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PREFACE

Analytic Combinatorics aims at predicting precisely the asymptotic properties of struc-
tured combinatorial configurations, through an approach that bases itself extensively on
analytic methods. Generating functions are the central objects of the theory.

Analytic combinatorics starts from an exact enumerative description of combinatorial
structures by means of generating functions, which make their first appearance as purely
formal algebraic objects. Next, generating functions are interpreted as analytic objects, that
is, as mappings of the complex plane into itself. In this context, singularities play a key rôle
in extracting a function’s coefficients in asymptotic form and extremely precise estimates
result for counting sequences. This chain is applicable to a large number of problems of
discrete mathematics relative to words, trees, permutations, graphs, and so on. A suitable
adaptation of the theory finally opens the way to the analysis of parameters of large random
structures.

Analytic combinatorics can accordingly be organized based on three components:

— Symbolic Methods develops systematic “symbolic” relations between some of
the major constructions of discrete mathematics and operations on generating
functions which exactly encode counting sequences.

— Complex Asymptotics elaborates a collection of methods by which one can ex-
tract asymptotic counting informations from generating functions, once these are
viewed as analytic transformations of the complex domain (as “analytic” also
known as“holomorphic” functions). Singularities then appear to be a key deter-
minant of asymptotic behaviour.

— Random Structuress concerns itself with probabilistic properties of large random
structures—which properties hold with “high” probability, which laws govern
randomness in large objects? In the context of analytic combinatorics, this cor-
responds to a deformation (adding auxiliary variables) and a perturbation (exam-
ining the effect of small variations of such auxiliary variables) of the standard
enumerative theory.

The approach to quantitative problems of discrete mathematics provided by analytic
combinatorics can be viewed as an operational calculus for combinatorics. The booklets,
of which this is the second installment, expose this view by means of a very large num-
ber of examples concerning classical combinatorial structures (like words, trees, permuta-
tions, and graphs). What is aimed at eventually is an effective way of quantifying “metric”
properties of large random structures. Accordingly, the theory is susceptible to many ap-
plications, within combinatorics itself, but, perhaps more importantly, within other areas
of science where discrete probabilistic models recurrently surface, like statistical physics,
computational biology, or electrical engineering. Last but not least, the analysis of algo-
rithms and data structures in computer science has served and still serves as an important
motivation in the development of the theory.
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The present booklet specifically exposes Singular Combinatorics, which is a unified
analytic theory dedicated to the process of extractic asymptotic information from count-
ing generating functions. As it turns out, a collection of general (and simple) theorems
provide a systematic translation mechanism between generating functions and asymptotic
forms of coefficients. Two chapters compose this booklet. Chapter IV serves as an in-
troduction to complex-analytic methods and proceeds with the treatment of meromorphic
functions, that is, functions whose only singularities are poles, rational functions being
the simplest case. Chapter V develops applications of rational and meromorphic asymp-
totics, with numerous applications related to words and languages, walks and graphs, as
well as permutations. [Future chapters will treat Singularity Analysis (Chapter VI) and its
Applications (Chapter VII).]



CHAPTER IV

Complex Analysis, Rational and
Meromorphic Asymptotics

The shortest path between two truths in the real domain
passes through the complex domain.

— JACQUES HADAMARD1

Generating functions are a central concept of combinatorial theory. So far, they have
been treated as formal objects, that is, as formal power series. The major theme of Chapters
I–III has indeed been to demonstrate how the algebraic structure of generating functions
directly reflects the structure of combinatorial classes. From now on, we examine gener-
ating functions in the light of analysis. This means assigning values to the variables that
appear in generating functions.

Comparatively little benefit results from assigning only real values to the variable z
that figures in a univariate generating function. In contrast assigning complex values turns
out to have serendipitous consequences. In so doing, a generating function becomes a
geometric transformation of the complex plane. This transformation is very regular near
the origin—one says that it is analytic or holomorphic. In other words, it only effects
initially a smooth distortion of the complex plane.

Farther away from the origin, some “cracks” start appearing in the picture. These
cracks—the dignified name is “singularities”—correspond to the disapperance of smooth-
ness. What happens is that knowledge of a function’s singularities provide a wealth of
information regarding the function’s coefficients, and especially their asymptotic rate of
growth. Adopting a geometric point of view has a large pay-off.

By focussing on singularities, analytic combinatorics treads in the steps of many re-
spectable older areas of mathematics. For instance, Euler recognized that the fact for the
Riemann zeta function ζ(s) to become infinite at 1 implies the existence of infinitely
many prime numbers, while Riemann, Hadamard, and de la Vallée-Poussin uncovered
much deeper connections between quantitative properties of the primes and singularities
of 1/ζ(s).

In this chapter, we start by recalling the elementary theory of analytic functions and
their singularities in a style tuned to the needs of combinatorial theory. Cauchy’s integral
formula expresses coefficients of analytic functions as contour integrals. Suitable uses of
Cauchy’s integral formula then make it possible to estimate such coefficients by suitably
selecting the contour of integration. For the fairly common case of functions that have
singularities at a finite distance, the exponential growth formula relates the location of the
singularities closest to the origin (these are also known as “dominant” singularities) to the
exponential order of growth of coefficients. The nature of these singularities then dictates

1Quoted in The Mathematical Intelligencer, v. 13, no. 1, Winter 1991.
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2 IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

the fine structure of the asymptotic of the function’s coefficients, especially the subexpo-
nential factors involved. In this chapter we carry out this programme for rational functions
and meromorphic functions, where the latter are defined by the fact their singularities are
of the polar type.

Elementary techniques permit us to estimate asymptotically counting sequences, when
these are already presented to us in closed form or as simple combinatorial sums. The
methods to be exposed require no such explicit forms of counting coefficients to be avail-
able. They apply to almost any conceivable combinatorial generating function that has a
decent mathematical expression—we already know from Chapters I–III that this covers a
very large fragment of elementary combinatorics. In a large number of cases, complex-
analytic methods can even be applied to generating functions only accessible implicitly
from functional equations. This paradigm will be extensively explored in this chapter
with applications found in denumerants, derangements, surjections, alignments, and sev-
eral other structures introduced in Chapters I–III.

IV. 1. Generating functions as analytic objects

Generating functions, considered previously as purely formal objects subject to alge-
braic operations, are now going to be interpreted as analytic objects. In so doing one gains
an easy access to the asymptotic form of their coefficients. This informal section offer a
glimpse of themes that form the basis of this chapter and the next one.

In order to introduce the subject softly, let us start with two simple generating func-
tions, one, f(z), being the OGF of the Catalan numbers (starting at index 1), the other,
g(z), being the EGF of derangements:

(1) f(z) =
1
2
(
1 −

√
1 − 4z

)
, g(z) =

exp(−z)
1 − z

.

At this stage, the forms above are merely compact descriptions of formal power series built
from the elementary series

(1 − u)−1 = 1 + u + u2 + · · · , (1 − u)1/2 = 1 − 1
2
u − 1

8
u2 − · · · ,

exp(u) = 1 +
1
1!

u +
1
2!

u2 + · · · ,

by standard composition rules. Accordingly, the coefficients of both GFs are known in
explicit form

fn := [zn]f(z) =
1
n

(
2n − 2
n − 1

)
, gn := [zn]g(z) =

(
1
0!

− 1
1!

+
1
2!

− · · · + (−1)n

n!

)
.

Next, Stirling’s formula and comparison with the alternating series giving exp(−1)
provide respectively

(2) fn ∼
n→∞

4n

√
πn3

, gn = ∼
n→∞

e−1 .= 0.36787.

Our purpose is to examine, heuristically for the moment, the relationship between the
asymptotic forms (2) and the structure of the corresponding generating functions in (1).

Granted the growth estimates available for fn and gn, it is legitimate to substitute
in the power series expansions of the GFs f(z) and g(z) any real or complex value of a
small enough modulus, the upper bounds on modulus being ρ f = 1

4 (for f ) and ρg = 1
(for g). Figure 1 represents the graph of the resulting functions when such real values are
assigned to z. The graphs are smooth, representing functions that are differentiable any
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FIGURE 1. Left: the graph of the Catalan OGF, f(z), for z ∈
(− 1

4 , + 1
4 ); right: the graph of the derangement EGF, g(z), for z ∈

(−1, +1).

number of times for z interior to the interval (−ρ, +ρ). However, at the right boundary
point, smoothness stops: g(z) become infinite at z = 1, and so it even ceases to be finitely
defined; f(z) does tend to the limit 1

2 as z → (1
4 )−, but its derivative becomes infinite

there. Such special points at which smoothness stops are called singularities, a term that
will acquire a precise meaning in the next sections.

Observe also that, by the usual process of analysis, f(z) and g(z) can be continued
in certain regions, when use is made of the global expressions (1) while exp and √ are
assigned their usual real-analytic interpretation; for instance:

f(−1) =
1
2

(
1 −

√
5
)

, g(−2) =
e2

3
.

Such “continuation” properties (to the complex realm) will prove essential in developing
efficient methods for coefficient asymptotics.

One may proceed similarly with complex numbers, starting with numbers whose mod-
ulus is less than the radius of convergence of the series defining the GF. Figure 2 displays
the images of regular grids by f and g. This illustrates the fact that a regular grid transforms
into an orthogonal network of curves and more precisely that f and g preserve angles—
this property corresponds to complex differentiability and is equivalent to analyticity to be
introduced shortly. The singularity of f is clearly perceptible on the right of its diagram,
since, at z = 1

4 corresponding to f(z) = 1
2 , the function f folds lines and divides angles

by a factor of 2.

Let us now turn to coefficient asymptotics. As is expressed by (2), the coefficients f n

and gn each belong to a general asymptotic type,

Anθ(n),

corresponding to an exponential growth factor An modulated by a tame factor θ(n), which
is subexponential; compare with (2). Here, one has A = 4 for fn and A = 1 for gn;
also, θ(n) = 1

4 (
√

πn3)−1 for fn and θ(n) = e−1 for gn. Clearly, A should be related
to the radius of convergence of the series. We shall see that, on very general grounds, the
exponential rate of growth is given by A = 1/ρ, where ρ is the first singularity encountered
along the positive real axis. In addition, under general complex-analytic conditions, it
will be established that θ(n) = O(1) is systematically associated to a simple pole of the
generating function, while θ(n) = O(n−3/2) systematically arises from a singularity that
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FIGURE 2. The images of regular grids by f(z) (left) and g(z) (right).

is of the square-root type. In summary, as this chapter and the next ones will copiously
illustrate, one has:

Fundamental principle of complex coefficient asymptotics. The lo-
cation of a function’s singularities dictates the exponential growth of
the function’s coefficient, An, while the nature of the function at its
singularities determines the subexponential factor, θ(n).

Observe that the rescaling rule,

[zn]f(z) = ρ−n[zn]f(ρz),

enables one to normalize functions so that they are singular at 1, and so “explains” the fact
that the location of a function’s singularities should influence the coefficients’ approxima-
tion by exponential factors. Then various theorems, starting with Theorems IV.6 and IV.7,
provide sufficient conditions under which the following central implication is valid,

(3) h(z) ∼ σ(z) =⇒ [zn]h(z) ∼ [zn]σ(z),

where h(z) is a function singular at 1 whose Taylor coefficients are to be estimated and
σ(z) is an approximation near a singularity—usually σ is a much simpler function, typi-
cally like (1− z)α logβ(1− z) whose coefficients are easy to find. Under such conditions,
it suffices to estimate a function locally in order to derive its coefficients asymptotically.
In other words, the relation (3) provides a mapping between asymptotic scales of functions
near singularities and asymptotics scales of coefficients.

� 1. Elementary transfers. Elementary series manipulation yield the following general result: Let
h(z) be a power series with radius of convergence > 1 and assume that h(1) �= 0; then one has

[zn]
h(z)

1 − z
∼ h(1), [zn]h(z)

√
1 − z ∼− h(1)

2
√

πn3
, [zn]h(z) log

1

1 − z
∼ h(1)

n
.

See Bender’s survey [9] for many similar statements. �
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� 2. Asymptotics of generalized derangements. The EGF of permutations without cycles of length 1
and 2 satisfies

j(z) =
e−z−z2/2

1 − z
with j(z) ∼

z→1

e−3/2

1 − z
.

Analogy with derangements suggests (Note 1 can justify it) that [zn]j(z) ∼
n→∞

e−3/2. Here is a table

of exact values of [zn]j(z) (with relative error of the approximation by e−3/2 in parentheses):

n = 5 n = 10 n = 20 n = 50

jn : 0.2 0.22317 0.2231301600 0.2231301601484298289332804707640122
error : (10−1) (2 · 10−4) (3 · 10−10) (10−33)

The quality of the asymptotic approximation is extremely good. (Such a property is invariably at-
tached to polar singularities.) �

IV. 2. Analytic functions and meromorphic functions

Analytic functions are the primary mathematical concept for complex asymptotics.
They can be characterized in two essentially equivalent ways (Subsection IV. 2.1): by
means of convergent series expansions (à la Cauchy and Weierstraß) and by differentia-
bility properties (à la Riemann). The first aspect is directly related to the use of generating
functions for enumeration; the second one allows for a powerful abstract discussion of clo-
sure properties that usually requires little computation. Meromorphic functions are nothing
but quotients of analytic functions.

Integral calculus with analytic or meromorphic functions (developed in Subsection
IV. 2.2) assumes a shape radically different from what it is in the real domain: integrals be-
come quintessentially independent of details of the integration contour, the residue theorem
being a prime illustration of this fact. Conceptually, this makes it possible to relate prop-
erties of a function at a point (e.g., the coefficients of its expansion at 0) to its properties at
another far-away point (e.g., its residue at a pole).

The presentation in this section and the next one is an informal review of basic proper-
ties of analytic functions tuned to the needs of asymptotic analysis of counting sequences.
For a detailed treatment, we refer the reader to one of the many excellent treatises on the
subject, like the books by Dieudonné [28], Henrici [66], Hille [67], Knopp [72], Titch-
marsh [109], or Whittaker and Watson [114].

IV. 2.1. Basics. We shall consider functions defined in certain regions of the complex
domain C. By a region is meant an open subset Ω of the complex plane that is connected.
Here are some examples:

simply connected domain slit complex plane indented disc annulus

Classical treatises teach us how to extend to the complex domain the standard functions
of real analysis: polynomials are immediately extended as soon as complex addition and
multiplication have been defined, while the exponential is definable by means of Euler’s
formula, and one has for instance

z2 = (x2 − y2) + 2ixy, ez = ex cos y + iex sin y,

if z = x + iy. Both functions are consequently defined over the whole complex plane C.
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The square-root and the logarithm are conveniently described in polar coordinates by

(4)
√

z =
√

ρeiθ/2, log z = log ρ + iθ,

if z = ρeiθ. One can take the domain of validity of (4) to be the complex plane slit along
the axis from 0 to −∞, that is, restrict θ to the open interval (−π, +π), in which case the
definitions above specify what is known as the principal determination. There is no way
for instance to extend by continuity the definition of

√
z in any domain containing 0 in its

interior since, for a > 0 and z → −a, one has
√

z → i
√

a as z → −a from above, while√
z → −i

√
a as z → −a from below. This situation is depicted here:

+i
√

a

−i
√

a

0
√

a The values of
√

z

as z varies along |z| = a.

The point z = 0 where two determinations “meet” is accordingly known as a branch point.
First comes the main notion of an analytic function that arises from convergent series

expansions.

DEFINITION IV.1. A function f(z) defined over a region Ω is analytic at a point
z0 ∈ Ω if, for z in some open disc centred at z0 and contained in Ω, it is representable by
a convergent power series expansion

(5) f(z) =
∑
n≥0

cn(z − z0)n.

A function is analytic in a region Ω iff it is analytic at every point of Ω.

As derives from an elementary property of power series, given a function f that is
analytic at a point z0, there exists a disc (of possibly infinite radius) with the property
that the series representing f(z) is convergent for z inside the disc and divergent for z
outside the disc. The disc is called the disc of convergence and its radius is the radius of
convergence of f(z) at z = z0.

The next important notion is a geometric one.

DEFINITION IV.2. A function f(z) defined over a region Ω is called complex-diffe-
rentiable (also holomorphic) at z0 if the limit, for complex δz,

lim
δz→0

f(z0 + δz) − f(z0)
δz

exists. (In particular, the limit is independent of the way δz tends to 0.) This limit is
denoted as usual by f ′(z0) or d

dz f(z)
∣∣
z0

A function is complex-differentiable in Ω iff it is
differentiable at every z0 ∈ Ω.

Clearly, if f(z) is complex differentiable at z0, it acts locally as a linear transformation,

f(z) − f(z0) ∼ f ′(z0)(z − z0),

whenever f ′(z0) �= 0. Then f(z) locally behaves like a similarity transformation (com-
posed of a translation, a rotation, and a scaling). In particular, it preserves angles 2 and
infinitesimal squares get transformed into infinitesimal squares; see Figure 3 for a render-
ing

2A mapping that preserves angles is also called a conformal map.
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FIGURE 3. Multiple views of an analytic function. The image of
the domain Ω = {z

∣∣ |	(z)| ≤ 2, |�(z)| ≤ 2} by the function
f(z) = exp(z) + z + 2: (top) transformation of a square grid in Ω
by f ; (middle) the modulus and argument of f(z); (bottom) the real and
imaginary parts of f(z).

It follows from a well known theorem of Riemann (see for instance [66, vol. 1, p 143])
that analyticity and complex differentiability are equivalent notions.

First fundamental property of analytic function theory. A function
is analytic in a region Ω if and only if it is complex-differentiable in Ω.

� 3. Analyticity implies complex-differentiability. Let f(z) be analytic at 0. Then its derivatives at
a point z0 within the disc of convergence of its expansion at 0 can be obtained by differentiating the
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series representation of f termwise. Thus: analytic implies complex-differentiable. (The converse
property requires integration properties and is discussed in Note 10 below.) �

� 4. Taylor’s formula for analytic functions. With the conventions of Note 3 and as a consequence
of simple series rearrangements: Taylor’s formula holds at z0 and one has

f(z0 + h) =
∞X

k=0

f (k)(z0)
hk

k!
, f (k)(z) =

dk

dzk
f(z).

for all small enough h. �

� 5. Cauchy–Riemann equations. Let P (x, y) = �f(x + iy) and Q(x, y) = �f(x + iy). By
adopting successively in the definition of complex differentiability δz = h and δz = ih, one finds

∂P

∂x
+ i

∂Q

∂x
=

∂Q

∂y
− i

∂P

∂y
,

implying P ′
x = Q′

y and P ′
y = −Q′

x, known as the Cauchy–Riemann equations. The functions P
and Q satisfy the partial differential equations ∆f = 0, where ∆ is the 2-dimensional Laplacian

∆ := ∂2

∂x2 + ∂2

∂y2 ; such functions are known as harmonic functions. �

We finally introduce meromorphic functions. The quotient of two analytic functions
f(z)/g(z) ceases to be analytic at a point a where g(a) = 0. However, a simple structure
for quotients of analytic functions prevails.

DEFINITION IV.3. A function h(z) is meromorphic at z = z0 iff in a neighbourhood
of z = z0 with z �= z0 it is representable by an expansion of the form

(6) h(z) =
∑

n≥−M

hn(z − z0)n.

If h−M �= 0, then h(z) is said to have a pole of order M at z = a. The coefficient h−1 is
called the residue of h(z) at z = a and is written as

Res[h(z); z = a].

A function is meromorphic in a region iff it is meromorphic at any point of the region.

Equivalently, h(z) is meromorphic at z = z0 iff, in a neighbourhood of z0, it can be
represented as f(z)/g(z), with f(z) and g(z) being analytic at z = z0.

IV. 2.2. Integrals and residues. Integrals along curves in the complex plane are de-
fined in the usual way from curvilinear integrals applied to the real and imaginary parts
of the integrand. However integral calculus in the complex plane is of a radically differ-
ent nature from what it is on the real line—in a way it is much simpler and much more
powerful.

A path in a region Ω is described by its parameterization, which is a continuous func-
tion γ mapping [0, 1] into Ω. Two paths γ, γ ′ in Ω having the same end points are said
to be homotopic (in Ω) if one can be continuously deformed into the other while staying
within Ω as in the following examples:

homotopic paths:
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A closed path is defined by the fact that its end points coincide: γ(0) = γ(1), and a path is
simple if the mapping γ is one-to-one. A closed path is said to be a loop of Ω if it can be
continuously deformed within Ω to a single point; in this case one also says that the path is
homotopic to 0. In what follows we implicitly restrict attention to paths that are assumed to
be rectifiable. Unless otherwise stated, all integration paths will be assumed to be oriented
positively.

One has:

Second fundamental property of analytic function theory. Let f be
analytic in Ω and let λ be a loop of Ω. Then

∫
λ f = 0.

Equivalently, for f analytic in Ω, one has

(7)
∫

γ

f =
∫

γ′
f,

provided γ and γ ′ are homotopic in γ.

� 6. Proof of the Second Fundamental Principle from analyticity. Let f be analytic in Ω. It suffices
to justify Z

λ

24X
n≥0

fnzn

35 dz =
X
n≥0

fn

»Z
λ

zn dz

–
= 0.

(The proof does not logically require the First Fundamental Principle.) �

� 7. Proof of the Second Fundamental Principle from differentiability. Let f be complex-differentiable
in Ω. Then the relation (7) holds. (The proof relies on the Cauchy–Riemann equations guaranteeing
that the curvilinear integrals only depend on the endpoints of the contour; it does not logically require
the First Fundamental Principle.) �

The important Residue Theorem due to Cauchy relates global properties of a meromor-
phic function, its integral along closed curves, to purely local characteristics at designated
points, the residues at poles.

THEOREM IV.1 (Cauchy’s residue theorem). Let h(z) be meromorphic in the region Ω
and let λ be a simple loop in Ω along which the function is analytic. Then

1
2iπ

∫
λ

h(z) dz =
∑

s

Res[h(z); z = s],

where the sum is extended to all poles s of h(z) enclosed by λ.

PROOF. (Sketch) To see it in the representative case where h(z) has only a pole at
z = 0, observe by appealing to primitive functions that∫

λ

h(z) dz =
∑

n≥−M
n �=−1

hn

[
zn+1

n + 1

]
λ

+ h−1

∫
λ

dz

z
,

where the bracket notation
[
u(z)

]
λ

designates the variation of the function u(z) along the
contour λ. This expression reduces to its last term, itself equal to 2iπh−1, as is checked by
using integration along a circle (set z = reiθ). The computation extends by translation to
the case of a unique pole at z = a.

In the case of multiple poles, we observe that the simple loop can only enclose finitely
many poles (by compactness). The proof then follows from a simple decomposition of the
interior domain of λ into cells each containing only one pole. Here is an illustration
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in the case of three poles. (Contributions from internal edges cancel.) �

Here is a textbook example of such a reduction from global to local properties. Define
the integrals

Im :=
∫ ∞

−∞

dx

1 + x2m
,

and consider specifically I1. Elementary calculus teaches us that I1 = π since the anti-
derivative of the integrand is an arc tangent:

I1 =
∫ ∞

−∞

dx

1 + x2
= [arctanx]+∞

−∞ = π.

In the light of the residue theorem, we first consider the integral over the whole line as the
limit of integrals over large intervals of the form [−R, +R], then complete the contour of
integration by means of a large semi-circle in the upper half-plane, as shown below:

0

i

−R +R
Let γ be the contour comprised of the interval and the semi-circle. Inside γ, the

integrand has a pole at x = i (i =
√
−1), where

1
1 + x2

≡ 1
(x + i)(x − i)

= − i

2
1

x − i
+

1
4

+
i

8
(x − i) + · · · ,

so that its residue there is −i/2. Thus, by the residue theorem, the integral taken over γ
is equal to 2πi times the residue of the integrand at i. As R → ∞, the integral along the
semi-circle vanishes (it is O(R−1)) while the integral along the real segment gives I1 in
the limit. There results the relation giving I1:

I1 = 2iπ Res
(

1
1 + x2

, x = i

)
= π.

Remarkably, the evaluation of the integral in this perspective rests entirely upon the local
expansion of the integrand at a special point (the point i).

� 8. The general integral Im. Let α = exp( iπ
2m

) so that α2m = −1. Contour integration of the
type used for I1 yields

Im = 2iπ
mX

j=1

Res

„
1

1 + x2m
; x = α2j−1

«
,

while, for any β = α2j−1 with 1 ≤ j ≤ m, one has

1

1 + x2m
∼

x→β

1

2mβ2m−1

1

x − β
≡ − β

2m

1

x − β
.
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As a consequence,

I2m = − iπ

m

`
α + α3 + · · · + α2m−1´ =

π

m sin π
2m

.

In particular, I2 = π/
√

2, I3 = 2π/3, I4 = π
4

√
2
p

2 +
√

2 as well as 1
π
I5, 1

π
I6 are expressible by

radicals, but 1
π
I7,

1
π
I9 are not. The special cases 1

π
I17,

1
π
I257 are expressible by radicals. �

� 9. Integrals of rational fractions. Generally, all integrals of rational functions taken over the whole
real line are computable by residues. In particular,

Jm =

Z +∞

−∞

dx

(1 + x2)m
, Km =

Z +∞

−∞

dx

(12 + x2)(22 + x2) · · · (m2 + x2)

can be explicitly evaluated. �

Many function-theoretic consequences derive from the residue theorem. For instance,
if f is analytic in Ω, z0 ∈ Ω and λ is a simple loop of Ω encircling z0, one has

(8) f(z0) =
1

2iπ

∫
λ

f(ζ)
dζ

ζ − z0
.

This follows directly since

Res
[
f(ζ)(ζ − z0)−1; ζ = z0

]
= f(z0).

Then, by differentiation with respect to z under the integral sign, one gets similarly

(9)
1
k!

f (k)(z0) =
1

2iπ

∫
λ

f(ζ)
dζ

(ζ − z0)k
.

The values of a function and its derivatives at a point can thus be obtained as values of
integrals of the function away from that point.

A very important application of the residue theorem concerns coefficients of analytic
functions.

THEOREM IV.2 (Cauchy’s Coefficient Formula). Let f(z) be analytic in a region
containing 0 and let λ be a simple loop around 0 that is oriented positively. Then the
coefficient [zn]f(z) admits the integral representation

fn ≡ [zn]f(z) =
1

2iπ

∫
λ

f(z)
dz

zn+1
.

PROOF. This formula follows directly from the equalities

1
2iπ

∫
λ

f(z)
dz

zn+1
= Res

[
f(z)z−n−1; z = 0

]
= [zn]f(z),

of which the first follows from the residue theorem, and the second from the identification
of the residue at 0 as a coefficient. �
� 10. Complex-differentiability implies analyticity. Formulæ (8) and (9) are by Note 5 consequences
of complex-differentiability (without logically relying on the First Fundamental Principle). It is then
a simple matter to complete the proof of the First Fundamental Property: one has (for h small enough)

f(z0 + h) =
1

2iπ

Z
λ

f(ζ)
dζ

ζ − (z0 + h)

=
X
k≥0

»
1

2iπ

Z
λ

f(ζ)
dζ

(ζ − z0)k+1

–
hk =

X
k≥0

f (k)(z0)
hk

k!
,

as results from expanding (ζ − z0 − h)−1 into powers of h. �
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Analytically, the coefficient formula allows one to deduce information about the coef-
ficients from the values of the function itself, using adequately chosen contours of integra-
tion. It thus opens the possibility of estimating the coefficients [z n]f(z) in the expansion
of f(z) near 0 by using information on f(z) away from 0. The rest of this chapter will
precisely illustrate this process in the case of functions whose singularities are poles, that
is, rational and meromorphic functions. Note also that the residue theorem provides the
simplest known proof of the Lagrange inversion theorem (see the appendices) whose rôle is
inter alia central to tree enumerations. The supplements below explore some independent
consequences of the residue theorem and the coefficient formula.

� 11. Liouville’s Theorem. If a function f(z) is analytic in the whole of C and is of modulus
bounded by an absolute constant, |f(z)| ≤ B, then it must be a constant. (By trivial bounds, upon
integrating on a large circle, it is found that the Taylor coefficients at the origin of index ≥ 1 are all
equal to 0.) Similarly, if f(z) is of at most polynomial growth, |f(z)| ≤ B (|z|+1)r over the whole
of C, then it must be a polynomial. �

� 12. Lindelöf integrals. Let a(s) be analytic in �(s) > 1
4

where it is assumed to satisfy a(s) =
O(exp((π − ε)|s|)) for some ε > 0. Then, one has for �(z) > 0,

∞X
k=1

a(k)(−z)k = − 1

2iπ

Z 1/2+i∞

1/2−i∞
a(s)zs π

sin πs
ds.

(Close the integration contour by a large semi-circle on the right.) Such integrals, sometimes called
Lindelöf integrals, provide representations for functions determined by an explicit “law” of their
Taylor coefficients [80].

As a consequence, the generalized polylogarithm functions

Liα,k(z) =
X
n≥1

n−α(log n)kzn

are analytic in the complex plane C slit along (1 + ∞). (More properties can be found in [39, 54].)
For instance, one finds in this way

“
∞X

n=1

(−1)n log n ” = − 1

8π

Z +∞

−∞

log( 1
4

+ t2)

cosh(πt)
dt = 0.22579 · · · = log

r
π

2
,

when the divergent series on the left is interpreted as Li0,1(−1) = limz→−1+ Li0,1(z). �

� 13. Magic duality. Let φ be a function initially defined over the nonnegative integers but admitting
a meromorphic extension over the whole of C. Under conditions analogous to those of Note 12, the
function

F (z) :=
X
n≥1

φ(n)(−z)n,

which is analytic at the origin, is such that, near positive infinity,

F (z) ∼
z→+∞

E(z) −
X
n≥1

φ(−n)(−z)−n,

for some “elementary” function E(z). (Starting from the representation of Note 12, close the contour
of integration by a large semicircle to the left.) In such cases, the function is said to satisfy the
principle of magic duality—its expansion at 0 and ∞ are given by one and the same “law”. Functions

1

1 + z
, log(1 + z), exp(−x), Li2(−z), Li3(−z)

satisfy magic duality. Ramanujan [11] made a great use of this principle, which applies to a wide
class of functions including hypergeometric ones; see [65, Ch XI] for an insightful discussion. �
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� 14. Euler–Maclaurin and Abel–Plana summations. Under simple conditions on the analytic func-
tion f , one has Plana’s (also known as Abel’s) complex variables version of the Euler–Maclaurin
summation formula:

∞X
n=0

f(n) =
1

2
f(0) +

Z ∞

0

f(x) dx +

Z ∞

0

f(iy) − f(−iy)

e2iπy − 1
dy.

(See [66, Vol. 1, p. 274] for a proof and validity conditions.) �

� 15. Nörlund-Rice integrals. Let a(z) be analytic for �(z) > k0 − 1
2

and of at most polynomial
growth in this right half plane. Then, with γ a loop around the interval [k0, n], one has

nX
k=k0

 
n

k

!
(−1)n−ka(k) =

1

2iπ

Z
γ

a(s)
n! ds

s(s − 1)(s − 2) · · · (s − n)
.

If a(z) is meromorphic in a larger region, then the integral can be estimated by residues. For instance,
with

Sn =
nX

k=1

 
n

k

!
(−1)k

k
, Tn =

nX
k=1

 
n

k

!
(−1)k

k2 + 1
,

it is found that Sn = −Hn (a harmonic number), while Tn oscillates boundedly as n → +∞.
(This technique is a classical one in the calculus of finite differences, going back to Nörlund [87]. In
computer science it is known as the method of “Rice’s integrals” [50] and is used in the analysis of
many algorithms and data structures including digital trees and radix sort [75, 108].) �

IV. 3. Singularities and exponential growth of coefficients

For a given function, a singularity can be informally defined as a point where the
function “ceases” to be analytic. Singularities are, as we have stressed repeatedly, essen-
tial to coefficient asymptotics. This section presents the bases of a discussion within the
framework of analytic function theory.

IV. 3.1. Singularities. Let f(z) be an analytic function defined over the interior re-
gion determined by a simple closed curve γ, and let z0 be a point of the bounding curve γ.
If there exists an analytic function f ∗(z) defined over some open set Ω∗ containing z0 and
such that f ∗(z) = f(z) in Ω∗ ∩ Ω, one says that f is analytically continuable at z0 and
that f� is an immediate analytic continuation of f .

Analytic continuation:

( f )

Ω

( f* )

z0

Ωγ *

f∗(z) = f(z) on Ω∗ ∩ Ω.

In sharp contrast to real analysis where a function admits of many smooth extensions,
analytic continuation is essentially unique: for instance, if f ∗ and f ∗∗ continue f at z0,
then one must have f ∗(z) = f∗∗(z) in the vicinity of z0. Thus, the notion of immediate
analytic continuation is intrinsic. Also the process can be iterated and we say that g is an
analytic continuation3 of f , even if their domains of definition do not overlap, provided a
finite chain of intermediate function elements connects f and g. This notion is once more
intrinsic—this is known as the principle of unicity of analytic continuation (along paths).

3The collection of all function elements continuing a given function gives rise to the notion of Riemann
surface, for which manty good books exist, e.g., [33, 105]. We shall normally avoid appealing to this theory.
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An analytic function is then much like a hologram: as soon as it is specified in any tiny
region, it is rigidly determined in any wider region where it can be continued.

DEFINITION IV.4. Given an f defined in the region interior to γ, a point z 0 on the
boundary of the region is a singular point or a singularity 4 of f if f is not analytically
continuable at z0.

Granted the intrinsic character of analytic continuation, we can usually dispense with a
detailed description of the original domain Ω and the curve γ. In simple terms, a function
is singular at z0 if it cannot be continued as an analytic function beyond z 0. A point at
which a function is analytic is also called by contrast a regular point.

The two functions f(z) = 1/(1 − z) and g(z) =
√

1 − z may be taken as initially
defined over the open unit disk by their power series representation. Then, as we already
know, they can be analytically continued to larger regions, the punctured plane Ω = C\{1}
for f and the complex plane slit along (1, +∞) for g. (This is achieved by the usual
operations of analysis, upon taking inverses and square roots.) But both are singular at 1:
for f , this results from the fact that (say) f(z) → ∞ as z → 1; for g this is due to the
branching character of the square-root.

It is easy to check from the definitions that a converging Taylor series is analytic inside
its disc of convergence. In other words, it can have no singularity inside this disc. However,
it must have one on the boundary of the disc, as asserted by the theorem below. In addition,
a classical theorem, called Pringsheim’s theorem [109, Sec. 7.21], provides a refinement
of this property in the case of functions with nonnegative coefficients.

THEOREM IV.3 (Boundary singularities). (i) A function analytic f at the origin whose
Taylor expansion at 0 has a finite radius of convergence R necessarily has a singularity on
the boundary of its disc of convergence, |z| = R.

(ii) [Pringsheim’s Theorem] If in addition f has nonnegative Taylor coefficients, then
the point z = R is a singularity of f .

A figurative way of expressing Theorem IV.4, (i) is as follows:

The radius of convergence of a series equals its “radius of singularity”.

(There “radius of singularity” means the first radius at which a singularity appears.) This
result together with Pringsheim’s is central to asymptotic enumeration as the remainder of
this section will demonstrate.

PROOF. (i) Let f(z) be the function and R the radius of convergence of its Taylor
series at 0, taken under the form

(10) f(z) =
∑
n≥0

fnzn.

We now that there can be no singularity of f within the disc |z| < R. Suppose a contrario
that f(z) is analytic in the whole of |z| < ρ for some ρ satisfying ρ > R. By Cauchy’s
coefficient formula (theorem IV.2), upon integrating along the circle λ of radius r = (R +
ρ)/2, it is seen that the coefficient [zn]f(z) is O(r−n). But then, the series expansion of f
would have to converge in the disc of radius r > R, a contradiction. (More on this theme
below.)

(ii) Suppose a contrario that f(z) is analytic at R, implying that it is analytic in a disc
of radius r centred at R. We choose a number h such that 0 < h < 1

3r and consider the

4For a detailed discussion, see [28, p. 229], [72, vol. 1, p. 82], or [109].
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expansion of f(z) around z0 = R − h:

(11) f(z) =
∑
m≥0

gm(z − z0)m.

By Taylor’s formula and the representability of f(z) together with its derivatives at z 0 by
means of (10), we have

gm =
∑
n≥0

(
n

m

)
fnzm

0 ,

and in particular, gm ≥ 0. By the way h was chosen, the series (11) converges at z − z0 =
2h, as illustrated by the following diagram:

z0 = R − h
R
R + h

Consequently, one has

f(R + h) =
∑
m≥0

⎛⎝∑
n≥0

(
n

m

)
fnzm−n

0

⎞⎠ (2h)m.

This is a converging double sum of positive terms, so that the sum can be reorganized in
any way we like. In particular, one has convergence of all the series involved in

f(R + h) =
∑

m,n≥0

(
n

m

)
fn(R − h)m−n(2h)m

=
∑
n≥0

fn [(R − h) + (2h)]n

=
∑
n≥0

fn(R + h)n.

This establishes the fact that fn = o((R + h)n), thereby reaching a contradiction. Pring-
sheim’s theorem is proved. �

Singularities of a function analytic at 0 which are on the boundary of the disc of con-
vergence are called dominant singularities. The second part of this theorem appreciably
simplifies the search for dominant singularities of combinatorial generating functions since
these have nonnegative coefficients.

For instance, the derangement OGF and the surjection EGF,

D(z) =
e−z

1 − z
, S(z) = (2 − ez)−1

are analytic except for a simple pole at z = 1 in the case of D(z), and except for points
zk = log 2+2ikπ that are simple poles in the case of S(z). Thus the dominant singularities
for derangements and surjections are at 1 and log 2 respectively.
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FIGURE 4. The images of a grid on the unit square (with corners±1±i)
by various functions singular at z = 1 reflect the nature of the sin-
gularities involved. Here (from top to bottom) f 0(z) = 1/(1 − z),
f1(z) = exp(z/(1 − z)), f2(z) = −(1 − z)1/2, f3(z) = −(1 − z)3/2,
f4(z) = log(1/(1 − z)). The functions have been normalized to be in-
creasing over the real interval [−1, 1]. Singularities are apparent near the
right of each diagram where small grid squares get folded or unfolded in
various ways. (In the case of functions f0, f1, f4 that become infinite at
z = 1, the grid has been slightly truncated to the right.)
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It is known that
√

Z cannot be unambiguously defined as an analytic function in a
neighbourhood of Z = 0. As a consequence, the function

C(z) = (1 −
√

1 − 4z)/2,

which is the generating function of the Catalan numbers, is an analytic function in certain
regions that should exclude 1/4; for instance, one may opt to take the complex plane slit
along the ray (1/4, +∞). Similarly, the function

L(z) = log
1

1 − z

which is the EGF of cyclic permutations is analytic in the complex plane slit along (1, +∞).
(An alternative way of seeing that C(z) and L(z) are singular at 1

4 and 1 is to observe that

their derivatives become infinite along rays z → 1
4

−
and z → 1−.)

A function having no singularity at a finite distance is called entire; its Taylor series
then converges everywhere in the complex plane. The EGFs,

ez+z2/2, eez−1,

associated to involutions and set partitions are entire.

IV. 3.2. The Exponential Growth Formula. We say that a number sequence {an}
is of exponential order Kn which we abbreviate as (the symbol 	
 is a “bowtie”)

an 	
 Kn iff lim sup |an|1/n = K.

The relation X 	
 Y reads as “X is of exponential order Y ”. In other words, for any
ε > 0:

|an| >i.o (K − ε)n, that is to say, |an| exceeds (K − ε)n infinitely often (for
infinitely many values of n);
|an| <a.e. (K + ε)n, that is to say, |an| is dominated by (K + ε)n almost every-
where (except for possibly finitely many values of n).

This relation can be rephrased as an = ϑ(n)Kn, where ϑ is a subexponential factor satis-
fying

lim sup |θ(n)|1/n = 1;
such a factor is thus bounded from above almost everywhere by any increasing exponential
(of the form (1+ε)n) and bounded from below infinitely often by any decaying exponential
(of the form (1 − ε)n). Typical subexponential factors are

1, n3, (log n)2,
√

n,
1

3
√

log n
, n−3/2, log log n.

(Note that functions like e
√

n and exp(log2 n) must be treated as subexponential factors for
the purpose of this discussion.) In this and the next chapters, we shall see general methods
that enable one to extract such subexponential factors from generating functions.

THEOREM IV.4 (Exponential Growth Formula). If f(z) is analytic at 0 and R is the
modulus of a singularity of f(z) nearest to the origin,

R = min{ |z| , z ∈ Sing(f) },
then the coefficient fn = [zn]f(z) satisfies

fn 	


(
1
R

)n

, equivalently fn =
(

1
R

)n

θ(n) with lim sup |θ(n)|1/n = 1.
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PROOF. The lower bound follows since otherwise the series would converge (and
hence be analytic) in a larger domain. Trivial bounds on Cauchy’s coefficient formula
upon taking as contour λ a circle of radius R − η,

|fn| ≤ 1
2π

max{|f(z)| / |z| = R − η}
|R − η|n+1

· (2πR)

≤ O((R − η)−n),

yield the upper bound. �

The exponential growth formula thus directly relates the exponential order of growth
of coefficients of a function to the location of its singularities nearest to the origin. Several
direct applications to combinatorial enumeration are given below.

EXAMPLE 1. Exponential growth and combinatorial enumeration. Here are a few imme-
diate applications of of exponential bounds to surjections, derangements, integer partitions,
and unary binary trees.

Surjections. The function
R(z) = (2 − ez)−1

is the EGF of surjections. The denominator is an entire function, so that singularities may
only arise from its zeros, to be found at the points

χk = log 2 + 2ikπ, k ∈ Z.

The dominant singularity of R is then at ρ = χ0 = log 2. Thus, with rn = [zn]R(z),

rn 	
 (
1

log 2
)n.

Similarly, if “double” surjections are considered (each value in the range of the sur-
jection is taken at least twice), the corresponding EGF is

R∗(z) =
1

2 − z − ez
;

the dominant singularity is at ρ∗ defined as the positive root of equation eρ∗ − ρ∗ = 2, and
the coefficient r∗n satisfies: r∗n 	
 ( 1

ρ∗ )n Numerically, this gives

rn 	
 1.44269n and r∗n 	
 0.87245n,

with the actual figures for the corresponding logarithms being

n 1
n

log rn
1
n

log r∗n
10 0.33385 0.80208
20 0.35018 0.80830
50 0.35998 0.81202
100 0.36325 0.81327
∞ 0.36651 0.81451

(log 1/ρ) (log(1/ρ∗)

These estimates constitutes a weak form of a more precise result to be established later
in this chapter: If random surjections of size n are taken equally likely, the probability of a
surjection being a double surjection is exponentially small.

Derangements. There, for d1,n = [zn]e−z(1 − z)−1 and d2,n = [zn]e−z−z2/2(1 −
z)−1 we have, from the poles at z = 1,

d1,n 	
 1n and d2,n 	
 1n.
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The upper bound is combinatorially trivial. The lower bound expresses that the probability
for a random permutation to be a derangement is not exponentially small. For d 1,n, we
have already proved by an elementary argument the stronger result d 1,n → e−1; in the
case of d2,n, we shall establish later the precise asymptotic equivalent d2,n → e−3/2, in
accordance with what was announced in the introduction.

Unary-Binary trees. The expression

U(z) =
1 − z −

√
1 − 2z − 3z2

2z
= z + z2 + 2 z3 + 4 z4 + 9 z5 + · · · ,

represents the OGF of (plane unlabelled) unary-binary trees. From the equivalent form,

U(z) =
1 − z −

√
(1 − 3z)(1 + z)
2z

,

it follows that U(z) is analytic in the complex plane slit along ( 1
3 , +∞) and (−∞,−1)

and is singular at z = −1 and z = 1/3 where it has branch points. The closest singularity
to the origin being at 1

3 , one has

Un 	
 3n.

In this case, the stronger upper bound Un ≤ 3n results directly from the possibility of
encoding such trees by words over a ternary alphabet using Łukasiewicz codes (Chapter I).
A complete asymptotic expansion will be obtained in the next chapter. �

The exponential growth formula expressed by Theorem IV.4 can be supplemented by
effective upper bounds which are very easy to derive and often turn out to be surprisingly
accurate. We state:

PROPOSITION IV.1 (Saddle-Point bounds). Let f(z) be analytic in the disc |z| < R
with 0 < R ≤ ∞. Then, one has, for any r in (0, R), the family of saddle point upper
bounds
(12)

[zn]f(z) ≤
sup|z|=r |f(z)|

rn
(any r), and [zn]f(z) ≤ inf

s∈(0,R)

sup|z|=s |f(z)|
sn

.

If in addition f(z) has nonnegative coefficients at 0, then

(13) [zn]f(z) ≤ f(r)
rn

(any r), and [zn]f(z) ≤ inf
s∈(0,R)

f(s)
sn

.

PROOF. The first bound in (12) results from trivial bounds applied to the Cauchy
coefficient formula, when integration is performed along a circle. It is consequently valid
for any r smaller than the radius of convergence of f at 0. The best possible such bound is
then given by the second inequality; it can be determined by cancelling a derivative,

s : s
f ′(s)
f(s)

= n.

Note that because of the first inequality, any approximate solution of this last equation will
in fact provide a valid upper bound.

The bounds (13) can be viewed as a specialization of (12). Alternatively, they can be
obtained elementarily since

fn ≤ f0

rn
+ · · · + fn−1

rn−1
+ fn +

fn+1

rn+1
+ · · · ,

whenever the fk are nonnegative. �
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n eIn In

100 0.106579 · 1085 0.240533 · 1083

200 0.231809 · 10195 0.367247 · 10193

300 0.383502 · 10316 0.494575 · 10314

400 0.869362 · 10444 0.968454 · 10442

500 0.425391 · 10578 0.423108 · 10576

–2

–1

0 1 2 3

FIGURE 5. The comparison between the exact number of involu-
tions In and its approximation Ĩn = n!e

√
n+n/2n−n/2: (left) a table;

(right) a plot of log10(In/Ĩn) against log10 n suggesting that the ratio is
∼ K · n−1/2.

For reasons well explained by the saddle point method (Chapter VI), these bounds
usually capture the actual asymptotic behaviour up to a polynomial factor only. A typical
instance is the weak form of Stirling’s formula,

1
n!

≡ [zn]ez ≤ en

nn
,

which only overestimates the true asymptotic value by a factor of
√

2πn.

EXAMPLE 2. Combinatorial examples of saddle point bounds. Here are applications to
fragmented permutations, set partitions (Bell numbers), involutions, and integer partitions.

Fragmented permutations. Consider first the EGF of “fragmented permutations” (Chap-
ter II) defined by F = P(S≥1(‡)) in the labelled universe. We claim that

(14)
1
n!

Fn ≡ [zn]ez/(1−z) ≤ e2
√

n− 1
2+O(n−1/2).

Indeed, the minimizing value of r in (13) is r0 such that

0 =
d

dr

(
r

1 − r
− n log r

)
r=r0

=
1

(1 − r0)2
− n

r0
.

The equation is solved by r0 = (2n + 1 −
√

4n + 1)/(2n). One can either use this exact
value and perform asymptotic approximation of f(r 0)/zn

0 , or adopt the approximate value
r1 = 1 − 1/

√
n, which leads to simpler calculations. The estimate (14) results.

Bell numbers and set partitions. Another immediate applications is an upper bound
on Bell numbers enumerating set partitions with EGF eez−1. The best saddle point bound
is

(15)
1
n!

Bn ≤ eer−1−n log r, r : rer = n,

with r ∼ log n − log log n.

Involutions. Regarding involutions, their EGF is I(z) = exp(z + 1
2z2), and one

determines (see Figure 5 for numerical data)

(16)
1
n!

In ≤ e
√

n+n/2

nn/2
.

Similar bounds hold for permutations with all cycle lengths ≤ k and permutations σ such
that σk = Id.
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Integer partitions. The function

(17) P (z) =
∞∏

k=1

1
1 − zk

= exp

( ∞∑
	=1

1
�

z	

1 − z	

)
is the OGF of integer partitions, the unlabelled analogue of set partitions. Its radius of
convergence is a priori bounded from above by 1, since the set P is infinite and the second
form of P (z) shows that it is exactly equal to 1. Therefore Pn 	
 1n. A finer upper bound
results from the estimate

(18) Λ(t) := log P (e−t) ∼ π2

6t
+ log

√
t

2π
− 1

24
t + O(t2),

which obtains from Euler–Maclaurin summation or, better, from a Mellin analysis follow-
ing APPENDIX: Mellin transform, p. 120. Indeed, the Mellin transform of Λ is, by the
harmonic sum rule,

Λ�(s) = ζ(s)ζ(s + 1)Γ(s), s ∈ 〈1, +∞〉,

and the successive leftmost poles at s = 1 (simple pole), s = 0 (double pole), and s = −1
(simple pole) translate into the asymptotic expansion (18). When z → 1−, this means that

(19) P (z) ∼ e−π2/12

√
2π

√
1 − z exp

(
π2

6(1 − z)

)
,

from which we derive the upper bound,

Pn ≤ Cn1/4eπ
√

2n/3

(for some C > 0) in a way analogous to fragmented permutations above. This last bound
loses only a polynomial factor, as we shall prove when studying the saddle point method
in Chapter VIII. �

� 16. A natural boundary. One has P (reiθ) → ∞ as r → 1−, for any angle θ that is a rational
multiple of 2π. Such points being dense on the unit circle, the function P (z) admits the unit circle
as a natural boundary, i.e., it cannot be analytically continued beyond this circle. �

� 17. Meinardus’ method. The combination of Mellin transforms and saddle point analysis in the
theory of partitions is known as Meinardus’ method [4, Ch. 6]. Consider the set R of compositions
into rth powers (r ≥ 2). The OGF satisfies

Λ(t) := log R(e−t) =
X
�≥1

1

�

e−�rt

1 − e−�rt
,

with Mellin transform Λ	(s) = ζ(rs)ζ(s + 1)Γ(s) defined for �(s) > r−1. From the pole of Λ	

at s = 1/r, one gets

R(z) = exp

„
ξ

(1 − z)1/r

«
(1 + o(1)) , ξ :=

1

r
ζ(1 +

1

r
)Γ(

1

r
).

The minimizing value s0 for saddle point bounds satisfies 1 − s0 (rn/ξ)−r/(r+1), and

log Rn ≤ Cn
1

r+1 (1 + o(1))

(for some C > 0). See Andrews’ book [4, Ch. 6] for precise asymptotics and a general setting. �
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IV. 3.3. Closure properties and computable bounds. The functions analytic at a
point z = a are closed under sum and product, and hence form a ring. If f(z) and g(z) are
analytic at z = a, then so is their quotient f(z)/g(z) provided g(a) �= 0. Meromorphic
functions are furthermore closed under quotient and hence form a field. Such properties
are proved most easily using complex-differentiability and extending the usual relations
from real analysis, (f + g)′ = f ′ + g′, (fg)′ = fg′ = f ′g, and so on.

Analytic functions are also closed under composition: if f(z) is analytic at z = a and
g(w) is analytic at b = f(a), then g ◦ f(z) is analytic at z = a. Graphically:

a
f g

b=f(a) c=g(b)

The proof based on complex-differentiability closely mimicks the real case. Inverse func-
tions exist conditionally: if f ′(a) �= 0, then f(z) is locally linear near a, hence invertible,
so that there exists a g satisfying f ◦ g = g ◦ f = Id, where Id is the identity func-
tion, Id(z) ≡ z. The inverse function is itself locally linear, hence complex differentiable,
hence analytic. In short, the inverse of an analytic function f at a place where its derivative
does not vanish is an analytic function.

One way to establish closure properties, as suggested above, is to deduce analyticity
criteria from complex differentiability by way of the “First Fundamental Property”. An
alternative approach, closer to the original notion of analyticity, can be based on a two-step
process: (i) closure properties are shown to hold true for formal power series; (ii) the
resulting formal power series are proved to be locally convergent by means of suitable
majorizations on their coefficients. This is the basis of the classical method of majorant
series originating with Cauchy.

� 18. The majorant series technique. Given two power series, define f(z) � g(z) if |[zn]f(z)| ≤
[zn]g(z) for all n ≥ 0. The following two conditions are equivalent: (i) f(z) is analytic in the disc
|z| < ρ; (ii) for any r < ρ there exists a c such that

f(z) � c

1 − rz
.

If f, g are majorized by c/(1 − rz), d/(1 − rz) respectively, then f + g and f · g are majorized,

f(z) + g(z) � c + d

1 − rz
, f(z) · g(z) � e

1 − sz
,

for any s < r and some e dependent on s. If f, g are majorized by c/(1 − rz), dz/(1 − rz)
respectively, then f ◦ g is majorized:

f ◦ g(z) � cz

1 − r(1 + d)z
.

Constructions for 1/f and for the functional inverse of f can be similarly developed. See Cartan’s
book [17] and van der Hoeven’s study [110] for a systematic treatment. �

For functions defined by analytic expressions, singularities can be determined induc-
tively in an intuitively transparent manner. If Sing(f) and Zero(f) are the set of singu-
larities and zeros of function f , then, due to closure properties of analytic functions, the
following informally stated guidelines apply.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sing(f ± g) ⊆ Sing(f) ∪ Sing(g)
Sing(f × g) ⊆ Sing(f) ∪ Sing(g)
Sing(f/g) ⊆ Sing(f) ∪ Sing(g) ∪ Zero(g)
Sing(f ◦ g) ⊆ Sing(g) ∪ g(−1)(Sing(f))
Sing(

√
f) ⊆ Sing(f) ∪ Zero(f)

Sing(log(f)) ⊆ Sing(f) ∪ Zero(f)
Sing(f (−1)) ⊆ f(Sing(f)) ∪ f(Zero(f ′)).

A mathematically rigorous treatment would require considering multivalued functions
and Riemann surfaces, so that we do not state detailed validity conditions and, at this stage,
keep for these formulæ the status of useful heuristics. In fact, because of Pringsheim’s
theorem, the search of dominant singularities of combinatorial generating function can
normally avoid considering the multivalued structure of functions, since only some initial
segment of the positive real half–line needs to be considered. This in turn implies a power-
ful and easy way of determining the exponential order of coefficients of a wide variety of
generating functions, as we now explain.

As defined in Chapters I and II, a combinatorial class is constructible if it can be
specified by a finite set of equations involving only basic constructors. A specification
is iterative if the dependency graph of the specification is acyclic, that is, no recursion is
involved and a single functional term (written with sums, products, as well as sequence,
set, and cycle constructions) describes the specification. We state:

THEOREM IV.5 (Computability of growth). Let C be a constructible unlabelled class
that admits of an iterative specification in terms of (1,Z; S, P, M, C; +,×). Then the
radius of convergence ρC of the OGF C(z) of C is a nonzero computable real number.

Let D be a constructible labelled class that admits of an iterative specification in terms
of (1,Z; S, P, C; +, �). Then the radius of convergence ρD of the EGF D(z) of D is a
nonzero computable real number.

Accordingly, the exponential rate of growth of the coefficients [z n]C(z) and [zn]D(z)
are computable real numbers.

A real number α is computable iff there exists a program Πα which on input m outputs
a rational number αm that is within ±10−m of α. The theorem immediately implies that
the exponential growth estimates,

[zn]C(z) ≡ Cn 	


(
1

ρC

)n

, [zn]D(z) ≡ 1
n!

Dn 	


(
1

ρD

)n

,

for coefficients are automatically computable from the specification itself.

PROOF. In both cases, the proof proceeds by induction on the structural specification
of the class. For each class F , with generating function F (z), we associate a signature,
which is an ordered pair 〈ρF , τF 〉, where ρF is the radius of convergence of F and τF is
the value of F at ρF , precisely,

τF := lim
x→ρ−

F

F (x).

(The value τF is well defined as an element of R ∪ {+∞} since F , being a counting
generating function, is necessarily increasing on (0, ρF ).) We prove the assertion of the
theorem together with the additional property that τF = ∞ and as soon as one of the unary
constructors (S, M, P, C) intervenes in the specification, that is, as soon as the class is
infinite. In that case, since the OGF includes infinitely many terms of the form z n, it must
be divergent at 1, so that ρF ≤ 1 holds a priori for all infinite classes under consideration.
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Consider the unlabelled case first. The signatures of the neutral class 1 and the atomic
class Z , with OGF 1 and z, are 〈+∞, 1〉 and 〈+∞, +∞〉. Any nonconstant polynomial
which is the OGF of a finite set has the signature 〈+∞, +∞〉. The assertion is thus easily
verified in these cases.

Next, let F = S(G). The OGF G(z) must be nonconstant and in fact satisfy G(0) = 0
in order for the sequence construction to be properly defined. Thus, by the induction
hypothesis, one has 0 < ρG ≤ +∞ and τG = +∞. Now, the function G being increasing
and continuous along the positive axis, there must exist a value β such that 0 < β < ρG

with G(β) = 1. For z ∈ (0, β), the quasi-inverse F (z) = (1−G(z))−1 is well defined and
analytic; as z approaches β from the left, F (z) increases unboundedly. Thus, the smallest
singularity of F along the positive axis is at β, and by Pringsheim’s theorem, one has
ρF = β. The argument also shows that τF = +∞. There only remains to check that β is
computable. The coefficients of G form a computable sequence of integers, so that G(x),
which can be well approximated via truncated Taylor series, is an effectively computable
number5 if x is itself a positive computable number less than ρG. Then dichotomic search
constitutes effectively an algorithm for determining β.

Next, we consider the multiset construction,F = M(G), whose translation into OGFs
necessitates the “Pólya exponential”:

F (z) = Exp(G(z)) where Exp(h(z)) := exp
(

h(z) +
1
2
h(z2) +

1
3
h(z3) + · · ·

)
.

Once more, the induction hypothesis is assumed for G. If G is polynomial, then F is a
variant of the OGF of integer partitions, and in fact is expressible as a finite product of
terms of the form P (z), P (z2), P (z3), . . . Thus, ρF = 1 and τF = ∞ in that particular
case. In the general case of F = M(G) with G infinite, we start by fixing arbitrarily a
number r such that 0 < r < ρG ≤ 1 and examine F (z) for z ∈ (0, r). The expression for
F rewrites as

Exp(G(z)) = eG(z) · exp
(

1
2
G(z2) +

1
3
G(z3) + · · ·

)
.

The first factor is analytic for z on (0, ρG) since, the exponential function being entire, eG

has the singularities of G. As to the second factor, one has G(0) = 0 (in order for the
set construction to be well-defined), while G(x) is convex for x ∈ [0, r] (since its second
derivative is positive). Thus, there exists a positive constant K such that G(x) ≤ Kx when
x ∈ [0, r]. Then, the series 1

2G(z2) + 1
3G(z3) + · · · has its terms dominated by those of

the convergent series

K

2
r2 +

K

3
r3 + · · · = K log(1 − r)−1 − Kr.

By a well known theorem of analytic function theory, a uniformly convergent sum of ana-
lytic functions is itself analytic; consequently, 1

2G(z2) + 1
3G(z3) + · · · is analytic at all z

of (0, r). Analyticity is then preserved by the exponential, so that F (z), being analytic at
z ∈ (0, r) for any r < ρG has a radius of convergence that satisfies ρF ≥ ρG. On the
other hand, since F (z) dominates termwise G(z), one has ρF ≤ ρG. Thus finally one has
ρF = ρG. Also, τG = +∞ implies τF = +∞.

A completely parallel discussion covers the case of the powerset construction (P)
whose associated functional Exp is a minor modification of the Pólya exponential Exp.

5The present argument only establishes non-constructively the existence of a program, based on the fact
that truncated Taylor series converge geometrically fast at an interior point of their disc of convergence. Making
explict this program and the involved parameters however represents a harder problem that is not touched upon
here.



IV. 3. SINGULARITIES AND EXPONENTIAL GROWTH OF COEFFICIENTS 25

FIGURE 6. A random train.

The cycle construction can be treated by similar arguments based on consideration of
“Pólya’s logarithm” as F = C(G) corresponds to

F (z) = Log
1

1 − G(z)
, where Log h(z) = log h(z) +

1
2

log h(z2) + · · · .

In order to conclude with the unlabelled case, there only remains to discuss the binary
constructors +, ×, which give rise to F = G + H , F = G · H . It is easily verified that
ρF = min(ρG, ρH) and τF = τG ◦ τH with ◦ being + or ×. Computability is granted
since the minimum of two computable numbers is computable.

The labelled case is covered by the same type of argument as above. The discussion is
even simpler, since the ordinary exponential and logarithm replace the Pólya operators Exp
and Log. It is still a fact that all the EGFs of infinite families are infinite at their dominant
positive singularity, though the radii of convergence can now be of any magnitude (w.r.t. 1).

�
� 19. Syntactically decidable properties. In the unlabelled case, ρF = 1 iff the specification of F
only involves (1,Z; P, M; +,×) and at least one of P, M. �

� 20. Nonconstructibility of permutations and graphs. The class P of all permutations cannot be
specified as a constructible unlabeled class since the OGF P (z) =

P
n n!zn has radius of conver-

gence 0. (It is of course constructible as a labelled class.) Graphs, whether labelled or unlabelled,
are too numerous to form a constructible class. �

Theorem IV.5 establishes a link between analytic combinatorics, computability the-
ory, and symbolic manipulation systems. It is based on an article of Flajolet, Salvy, and
Zimmermann [49] devoted to such computability issues in exact and asymptotic enumera-
tion. Recursive specifications are not discussed now since they tend to give rise to branch
points, themselves amenable to singularity analysis techniques to be developed in the next
chapter.

EXAMPLE 3. Combinatorial trains. This somewhat artificial example from [38] serves to
illustrate the scope of Theorem IV.5 and demonstrate its inner mechanisms at work. Define
the class of all labelled trains by the following specification,

(20)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T = Wa � S(Wa � P(Pa)),

Wa = S≥1(P�),

P� = Z � Z � (1 + C(Z)),

Pa = C(Z) � C(Z).
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T

�

Wa

S≥1

�

Z Z +

1 C

Z

S

�

(Wa) P

�

C

Z

C

Z

×

Wa

S1

×

z z +

1 C

z

S

×

(Wa) exp

×

C

z

C

z

0.48512

0.68245

1

∞ ∞ 1

∞ 1

∞

0.48512

0.68245

0.68245 1

1

1

∞

1

∞

FIGURE 7. The inductive determination of the radius of convergence
of the EGF of trains, T (z): (top) a hierarchical view of the specification
of T ; (bottom left) the corresponding expression tree of the EGF T (z);
(bottom right) the value of the radii for each subexpression of T (z). (No-
tations: L(y) = log(1 − y)−1, S(y) = (1 − y)−1, S1(y) = yS(y).)

In figurative terms, a train (T ) is composed of a first wagon (Wa) to which is appended a
sequence of passenger wagons, each of the latter capable of containing a set of passengers
(Pa). A wagon is itself composed of “planks” (P�) determined by their end points (Z �Z)
and to which a circular wheel (C(Z)) may be attached. A passenger is composed of a head
and a belly that are each circular arrangements of atoms (see Figure 6).

The translation into a set of EGF equations is immediate and a symbolic manipulation
system readily provides the form of the EGF of trains, T (z), as

T (z) =
z2

“
1 + log((1 − z)−1)

”
“
1 − z2

“
1 + log((1 − z)−1)

””
0
B@1 −

z2
“
1 + log((1 − z)−1)

”
e(log((1−z)−1))2

1 − z2
“
1 + log((1 − z)−1)

”
1
CA

−1

,

together with the expansion

T (z) = 2
z2

2!
+ 6

z3

3!
+ 60

z4

4!
+ 520

z5

5!
+ 6660

z6

6!
+ 93408

z7

7!
+ · · · .
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The specification (20) has a hierarchical structure, as suggested by the top representa-
tion of Figure 7, and this structure is itself directly reflected by the form of the expression
tree of the GF T (z). Then each node in the expression tree of T (z) can be tagged with the
corresponding value of the radius of convergence. This is done according to the principles
of Theorem IV.5; see the bottom-right part of Figure 7. For instance, the quantity 0.68245
associated to Wa(z) is given by the sequence rule and is determined as smallest positive
solution to the equation

z2
(
1 − log(1 − z)−1

)
= 1.

The tagging process works upwards till the root of the tree is reached; here the radius of
convergence of T is determined to be ρ

.= 0.48512 · · · , a quantity that happens to coincide
with the ratio [z49]T (z)/[z50]T (z) to more than 15 decimal places. �

IV. 4. Rational and meromorphic functions

The first principle that we have just discussed in great detail is:

The location of singularities of an analytic function determines the ex-
ponential order of growth of its Taylor coefficients.

The second principle which refines the first one is:

The nature of the singularities determines the way the dominant expo-
nential term in coefficients is modulated by a subexponential factor.

We are now going to develop the correspondence between singular expansions and asymp-
totic behaviours of coefficients in the case of rational and meromorphic functions. Rational
functions (fractions) are the simpler ones, and from their basic partial fraction expansion
closed forms are derived for their coefficients. Next in order of difficulty comes the class of
meromorphic functions; their Taylor coefficients appear to admit very accurate asymptotic
expansions with error terms that are exponentially small, as results from an adequate use
of the residue theore.

In the case of rational and, more generally, meromorphic functions, the net effect is
summarized by the correspondence:

Polar singularities � Subexponential factors θ(n) are polynomials.

A distinguishing feature is the extremely good quality of the asymptotic approximations
obtained; for instance 15 digits of accuracy is not uncommon in coefficients of index as
low as 50.

IV. 4.1. Rational functions. A function f(z) is a rational function iff it is of the form
f(z) = N(z)

D(z) , with N(z) and D(z) being polynomials, which me may always assume to be
relatively prime. For rational functions that are generating functions, we have D(0) �= 0.

Sequences {fn}n≥0 that are coefficients of rational functions coincide with sequences
that satisfy linear recurrence relations with constant coefficients. To see it, compute [z n]f(z)·
D(z), with n > deg (N(z)). If D(z) = d0 + d1z + · · ·+ dmzm, then for n > m, one has:

m∑
j=0

djfn−j = 0.

The main theorem we prove here provides an exact finite expression for coefficients
of f(z) in terms of the poles of f(z). Individual terms in corresponding expressions are
sometimes called exponential polynomials.
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THEOREM IV.6 (Expansion of rational functions). If f(z) is a rational function that
is analytic at zero and has poles at points α1, α2, . . . , αm, then there exist m polynomials
{Πj(x)}m

j=1 such that:

(21) fn ≡ [zn]f(z) =
m∑

j=1

Πj(n)α−n
j .

Furthermore the degree of Πj is equal to the order of the pole of f at αj minus one.

An expression of the form (21) is sometimes called an exponential polynomial.

PROOF. Since f(z) is rational it admits a partial fraction expansion. Thus, assuming
without loss of generality that deg (D) > deg (N), we can decompose f into a finite sum

f(z) =
∑
(α,r)

cα,r

(z − α)r
,

where α ranges over the poles of f(z) and r is bounded from above by the multiplicity of α
as a pole of f . Coefficient extraction in this expression results from Newton’s expansion,

[zn]
1

(z − α)r
=

(−1)r

αr
[zn]

1
(1 − z

α )r
=

(−1)r

αr

(
n + r − 1

r − 1

)
α−n.

The binomial coefficient is a polynomial of degree r − 1 in n, and collecting terms associ-
ated with a given α yields the statement of the theorem. �

Notice that the expansion (21) is also an asymptotic expansion in disguise: when
grouping terms according to the α’s of increasing modulus, each group appears to be ex-
ponentially smaller than the previous one. A classical instance is the OGF of Fibonacci
numbers,

f(z) =
z

1 − z − z2
=

z

1 − z − z2
,

with poles at
−1 +

√
5

2
.= 0.61803,

−1 −
√

5
2

.= −1.61803,

so that

Fn =
1√
5
ϕn − 1√

5
ϕ̄n =

ϕn

√
5

+ O(
1

ϕn
),

with ϕ = (1 +
√

5)/2 the golden ratio, and ϕ̄ its conjugate.

The next example is certainly an artificial one. It is simply designed to demonstrate
that all the details of the full decomposition are usually not required. The rational function

f(z) =
1

(1 − z3)2(1 − z2)3(1 − z2

2 )

has a pole of order 5 at z = 1, poles of order 2 at z = ω, ω 2 (ω = e2iπ/3 a cubic root of
unity), a pole of order 3 at z = −1, and simple poles at z = ±

√
2. Therefore,

fn = P1(n) + P2(n)ω−n + P3(n)ω−2n + P4(n)(−1)n+

+P5(n)2−n/2 + P6(n)(−1)n2−n/2

where the degrees of P1, . . . , P6 are respectively 4, 1, 1, 2, 0, 0. For an asymptotic equiva-
lent of fn, only the pole at z = 1 needs to be considered since it corresponds to the fastest
exponential growth; in addition, at z = 1, only the term of fastest growth needs to be taken
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into account since it gives the dominant contribution to coefficients. Thus, we have the
correspondence

f(z) ∼ 1
32 · 23 · (1

2 )
1

(1 − z)5
=⇒ fn ∼ 1

32 · 23 · (1
2 )

(
n + 4

4

)
∼ n4

864
.

EXAMPLE 4. Asymptotics of denumerants. Denumerants are synonymous to integer parti-
tions with summands restricted to be from a fixed finite set (Chapter I). We let P T be the
class relative to set T , with the known OGF,

P T (z) =
∏
ω∈T

1
1 − zω

.

A particular case is the one of integer partitions whose summands are in {1, 2, . . . , r},

P {1,...,r}(z) =
r∏

m=1

1
1 − zm

.

The GF has all its poles that are roots of unity. At z = 1, the order of the pole is r, and one
has

P {1,...,r}(z) ∼ 1
r!

1
(1 − z)r

,

as z → 1. Other poles have smaller multiplicity: for instance the multiplicity of z = −1 is
equal to the number of factors (1−z 2j)−1 in P {1,...,r}, that is �r/2�; in general a primitive
qth root of unity is found to have multiplicity �r/q�. There results that z = 1 contributes a
term of the form nr−1 to the coefficient of order n, while each of the other poles contributes
a term of order at most n�r/2	. We thus find

P {1,...,r}
n ∼ crn

r−1 with cr =
1

r!(r − 1)!
.

The same argument provides the asymptotic form of P T
n , since, to first order asymp-

totics, only the pole at z = 1 counts. One then has:

PROPOSITION IV.2. Let T be a finite set of integers without a common divisor (gcd(T ) =
1). The number of partitions with summands restricted to T satisfies

P T
n ∼ 1

τ

nr−1

(r − 1)!
, with τ :=

∏
n∈T

n, r := card(T ).

For instance, in a country that would have pennies (1 cent), nickels (5 cents), dimes
(10 cents) and quarters (25 cents), the number of ways to make change for a total of n cents
is

[zn]
1

(1 − z)(1 − z5)(1 − z10)(1 − z25)
∼ 1

1 · 5 · 10 · 25
n3

3!
≡ n3

7500
,

asymptotically. �

IV. 4.2. Meromorphic Functions. An expansion very similar to that of Theorem IV.6
given for rational functions holds true for the larger class of coefficients of meromorphic
functions.
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THEOREM IV.7 (Expansion of meromorphic functions). Let f(z) be a function mero-
morphic for |z| ≤ R with poles at points α1, α2, . . . , αm, and analytic for |z| = R and
z = 0. Then there exist m polynomials {Πj(x)}m

j=1 such that:

(22) fn ≡ [zn]f(z) =
m∑

j=1

Πj(n)α−n
j + O(R−n).

Furthermore the degree of Πj is equal to the order of the pole of f at αj minus one.

PROOF. We offer two different proofs, one based on subtracted singularities, the other
one based on contour integration.

(i) Subtracted singularities. Around any pole α, f(z) can be expanded locally:

f(z) =
∑

k≥−M

cα,k(z − α)k(23)

= Sα(z) + Hα(z)(24)

where the “singular part” Sα(z) is obtained by collecting all the terms with index in
[−M . . −1] (Sα(z) = Nα(z)/(z−α)M with Nα(z) a polynomial of degree less than M )
and Hα(z) is analytic at α. Thus setting R(z) =

∑
j Sαj (z), we observe that f(z)−S(z)

is analytic for |z| ≤ R. In other words, by collecting the singular parts of the expansions
and subtracting them, we have “removed” the singularities of f(z), whence the name of
“method of subtracted singularities” sometimes given to the method [66, vol. 2, p. 448].

Taking coefficients, we get:

[zn]f(z) = [zn]S(z) + [zn](f(z) − S(z)).

The coefficient of [zn] in the rational function S(z) is obtained from Theorem 1. It suffices
to prove that the coefficient of zn in f(z) − S(z), a function analytic for |z| ≤ R, is
O(R−n). This fact follows from trivial bounds applied to Cauchy’s integral formula with
the contour of integration being λ = {z / |z| = R}, as in the proof of Theorem IV.4:

|[zn](f(z) − S(z))| =
1
2π

∣∣∣∣ ∫
|z|=R

(f(z) − S(z))
dz

zn+1

∣∣∣∣ ≤ 1
2π

O(1)
Rn+1

2πR.

(ii) Contour integration. There is another line of proof for Theorem IV.7 which we
briefly sketch as it provides an insight which is useful for applications to other types of
singularities treated in Chapter V. It consists in using directly Cauchy’s coefficient formula
and “pushing” the contour of integration past singularities. In other words, one computes
directly the integral

In =
1

2iπ

∫
|z|=R

f(z)
dz

zn+1

by residues. There is a pole at z = 0 with residue fn and poles at the αj with residues
corresponding to the terms in the expansion stated in Theorem IV.7; for instance, if f(z) ∼
c/(z − a) as z → a, then

Res(f(z)z−n−1, z = a) = Res(
c

(z − a)
z−n−1, z = a) =

c

an+1
.

Finally, by the same trivial bounds as before, In is O(R−n). �

EXAMPLE 5. Surjections and alignments. The surjection EGF is R(z) = (2− ez)−1, and
we have already determined its poles: the one of smallest modulus is at log 2 .= 0.69314.



IV. 4. RATIONAL AND MEROMORPHIC FUNCTIONS 31

3 3
75 75

4683 4683
545835 545835

102247563 102247563
28091567595 28091567595
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3385534663256845323 338553466325684532 6
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2574844419803190384544203 2574844419803190384544 450
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4002225759844168492486127539083 40022257598441684924861275 55859
6297562064950066033518373935334635 6297562064950066033518373935 416161
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23545154085734896649184490637144855476395 2354515408573489664918449063714 5314147690

FIGURE 8. The surjection numbers pyramid: for n = 2, 4, . . . , 32, the
exact values of the numbers Rn (left) compared to the approximation
�ξ(n)� with discrepant digits in boldface (right).

At the dominant pole, as z tends to log 2, one has R(z) ∼ − 1
2 (z − log 2)−1. This implies

an approximation for the number of surjections:

Rn ≡ n![zn]R(z) ∼ ξ(n), with ξ(n) :=
n!
2

·
( 1
log 2

)n+1
.

Here is, for n = 2, 4, . . . , 32, a table of the values of the surjection numbers (left) compared
with the asymptotic approximation rounded6 to the nearest integer, �ξ(n)�: It is piquant
to see that �ξ(n)� provides the exact value of Rn for all values of n = 1, . . . , 15, and it
starts losing one digit for n = 17, after which point a few “wrong” digits gradually appear,
but in very limited number; see Figure 8 The explanation of such a faithful asymptotic
representation owes to the fact that the error terms provided by meromorphic asymptotics
are exponentially small. In effect, there is no other pole in |z| ≤ 6, the next ones being at
log 2 ± 2iπ with modulus of about 6.32. Thus, for rn = [zn]R(z), there holds

(25)
Rn

n!
∼ 1

2
·
( 1
log 2

)n+1 + O(6−n).

For the double surjection problem, R∗(z) = (2 + z − ez), we get similarly

[zn]R∗(z) ∼ 1
eρ∗ − 1

(ρ∗)−n−1,

with ρ∗ = 1.14619 the smallest positive root of eρ∗ − ρ∗ = 2.
Alignments are sequences of cycles, with EGF

f(z) =
1

1 − log(1 − z)−1
.

There is a singularity when log(1 − z)−1 = 1, which is at z = 1 − e−1 and arises before
z = 1 where the logarithm becomes singular. Thus the computation of the asymptotic
form of fn only needs a local expansion near (1 − e−1):

f(z) ∼ −e−1

z − 1 + e−1
=⇒ [zn]f(z) ∼ e−1

(1 − e−1)n+1
.

�

6The notation �x� represnets x rounded to the nearest integer: �x� := �x + 1
2
�.
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� 21. Some “supernecklaces”. One estimates

[zn] log

 
1

1 − log 1
1−z

!
∼ 1

n
(1 − e−1)−n,

where the EGF enumerates (labelled) cycles of cycles. [Hint: Take derivatives.] �

EXAMPLE 6. Generalized derangements. The probability that the shortest cycle in a
random permutation of size n has length larger than k is

[zn]
e−

z
1−

z2
2 −···− zk

k

1 − z
.

For any fixed k, the generating function, call it f(z), is equivalent to e−Hk/(1 − z) as
z → 1. Accordingly the coefficients [zn]f(z) tend to e−Hk as n → ∞. Thus, due to
meromorphy, we have the characteristic implication

f(z) ∼ e−Hk

1 − z
=⇒ [zn]f(z) ∼ e−Hk .

Since the difference between f(z) and the approximation at 1 is an entire function, the
error is exponentially small:

(26) [zn]
e−

z
1−

z2
2 −···− zk

k

1 − z
= e−Hk + O(R−n),

for fixed k and any R > 1. The cases k = 1, 2 in particular justify the estimates mentioned
in the introduction on p. 5.

As a side remark, the classical approximation of the harmonic numbers, H k ≈ log k+
γ suggests e−γ/k as a further approximation to (26) that might be valid for both large n
and large k in suitable regions. This can be made precise; in accordance with this heuristic
argument, the expected length of the shortest cycle in a random permutation of size n is
symptotic to

n∑
k=1

e−γ

k
∼ e−γ log n,

as first proved by Shepp and Lloyd in [101]. �
� 22. Shortest cycles of permutations are not too long. Let Sn be the random variable denoting the
length of the shortest cycle in a random permutation of size n. Using the circle |z| = 2 to estimate
the error in the approximation e−Hk above, one finds that, for k ≤ log n,˛̨̨

P(Sn > k) − e−Hk

˛̨̨
≤ 1

2n
e2k

,

which is exponentially small in this range of k-values. Thus, the approximation e−Hk remains good
when k is allowed to tend sufficiently slowly to ∞ with n. One can also explore the possibility of
better bounds and larger regions of validity of the main approximation. (See Panario and Richmond’s
study [93] for a general theory of smallest components in sets.) �

EXAMPLE 7. Smirnov words and Carlitz compositions. This examples illustrates the
analysis of a group of rational generating functions (Smirnov words) paralleling nicely the
enumeration of a special type of integer composition (Carlitz compositions) resorting to
meromorphic asymptotics.

Bernoulli trials have been discussed in Chapter III, in relation to weighted word mod-
els. Take the class W of all words over an r-ary alphabet, where letter j is assigned
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probability pj and letters of words are drawn independently. With this weighting, the GF
of all words is

W (z) =
1

1 −
∑

pjz
=

1
1 − z

.

Consider the problem of determining the probability that has a random word of length n
is of Smirnov type, i.e., all blocks of length 2 are formed with two distinct letters (see
also [60, p. 69]).

By our discussion of Section III.6, the GF of Smirnov words (again with the proba-
bilistic weighting) is

S(z) =
1

1 −
∑ pjz

1+pjz

.

This is a rational function with a unique dominant singularity at ρ such that

(27)
r∑

j=1

pjρ

1 + pjρ
= 1.

(It is easy to verify by monotonicity that this equation has a unique positive solution.)
Thus, ρ is a well characterized algebraic number defined implicitly by an equation of de-
gree r. There results that the probability for a word to be Smirnov is (not too surprisingly)
exponentially small, with the precise formula being

[zn]S(z) ∼ C · ρ−n, C =
(

ρ
∑ piρ

1 + piρ

)−1

.

A similar analysis, but with bivariate generating functions shows that in a random word of
length n conditioned to be Smirnov, the letter j appears with frequency asymptotic to

(28) qj =
pjρ

1 + pjρ
,

in the sense that mean number of occurrences of letter j is asymptotic to q jn. All these
results are seen to be consistent with the equiprobable letter case p j = 1/r, for which
ρ = r/(r − 1).

Carlitz compositions illustrate a similar situation, in which the alphabet is in a sense
infinite, while letters have different sizes. Recall that a Carlitz composition of the integer
n is a composition of n such that no two adjacent summands have equal values. Consider
first compositions with a bound m on the largest allowable summand. The OGF of such
Carlitz compositions is

C [m](z) =

⎛⎝1 −
m∑

j=1

zj

1 + zj

⎞⎠−1

,

and the OGF of all Carlitz compositions is obtained by letting m tend to infinity:

(29) C [∞](z) =

⎛⎝1 −
∞∑

j=1

zj

1 + zj

⎞⎠−1

.

In particular, we get EIS A0032427:

C [∞](z) = 1 + z + z2 + 3z3 + 4z4 + 7z5 + 14z6 + 23z7 + 39z8 + 71z9 + · · · .

7The EIS designates Sloane’s On-Line Encyclopedia of Integer Sequences [102]; see [103] for an earlier
printed version.
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FIGURE 9. The coefficients [zn]f(z), where f(z) =(
1 + 1.02z4

)−3 (1 − 1.05z5
)−1

illustrate a periodic superposition
of smooth behaviours that depend on the residue class of n modulo 20.

The asymptotic form of the number of Carlitz compositions is then easily found by
singularity analysis of meromorphic functions. The OGF has a simple pole at ρ which is
the smallest positive root of the equation

(30)
∞∑

j=1

ρj

1 + ρj
= 1.

(Note the formal analogy with (27) due to commonality of the combinatorial argument.)

C[∞]
n ∼ C · αn, C

.= 0.45638, α
.= 1.75024 .

There, α = ρ with ρ as in (30). In a way analogous to Smirnov words, the asymptotic
frequency of summand k appears to be ρk/(1 + ρk); see [71, 83] for further properties. �

IV. 5. Localization of singularities

There are situations where a function possesses several dominant singularities, that is,
several singularities are present on the boundary of its disk of convergence. We examine
here the induced effect on the coefficient’s coefficients and discuss ways to localize such
dominant singularities.

IV. 5.1. Multiple singularities. In the presence of multiple singularities on the cir-
cle of convergence of a series, several geometric terms of the form α n sharing the same
modulus must be combined. In simpler cases, such terms induce a periodic behaviour for
coefficients that is easy to describe; in the more general case, fluctuations of a somewhat
“arithmetic nature” result. Finally, consideration of all singularities (whether dominant or
not) of a meromorphic functions may lead to explicit summations expressing their coeffi-
cients.

Periodicities. When several singularities of f(z) have the same modulus, they may
induce complete cancellations, so that different regimes will be present in the coefficients
of f . For instance

1
1 + z2

= 1 − z2 + z4 − z6 + z8 − · · · ,
1

1 − z3
= 1 + z3 + z6 + z9 + · · · ,
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FIGURE 10. The coefficients of f = 1/(1 − 6
5z + z2) exhibit an ap-

parently chaotic behaviour (left) which in fact corresponds to a discrete
sampling of a sine function (right), reflecting the presence of two conju-
gate complex poles.

exhibit patterns of periods 4 and 3 respectively, this corresponding to roots of unity or order
4 (±i), and 3. Accordingly,

φ(z) =
1

1 + z2
+

1
1 − z3

=
2 − z2 + z3 + z4 + z8 + z9 − z10

1 − z12

has a pattern of period 12, and the coefficients φn such that n ≡ 1, 5, 6, 7, 11 modulo 12
are zero. Consequently, if we analyze

[zn]ψ(z) where ψ(z) = φ(z) +
1

1 − z/2
,

we see that a different exponential growth manifests itself when n is taken congruent to
1, 5, 6, 7, 11 mod 12. In many combinatorial applications, generating functions involving
periodicities can be decomposed “at sight”, and the corresponding asymptotic subproblems
generated are then solved separately.

� 23. Decidability of polynomial properties. Given a polynomial p(z) ∈ Q[z], the following prop-
erties are decidable: (i) whether one of the zeros of p is a root of unity; (ii) whether one of the
zeros of p has an argument that is commensurate with π. [One can use resultants. An algorithmic
discussion of this and related issues is given in [62].] �

Nonperiodic fluctuations. Take the polynomial D(z) = 1 − 6
5z + z2, whose roots are

α =
3
5

+ i
4
5
, ᾱ =

3
5
− i

4
5
,

both of modulus 1 (the numbers 3, 4, 5 form a Pythagorean triple), with argument±θ where
θ = arctan(4

3 ) = 0.9279. The expansion of the function f(z) = 1/D(z) starts as

1
1 − 6

5z + z2
= 1 +

6
5
z +

11
25

z2 − 84
125

z3 − 779
625

z4 − 2574
3125

z5 + · · ·

the sign sequence being

+ + + −−− + + + + −−− + + + −−−− + + + −−−− + + + −−− ,

which indicates a mildly irregular oscillating behaviour, where blocks of 3 or 4 pluses
follow blocks of 3 or 4 minuses.



36 IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

The exact form of the coefficients of f results from a partial fraction expansion:

f(z) =
a

1 − z/α
+

b

1 − z/ᾱ
with a =

1
2

+
3
8
i, b =

1
2
− 3

8
i.

Accordingly,

fn = ae−inθ0 + beinθ0

=
sin((n + 1)θ0)

sin(θ0)
.

This explains the sign changes observed. Since the angle θ0 is not commensurate with π,
the coefficients fluctuate but, unlike in our earlier examples, no exact periodicity is present
in the sign patterns. See Figure 10 for a rendering and Figure 10 below for a meromorphic
case linked to compositions into prime summands.

Complicated problems of an arithmetical nature may occur if several such singulari-
ties with non–commensurable arguments combine, and some open problem remain in the
analysis of linear recurring sequences. (For instance no decision procedure is known to
determine whether such a sequence ever vanishes.) Fortunately, such problems occur in-
frequently in combinatorial enumerations where zeros of rational functions tend to have a
simple geometry.

Exact formulæ. The error terms appearing in the asymptotic expansion of coefficients
of meromorphic functions are already exponentially small. By “pealing off” the singular-
ities of a meromorphic function layer by layer, in order of increasing modulus, one is led
to extremely precise expansions for the coefficients. Sometimes even, “exact” expressions
may result. The latter is the case for the Bernoulli numbers Bn, the surjection numbers
Rn, the Secant numbers E2n and the Tangent numbers E2n+1 defined by

∞∑
n=0

Bn
zn

n!
=

z

ez − 1
(Bernoulli numbers)

∞∑
n=0

Rn
zn

n!
=

1
2 − ez

(Surjection numbers)

∞∑
n=0

E2n
z2n

(2n)!
=

1
cos(z)

(Secant numbers)

∞∑
n=0

E2n+1
z2n+1

(2n + 1)!
= tan(z) (Tangent numbers).

Bernoulli numbers have an EGF z/(ez − 1) that has poles at the points χk = 2ikπ,
with k ∈ Z \ {0}. The residue at χk is equal to χk,

z

ez − 1
∼ χk

z − χk
(z → χk).

The expansion theorem for meromorphic functions is applicable here. To see it use the
Cauchy integral formula, and proceed as in the proof of Theorem IV.7, using as external
contours large circles that pass half way between poles. Along these contours, the in-
tegrand tends to 0 because the Cauchy “kernel” z−n−1 decreases with the radius of the
integration contour while the EGF stays bounded. In the limit, corresponding to an infin-
itely large contour, the coefficient integral becomes equal to the sum of all residues of the
meromorphic function over the whole of the complex plane.

From this argument, we thus get: Bn

n! = −
∑

k∈Z\{0} χ−n
k . This proves that Bn = 0

if n is odd. If n is even, then grouping terms two by two, we get the exact representation
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(which also serves as an asymptotic expansion):

(31)
B2n

(2n)!
= (−1)n−121−2nπ−2n

∞∑
k=0

1
k2n

.

Reverting the equality, we have also established that

ζ(2n) = (−1)n−122n−1π2n B2n

(2n)!
with ζ(s) =

∞∑
k=1

1
ks

, Bn = n![zn]
z

ez − 1
,

a well-known identity that provides values of the Riemann zeta function (ζ(s)) at even
integers as rational multiples of powers of π.

In the same vein, the surjection numbers have as EGF R(z) = (2− ez)−1 with simple
poles at

χk = log 2 + 2ikπ where R(z) ∼ 1
2

1
χk − z

.

Since R(z) stays bounded on circles passing half way in between poles, we find the exact
formula, Rn

n! = 1
2

∑
k∈Z

χ−n−1
k . An equivalent real formulation is

(32)
Rn

n!
=

1
2

(
1

log 2

)n+1

+
∞∑

k=1

cos((n + 1)θk)
(log2 2 + 4k2π2)(n+1)/2

with θk = arctan(
2kπ

log 2
),

which shows the hidden occurrence of infinitely many “harmonics” of fast decaying am-
plitude.

� 24. Alternating permutations, tangent and secant numbers. The relation (31) also provides a
representation of the tangent numbers since E2n−1 = (−1)n−1B2n4n(4n − 1)/(2n). The secant
numbers E2n satisfy

∞X
k=1

(−1)k

(2k + 1)2n+1
=

(π/2)2n+1

2 (2n)!
E2n,

which can be read either as providing an asymptotic expansion of E2n or as an evaluation of the sums
on the left (the values of a Dirichlet L-function) in terms of π. The asymptotic number of alternating
permutations (Chapter II) is consequently known to great accuracy. �

� 25. Solutions to the equation tan(x) = x. Let xn be the nth positive root of the equation
tan(x) = x. For any integer r ≥ 1, the sum

P
n x−2r

n is a computable rational number. [From
folklore and The American Mathematical Monthly.] �

IV. 5.2. Localization of zeros and poles. We gather here a few results that often
prove useful in determining the location of zeros of analytic functions, and hence of poles
of meromorphic functions. A detailed treatment of this topic may be found in Henrici’s
book [66].

Let f(z) be an analytic function in a region Ω and let γ be a simple closed curve
interior to Ω, and on which f is assumed to have no zeros. We claim that the quantity

N(f ; γ) =
1

2iπ

∫
γ

f ′(z)
f(z)

dz

exactly equals the number of zeros of f inside γ counted with multiplicity. The reason is
that the function f ′/f has its poles exactly at the zeros of f , and its residue at each pole
is 1, so that the assertion directly results from the residue theorem

Since a primitive function of f ′/f is log f , the integral also represents the variation
of log f along γ, which is written [log f ]γ . The variation [log f ]γ reduces to i times the
variation of the argument of f along γ as log(re iθ) = log r + iθ and the modulus r has
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FIGURE 11. The transforms of γj = {|z| = 4j
10} by P4(z) = 1 −

2z + z4, for j = 1, 2, 3, 4, demonstrate that P4(z) has no zero inside
|z| < 0.4, one zero inside |z| < 0.8, two zeros inside |z| < 1.2 and
four zeros inside |z| < 1.6. The actual zeros are at ρ4 = 0.54368, 1 and
1.11514± 0.77184i.

variation equal to 0 along a closed contour, [log ρ]γ = 0. The quantity [θ]γ is, by its
definition, the number of times the transformed contour f(γ) winds about the origin. This
observation is known as the Argument Principle:

Argument Principle. The number of zeros of f(z) (counted with mul-
tiplicities) inside γ equals the winding number of the transformed con-
tour f(γ) around the origin.

By the same argument, if f is meromorphic in Ω � γ, then N(f ; γ) equals the difference
between the number of zeros and the number of poles of f inside γ, multiplicities being
taken into account. Figure 11 exemplifies the use of the argument principle in localizing
zeros of a polynomial.

By similar devices, we get Rouché’s theorem:

Rouché’s theorem. Let the functions f(z) and g(z) be analytic in a
region containing in its interior the closed simple curve γ. Assume
that f and g satisfy |g(z)| < |f(z)| on the curve γ. Then f(z) and
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f(z) + g(z) have the same number of zeros inside the interior domain
delimited by γ.

The intuition behind Rouché’s theorem is that, since |g| < |f |, then f(γ) and (f + g)(γ)
must have the same winding number.

� 26. Proof of Rouché’s theorem. Under the hypothesis of Rouché’s theorem, for 0 ≤ t ≤ 1
h(z) = (f(z) + tg(z)) is such that N(h; γ) is both an integer and a continuous function of t in the
given range. The conclusion of the theorem follows. �

� 27. The fundamental theorem of algebra. Every complex polynomial p(z) of degree n has ex-
actly n roots. A proof follows by Rouché’s theorem from the fact that, for large enough |z| = R, the
polynomial assumed to be monic is a “perturbation” of its leading term, zn. �

These principles form the basis of numerical algorithms for locating zeros of analytic
functions. For instance, one can start from an initial domain and recursively subdivide it
until roots have been isolated with enough precision—the number of roots in a subdomain
being at each stage determined by numerical integration; see Figure 11 and refer for in-
stance to [27] for a discussion. Such algorithms can even acquire the status of full proofs
if one operates with guaranteed precision routines (using, e.g., careful implementations of
interval arithmetics). Examples of use of the method will appear in the next sections.

� 28. The analytic Implicit Function Theorem from residues. The sum of the roots of the equation
g(y) = 0 interior to γ equals

1

2iπ

Z
γ

g′(y)

g(y)
y dy.

Let F (z, y) be an analytic function in both z and y (i.e., it admits a convergent series expansion).
If F ′

y(z0, y0) �= 0, then the function y(z) implicitly defined by F (z, y) = 0 and such that y(z0) = y0

is given by

y(z) =
1

2iπ

Z
γ

F ′
y(z, y)

F (z, y)
y dy,

where γ is a small loop around y0. Deduce that y(z) is analytic at z0. (Note: this requires a modicum
of analytic functions of two complex variables as is to be found, e.g., in [17].) �

IV. 5.3. The example of patterns in words. All patterns are not born equal. Sur-
prisingly, in a random sequence of coin tossings, the pattern HTT is likely to occur much
sooner (after 8 tosses on average) than the pattern HHH (needing 14 tosses on average);
see the preliminary discussion in Chapter I. Questions of this sort are of obvious inter-
est in the statistical analysis of genetic sequences. Say you discover that a sequence of
length 100,000 on the four letters A, G, C, T contains the pattern TACTAC twice. Can this
be assigned to chance or is this is likely to be a meaningful signal of some yet unknown
structure? The difficulty here lies in quantifying precisely where the asymptotic regime
starts, since, by Borges’s Theorem (see the Note in Chapter I), sufficiently long texts will
almost certainly contain any fixed pattern. The analysis of rational generating functions
supplemented by Rouché’s theorem provides definite answers to such questions.

We consider here the class W of words over an alphabet A of cardinality m ≥ 2.
A pattern p of some length k is given. As seen in Chapters I and III, its autocorrelation
polynomial is central to enumeration. This polynomial is defined as c(z) =

∑k−1
j=0 cjz

j ,
where cj is 1 if p coincides with its kth shifted version and 0 otherwise. We consider
here the enumeration of words containing the pattern p at least once, and dually of words
excluding the pattern p. In other words, we look at problems like: What is the probability
that a random of words of length n does (or does not) contain your name as a block of
consecutive letters?
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The OGF of the class of words excluding p is, we recall,

(33) S(z) =
c(z)

zk + (1 − mz)c(z)
.

and we shall start with the case m = 2 of a binary alphabet. The function S(z) is simply
a rational function, but the location and nature of its poles is yet unknown. We only know
a priori that it should have a pole in the positive interval somewhere between 1

2 and 1
(by Pringsheim’s Theorem and since its coefficients are in the interval [1, 2n], for n large
enough). Here is a small list for patterns of length k = 3, 4 of the pole ρ nearest to the
origin:

Length (k) Types c(z) ρ

k = 3 aab, abb, . . . 1 0.61803

aba, bab 1 + z2 0.56984

aaa, bbb 1 + z + z2 0.54368

k = 4 aaab, aabb, abbb, . . . 1 0.54368

aaba, abba, abaa, . . . 1 + z 3 0.53568

abab, baba 1 + z2 0.53101

aaaa, bbbb 1 + z + z2 + z3 0.51879

We thus expect ρ to be close to 1
2 as soon as the pattern is long enough. In order to prove

this, we are going to apply Rouché’s Theorem to the denominator of (33).
As regards termwise domination of coefficients, the autocorrelation polynomials lies

between 1 (for less correlated patterns like aaa. . . b) and 1 + z + · · · + z k−1 (for the
special case aaa. . . a). We set aside the special case of p having only equal letters, i.e., a
“maximal” autocorrelation polynomial—this case is discussed at length in the next chapter.
Thus, in this scenario, the autocorrelation polynomial starts as 1+z 	 + · · · for some � ≥ 2.
Fix the number A = 0.6. On |z| = A, we have

(34) |c(z)| ≥
∣∣1 − (A2 + A3 + · · · )

∣∣ =
∣∣∣∣1 − A2

1 − A

∣∣∣∣ =
1
10

.

In addition, the quantity (1 − 2z) ranges over the circle of diameter [−0.2, 1.2] as z varies
along |z| = A, so that |1 − 2z| ≥ 0.2. All in all, we have found that, for |z| = A,

|(1 − 2z)c(z)| ≥ 0.02.

On the other hand, for k > 7, we have |z k| < 0.017 on the circle |z| = A. Then,
amongst the two terms composing the denominator of (33), the first is strictly dominated
by the second along |z| = A. By virtue of Rouché’s Theorem, the number of roots of the
denominator inside |z| ≤ A is then same as the number of roots of (1−2z)c(z). The latter
number is 1 (due to the root 1

2 ) since c(z) cannot be 0 by the argument of (34). Figure 12
exemplifies the extremely well-behaved characters of the complex zeros.

In summary, we have found that for all patterns with at least two different letters
(� ≥ 2) and length k ≥ 8, the denominator has a unique root in |z| ≤ A = 0.6. The
property for lengths k satisfying 4 ≤ k ≤ 7 is then easily verified directly. The case � = 1
can be subjected to an entirely similar argument (see Chapter V for details). Therefore,
unicity of a simple pole ρ of S(z) in the interval (0.5, 0.6) is granted.
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FIGURE 12. Complex zeros of z31+(1−2z)c(z) represented as joined
by a polygonal line: (left) correlated pattern a(ba)15; (right) uncorrelated
pattern a(ab)15.

It is then a simple matter to determine the local expansion of s(z) near z = ρ,

S(z) ∼
z→ρ

Λ̃
ρ − z

, Λ̃ :=
c(ρ)

2c(ρ) − kρk−1
,

from which a precise estimate for coefficients derives by Theorems IV.6 and IV.7.
The computation finally extends almost verbatim to nonbinary alphabets, with ρ being

now close to 1
m . It suffices to use the disc of radius A = 1.2/m. The Rouché part of

the argument grants us unicity of the dominant pole in the interval (1/m, A) for k ≥ 5
when m = 3, and for k ≥ 4 and any m ≥ 4. (The remaining cases are easily checked
individually.)

PROPOSITION IV.3. Consider an m-ary alphabet. Let p be a pattern of length k ≥ 4
with autocorrelation polynomial c(z). Then the probability that a random word of length n
does not contain p as a pattern (a block of consecutive leters) satisfies

(35) PWn(p does not occur) = Λp(mρ)−n−1 + O

((5
6
)n)

,

where ρ ≡ ρp is the unique root in ( 1
m , 6

5m ) of the equation zk + (1 − mz)c(z) = 0 and

Λp =
mc(ρ)

mc(ρ) − kρk−1
.

Despite their austere appearance, these formulæ have indeed an a fairly intuitive con-
tent. First, the equation satisfied by ρ can be put under the form mz = 1+m−k/c(z), and,
since ρ is close to 1

m , we may expect the approximation

mρ ≈ 1 +
1

γmk
,

where γ := c(m−1) satisfies 1 ≤ γ < m/(m− 1). By similar principles, the probabilities
in (35) should be approximately

PWn(p does not occur) ≈
(

1 +
1

γmk

)−n

≈ e−n/(γmk).

For a binary alphabet, this tells us that the occurrence of a pattern of length k starts becom-
ing likely when n is of the order of 2k, that is, when k is of the order of log2 n. The more
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precise moment when this happens must depend (via γ) on the autocorrelation of the pat-
tern, with strongly correlated patterns having a tendency to occur a little late. (This vastly
generalizes our empirical observations of Chapter I.) However, observe that the mean num-
ber of occurrences of a pattern in a text of length n does not depend on the shape of the
pattern. This apparent paradox is easily resolved: correlated patterns tend to occur late, but
they lend themselves to appearing in clusters. Thus, the late pattern aaa when it occurs
still has probability 1

2 to occur at the next position as well, and cash in another occurrence,
whereas no such possibility is available to the early pattern aab whose occurrences must
be somewhat spread out.

Such analyses are important as they can be used to develop a precise understanding
of the behaviour of data compression algorithms (the Lempel–Ziv scheme); see Julien
Fayolle’s memoir (Master Thesis, Paris, 2002) for details.

� 29. Multiple pattern occurrences. A similar analysis applies to the generating function S〈s〉(z) of
words containing a fixed number s of occurrences of a pattern p. The OGF is obtained by expanding
(with respect to u) the BGF W (z, u) obtained in Chapter III by means of an inclusion-exclusion
argument. For s ≥ 1, one finds

S〈s〉(z) = zk N(z)s−1

D(z)s+1
, D(z) = zk + (1 − mz)c(z), N(z) = zk + (1 − mz)(c(z) − 1)),

which now has a pole of multiplicity s + 1 at z = ρ. �

� 30. Patterns in Bernoulli sequences. Similar results hold when letters are assigned nonuniform
probabilities, pj = P(aj), for aj ∈ A. One only needs to define the weighted autocorrelation
polynomial by its coefficient cj being cj = P(p1 · · · pj), when p coincides with its jth shifted
version. Multiple pattern occurrences can be also analysed. �

IV. 6. Singularities and functional equations

In the various combinatorial examples discussed so far in this chapter, we have been
dealing with functions that are given by explicit expressions. Such situations essentially
cover nonrecursive structures as well as the simplest recursive structures, like Catalan or
Motzkin trees, whose generating functions are expressible in terms of radicals. In fact,
as will shall see extensively in this book, complex analytic methods are instrumental in
analysing coefficients of functions implicitly specified by functional equations. In other
words: the very nature of a functional equation can often provide clues regarding the
singularities of its solution. Chapter V will illustrate this philosophy in the case of rational
functions defined by systems of positive equations; a very large number of examples will
then be given in Chapters VI and VII, where singularities much more general than mere
poles are treated. The purpose of this subsection is simply to offer a preliminary discussion
of the way dominant singularities can be located in many cases by means means of simple
iteration or inversion properties of analytic functions. Three typical functional equations
are to be discussed here:

f(z) = zef(z), f(z) = z + f(z2 + z3), f(z) =
1

1 − zf(z2)
.

Inverse functions. We start with a generic problem: given a function ψ analytic at a
point y0 with z0 = ψ(y0) what can be said about its inverse, namely the solution(s) to the
equation ψ(y) = z when z is near z0 and y near y0? Two cases occur depending on the
value of ψ′(y0).
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Regular case. If ψ ′(y0) �= 0, then ψ admits an analytic expansion near y0:

ψ(y) = ψ(y0) + (y − y0)ψ′(y0) +
1
2
(y − y0)2ψ′′(y0) + · · · .

Solving formally for y indicates a locally linear dependency,

(36) y − y0 ∼ 1
ψ′(y0)

(z − z0).

A full formal expansion of y − y0 in powers of z − z0 is obtained by repeated substitution,

(37) y − y0 = c1(z − z0) + c2(z − z0)2 + · · ·
and the method of majorizing series shows that the series so obtained converges locally
in a sufficiently small neighbourhood of z0. Rouché’s theorem (equivalently, the analytic
version of the Implicit Function Theorem, see Note 28), implies that the equation ψ(y) = z
admits there a unique analytic solution. In summary, an analytic function locally admits
an analytic inverse near any point where its first derivative is nonzero.

Singular case. If to the contrary one has ψ ′(y0) = 0 and ψ′′(y0) �= 0, then the
expansion of ψ is of the form

(38) ψ(y) = ψ(y0) +
1
2
(y − y0)2ψ′′(y0) + · · · .

Solving formally for y now indicates a locally quadratic dependency

(y − y0)2 ∼ 2
ψ′′(y0)

(z − z0),

and the inversion problem admits two solutions satisfying

y − y0 ∼ ±
√

2
ψ′′(y0)

(z − z0)1/2.

The point z0 is thus a branch point.
A similar reasoning applies whenever the first nonzero derivative of ψ at y 0 is of order

r ≥ 2 (with a local behaviour for y then of the form (z − z 0)1/r). Thus, the dependency
between y and z cannot be analytic around (y0, z0). In other words, an analytic function
is not locally invertible in an analytic manner in the vicinity of any point where its first
derivative is zero.

We can now consider the problem of obtaining information on the coefficients of a
function y(z) defined by an implicit equation

(39) y(z) = zφ(y(z)).

For simplicity, we shall momentarily assume φ(u) to be a nonlinear entire function (possi-
bly a polynomial of degree ≥ 2) with nonnegative coefficients. In order for the problem to
be (formally) well-posed we assume that φ(0) �= 0.

The equation (39) occurs in the counting of various types of trees. For instance,
φ(u) = eu corresponds to labelled Cayley trees, φ(u) = (1 + u)2 to binary trees, and
φ(u) = 1 + u + u2 to plane unary–binary trees (Motzkin trees). A full analysis of the
problem was developed by Meir and Moon [85], themselves elaborating on earlier ideas of
Pólya [97, 98] and Otter [92].

Equation (39) may be rephrased as

(40) ψ(y(z)) = z where ψ(u) =
u

φ(u)
,
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FIGURE 13. Singularities of inverse functions: φ(u) = eu (left);
ψ(u) = u/φ(u) (middle); y = Inv(ψ) (right).

so that it is a generic instance of the inversion problem for analytic functions: y = ψ (−1).
We first observe that (39) and (40) admit unique formal power series solutions by the
method of indeterminate coefficients. An application of the technique of majorizing series
shows that this formal solution also represents an analytic function near the origin, with
y(0) = 0. In addition, the coefficients of y(z) are all nonnegative.

Now comes the hunt for singularities. The function y(z) increases along the positive
real axis. The equation ψ ′(τ) = 0 which is expected to create singularities for y(z) is in
terms of φ:

(41) φ(τ) − τφ′(τ) = 0.

The function φ(u) =
∑∞

k=0 φkuk being by assumption entire, the equation (41) is equiva-
lent to

φ0 = φ2τ
2 + 2φ3τ

3 + · · · ,

which admits a unique positive solution.
As z increases, starting from 0 along the positive real axis, y(z) increases. Let ρ ≤

∞ be the dominant positive singularity of y(z). We are going to prove a contrario that
y(ρ) = τ (technically, we should define y(ρ) as the limit of y(x) as x → ρ−). Assume
that y(ρ) < τ ; then y(z) could be analytically continued at z = ρ, by the discussion above
of inverse functions in the regular case, since φ ′(y(ρ)) > 0. If on the other hand, we had
y(ρ) > τ , then, there would be a value ρ∗ < ρ such that y(ρ∗) = τ ; but there, we would
have ψ′(y(ρ∗)) = 0, so that y(z) would be singular at z = ρ∗ by the discussion on inverse
functions in the singular case. Thus, in both cases, the assumption y(ρ) �= τ leads to a
contradiction. We thus obtain that y(ρ) = τ , and, since y and ψ are inverse functions, this
corresponds to

ρ = ψ(τ) = τ/φ(τ).

Equipped with this discussion, we state a result which covers situations more general
than the case of φ being entire.

PROPOSITION IV.4. Let φ be a nonlinear function that is analytic at 0, with nonneg-
ative Taylor coefficients and radius of convergence R ≤ +∞. Assume that there exists
τ ∈ (0, R) such that

(42)
τφ′(τ)
φ(τ)

= 1.
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Let y(z) be the solution analytic at the origin of the equation y(z) = φ(y(z)). Then, one
has the exponential growth formula:

[zn] y(z) 	


(
1
ρ

)n

where ρ =
τ

φ(τ)
=

1
φ′(τ)

.

Note that, by Supplement 31 below, there can be at most one solution of the characteristic
equation (42) in (0, R), a necessary and sufficient condition for the existence of a solution

in the open interval (0, R) being limx→R−
xφ′(x)
φ(x) > 1. This last condition is automatically

granted as soon as φ(R) = +∞.

PROOF. The discussion above applies verbatim. The function y(z) is analytic around 0
(by majorizing series techniques). By the already seen argument, its value y(ρ) cannot be
different from τ , so that its radius of convergence must equal ρ. The form of y n then results
from general exponential bounds. �

� 31. Convexity of GFs and the Variance Lemma. Let φ(z) be a nonlinear GF with nonnegative co-
efficients and a nonzero radius of convergence R. For x ∈ (0, R) a parameter, define the Boltzmann
random variable Ξ (of parameter x) by the property

P(Ξ = n) =
φnxn

φ(x)
, with E(sΞ) =

φ(sx)

φ(x)

the probability generating function of Ξ. By differentiation, the first two moments of Ξ are

E(Ξ) =
xφ′(x)

φ(x)
, E(Ξ2) =

x2φ′′(x)

φ(x)
+

xφ′(x)

φ(x)
.

There results, for any nonlinear GF φ(x), the general convexity inequality

d

dx

„
xφ′(x)

φ(x)

«
> 0,

since the variance of a nondegenerate random variable is always positive. Equivalently, the function
log(φ(et)) is convex for t ∈ (−∞, log R). �

Take for instance general Catalan trees corresponding to

y =
z

1 − y(z)
, so that φ(u) =

1
1 − u

.

We have R = 1 and the characteristic equation reads

τ

1 − τ
= 1,

implying τ = 1
2 , so that ρ = 1

4 . We obtain as anticipated yn 	
 4n, a weak asymptotic
formula for the Catalan numbers. Similarly, for Cayley trees, we have φ(u) = e u, the
characteristic equation reduces to (τ − 1)eτ = 0, so that τ = 1 and ρ = e−1, giving a
weak form of Stirling’s formula:

[zn]y(z) =
nn−1

n!
	
 en.

Here is a table of a few cases of application of the method to structures already encountered
in previous chapters.
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Type φ(u) (R) τ, ρ yn 	
 ρ−n

gen. Catalan tree
1

1 − u
(1) 1

2 , 1
4 yn 	
 4n

binary tree (1 + u)2 (∞) 1, 1
4 yn 	
 4n

Motzkin tree 1 + u + u2 (∞) 1, 1
3 yn 	
 3n

Cayley tree eu (∞) 1, e−1 yn 	
 en

In fact, for all such problems, the dominant singularity is always of the square-root
type as our previous discussion suggests. Accordingly, the asymptotic form of coefficients
is invariably of the type

[zn] y(z) ∼ C · ρ−nn−3/2,

as we shall prove in Chapter VI by means of the singularity analysis method.

� 32. A variant form of the inversion problem. Consider the equation y = z + φ(y), where φ is
assumed to be entire and φ(u) = O(u2) at u = 0. This corresponds to a simple variety of trees in
which trees are counted by the number of their leaves only. For instance, we have already encountered
labelled hierarchies (phylogenetic trees) in Section II.6 corresponding to φ(u) = eu−1−u, which is
one of “Schröder’s problems”. Let eτ be the root of φ′(eτ) = 1 and set eρ = eτ−φ(eτ). Then [zn]y(z) ��
ρ−n. For the EGF L of labelled hierarchies (L = z+eL−1−L), this gives Ln/n! �� (2 log 2−1)−n.
(Observe that Lagrange inversion also provides [zn]y(z) = 1

n
[wn−1](1 − y−1φ(y))−n.) �

Iteration. Consider the class E of balanced 2–3 trees defined as trees whose node degrees
are restricted to the set {0, 2, 3}, with the additional property that all leaves are at the same
distance from the root. Such tree trees, which are particular cases of B-trees, are a useful
data structure for implementing dynamic dictionaries [75]. We adopt as notion of size
the number of leaves (also called external nodes). The OGF of E satisfies the functional
equation

(43) E(z) = z + E(z2 + z3),

which reflects an inductive definition involving a substitution: given an existing tree, a new
tree is obtained by substituting in all possible ways to each external node (�) either a pair
(�, �) or a triple (�, �, �). On other words, we have

E [�] = � + E
[
� → (�� + ���)

]
.

Equation (43) implies the seemingly innocuous recurrence

En =
n∑

k=0

(
k

n − 2k

)
Ek with E0 = 0, E1 = 1,

but no closed-form solution is known (nor likely to exist) for E n or E(z). The expansion
starts as (the coefficients are EIS A014535)

E(z) = z + z2 + z3 + z4 + 2 z5 + 2 z6 + 3 z7 + 4 z8 + 5 z9 + 8 z10 + · · · .

We present here the first stage of an analysis due to Odlyzko [88] and corresponding
to exponential bounds. Let σ(z) = z 2 + z3. Equation (43) can be expanded by iteration in
the ring of formal power series,

(44) E(z) = z + σ(z) + σ[2](z) + σ[3](z) + · · · ,
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FIGURE 14. The iterates of a point x0 ∈ [0, 1
ϕ [ (here x0 = 0.6) by

σ(z) = z2 + z3 converge fast to 0.

where σ[j](z) denotes the jth iterate of the polynomial σ:

σ[0](z) = z, σ[h+1](z) = σ[h](σ(z)) = σ(σ[h](z)).

Thus, E(z) is nothing but the sum of all iterates of σ. The problem is to determine the
radius of convergence of E(z), and by Pringsheim’s theorem, the quest for dominant sin-
gularities can be limited to the positive real line.

For z > 0, the polynomial σ(z) has a unique fixed point, ρ = σ(ρ), at

ρ =
1
ϕ

where ϕ =
1 +

√
5

2
,

the golden ratio. Also, for any positive x satisfying x < ρ, the iterates σ [j](x) must
converge to 0; see Fig. 14. Furthermore, since σ(z) ∼ z 2 near 0, these iterates converge
to 0 doubly exponentially fast. First, for x ∈ [0, 1

2 ], one has σ(x) ≤ 3
2x2 for x ∈ [0, 1

2 ], so
that there

(45) σ[j](x) ≤
(

3
2

)2j−1

x2j

.

Second, for x ∈ [0, A], where A is any number < ρ, there is a number kA such that
σ[kA](x) < 1

2 , so that, by (45), there holds:

σ[k](x) ≤ 3
2

(
3
4

)2k−kA

.

Thus, the series of iterates of σ is quadratically convergent for z ∈ [0, A], any A < ρ.
By the triangular inequality, |σ(z)| ≤ (σ(|z|), the sum in (44) is a normally converging

sum of analytic functions, and is thus itself analytic. Consequently E(z) is analytic in the
whole of the open disk |z| < ρ.
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FIGURE 15. Left: the fractal domain of analyticity of E(z) in gray with
darker areas representing faster convergence of the sum of iterates of σ.
Right: the ratio En/(ϕnn−1) plotted against log n for n = 1 . . 500 con-
firms that En 	
 ϕn and illustrates the periodic fluctuations expressed
by Equation (47).

It remains to prove that the radius of convergence of E(z) is exactly equal to ρ. To
that purpose it suffices to observe that E(z), as given by (44), satisfies

E(x) → +∞ as x → ρ−.

Let N be an arbitrarily large but fixed integer. It is possible to select a positive xN suffi-
ciently close to ρ with xN < ρ, such that the N th iterate σ[N ](xN ) is larger than 1

2 (the
function σ[N ](x) admits ρ as a fixed point and it is continuous and increasing at ρ). Given
the sum expression (44), this entails the lower bound E(xN ) > N

2 for such an xN < ρ so
that E(x) is unbounded as x → ρ−.

The dominant positive real singularity of E(z) is thus ρ = 1
ϕ , and application of

Cauchy bounds shows that

(46) [zn] E(z) 	

(1 +

√
5

2
)n

.

It is notable that this estimate could be established so simply by a purely qualitative ex-
amination of the basic functional equation and of a fixed point of the associated iteration
scheme.

The complete asymptotic analysis of the En was given by Odlyzko [88] in a classic
paper. It requires the full power of singularity analysis methods to be developed in Chap-
ter VI. Equation (47) below states the end result, which involves periodic fluctuations; see
Figure 15 (right). There is overconvergence of the representation (44), that is, convergence
in certain directions beyond the disc of convergence of E(z), as illustrated by Figure 15
(left). The proof techniques involve an investigation of the behaviour of iterates of σ in the
complex plane, an area launched by Fatou and Julia in the first half of the past century and
nowadays well-studied under the name of “complex dynamics”.

� 33. The asymptotic number of 2–3 trees. This analysis is from [88, 89]. The number of 2–tree
trees satisfies asymptotically

(47) En =
ϕn

n
Ω(log n) + O

„
ϕn

n2

«
,

where Ω is a periodic function with mean value ϕ(log(4−ϕ)
.
= 0.71208 and period log(4− φ)

.
=.

Thus oscillations are inherent in En. A plot of the ratio En/(φn/n) is offered in Figure 15. �
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Complete asymptotics of a functional equation. This is Pólya’s counting of certain
molecules, a case where only a functional equation is known for a generating function,
M(z) =

∑
n Mnzn:

(48) M(z) =
1

1 − zM(z2)
.

The Mn represent the number of chemical isomeres of alcohols CnH2n+1OH without
asymmetric carbon atoms, and the series starts as (EIS A000621)

(49) M(z) = 1 + z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 14z7 + 23z8 + 39z9 + · · · .

By iteration of the functional equation, one finds a continued fraction representation:

M(z) =
1

1 −
z

1 −
z2

1 −
z4

. . .

.

Pólya [98] who established this functional equation in the historical paper that introduced
“Pólya Theory” developed at the same time a precise asymptotic estimate for M n.

PROPOSITION IV.5. Let M(z) be the solution analytic around 0 of the functional
equation

M(z) =
1

1 − zM(z2)
.

Then, there exist constants K and α such that

Mn ∼ K · αn, α
.= 1.68136 75244, K

.= 0.36071 40971.

PROOF. We offer two proofs. The first one is based on direct consideration of the
functional equation and is of a high degree of applicability. The second one, following
Pólya, makes explicit a linear structure present in the problem and leads to more explicit
results.

First proof. The first few coefficients of M are determined by the functional equation
and known (49). Then, by positivity of the functional equation, M(z) dominates coeffi-
cientwise any GF (1 − zM<m(z2)−1, where M<m(z) is the mth truncation of M(z). In
particular, one has the domination relation (use M<2(z) = 1 + z)

M(z) � 1
1 − z − z3

.

Since the rational fraction has a dominant poles at z
.= 0.68232, this implies that the

radius ρ of convergence of M(z) satisfies ρ < 0.69 < 1. In the other direction, since
M(z2) < M(z) for z ∈ (0, ρ), then, one has the numerical inequality

M(z) ≤ 1
1 − zM(z)

, 0 ≤ z < ρ.

This can be used to show that the Catalan generating function C(z) = (1−
√

1 − 4z)/(2z)
is a majorant of M(z) on the interval (0, 1

4 ) and that M(z) exists for z ∈ (0, 1
4 ). In other

words, one has 1
4 ≤ ρ < 0.69. At any rate, the radius of convergence of M is strictly

between 0 and 1.
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� 34. Alcohols and trees. Since M(z) starts as 1+z+z2+· · · while C(z) starts as 1+z+2z2+· · · ,
there is a small interval (0, ε) such that M(z) ≤ C(z). By the functional equation of M(z), one has
M(z) ≤ C(z) for z in the larger interval (0,

√
ε). One can then bootstrap and show that M(z) ≤

C(z) for z ∈ (0, 1
4
). �

Next, as z → ρ−, one must have zM(z2) → 1. Indeed, if this was not the case,
we would have zM(z2) < A < 1 for some A. But then, since ρ2 < ρ, the quantity
(1 − zM(z2))−1 would be analytic at z = ρ, a clear contradiction. Thus, ρ is determined
implicitly by the equation

ρM(ρ2) = 1,

and by monotonicity, there can be only one such solution. Numerically, one can estimate
ρ as the limit of quantities ρm satisfying

m∑
n=0

Mnρ2n+1
m = 1,

together with ρ ∈ [ 1
4 , 0.069]. In each case, only a few of the Mn are needed. One obtains

in this way:

ρ10
.= 0.595, ρ20

.= 0.594756, ρ30
.= 0.59475397, ρ40

.= 0.594753964,

and it is not hard to verify that this provides a geometrically convergent scheme to the limit
ρ

.= 0.59475 39639. (Note: Pólya determined ρ to five decimals by hand!)
The previous discussion also implies that ρ is a pole, which must be simple. Thus

(50) M(z)∼ z → ρK
1

1 − z/ρ
, K :=

1
ρM(ρ2) + 2ρ3M ′(ρ2)

.

The argument shows at the same time that M(z) is meromorphic in |z| <
√

ρ
.= 0.77. That

M(z) is a the only pole on |z| = ρ can be seen from the fact that zM(z 2) = z + z3 + · · ·
is unperiodic in the sense of Chapter V. (We don’t detail the argument here as the property
is also implied by the developments of the second proof.) The translation of the singular
expansion (50) yields the statement.

Second proof. First, a sequence of formal approximants follows from (48) starting
with

1,
1

1 − z
,

1

1 − z

1 − z2

=
1 − z2

1 − z − z2
,

1

1 − z

1 − z2

1 − z4

=
1 − z2 − z4

1 − z − z2 − z4 + z5
.

which permits to compute any number of terms of the series M(z). Closer examination
of (48) suggests to set

M(z) =
ψ(z2)
ψ(z)

,

where

ψ(z) = 1 − z − z2 − z4 + z5 − z8 + z9 + z10 + z17 + z18 + z20 − z21 − z37 − · · ·
Back substitution into (48) yields

ψ(z2)
ψ(z)

=
1

1 − z
ψ(z4)
ψ(z2)

or
ψ(z2)
ψ(z)

=
ψ(z2)

ψ(z2) − zψ(z4)
,

which shows ψ(z) to be a solution of the functional equation

ψ(z) = ψ(z2) − zψ(z4).
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The coefficients of ψ are all in the set {0,−1, +1}, as they satisfy the recurrence

ψ4n = ψ2n, ψ4n+1 = −ψn, ψ4n+2 = ψ2n+1, ψ4n+3 = 0.

Thus, M(z) appears as the quotient of two function, ψ(z 2)/ψ(z); since ψ(z) whose
coefficients are bounded by 1 in absolute value, it is analytic in the unit disk, M(z) is
itself meromorphic in the unit disc. A numerical plot shows that that ψ(z) has its smallest
positive real zero at ρ

.= 0.59475, which is a simple zero of ψ(z) and thus a pole of M(z)
as ψ(ρ2) �= 0. Thus

M(z) ∼ ψ(ρ2)
(z − ρ)ψ′(ρ)

=⇒ Mn ∼ − ψ(ρ2)
ρψ′(ρ)

(
1
ρ

)n

.

Numerical computations then yield Pólya’s estimate. Et voilà! �

The example of Pólya’s alcohols is exemplary, both from a historical point of view
and from a methodological perspective. It demonstrates that quite a lot of information can
be pulled out of a functional equation without solving it. (A very similar situation will
be discussed in Chapter V, see the enumeration of coin fountains.) In passing, we have
made great use of the fact that if f(z) is analytic in |z| < r and some bounds imply the
strict inequalities 0 < r < 1, then one can regard functions like f(z 2), f(z3), and so
on, as “known” since they are analytic in the disc of convergence of f and even beyond,
a situation evocative of our earlier discussion of Pólya operators in Subsection IV. 3.3.
Globally, the lesson is that functional equation, even very complicated ones, can often
be used to bootstrap the local singular behaviour of solutions and one can do so despite
the absence of any explicit solution. Then, the transition from singularities to coefficient
asymptotics is a simple jump.

� 35. An arithmetic exercise Find a characterization of ψn = [zn]ψ(z) based on the binary repre-
sentation of n. Tabulate ψn for all n ∈ (101000, 101000 + 10500), possibly using some compressed
format. Find the asymptotic proportion of the ψn for n ∈ [1 . . N ] that are nonzero. �

IV. 7. Notes

This chapter has been designed to serve as a refresher of basic complex analysis,
with special emphasis on methods relevant for analytic combinatorics. References most
useful for the discussion given in this chapter include the books of Titchmarsh [109] (ori-
ented towards classical analysis), Whittaker and Watson [114] (stressing special functions),
Dieudonné [28] and Knopp [72]. Henrici [66] presents complex analysis under the per-
spective of constructive and numerical methods, a highly valuable point of view for this
book. References dealing specifically with asymptotic analysis are discussed at the end of
the next chapter.

As demonstrated by the first batch of examples sprinkled over this chapter, singulari-
ties provide a royal road to coefficient asymptotics. In this regard, the two main statements
of this chapter are are the theorems relative to the expansion of rational and meromor-
phic functions, Theorems IV.6 and IV.7. They are of course extremely classical (and easy)
results. Issai Schur (1875–1941) is to be counted amongst the very first mathematicians
who recognized the rôle of analytic methods in combinatorial enumerations (Example 4).
This thread was developed by George Pólya in his famous paper of 1937 (see [97, 98]),
which Read in [98, p. 96] describes as a “landmark in the history of combinatorial analy-
sis”. There, Pólya founded at the same time combinatorial chemistry, the enumeration of
objects under group actions, and the complex-asymptotic theory of graphs and trees.
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De Bruijn’s classic booklet [25] is a wonderfully concrete introduction to effective
asymptotic theory, and it contains many examples from discrete mathematics thoroughly
worked out. The state of affairs in 1995 regarding analytic methods in combinatorial enu-
meration is superbly summarized in Odlyzko’s scholarly chapter [89]. Wilf devotes his
Chapter 5 of Generatingfunctionoloy [116] to this question. The books by Hofri [68] and
Szpankowski [108] contain useful accounts in the perspective of analysis of algorithms.
See also our book [100] for a light introduction and the chapter by Vitter and Flajolet [112]
for more on this topic.

Paraphrasing the number theorist Hecke, we may feel confident in stating: A function’s
singularities contain a wealth of asymptotic information on the function’s coefficients; a
generating function contains a wealth of information on the corresponding combinatorial
structures. This philosophy furthermore unites analytic combinatorics and analytic number
theory. It is the purpose of the next four chapters to illustrate it thoroughly by means of a
great variety of combinatorial examples.
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22. T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
23. Louis Comtet, Advanced combinatorics, Reidel, Dordrecht, 1974.
24. N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49 (1946), 758–764, Also in

Indagationes Math. 8, 461–467 (1946).
25. , Asymptotic methods in analysis, Dover, 1981, A reprint of the third North Holland edition, 1970

(first edition, 1958).
26. N. G. de Bruijn, D. E. Knuth, and S. O. Rice, The average height of planted plane trees, Graph Theory and

Computing (R. C. Read, ed.), Academic Press, 1972, pp. 15–22.

127



128 BIBLIOGRAPHY

27. Michael Dellnitz, Oliver Schütze, and Qinghua Zheng, Locating all the zeros of an analytic function in one
complex variable, J. Comput. Appl. Math. 138 (2002), no. 2, 325–333.
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