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Let L denote the positive octant of the regular d-dimensional cubic lattice. Each
vertex (1, J2,- - -, Ja) of Lis adjacent to all vertices of the form (j1, jo, ..., Jx + 1, .., Ja),
1 <k <d. A d-partition of a positive integer n is an assignment of nonnegative
integers n;, ;,....j, to the vertices of L, subject to both an ordering condition

USTRTN > fg?gdnj1,j2,m,jk+1,..~,jd
and a summation condition } 7, ;, ., = n. The summands in the d-partition are
thus nonincreasing in each of the d lattice directions. We agree to suppress all zero
labels. A 1-partition is the same as an ordinary partition; a 2-partition is often called
a plane partition and a 3-partition is often called a solid partition. Three sample
plane partitions of n = 26 are

, (76 44311).
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Let pg(n) denote the number of d-partitions of n. The generating functions [1]

1—|—Zp1(n)atn = 14+x+2024+32° + 524 +72° + 112° + 152" 4+ 2225 + - -
n=1

= TLa-am,

m=1

1+ pa(n)a” = 14z + 32" + 62" + 132" + 242° + 482° + 862" + 1602° + - - -
n=1

= [Ta-am"

m=1
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give rise to well-known asymptotics [2, 3, 4]:

() ~ =
p1(n 3 exp | T 3
~ (0.1443375672...)n " exp ((2.5650996603...)n"*)

C(3)7/36e8'CD) s (23
~ (0.4009988836...)n /% exp ((2.0094456608...)n2/3)

as n — 00, where ((3) = 1.2020569031... is Apéry’s constant [5] and ('(—1) =
—0.1654211437... = 2(—0.0827105718...) = In(0.8475366941...) is closely related to
the Glaisher-Kinkelin constant [6]. Although an infinite product expression for the
generating function [1]

14> ps(n)z” =1+ +4a” 4+ 102° + 262" + 592° + 1402° + 307" + 6842° + - - -

remains unknown, it is conjectured that [7]

C 27 47 3/4
~ Cn” % exp ((1.7898156270...)n°/)

for some constant C' > 0. The evidence for this asymptotic formula includes exact
enumerations (for n < 50) and Monte Carlo simulation. See [8; 9, 10, 11| for more
about planar partitions and [12, 13, 14, 15| for more about solid partitions.

0.1. Hardy-Ramanujan-Rademacher. The Hardy-Ramanujan-Rademacher for-
mula for pi(n) is a spectacular exact result [16, 17, 18, 19, 20, 21, 22, 23, 24

T 1\ %4 A 2 1
pl(n) = 95/433/4 (n - 24) k ‘ ]3/2 n— ﬂ
|22 (cosh(z)  sinh(zx)
I Y Benled _
3/2(7) T < T 2

where
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is the modified Bessel function of order 3/2,

—2minh
Ar(n) = Y. whrexp < A ) ;
ged(h,k)=1,
1<h<k

and wy, , = exp(mis(h,k)) is the unique 24k*" root of unity with Dedekind sum

o= (F-[F-0) (%))

m=1

For example,

Ai(n) =1,  Ay(n) = (1), Ag(n):2cos<w>,

18
Ay(n) = 2cos mdn—1) . As(n) =2cos m(2n = 1) + 2 cos (421) :
8 5 5
Defining
2 1
¢=4/3, An) =4/n BTR

pln) = cX(n),  Ai(n) = Ax(n)/Vk,

we have the following variations:

1 & d lsinh (eA(n) /k:)]

Pl = gy 2 AR T

k=1

a2 o) (22 o) 1)

In contrast, the original Hardy-Ramanujan formula is only an asymptotic expansion:

nn) ~ =3 An)k22 lwl

23/2m £~ dn A(n)

2o i (1- e (112,

k=1

which was later proved to be divergent by Lehmer |25, 26, 27]. Therefore Rademacher’s
contribution was the identification of a small additional term that forces the original
Hardy-Ramanujan series to converge.
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A third formula for py(n):

pi(n) ~ 25/‘23/&(”)73/22 Akf )14 <cAIi ))

k=1

appears in Almkvist [28, 29] and is a consequence of a more general theory (to be dis-
cussed shortly). The only difference between this formula and the Hardy-Ramanujan-
Rademacher formula is that /_3/9 appears rather than I/,. It is believed to be di-
vergent, but this has not yet been proved. For practical purposes, using the modified
Bessel function of order —3/2:

X X

Lyps(e) = %(Smb@ cosh2<a:>>

gives only slightly different numerical results (for large 1/n/k).
Analogous series exist for plane partitions. The terms involve neither exponentials
nor Bessel functions, but rather a new function

00 $2y+771

g(z,v) = ;m

that satisfies the third-order differential equation

xg" (z,7) = (v = 3)g" (z,7) — 29(z,7) =0

(the derivatives are taken with respect to z) as well as

g/($77) = 9(3777 - 1)7 29(3777_'_ 2) + (7 - 1)9(‘%77) = 379(3777 - 1)

A heuristic argument in [28, 29| gives that

pa(n) ~ @1(n) + pa(n) + @s3(n) + - -

as n — 00, where

o) = C(3 MDY 0 ((3)'g (” ¢3), —% - 2/<:>
k=0

and aop, is the coefficient of 2%* in the Maclaurin series of

- ( i (27 + 1)¢(27)¢(25 + 2>x2j) |

j(2m)4+2
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paln) = (~1)°2 23X DY by (ﬁ) g ( e 2k:)

and by, is the coefficient of 42 in the Maclaurin series of
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and so forth. The additional terms @3(n), @w4(n) appear in [28] and ¢s(n), we(n)
appear in [29]. Taken together, these terms provide remarkably accurate estimates of
po(n). It would be good someday to see a rigorous treatment of Almkvist’s theory.
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