
Physica A 282 (2000) 225–246
www.elsevier.com/locate/physa

Fractals from genomes – exact solutions of a
biology-inspired problem

Bai-Lin Haoa;b;∗
aInstitute of Theoretical Physics, P.O. Box 2735, Beijing 100080, People’s Republic of China

bInternational Centre for Theoretical Physics, Trieste 34100, Italy

Received 1 February 2000

Abstract

This is a review of a few recent papers with some new results added. After a brief biolog-
ical introduction a visualization scheme of the string composition of long DNA sequences, in
particular, of bacterial complete genomes, will be described. This scheme leads to a class of
self-similar and self-overlapping fractals in the limit of in�nitely long constituent strings. The
calculation of their exact dimensions and the counting of true and redundant avoided strings at
di�erent string lengths turn out to be one and the same problem. We give exact solution of the
problem using two independent methods: the Goulden–Jackson cluster method in combinatorics
and the method of formal language theory. c© 2000 Elsevier Science B.V. All rights reserved.

PACS: 87.14; 87.23

Keywords: DNA; Fractal; Goulden–Jackson cluster method; Language theory

1. Introduction

The genetic information of all organisms except for the so-called RNA viruses is
encoded in thier DNA sequences. A DNA sequence is a long unbranched polymer
made of four di�erent kinds of monomers – nucleotides. As far as the encoded in-
formation is concerned we can ignore the fact that DNA exists as a double helix of
two “conjugated” strands and treat it as a one-dimensional symbolic sequence made
of four letters a; c; g, and t, representing the nucleotides adenine, cytosine, guanine,
and thymine, respectively. Since the �rst complete genome of a free-living organism,
Mycoplasma genitalium, was sequenced in 1995 the number of available complete

∗ Tel.: +86-10-6254-1807; fax: +86-10-6256-2587.
E-mail address: hao@itp.ac.cn (B.-L. Hao)

0378-4371/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0378 -4371(00)00102 -3

226 B.-L. Hao / Physica A 282 (2000) 225–246

Table 1
Under-represented tetranucleotides seen in the bacterial genomes

Bacteria Avoided strings

Ecoli ctag
Tmar ctag
Bsub ctag
Drad ctag
pNGR ctag
Aful ctag gcgc cgcg
Mthe ctag gcgc cgcg
Tpal ctag ggcc
Aquae ctag tcga gcgc ggcc
Mjan ctag gatc gtac gcgc cgcg
Cpneu ccgg
Hpyl acgt gtac tcga
Hpyl99 acgt gtac tcga
Hinf ggcc ccgg
Bbur cgcg
Synecho gcgc cgcg
Pyro gcgc cgcg
Pabyssi gcgc cgcg
Aero None seen clearly
Mgen None seen clearly
Mpneu None seen clearly
Ctra None seen clearly
Mtub None seen clearly
Rpxx None seen clearly

genomes has been growing steadily. As of 15 December 1999 there were in total
5 354 511 sequences containing 4 653 932 745 letters in the GenBank. 1 Among these
sequences there are more and more complete genomes, including more than 20 bacteria
and a few eukaryotes.
The availability of complete genomes of organisms allows one to ask many questions

of global nature. Perhaps the simplest global question one can imagine consists in
whether there exist short strings made of the four letters that do not appear in a
genome. First of all, this is a question that can be asked only nowadays when complete
genomes are at our disposal, as it does not make sense when dealing with small pieces
of DNA segments. Secondly, as it will become clearer when we introduce some notions
from language theory, there is a deeper reason to ask this question since in a sense a
complete genome de�nes a language which is entirely speci�ed by a minimal set of
“forbidden words”.
The visualization scheme of the string composition of long DNA sequences described

in Ref. [1] inspires a few neat mathematical problems which can be solved precisely
by using at least two di�erent approaches. Brief accounts of these solutions will appear
only in conference proceedings, e.g., Ref. [2]. The data collected in Tables 1 and 2

1 All bacterial genomes mentioned in this paper are fetched by anonymous ftp from http:==ncbi.nlm.
nih.gov. The abbreviations of bacterial names are those of the corresponding subdirectory names in GenBank.

B.-L. Hao / Physica A 282 (2000) 225–246 227

Table 2
The �rst avoided strings in bacterial complete genomes by direct counting (for K0; NK0 and capitalization
see text)

Bacteria K0 NK0 First avoided strings

Ecoli 7 1 gCCTAGG
Synecho 7 1 aCGCGCG
Tmar 7 2 CCTAGGg tacCTAG
Hpyl99 6 1 GTCGAC
Hpyl 6 2 GTCGAC TCGAca
Mjan 6 3 GCGCGC GTCGAC CGATCG
Mtub 7 3 TATAatg tatgtta taaaata
Pabyssi 7 3 GCGCGCg CGCGCGa tGCGCGC
Aquae 7 4 GCGCGCg GCGCGCc cGCGCGC tGCGCGC
Aful 7 4 GCGCGCg cGCGCGC gcaCTAG cACTAGT
Pyro 7 4 GCGCgta tGCGCcg ccgtgcg cgtgcga
Bsub 8 4 ggacCTAG cTCGAccc gcgaccta cgtagggg
Mthe 7 5 gCTAGtc acgCTAG tCTAGcg gCGCGCG

aCGCGCG
Mpneu 7 7 cCGaCGa cgtaggc cgatagg GCCGTCg

aGGGCCC acgaggg taGGCCg
NGR234 7 10 CTAGtag CTAGtat gACTAGT catacta tacacta

tagttag taagtgg ttagtaa tatttag ttattta
Hinf 7 12 gGCCGGC GCCGGCc cggCCGG CCGGggg

CCCGGGg GGGaCCC gGGtCCg GGGtCCC
GGaCCcg gGTCGAC GTCGACg tGTCGAC

Drad 7 13 aCTaAGt atagtat atactaa attagtg
tagTATA tagttag tactaaa tacTTAA
taataat TATActa tattagt ttactaa tTATAat

Mgen 6 14 GGCCgg GGCCtc tcGGCC cgGCGC ccGGCC
cCCGGc CGCGCG gccgtc ggacgc ggtcgg
cctcgg ctcgga tcggcg tccgag

Rpxx 7 71 36 contain GCGC, CGCG, GGCC, CCGG
Tpal 8 118 54 contain CTAG, 15 contain AGCT
Aero 8 137 30 contain AATT
Bbur 7 232 96 contain GCGC, CGCG, GGCC, CCGG
Ctra 8 562 264 contain GCGC, CGCG, GGCC, CCGG

are presented for the �rst time. As language theory approach and the combinatorial
technique used in the work may be quite instructive for other problems we think it
appropriate to present them in some details.

2. The visualization scheme and self-overlapping fractals

Given a bacterial complete genome of length N , i.e., a linear or circular DNA
sequence made of N letters from the alphabet �= {a; c; g; t}, we are interested in the
frequency of appearance of various strings of length K . There are 4K possible di�erent
K-strings so we need that many counters to do the counting. We display the counters
in a �xed-size square frame on a computer screen.

228 B.-L. Hao / Physica A 282 (2000) 225–246

If we present the K = 1 frame as a 2× 2 matrix

M =
[
g c
a t

]
;

then the K = 2 frame is just a direct product of two copies of M :

M (2) =M ⊗M =



gg gc cg cc
ga gt ca ct
ag ac ta tc
aa at ta tt


 :

In general, a K-frame is given by

M (K) =M ⊗M ⊗ · · · ⊗M ;

whose element is expressed via the elements of the 2× 2 matrices as
M (K)
(i1i2···iK); (j1j2···jK) =Mi1j1Mi2j2 · · ·MiKjK :

In order to facilitate the computation, it is better to use binary indices for the matrix
M , i.e., let

M00 = g; M01 = c; M10 = a; M11 = t :

The indices (i1j1) · · · (iK jK) follow from the input sequences s1s2s3 · · · sKsK+1 · · ·.
By sliding a window of width K along the genome we get N or N−K+1 total counts

for a circular or linear sequence. Every segment of length K in the input sequence,
taken as a number in base 4, points to the array element of its own counter. In order
to implement this we introduce a mapping

� : {g; c; a; t} 7→ {00; 01; 10; 11}
for each letter in the input sequence. For the �rst K-string s1s2 · · · sK of the input
sequence we get a number

index =
K−1∑
i=0

4K−i−1�(si) ;

which is nothing but the index used to locate its counter. In order to get the new index
for the next K-string, it is enough to discard the contribution of the �rst letter in the
previous string and take into account the next new letter. This is easily done by using
binary operations.
We display the 4K counters as a 2K × 2K square on the screen. The counter for the

�rst K-string is centered at (x; y):

x =
K−1∑
i=0

2K−i−1(�(si)&E) ;

y =
K−1∑
i=0

2K−i−1(�(si)/1) ;

B.-L. Hao / Physica A 282 (2000) 225–246 229

Fig. 1. Frequency of 8 strings in the complete genome of E. coli. The characteristic patterns are caused
primarily by the under-representation of ctag-tagged strings.

where &E means logical and with the base-4 unit E=01 and /1 means left shift by
one. Again, for the location of the next K-string one needs only to correct for the new
input letter. This leads to a counting algorithm that depends only on the total length
N of the genome but not on the string length K . It saves computer time when K gets
large.
Applying the above algorithm to the K=8 strings in the 4 693 221 letter long genome

of E. coli, we get the picture shown in Fig. 1
We have used a very crude color code of 16 colors, including black and white. As our

attention is concentrated on those strings that do not appear or that are under-represented,
we allocate most of the bright colors to small counts with white color representing
avoided strings. This is a kind of coarse-graining which makes some features of the
�gure more prominent. In particular, the presence of some seemingly regular patterns
in Fig. 1 may be understood as caused by under-representation of strings that contain
ctag as a substring. In Fig. 2 we show the counting frames for K = 6; 7; 8, and 9 in

230 B.-L. Hao / Physica A 282 (2000) 225–246

Fig. 2. Templates of ctag-tagged strings in the K = 6; 7; 8, and 9 frames.

which the locations of strings that contain ctag, or in short, ctag-tagged strings, are
marked with a small rhombic. We see that the basic features remain unchanged while
more and more �ne patterns appear with K increasing. The most clearly seen patterns
in the E. coli portrait are indeed given by these ctag-tagged strings.
Fig. 1 is to be compared with the “portrait” of a sequence (not shown), obtained by

randomizing the E. coli genome, i.e., a sequence with the same number of nucleotides
of each kind but with their positions shu�ed at random. In such a �gure all the
characteristic patterns disappear, only some hardly perceptible contrast due to the c+g
to a+ t ratio not being equal may be noticed under a careful scrutiny.
E. coli is not the only bacterium that does not like the ctag substring. Now 10 bac-

teria are known to have a tendency of having under-represented ctag-tagged strings.
Other bacteria may avoid some other substrings and some may not show any apparent
patterns of avoided substrings. For example, Fig. 3 shows the “portrait” ofMethanococ-
cus jannaschii. Using templates of various tetranucletides similar to those shown in

B.-L. Hao / Physica A 282 (2000) 225–246 231

Fig. 3. Frequency of 8 strings in the complete genome of Methanococcus jannaschii. One can identify at
least �ve sets of under-represented strings tagged by ctag, cgcg, gcgc, gtac, and gatc.

Fig. 2, one can identify at least �ve sets of under-represented strings tagged by ctag,
cgcg, gcgc, gtac, and gatc.
A summary of what has been seen in “portraits” of all available bacterial complete

genomes is given in Table 1. The fact that most of the under-represented tetranu-
cleotides are palindromes, i.e., words that happen to be the same when read in both
direct and reversed directions with the Watson–Crick conjugation being performed at
reverse reading, may hint on their relation with the recognition sites of some restric-
tion enzymes. This has been known to the biologists for some time, see, e.g., Ref. [3].
Our observation shows it is a quite common phenomenon in many bacterial complete
genomes.
It is appropriate to mention the relation of the above visualization scheme to the

“chaos game representation” (CGR [4]) of DNA sequences. In CGR the �nal picture

232 B.-L. Hao / Physica A 282 (2000) 225–246

can only be drawn in black=white and may look quite similar to what one would obtain
in the above visualization scheme after xeroxing the color �gures on a black=white
copying machine. There are, however, several essential di�erences. First, the resolution
is not entirely under control in CGR, as di�erent neighboring nucleotides may be
resolved to a di�erent precision, depending, say, on the direction of the line joining
the nucleotides. Our method works at a �xed resolution – the string length. Second, the
algorithm of CGR looks a bit more complicated: put a; c; g, and t at the four corners of
a square; starting from the center of the square plot the middle point of the straight line
connecting two consecutive nucleotides one by one. The results turn out to be much
the same as simple counting with �xed string length. Third, if one wish to introduce
color in order to add more information one should calculate the density of points in
CGR – an operation that requires big memory and that cannot be realized in a single
pass. Therefore, it seems to us that the proposed visualization scheme makes CGR
obsolete.

3. Fractals derived from bacterial “portraits”

In genomes of organisms there are no fractals in the rigorous mathematical sense.
However, in our visualization scheme fractals may be well de�ned in the non-biological
K → ∞ limit. These fractals may have some suggestion in the portraits of genomes
of real organisms. Looking at the templates shown in Fig. 2, one naturally sees that
what is left in the original framework after deleting all small squares at �ner and �ner
scales that represent all possible ctag-tagged strings does lead to a fractal. What is the
fractal dimension of the complementary pattern de�ned by one or more given tags?
This is not a trivial question as besides obvious self-similarity one has to deal with
self-overlappings of the excluded patterns at di�erent levels.
Let us look at two simple examples.
The �rst example is the case of a one-letter tag, e.g., g-tagged strings. Denote by

aK the number of strings of length K that do not contain the letter g. At the zeroth
level the linear size is �0 = 1, that is the size of the whole square. Since there is only
one empty string which by de�nition does not contain g we have a0 = 1. At the next
K=1 level, the linear size is �1 =1=2 and among the four squares of that size three do
not contain g. Therefore, we have a1 = 3. In general, we have �K =1=2K and aK =3K .
The fractal dimension is

D =− lim
K→∞

log aK
log �K

=
log 3
log 2

: (1)

In this simple example, we might have de�ned a trivial recursion relation for aK ,
namely,

a0 = 1 ;

aK = 3aK−1 :

B.-L. Hao / Physica A 282 (2000) 225–246 233

Fig. 4. A template for gc-tagged strings showing the overlaps at di�erent levels.

Using the recursion relation one may derive a generating function f(s) for all aK :

f(s) =
∞∑
K=0

aKsK =
1

1− 3s ;

where s is an auxiliary variable. In fact, one-letter-tagged strings exclude the largest
number of K-strings, leaving a set of strings over an alphabet of three letters. This is
the meaning of aK =3K and this tells us that for any possible tags the dimensions are
included in between the limits:

log 3
log 2

6Dtag62 :

Next, look at cg-tagged strings. We �rst note that it is a known fact that in many
human genes the dinucleotide cg is less represented than, e.g., the dinucleotide gc.
This leads to a characteristic pattern in the portrait of the DNA sequence that contains
the gene. As seen from the template for the cg tag, shown in Fig. 4, the exclusion
starts at the level K = 2: among the 16 possible dinucleotides only cg is avoided. At
K = 3 level, among the 64 trinucleotides the four combinations xcg; x = {a; c; g; t} are
excluded in addition to the four cgx; x = {a; c; g; t} which have already been excluded
at the K = 2 level. So far, no overlap of exclusions has taken place. However, at the
next K = 4 level, one of the 16 xycg type squares, where x; y = {a; c; g; t}, namely,
cgcg, is immersed in the K = 2 excluded square and should not be doubly counted.
There are eight such overlaps at K =5, 47 at K =6 (not shown in Fig. 4), etc. The

question is how to take into account these overlaps automatically. Suppose we know

234 B.-L. Hao / Physica A 282 (2000) 225–246

Table 3
Generating function and dimension for some single tags

Tag f(s) D Tag f(s) D

g 1
1−3s

log 3
log 2 ggg 1+s+s2

1−3s−3s2−3s3 1.98235

gc 1
1−4s+s2 1.89997 ctag 1

1−4s+s4 1.99429

gg 1+s
1−3s−3s2 1.92269 ggcg 1+s3

1−4s+s3−3s4 1.99438

gct 1
1−4s+s3 1.97652 gcgc 1+s2

1−4s+s2−4s3+s4 1.99463

gcg 1+s2

1−4s+s2−3s3 1.978 gggg 1+s+s2+s3

1−3s−3s2−3s3−3s4 1.99572

how to calculate the generating function

f(s) =
∞∑
K=0

aKsK ; (2)

then the fractal dimension is given by

D =− lim
K→∞

log aK
log �K

= lim
K→∞

log a1=KK
log 2

; (3)

where we have used the fact that �K = 1=2K . According to the Cauchy criterion the
radius of convergence of the series (2) de�ning the generating function is determined
by

lim
K→∞

a1=KK =
1
s0
;

s0 being the minimal module zero of f−1(s). Thus if we know the generating function,
the fractal dimension is given by

D =− log |s0|
log 2

: (4)

Therefore, the problem of calculating the fractal dimensions reduces to that of �nding
the generating functions. This will be treated in Sections 5 and 6 by using two di�erent
methods.
We shall see that for the cg-tagged strings the generating function is

f(s) =
1

1− 4s+ s2 ;

see Table 3. Consequently, s0 = 1=2−
√
3 and D = 1:8999686.

4. Number of true and redundant avoided strings by direct counting

Once we know that there might be avoided and under-represented strings from
the visualization scheme, we can perform a direct identi�cation of avoided strings.

B.-L. Hao / Physica A 282 (2000) 225–246 235

The direct counting has the merit that the string length K is not seriously limited
by the screen resolution. While the maximal K is 9 without scrolling the �gure behind
the screen, in direct counting one can go to longer K . In addition, direct counting does
not miss any avoided strings while naked-eyes could only notice the most prominent
ones. We show some of the results of direct counting in Table 2. In Table 2 K0 is the
minimal string length at which the �rst avoided strings are identi�ed. NK0 is the number
of avoided strings at length K0. In the list of avoided strings palindromic substrings
are capitalized.
It is a remarkable fact that the �rst avoided strings appear at length K0 = 6, 7, or

8 in all bacterial genomes, while statistically signi�cant avoidance can only occur at
much longer length in a random sequence.
The direct counting poses another question, namely, how to count the number of true

and redundant avoided strings. For example, in the genome of E. coli the �rst avoided
string gcctagg is identi�ed at K = 7 in contrast to a random sequence of same length
and nucleotide composition which would have each type of 7 strings appearing about
283 times. At the next length K =8 a total of 173 strings are found absent. However,
among these 173 strings 8 must be the consequence of the lack of gcctagg. Thus there
are 165 true avoided strings at K = 8. Among the 5595 avoided 9 strings 48 are the
consequence of gcctagg being absent, 1166 are redundant being the consequence of
the 165 true avoided 8 strings, only 4381 are true avoided ones at K=9. Among these
4381 strings 2041 do contain the palindromic tetranulcleotide ctag. At K = 10 there
are 114 808 true avoided strings among a total of 150 409, while 256, 6531, and 28
814 are redundant strings caused by the absence of true avoided strings at length 7; 8;
and 9. How to count the number of redundant strings at each K? A simple-minded
estimate shows that a true avoided K-string takes away

E(i) = 4i(i + 1) (5)

(K + i)-strings. We list the �rst E(i) below for later comparison:

i 0 1 2 3 4 5 6 7

E(i) 1 8 48 256 1280 6144 28 672 131 072

This is obtained as follows. At the K + 1 level one can add one letter from the
alphabet either in front or at the end of the avoided K-string, thus there are 4 +
4 redundant avoided strings at length K + 1. At the next length K + 2 there are
three ways to add 2 letters to the avoided K-string to get avoided (K + 2)-strings,
each way having 4× 4 combinations of letters. Continuation of the argument leads to
Eq. (5). However, this is usually an over-estimation, as it does not take into account the
overlaps of letters at the begining and the end of a string. A simple counter-example
being the 4-string gggg: there are only 7 new 5 strings as adding a g to the head or
the tail yields the same string ggggg.
A little re
ection shows that the calculation of the generating function for given

tags and the counting of the true and redundant avoided strings are one and the same

236 B.-L. Hao / Physica A 282 (2000) 225–246

problem. Indeed, both problems need to take into account the overlap of substrings in
making longer strings. The fractals provide a geometric representation of the problem
as each small square corresponds to a well-de�ned type of K-string.

5. Combinatorial solution

We �rst formulate the problem in terms of combinatorics. Let � be an alphabet,
e.g., �= {a; c; g; t}. Denote by �∗ the set of all possible �nite strings made of letters
from the alphabet �, including the empty string. Given a set B ∈ �∗ of “bad” words
that we wish to avoid in all words we are going to use. Let A ∈ �∗ be the set of all
“clean” words that do not contain any member of B as substrings. Denote by aK the
number of clean words of length K .

Problem. Given �∗, B, calculate aK or even better calculate the generating function
(2) that gives aK for all K .

5.1. The Goulden–Jackson cluster method

In combinatorics there exists a powerful method to deal with this kind of problems –
the Goulden–Jackson cluster method [5]. This method has been well described by
Noonan an Zeilberger [6]. However, we explain its basic idea and derivation in our
speci�c context. First, we assign a weight to each word !: it is an auxiliary variable
s raised to the power |!| where |!| is the length of the word !:

weight(!) = s|!| :

If we can calculate the sum of weights over all clean words and reorder the terms
according to the word length:

f(s) =
∑
!∈A

weight(!) =
∞∑
K=0

aKsK ;

our task would be accomplished. Let us extend the summation over clean words to
that over all words∑

!∈A
⇒

∑
!∈�∗

and at the same time multiply each weight(!) by a zero raised to the power of the
number of “bad” factors in !:

weight(!)⇒ weight(!)× 0number of factors of ! that ∈B ;

where by de�nition

00 = 1 ;
0m = 0; m¿1 :

B.-L. Hao / Physica A 282 (2000) 225–246 237

Now let us manipulate the power of zero. Suppose we have a set of 3 objects, say,
S = {a1; a2; a3} and we multiply three zeros

∏
ai∈S 0: We reorganize the elements of S

into subsets:

{�i}= {�; a1; a2; a3; a1a2; a2a3; a3a1; a1a2a3} ;
where � denotes an empty subset. There are 23 =8 subsets. The product of three zeros
may be rewritten as a sum over these 8 subsets:∏

ai∈S
0 =

∏
ai∈S

[1 + (−1)] =
∑
{�i}

(−1)|�| ;

where |�| is the cardinality of the subset �i, i.e., the number of elements in �i. This
is a particular case of so-called Sylvester principle of inclusion–exclusion.
Now we can write

f(s) =
∑
!∈�∗

∑
�∈Bad(!)

(−1)|�|s|!| ;

where Bad(!) denotes the set of bad factors of !. In fact, we have got a new counting
problem for a collection of new subjects (!; �) with a new weight function (−1)|�|s|!|.
These (!; �) may be called tagged words, i.e., a word ! tagged by a factor � ∈
Bad(!). Note that a tag � may be a combination of none or several bad factors of !.
When the tag is empty, � = �, the word is clean.
Denote the set of all tagged words as M= {(!; �)}. The weight of set M remains

f(s). Without loss of generality, we can examine all words in M starting from their
right end. The set M contains an empty word. There are words in M that contain a
single letter from the alphabet that does not form a part of any member of B. There
are words in M that contain a cluster of bad members from B. Thus in set-theoretical
notation we may write

M= {empty word} ∩M� ∩MC ;

where C denotes clusters of bad words.
Written in terms of weight functions, we have

f(s) = 1 + f(s)ds+ f(s)weight(C) :

Therefore, we have

f(s) =
1

q− ds− weight(C) : (6)

In the above formulas d = |�| is the cardinality of the alphabet �. In our case of
nucleotides d = 4. When the set B is empty, i.e., no bad words at all, we have the
trivial result

f(s) =
1

1− 4s : (7)

This is just a pedantic way to say that there are 4K words of length K .

238 B.-L. Hao / Physica A 282 (2000) 225–246

When the set B contains only one word u that cannot make clusters with itself, e.g.,
u= gct, one simply has weight(C) = s|u| and the problem is solved:

f(s) =
1

1− 4s− s|u| : (8)

When the bad word can make clusters with itself, e.g., u = gcg and a cluster being
gcgcg, the situation is more complex and requires the technique described in the next
subsection. Anticipating a few such results, we list all possible single-tag generating
functions in Table 3 up to tag length K = 4.
A related question is the number G(n) of di�erent types of generating functions for

a given tag length n. These numbers turn out to be independent of the size of the
alphabet � as long as there are more than two letters in � [7]:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

G(n) 1 2 3 4 6 8 10 13 17 21 27 30 37 47

In fact, these G(n) are so-called correlations of n as given by the integer sequence
M0555 in Ref. [8], see also Ref. [7].
Applying the Goulden–Jackson cluster method to the case of only one “bad word”

gcctagg in the case of E. coli leads to the following generating function:

f(s) =
1 + s6

1− 4s+ s6 − 3s7 :

The number of redundant avoided strings is obtained by subtracting the above f(s)
from that of the “no-bad-words” case (7):

1
1− 4s − f(s) = s

7 + 8s8 + 48s9 + 256s10 + 1280s11 + 6144s12

+ 28671s13 + 131063s14 + · · · :
These coe�cients are to be compared with the naive estimates given below Eq. (5).
As expected, the deviation appears from the term s13.

5.2. Weight function for clusters

In order to continue with the full representation of the Goulden–Jackson method we
take the newly published complete genome of the hyperthermophilic bacterium Aquifex
aeolicus [9] as a non-trivial example. For this 1 551 335-letter sequence four avoided
strings are identi�ed at string length K = 7:

B= {gcgcgcg; gcgcgca; cgcgcgc; tgcgcgc} : (9)

Since there are signi�cant overlaps among the avoided strings, the naive estimate of
redundant avoided words can hardly work. To treat clusters of bad words we introduce

B.-L. Hao / Physica A 282 (2000) 225–246 239

a few notations. Suppose that there are two bad words u; v ∈ B. De�ne
Head[v] = {proper pre�xes of v} ;
Tail[u] = {proper su�xes of u} ;
Overlap(u; v) = Tail[u] ∩ Head[v] :

Note that the de�nition of Overlap(u; v) is not symmetric. Take for example, u =
gcgcgcg and v= gcgcgca, we have

Head[u] = Head[v] = {g; gc; gcg; gcgc; gcgcg; gcgcgc} ;
Tail[u] = {g; cg; gcg; cgcg; gcgcg; cgcgcg} ;
Tail[v] = {a; ca; gca; cgca; gcgca; cgcgca} ;
Overlap(u; u) = {g; gcg; gcgcg} ;
Overlap(u; v) = {g; gcg; gcgcg} ;
Overlap(v; u) = { }= � ;
Overlap(v; v) = { }= � ;

where � denotes an empty set. If v = xx′ we write v=x = x′. Thus v=gcg = cgca. The
weight of Overlap(u; v) is denoted as

(u : v) =
∑

x∈Overlap(u;v)
weight(v=x) :

Using the two above u; v as example, we have

(u : v) =
∑

x∈{g;gcg;gcgcg}
weight(gcgcgca=x)

= weight(cgcgca) + weight(cgca) + weight(ca)

= s6 + s4 + s2 :

In general, we may have B= {u1; u2; : : : ; uL}. A cluster C may contain a di�erent bad
word at the rightmost end. We write

C =
∑
ui∈B

C[ui] ;

where C[u] is a cluster with u being the rightmost part.
As C[v] may consist of either a single v or several entangled bad words, we again

have a set-theoretical relation:

C[v]⇔ {v}
⋃
u∈B
C[u]Overlap(u; v) :

In terms of weight functions we have

weight(C[v]) =−weight(v)−
∑
u∈B
(u : v)weight(C[u]) :

240 B.-L. Hao / Physica A 282 (2000) 225–246

This is a system of L linear equations, L being the cardinality of the set B, i.e., L= |B|.
The minus sign in the equation comes from the weight (−1)|�| as |�|= 1.
In the case of Aquifex aeolicus L= 4, see (9). The Overlap matrix is

Overlap(ui; uj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




g
gcg
gcgcg







g
gcg
gcgcg







cg
cgcg
cgcgcg


 �

� � � �


g
gcg
gcgcg







g
gcg
gcgcg







c
cgc
cgcgc


 �




g
gcg
gcgcg







g
gcg
gcgcg







c
cgc
cgcgc


 �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:

We have further

(ui : uj) =

∣∣∣∣∣∣∣∣

p p q 0
0 0 0 0
q q p 0
q q p 0

∣∣∣∣∣∣∣∣
;

where

p= s2 + s4 + s6 ;

q= s+ s3 + s5 :

Therefore, the application of the Goulden–Jackson cluster method requires the solution
of a system of four linear equations and leads to the following generating function:

f(s) =
1 + s2 + s4 + s6 + s8 + s10 + s12

1− 4s+ s2 − 4s3 + s4 − 4s5 + s6 − 4s8 − 4s10 − 4s12 :

The numbers of redundant avoided strings are given by

1
1− 4s − f(s) = 4s

7 + 27s8 + 152s9 + 784s10 + 3840s11

+ 18176s12 + 83968s13 + · · · : (10)

The coe�cients coincide with the negative numbers in the last row of Table 5.

6. Language theory solution

Language theory is not just a formal object. Properly applied to the right problem it
may provide computational frameworks and useful constructions to yield quite practical

B.-L. Hao / Physica A 282 (2000) 225–246 241

results. We will make use of a special class of languages, namely, so-called factorizable
language. However, we start with a brief summary of language theory in general.

6.1. Elements of language theory

One again begins with a �nite alphabet, e.g., �={a; c; g; t} and collects all possible
strings made of these letters into an in�nite set �∗, including the empty string �, i.e.,
a string that does not contain any letter.
Any subset L ∈ �∗ is said to be a language over the alphabet �. With such a general

de�nition one cannot get very far. One has to specify how the subset L is formed. This
may be done in many ways. For example,
(i) If the subset L is �nite, one can simply enumerate its elements.
(ii) One can devise some production rules and by applying these rules repetitively to

some initial letters one generates the language. This is by far the most important
and well-studied way of de�ning languages. If the rules are to be applied sequen-
tially it leads to the generative grammar of N. Chomsky. If applied in parallel
this leads to the Lindenmayer or L-systems. Referring the interested readers to
Ref. [10] and literature cited therein, we will not go into details of these generative
grammars.

(iii) For a special class of languages, namely, the factorizable languages, one can de�ne
a language by indicating its set of forbidden words. This is the approach we are
going to follow in this paper.

However, before turning to the factorizable language we formulate a few more notions
which will be needed later.
According to the Chomsky classi�cation the simplest language is called regular

language which may be accepted or recognized by a �nite automaton without any
memory. A �nite automaton has a �nite number of states and it makes transition from
one state to another by looking at an input symbol and a table of transition rules. In
fact, the table of rules de�nes a discrete transfer function. For �nite automata the set
of input symbols is also �nite. There are two kinds of �nite automata: deterministic
and non-deterministic. In a deterministic automaton there is a starting state and the
transition rule from one state to another upon seeing a certain input symbol is unique.
In a non-deterministic automaton one has the freedom to choose the start state and to
decide which rule to use at a transition as there might be more than one rule for one
and the same input symbol. To avoid any confusion we emphasize that deterministic
and non-deterministic automata are entirely equivalent in their capability to de�ne a
regular language. There may be more than one automata that de�ne one and the same
language. Among deterministic automata de�ning a language there is a minimal one,
namely, one with a minimal number of states. This is called a minimal deterministic
�nite automaton of the language and is denoted as minDFA(L).
To determine whether a language is regular or not, sometimes the following Equiva-

lence Relation is quite helpful. Any language L ∈ �∗ introduces an equivalence relation
RL in �∗ with respect to L: any two elements x; y ∈ �∗ are equivalent and denoted

242 B.-L. Hao / Physica A 282 (2000) 225–246

as xRLy if and only if for every z ∈ �∗ both xz and yz either belong to L or not
belong to L. As usual, the index of RL is the number of equivalence classes in �∗ with
respect to L. An equivalence class may be represented by any element of that class,
say, x ∈ L, we will denote its equivalence class by [x].
So far we have used only general notions of language theory. The importance of the

equivalence relation RL is due to the following Myhill-Nerode Theorem (see references
in Ref. [10]):
(i) The language L is regular if and only if the index of RL is �nite.
(ii) The language L being regular implies that minDFA(L) is unique up to an isomor-

phism, namely, renaming of the states.
(iii) The number of states of minDFA(L) is given by the index of RL.

6.2. Factorizable language

Once a language L ∈ �∗ has been de�ned, its complementary set L′ = �∗ − L
contains all words that do not appear in L. A language L is called factorizable if any
substring of a word x ∈ L also belongs to L. In this case the complementary set L′
contains a minimal core L′′ such that although any word x ∈ L′′ is forbidden in L, any
proper substring of x belongs to L. Sometime we simply call L′′ the set of forbidden
words. It is nothing but what Wolfram called Distinct Excluded Blocks (DEBs) in
the grammatical analysis of cellular automata [11]. Owing to the factorizability we can
express the complementary set as L′=�∗L′′�∗. This means that L is entirely determined
by the minimal set of forbidden words or DEBs. Written in set theory terms we have

L= �∗ − �∗L′′�∗ :

There are at least two important classes of factorizable language: dynamical language
and the language de�ned by a complete genome.
It is a natural consequence of dynamical-evolution that symbolic sequences encoun-

tered in symbolic dynamics of dynamical systems come under the de�nition of fac-
torizable language, as any small part of a trajectory is also produced by the same
dynamics. Furthermore, these languages are prolongable as one can always append at
least one letter from the alphabet to make an admissible word longer. Factorizability
and prolongability together make the class of dynamical languages [10]. However, we
will not make use of prolongability in the context of this work.
A second class of factorizable language may be de�ned from a complete genome:

given a complete genome G of an organism, consisting of one or more linear or circular
DNA sequences. One cuts the DNA sequences into all possible subsequences and forms
a language L = sub(G) by collecting these subsequences, including the empty string.
This language is factorizable by de�nition. It is almost prolongable if one does not
extend it beyond the total length of the genome. The factorizability alone is enough
for our purpose.

B.-L. Hao / Physica A 282 (2000) 225–246 243

6.3. Minimal deterministic automaton accepting the Aquifex aeolicus genome

Now we show how language theory works on our familiar example of the Aquifex
aeolicus complete genome. Although there are longer avoided strings we take the set
B given by Eq. (9) to be its set L′′ of forbidden words for the time being. Since B
is �nite, the factorizable language de�ned by B is regular. In order to construct the
automaton we have to know all the equivalence classes of �∗ with respect to L. We
make use of the following mathematical result [10].
Let L be a factorizable language and L′′ be its set of all DEBs. De�ne

V = {v; v is a proper pre�x of some y ∈ L′′} :

Then for each word x ∈ L there exists a string v ∈ V such that is equivalent to x, or,
in our notations, xRLv. In other words, all equivalence classes of �∗ with respect to L
are represented in the set V . Therefore, in order to �nd all equivalence classes of �∗

with respect to L it is enough to work with L′′. We note in passing that [�] is always
an equivalence class, and the complementary set L′ makes another equivalence class.
From the proper su�xes of the avoided strings in B we get the set

V = {g; gc; gcg; gcgc; gcgcg; gcgcgc; c; cg; cgc; cgcg ;
cgcgc; cgcgcg; t; tg; tgc; tgcg; tgcgc; tgcgcg} :

By checking the equivalence relations among these strings only 13 out of 18 are kept
as representatives of each class. Adding the class [L′]⊂�∗ we get the following 14
equivalence classes of �∗:

[�] [g] [gc] [gcg] [gcgc] [gcgcg] [gcgcgc]

[c] [cg] [cgc] [cgcg] [cgcgc] [cgcgcg] [L′] :

We note that the task of “checking the equivalence relations” may seem formidable as
the requirement “for every z ∈ �∗” concerns an in�nite set. However, a little practice
shows that this may be done e�ectively without too much work.
The transfer function is de�ned by

�([xi]; s) = [xis] for xi ∈ V and s ∈ � :

Therefore, our task is to attribute each [xis] to one of the existing equivalence classes.
The discrete transfer function is listed in Table 4. The particular function relation
�([xi]; s) = [L′] leads to a “dead end”.
One can draw the minimal deterministic automaton according to the above trans-

fer function. As it is no longer a planar graph we do not show it here. By counting

244 B.-L. Hao / Physica A 282 (2000) 225–246

Table 4
The transfer function for the minimal deterministic automaton for Aquifex aeolicus

[xi] \ s a c g t

[�] [�] [c] [g] [c]
[g] [�] [gc] [g] [c]
[gc] [�] [c] [gcg] [c]
[gcg] [�] [gcgc] [g] [c]
[gcgc] [�] [c] [gcgcg] [c]
[gcgcg] [�] [gcgcgc] [g] [c]
[gcgcgc] [L′] [c] [L′] [c]
[c] [�] [c] [cg] [c]
[cg] [�] [cgc] [g] [c]
[cgc] [�] [c] [cgcg] [c]
[cgcg] [�] [cgcgc] [g] [c]
[cgcgc] [�] [c] [cgcgcg] [c]
[cgcgcg] [�] [L′] [g] [c]

the number of lines leading from one state to another, we write down an incidence
matrix:

M =




1 1 2
1 1 1 1
1 1 2
1 1 1 1
1 1 2
1 1 1 1

2
1 2 1
1 1 1 1
1 2 1
1 1 1 1
1 2 1
1 1 1




:

The columns and rows of the matrix M are ordered as elements in the �rst column in
Table 4 of the transfer function.
To make connection with the generating function (2) we note that the characteristic

polynomial of M is related to f(1=�):

det(�I −M) = �13f
(
1
�

)
:

Moreover, the sum of elements in the �rst row of the K th power of M is nothing but
aK [11]:

aK =
13∑
j=1

(MK)1j :

B.-L. Hao / Physica A 282 (2000) 225–246 245

Table 5
Elements of the �rst row of MK (shown as columns) and their sum. The negative numbers in the last row
are the di�erence between aK and 4K

K 1 2 3 4 5 6 7 8 9 10 11

1 4 16 64 256 1024 4095 16 378 65 501 261 960 1 047 664
1 2 8 32 128 512 2048 8190 32 756 131 002 523 920
0 1 2 8 32 128 512 2048 8190 32 756 131 002
0 0 1 2 8 32 128 512 2048 8190 32 756
0 0 0 1 2 8 32 128 512 2048 8190
0 0 0 0 1 2 8 32 128 512 2048
0 0 0 0 0 1 2 8 32 128 512
2 7 28 112 448 1792 7168 28 665 114 640 458 483 1 833 624
0 2 7 28 112 448 1792 7168 28 665 114 640 458 483
0 0 2 7 28 112 448 1792 7168 28 665 114 640
0 0 0 2 7 28 112 448 1792 7168 28 665
0 0 0 0 2 7 28 112 448 1792 7168
0 0 0 0 0 2 7 28 112 448 1792

Sum 4 16 64 256 1024 4096 16 380 65 509 261 992 1 047 792 4 190 464

−4 −27 −152 −784 −3840

The summation runs over all equivalence classes except for L′. We list the elements
of the �rst row of MK in columns of Table 5.
The negative numbers in the last row of Table 5 show the di�erence between aK and

4K . They are precisely the coe�cients in the expansion (10) of 1=(1−4s)−f(s), shown
at the end of Section 5.2. We see that the transfer function and the incidence matrix
contain more detailed information on the combinatorial problem than the generating
function alone. The implication of this approach needs to be further elucidated.
In order to avoid any confusion we emphasize that the minimal deterministic au-

tomaton de�ned by the transfer function given in Table 4 accepts a regular language
determined by the set B of four forbidden words. This language is larger than the lan-
guage sub(G) obtained from the complete genome of Aquifex aeolicus. By including
more and more avoided strings into the set B the minimal automaton gets larger but
the language it accepts approaches sub(G) gradually. However, the calculation becomes
tedious.

Acknowledgements

The author would like to thank Hoong-Chien Lee, Shu-yu Zhang, Hui-min Xie,
Zu-guo Yu, and Guo-yi Chen, with whom one or another part of this research was
carried out. He also thanks D. Zeilberger for calling his attention to the Goulden–
Jackson cluster method. The hospitality and support of the Abdus Salam International
Centre for Theoretical Physics, Trieste, where a substantial part of this review was

246 B.-L. Hao / Physica A 282 (2000) 225–246

written, is also gratefully acknowledged. This work was supported in part by the China
Natural Science Fondation and the State Project on Nonlinear Science.

References

[1] B.-L. Hao, H.-C. Lee, S.-Y. Zhang, Chaos, Solitons Fractals 11 (2000) 825–836.
[2] B.-L. Hao, H.-M. Xie, Z.-G. Yu, G.-Y. Chen, Ann. Combin., to appear.
[3] M.S. Gelfand, E.V. Koonin, Nucleic Acids Res. 25 (1997) 2430.
[4] H.J. Je�rey, Nucleic Acids Res. 18 (1990) 2163.
[5] I. Goulden, D.M. Jackson, J. London Math. Soc. 20 (1979) 567.
[6] J. Noonan, D. Zeilberger, The Goulden–Jackson cluster method: extensions, applications and implemen-

tations, downloadable from http:==www.math.temple.edu/ ˜ zeilberg.
[7] L.J. Guibas, A.M. Odlyzko, J. Combin. Theory A 30 (1981) 19.
[8] N.J.A. Sloane, S. Plou�e, The Encyclopedia of Integer Sequences, Academic Press, New York, 1995

and http:==akpublic.research.att.com= ˜ njas=sequences.
[9] G. Deckert et al., Nature 392 (1998) 353.
[10] H.-M. Xie, Grammatical Complexity and One-Dimensional Dynamical Systems, World Scienti�c,

Singapore, 1996.
[11] S. Wolfram, Commun. Math. Phys. 96 (1984) 15.

