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Abstract

Symbolic sequences generated by symbolic dynamics of a dynamical system belong to a
special class of language in which any admissible word is factorisable as well as prolongable.
From a complete genome sequence of an organism, one may also de�ne a factorizable language.
A factorizable language enjoys the nice property that it is entirely determined by the set of
minimal fobidden words or distinct excluded blocks (DEBs). We use this property to calculate
the fractal dimension of patterns related to a visualisation scheme of under-represented strings
in bacterial complete genomes within the limit of in�nitely long strings. The same problem may
be solved by using a purely combinatorial approach. The methods described in this paper may
be applied to other regular fractals with self-similar and self-overlapping structure. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

We start from the following observation.
For those studying high-energy particle physics the six letters

u d c s b t

denote di�erent types of quarks. They are associated with certain fractional charge,
mass, 
avour, charm, and other quantum numbers. However, many more people deal
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with the three letters

p n e

as names of proton, neutron, and electron with de�nite mass, charge, spin, magnetic
momentum, etc. There is no need to know from which three quarks a proton or a
neutron is made. Chemists know well the symbols

H C N O P S · · ·
representing di�erent atoms. They are concerned with the atomic number, ion radius,
chemical valence and a�nity, of the corresponding element. Using these atomic sym-
bols chemists write molecular formulas such as H2O, NO, or CO2. However, when
it comes to biochemistry it is usually not necessary and convenient to write down
explicitly all the 30 odd atoms forming the phosphate, sugar and base parts of a nu-
cleotide. Su�ce it to denote the nucleotides adenine, cytosine, guanine, and thymine
by the four letters a, c, g, t and to remember that when forming a double helix of
DNA a a is associated with a t by two hydrogen bonds (“weak coupling”) while a c
conjugates with a g with three hydrogen bonds (“strong coupling”). A long sequence
of DNA made of millions of a, c, g and t may be denoted by a single symbol in a
“higher”-level analysis.
What is the moral of the observation? In describing Nature, we can only concentrate

on one or another level by ignoring the detailed structure and dynamics in smaller
scales. This is nothing but coarse-graining. Coarse-graining is inevitably associated
with the use of symbols and in many lucky cases these symbols make one-dimensional
sequences. (By the way, “high”-dimensional strings may be treated as one-dimensional
with farther than nearest-neighbor interactions if one con�nes to strings of �nite length.)
These symbolic sequences �t well into the scheme of formal languages where a wealth
of knowledge has been accumulated. In fact, formal languages are not just formal.
They may provide a de�nite framework for comparison or a computation scheme to
solve practical problems.
We will touch on two.

2. Some notions from language theory

In formal language theory, one starts with an alphabet, e.g., �={R; L} in the symbolic
dynamics of unimodal maps or � = {a; c; g; t} for DNA sequences of an organism. 3

Let �∗ denote the collection of all possible strings made of letters from �, including
the empty string �. Any subset L⊂�∗ is called a language over the alphabet �. This
general de�nition of language cannot lead us very far. One must specify how the subset
is formed. To this end, one may devise a generative grammar, i.e., a set of production
rules to generate words in the language by applying the rules to some starting symbols.

3 All genome sequences mentioned in this paper are fetched by anonymous FTP from GenBank maintained
by the National Center for Biotechnology Information at http://ncbi.nlm.nih.gov
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Fig. 1. Relationship of various classes of languages.

Two generative schemes are well-developed: the sequential production of Chomsky and
the parallel production of Lindenmayer. We show their relationship in Fig. 1.
The set L′ = �∗ − L de�nes the complementary language. A language L is a fac-

torizable language if any substring of a word x∈L also belongs to L. A factorizable
language has a minimal set of forbidden words or Distinctive Excluded Blocks [1]
(DEBs) L′′ such that if x∈L′′, then any proper substring of x belongs to L. A factor-
izable language is completely determined by its set of DEBs:

L= �∗ − �∗L′′�∗ :

A prominent example of factorizable language is given by the admissible symbolic
sequences in the symbolic dynamics of a dynamical system, see, e.g., Refs. [2,3].
Another class of factorizable languages may be obtained from a complete genome as
follows. Let G be a complete genome of an organism; it may consist of one or more
linear or circular sequences. All possible substrings of G, including the empty string
� and G itself, obviously form a subset of �∗ and, thus, de�ne a language which is
factorizable by construction.
Any language L⊂�∗ introduces an equivalence relation RL in �∗ with respect to L.

For any pair x; y∈�∗ xRLy i� for each z ∈�∗ either both xz; yz ∈L or both xz; yz 6∈ L.
The number of equivalence classes in �∗ with respect to L de�nes the index of RL,
denoted by index (RL).
An important theorem (Myhill–Nerode) says that L is a regular language i� index (RL)

is �nite and L being regular implies that the minimal deterministic automaton corre-
sponding to L, min DFA(L), is unique up to an isomorphism, i.e., to renaming of the
states. Moreover, the number of states in the min DFA(L) equals to index (RL).
Let L be a factorizable language and L′′ be its set of all DEBs. De�ne a set

V = {v | v is a proper pre�x of some y∈L′′} :
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Fig. 2. Grammatical complexity of symbolic sequences in unimodal maps: left: what was known in 1991;
right: what is known now.

For each word x∈L there exists a string v∈V such that xRLv. In other words, all
equivalence classes of L are represented in the set V . In order to �nd all equivalence
classes of �∗ with respect to L it is enough to start from L′′. In addition, L′ is an
equivalence class of �∗. For two given strings u; v∈V , uRLv i� for each z ∈�∗ uz
contains a DEB as its su�x⇔ vz ∈L′ and vice versa. This statement sets the compu-
tation rule to identify all equivalence classes. Each equivalence class may be named
after a member xi ∈L and be denoted as [xi]. The transfer function between states of
min DFA(L) is de�ned as �([xi]; s) = [xis] for xi ∈L and s∈�.

3. Complexity of symbolic sequences in unimodal maps

Grammatical complexity of symbolic sequences in unimodal maps is shown in
Fig. 2.

4. Visualization of under-represented strings

We start by considering on how to visualize the avoided and under-represented
strings in a bacterial genome whose length is usually the order of a few million letters.
There are 4K di�erent strings of length K made of four letters. In order to check

whether all these strings appear in a genome, we use 4K counters to be visualized as a
2K × 2K square array on a computer screen. These can be realized as a direct product
of K identical 2× 2 matrices:

M (K) =M ⊗M ⊗ · · · ⊗M ;
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where

M =
(
g c
a t

)
:

We call this 2K × 2K square a K-frame. In practice, it is convenient to use binary sub-
scripts for this 2×2 matrix and it is easy to develop an algorithm that depends only on
the total length of the genome but not on the string length K . Put in a frame of �xed
K and described by a color code biased towards small counts, each bacterial genome
shows a distinctive pattern which indicates on absent or under-represented strings
of certain types [4]. For example, many bacteria avoid strings containing the string
ctag. Any string that contains ctag as a substring will be called a ctag-tagged string. If
we mark all ctag-tagged strings in frames of di�erent K , we get pictures as shown in
Fig. 3. The large-scale structure of these pictures persists but more details appear with
growing K . Excluding the area occupied by these tagged strings, one gets a fractal in
the K → ∞ limit. It is natural to ask as what is the dimension of this fractal for a
given tag or for a given set of tags.
In fact, this is the fractal dimension of the complementary set of the tagged strings.

The simplest case is that of g-tagged strings. As the pattern has an apparently self-similar
structure the fractal dimension is easily calculated to be

D =
log 3
log 2

:

Moreover, the fractal dimension of all other cases must lie in between log 3=log 2
and 2. However, the calculation of these dimensions is somewhat tricky as one must
take into account the overlap of patterns precisely. For example the K =∞ frame
with all cg-tagged strings marked is shown in Fig. 4. There is one big shaded square
representing all possible strings with the two leading letters being cg. There are four
middle-size squares coming from strings starting from g, c, a, or t with the next two
letters being gc. There are 16 small squares, 64 tiny squares, etc., whose meaning may
be read o� in a similar manner. However, one of the 16 small squares is contained
in the big square; eight of the tiny squares are contained in the larger ones. At the
next level (not shown), 47 of 256 even tinier squares are located in larger ones. With-
out taking into account these overlaps precisely, the fractal dimension of the limiting
complementary set cannot be calculated.
Now, let aK be the number of all strings of length K that do not contain the given

tag. As the linear size �K in the K-frame is 1=2K , the fractal dimension may be
calculated as

D = lim
K→∞

log aK
−log �K = lim

K→∞
log a1=KK
log 2

:

Suppose the generating function of aK is known:

f(s) =
∞∑
K=0

aKsK ;
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Fig. 3. ctag-tagged strings in K = 6–9 frames.

where s is a complex auxiliary variable, then according to the Cauchy criterion of
convergence we have

lim
K→∞

a1=KK =
1
|s0| ;

where s0 is the minimal positive zero of f−1(s). This �nally determines the fractal
dimension

D =− log |s0|
log 2

:

Before undertaking to calculate the generating function f(s) for various tags we
indicate another related problem, namely, the problem of redundant and true avoided
strings.
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Fig. 4. The pattern of cg-tagged strings showing the overlaps.

Once we know that there are avoided strings in the complete genomes from the
visualization scheme, one can perform a direct search for these strings. The direct
search has the merit of not being signi�cantly limited by the string length K . Take,
for example, the complete genome of E. coli. At K=7 the �rst avoided string gcctagg
is discovered. At the next K = 8 level a total of 173 avoided strings are identi�ed.
However, these 173 strings are not all true avoided strings as some must be the conse-
quence of the absence of the K = 7 string gcctagg. A naive estimate of the redundant
avoided strings without taking into account any possible overlap of substrings would
lead to 4i(i + 1): if there is only one avoided string at the K th level, it would take
away 8, 48, 256, 1280, 6144, 28 672; : : : ; strings at the next K+ i levels. This estimate
works well for E. coli until K=13 when the overlap of the �rst and the last letter g in
the true avoided string gcctagg would show o�. Applying the Goulden–Jackson cluster
method to the case of only one “bad word” gcctagg leads to the following generating
function:

f(s) =
1 + s6

1− 4s+ s6 − 3s7 :
The number of redundant avoided strings are given by

1
1− 4s − f(s) = s

7 + 8s8 + 48s9 + 256s10 + 1280s11

+6144s12 + 28671s13 + 131063s14 + · · · :
The deviation from the naive estimate appears from the term s13.
For a non-trivial example, we consider the newly published complete genome of the

hyperthermophilic bacterium Aquifex aeolicus [5]. For this 155 1335-letter sequence
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four avoided strings are identi�ed at K = 7. They form the set B of “bad words”:

B= {gcgcgcg; gcgcgca; cgcgcgc; tgcgcgc} :

As there are signi�cant overlaps among these strings, the naive estimate of redundant
avoided words can hardly work. The application of the Goulden–Jackson cluster method
requires the solution of a system of four linear equations and leads to the following
generating function:

f(s) =
1 + s2 + s4 + s6 + s8 + s10 + s12

1− 4s+ s2 − 4s3 + s4 − 4s5 + s6 − 4s8 − 4s10 − 4s12 :

The numbers of redundant avoided strings are given by

1
1− 4s − f(s) = 4s

7 + 27s8 + 152s9 + 784s10 + 3840s11

+18176s12 + 83968s13 + · · · :

In what follows, we show that these results may be obtained by an entirely di�erent
method, namely, by making use of formal language theory. For convenience of presen-
tation, we �rst collect a few notions from language theory without proofs. The details
may be found, e.g., in Ref. [2] and references therein.

5. Language theory solution

Now we apply what has just been said to the complete genome of Aquifex aeolicus
with its set B of four avoided strings at length K=7. Although there are longer avoided
strings we take B to be its L′′ for the time being. From the proper su�xes of these
strings we get the set

V =
{g; gc; gcg; gcgc; gcgcg; gcgcgc; c; cg; cgc; cgcg;
cgcgc; cgcgcg; t; tg; tgc; tgcg; tgcgc; tgcgcg} :

By checking the equivalence class of these strings only 13 out of these 18 strings are
kept as representatives of each class. Adding the class [L′]⊂�∗ we get the following
14 equivalence classes of �∗:

[�] [g] [gc] [gcg] [gcgc] [gcgcg] [gcgcgc]

[c] [cg] [cgc] [cgcg] [cgcgc] [cgcgcg] [L′] :

The transfer function �([xi]; s) = [xis], xi ∈V and s∈�, is determined by attributing
[xis] to the existing equivalence classes. They are listed in Table 1. The particular
transfer function �([xi]; s) = [L′] leads to a “dead end”.
One draws the minimal deterministic automaton according to the above transfer

function. As it is no longer a planar graph we do not show it here. By counting the
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Table 1
The transfer function for the minimal deterministic automaton for
Aquifex aeolicus

[xi] \ s a c g t

[�] [�] [c] [g] [c]
[g] [�] [gc] [g] [c]
[gc] [�] [c] [gcg] [c]
[gcg] [�] [gcgc] [g] [c]
[gcgc] [�] [c] [gcgcg] [c]
[gcgcg] [�] [gcgcgc] [g] [c]
[gcgcgc] [L′] [c] [L′] [c]
[c] [�] [c] [cg] [c]
[cg] [�] [cgc] [g] [c]
[cgc] [�] [c] [cgcg] [c]
[cgcg] [�] [cgcgc] [g] [c]
[cgcgc] [�] [c] [cgcgcg] [c]
[cgcgcg] [�] [L′] [g] [c]

number of lines leading from one state to another, we write down an incidence matrix:

M =




1 1 2
1 1 1 1
1 1 2
1 1 1 1
1 1 2
1 1 1 1

2
1 2 1
1 1 1 1
1 2 1
1 1 1 1
1 2 1
1 1 1




:

The columns and rows of the matrix M are ordered as elements in the �rst column in
Table 1 of the transfer function.
To make connection with the generating function

f(s) =
∞∑
0

aKsK ;

obtained by using the Goulden–Jackson cluster method, we note that the characteristic
polynomial of M is related to f(1=�):

det(�I −M) = �13f
(
1
�

)
:
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Table 2
Elements of the �rst rows of MK and their sum

K= 1 2 3 4 5 6 7 8 9 10 11

1 4 16 64 256 1024 4095 16 378 65 501 26 19 60 1 047 664
1 2 8 32 128 512 2048 8190 32 756 131 002 523 920
0 1 2 8 32 128 512 2048 8190 32 756 131 002
0 0 1 2 8 32 128 512 2048 8190 32 756
0 0 0 1 2 8 32 128 512 2048 8190
0 0 0 0 1 2 8 32 128 512 2048
0 0 0 0 0 1 2 8 32 128 512
2 7 28 112 448 1792 7168 28 665 114 640 458 483 1 833 624
0 2 7 28 112 448 1792 7168 28 665 114 640 458 483
0 0 2 7 28 112 448 1792 7168 28 665 114 640
0 0 0 2 7 28 112 448 1792 7168 28 665
0 0 0 0 2 7 28 112 448 1792 7168
0 0 0 0 0 2 7 28 112 448 1792

Sum: 4 16 64 256 1024 4096 16 380 65 509 261 992 1 047 792 4 190 464
−4 −27 −152 −784 −3840

Moreover, the sum of elements in the �rst row of the K th power of M is nothing but
aK [1]:

aK =
13∑
j=1

(MK)1j :

The summation runs over all equivalence classes except for L′. We list the elements
of the �rst row of MK in columns of Table 2.
The negative numbers in the last row of Table 2 show the di�erence of aK and 4K .

They are precisely the coe�cients in the expansion of 1=(1− 4s)−f(s), shown at the
end of Section 6. We see that the transfer function and the incidence matrix contain
more detailed information on the combinatorial problem than the generating function
alone. The consequence of this approach has to be further elucidated in the future.

6. Combinatorial solution

The generating function for the numbers of strings of various length made of the four
letters that do not contain certain designated strings (“bad words” as called in Ref. [6])
may be calculated by using the Goulden–Jackson cluster method [7], well-described by
Noonan and Zeilberger [6]. In particular, the case of a single tag – one “bad word”
only – is easily treated and some of the results are shown in Table 3.
A related question is the number G(n) of di�erent types of generating functions for

a given tag length n. These numbers turn out to be independent of the size of the
alphabet � as long as there are more than two letters in � [8]:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
G(n) 1 2 3 4 6 8 10 13 17 21 27 30 37 47 :
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Table 3
Generating function and dimension for some single tags

Tag f(s) D Tag f(s) D

g 1
1−3s

log 3
log 2 ggg 1+s+s2

1−3s−3s2−3s3 1.98235

gc 1
1−4s+s2 1.89997 ctag 1

1−4s+s4 1.99429

gg 1+s
1−3s−3s2 1.92269 ggcg 1+s3

1−4s+s3−3s4 1.99438

gct 1
1−4s+s3 1.97652 gcgc 1+s2

1−4s+s2−4s3+s4 1.99463

gcg 1+s2

1−4s+s2−3s3 1.978 gggg 1+s+s2+s3

1−3s−3s2−3s3−3s4 1.99572

In fact, these G(n) are the so-called correlations of n as given by the integer sequence
M0555 in Ref. [9], see also Ref. [8].
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