 473 93.42% 2.2
5 1,048,576 9,608 35,979 97.46% 3.7
6 | 1,073,741,824 | 1,540,944 | 9,228,259 | 99.28% 6.0

4.3 Permutations and Functions

In these cases, symmetry-breaking is complete. The only possible improvement
would be in reducing the size of the predicate. However, this improvement
would only matter in cases where the original problem constraints have a
smaller order of growth than the predicate.

4.4 Digraphs: symmetry-breaking coverage

It has been proposed [1,15] that breaking symmetries for the generators of the
symmetry group eliminates most isomorphs, even though the set of genera-
tors is exponentially smaller than the set of all symmetries. Here we evaluate
this assertion by measuring symmetry-breaking coverage achieved by break-
ing generator symmetries in the case of a single digraph without self-loops.
The results, shown in Table 4, confirm that most isomorphs are eliminated. In
the special case of DAGs, we have found that breaking generator symmetries
breaks eliminates almost as many isomorphs as using the the DAG-specific
symmetry-breaking predicate from section 3.1. However, the DAG-specific
predicate still has the advantage of being more compact and expressing the
acyclicity constraint in addition to breaking symmetries.

12

5 Conclusion and future work

We have presented a uniform method to gauge the effectiveness and opti-
mality of symmetry-breaking predicates. The method measures the inherent
simplification of the constraint problem, which, unlike running-time measure-
ments, does not depend on the details of a particular backtracking algorithm.
The method hinges on our ability to lower-bound the number of isomorphism
classes in the universe; these numbers are available for a wide variety of com-
binatorial objects.

The method also depends on the ability to count solutions to a CNF formula.
The current implementation of solution counting in RELSAT suffices to ob-
tain useful results. Combining RELSAT’s counting algorithm with recent SAT
solving techniques such as those introduced in [16] should extend the range
of problems for which counting is feasible. Since approximate counting suf-
fices for our application, it would interesting to see if approximate counting
algorithms can be developed.

We have also presented specific polynomial-size symmetry-breaking predicates
for the types of states commonly occurring in analysis of relational specifica-
tions. Measurements show that these predicate exclude over 99% of excludable
assignments, and come within an order of magnitude of the optimum. These
are the first formalized examples of predicates not derived from Crawford’s
conditions.

Experiments show that predicate coverage, defined as the fraction of exclud-
able objects actually excluded, grows monotonically with the scope of the
objects. In other words, as the search space grows, our use of the available
symmetry becomes more complete. On the other hand, the slack factor rep-
resenting the possible improvement also increases. With search space sizes
growing exponentially, improving coverage by even a fraction of a percent can
lead to significant reduction in absolute search time.

Most interestingly, breaking a random set of symmetries to small depth often
leads to surprisingly effective predicates. Formalizing this observation into a
formal randomized symmetry-breaking scheme will be a major goal of future
work. Various ways to bias the random selection of symmetries will be inves-
tigated. For instance, Crawford’s condition for a single symmetry © excludes
2719l assignments, where |O| is the number of cycles in ©. This suggests
biasing selection towards symmetries with fewer cycles. On the other hand,
overlap between sets of states excluded by the selected symmetries should
be minimized. This work could relate to work on probabilistic isomorphism
testing.

In this paper, we only cover objects consisting of a single DAG, relation,

13

function or permutation. In practice, the universe of objects may be the set
of abstract states of a system, with each state described by a collection of
combinatorial object components. For example, in a lock-based multitasking
environment, the state can be represented by a pair of relations: which pro-
cess waits on each mutex, and which process holds which mutex. Applying a
symmetry-breaking predicate to one component destroys the symmetry of the
domains related by that component: the elements of these domains stop being
interchangeable. This raises the question: to which of the state components
should we apply our symmetry-breaking predicates? A lookup table of known
predicate coverages for the common component types, computed as described
in this paper, could be used to make the decision that optimizes the pruning
effect.

Finally, it is necessary to quantify the correlation between pruning power
of the predicate and the search time under various backtracking algorithms.
Since search time is directly affected by the size of the predicate, as well as by
its pruning power, such measurements are necessary to determine the proper
tradeoff values between predicate size and strength. Besides search time, one
useful measure might be “symmetry-breaking density”, that is, the number of
assignments excluded per literal of the symmetry-breaking predicate. It would
be useful to know whether this measure correlates with search time.

6 Related work

Since the publication of the conference version of this paper, a number of re-
lated results have appeared. Flener et al [17] have generalized the results of
section 3.3 to matrices of arbitrary values (we only considered Boolean matri-
ces in this paper). They also showed that the results hold for the case where
only a subset of the rows/columns of the matrix is interchangable. Aloul et al
[15] have proposed improved construction of symmetry-breaking predicates,
which uses fewer CNF clauses and eliminates more isomorphs than Craw-
ford’s [1] construction. Luks and Roy [18] have shown how to construct small
symmetry-breaking predicates when the symmetry group is commutative.

7 Acknowledgement

I’d like to thank Daniel Jackson and Manu Sridharan for helpful discussions,
and Brendan McKay for providing an advance copy of his bipartite graph
generator.

14

References

1]

[9]

J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In Fifth International Conference on Principles of
Knowledge Representation and Reasoning, 1996.

David Joslin and Amitabha Roy. Exploiting symmetry in lifted csps. In
AAAI97, 1997.

B. D. McKay. Isomorph-free exhaustive generation. Journal of Algorithms,
26:306 — 324, 1998.

Daniel Jackson, Somesh Jha, and Craig A. Damon. Isomorph-free model
enumeration: A new method for checking relational specifications. ACM
Transactions on Programming Languages and Systems, 20(2):302-343, March
1998.

C. Norris Ip and David L. Dill. Better verification through symmetry. Formal
Methods in System Design, 9(1):41-75, August 1996.

Rina Dechter and Daniel Frost. Backtracking algorithms for constraint
satisfaction problems. Technical Report 56, UC-Irvine, 1999.

Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of
the 10th FEuropean
Conference on Artificial Intelligence, 1992. http://portal.research.bell-
labs.com/orgs/ssr/people/kautz/papers-ftp/satplan.ps.

Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity
mechanism. In Proc. ACM SIGSOFT Conf. Foundations of Software
Engineering/European Software Engineering Conference (FSE/ESEC 01),
Vienna, 2001.

Herbert Wilf. East side, west side: an introduction to combinatorial families
with maple programming. http://www.cis.upenn.edu/ wilf/eastwest.pdf, 1999.

[10] R.C.Read. An Atlas of Graphs. Oxford University Press, 1998.

[11] Neil J. A. Sloane. Sloane’s on-line encyclopedia of integer sequences.

http://www.research.att.com/ njas/sequences/.

[12] F. Harary and E.M.Palmer. Graphical Enumeration. Academic Press, 1973.

[13] Brendan

McKay. Personal communication. http://cs.anu.edu.au/people/bdm/nauty/,
2002.

[14] R. Bayardo and J. Pehoushek. Counting models using connected components.

In AAAI Proceedings, 2000.

[15] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Solving

difficult sat instances in the presence of symmetry. In Proceedings of 39th
ACMY/IEEE Design Automation Conference, New Orleans, Louisiana, 2002.

15

[16] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of
the 38th Design Automation Conference (DAC’01), 2001.

[17] Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, lan Miguel, Justin
Pearson, and Toby Walsh. Symmetry in matrix models. In SymCon’01 -
Symmetry in Constraints, CP’01 Post-Conference Workshop, Paphos, Cyprus,
2001.

[18] Eugene Luks and Amitabha Roy. Symmetry breaking in constraint satisfaction.
In Proceedings of 7th International Conference of Artificial Intelligence and
Mathematics, Ft. Lauderdale, Florida, 2002. http://www.cs.bc.edu/ aroy/.

[19] Daniel Jackson. An intermediate design language and its analysis.
In Proceedings of International Conference on Foundations of Software
Engineering, Orlando, FL, 1998.

16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

