
ar
X

iv
:p

hy
si

cs
/0

60
50

07
v1

  [
ph

ys
ic

s.
hi

st
-p

h]
  3

0 
A

pr
 2

00
6

Singularity Theorems in General Relativity:

Achievements and Open Questions.
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1 Introduction

In this short note, written by a theoretical physicist, not a historian, I would
like to present a brief overview of the acclaimed singularity theorems, which
are often quoted as one of the greatest theoretical accomplishments in Gen-
eral Relativity and Mathematical Physics.

Arguably, the singularity theorems are one of the few, if not the only one,
consequences of Einstein’s greatest theory which was not foreseen, probably
not even suspected, by its founder. Many other consequences came also to a
scientific firm basis only after Einstein’s demise; to mention a few outstanding
examples, let me cite gravitational lensing, gravitational radiation in binary
systems (as in the PSR B1913+16 system), or the variation of frequency in
electromagnetic radiation travelling in a gravity field. All of them, however,
had been explicitly predicted in a way or another by Einstein.

On the contrary, the singularity theorems such as we understand them
now (the result in (Einstein, 1941) is concerned with quite another type
of singularities), the global developments needed for them, and the derived
inferences, were not mentioned, neither directly nor indirectly, in any of
his writings. This was so despite the various clear indications that the ap-
pearance of some kind of “singularity”, or catastrophical behaviour, was a
serious possibility within the orthodox theory. For instance, the Friedman-
Lemâıtre models (Friedman, 1922, 1924; Lemâıtre, 1927), generally accepted
by the 1930’s as providing explanation for the observed galactic (or nebu-
losae) redshifts, contain the famous “creation time” (Friedman’s wording)
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identified by Friedman and Lemâıtre themselves, at which the space-time is
simply destroyed. Or even grosser, the proof by Oppenheimer and Snyder
(Oppenheimer and Snyder, 1939) that the “Schwarzschild surface”—which,
as we know, is not a singularity, but a horizon, see for instance the well-
documented historical review on this subject presented in (Tipler, Clarke and Ellis,
1980)— was reachable and crossable by innocuous models containing realis-
tic matter such as dust. (By the way, this dust eventually ends in a catas-
trophic (real) future singularity.) Not to mention the impressive result found
by Chandrasekhar —to which Eddington opposed furiously— of the upper
mass limit for stars in equilibrium, even when taking into account the quan-
tum effects, implying that stars with a larger mass will inevitably collapse
(Chandrasekhar, 1931).

In spite of all these achievements, as I was saying, Einstein and the ortho-
doxy simply dismissed the catastrophic behaviours (singularities) as either
a mathematical artifact due to the presence of (impossible) exact spherical
symmetry, or as utterly impossible effects, scientifically untenable, obviously
unattainable, beyond the feasibility of the physical world —see e.g. (Einstein,
1939). Of course, this probably is certain in a deep sense, as infinite values of
physical observables must not be accepted and every sensible scientist would
defend similar sentences. However, one must be prepared to probe the limits
of any particular theory, and this was simply not done with General Relativ-
ity at the time. It was necessary to wait for a new generation of physicists
and mathematicians, without the old prejudices and less inhibited, and prob-
ably also less busy with the quantum revolution, who could finally take the
question of the singularities, the gravitational collapse, and the past of the
Universe, seriously within the theory.

Thus, one can say that the singularity theorems are the most genuine
post-Einsteinian content of General Relativity.

1.1 The Raychaudhuri equation

Curiosuly enough, the first result concerning prediction of singularities under
reasonable physical conditions, due to Raychaudhuri, came to light exactly
the same year of Einstein’s decease. In 1955 Raychaudhuri published what
is considered the first singularity theorem, and included a version of the
equation named after him which is the basis of later developments and of all
the singularity theorems (Raychaudhuri, 1955). The Raychaudhuri equation
can be easily derived (see for instance (Dadhich, 2005) in a recent tribute to
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Raychaudhuri), as it has a very simple geometrical interpretation: take the
well-known Ricci identity

(∇µ∇ν −∇ν∇µ)u
α = Rα

ρµνu
ρ (1)

which is mathematically equivalent to the standard definition of the Riemann
tensor

(

∇ ~X∇~Y −∇~Y ∇ ~X −∇[ ~X,~Y ]

)

~Z = R( ~X, ~Y )~Z ∀ ~X, ~Y , ~Z

and contract α with µ in (1), then with uν, to obtain

uν∇µ∇νu
µ − uν∇ν∇µu

µ = Rρνu
ρuν

where Rρν is the Ricci tensor. Reorganizing by parts the first summand on
the lefthand side one derives

uν∇ν∇µu
µ + ∇µuν∇

νuµ −∇µ(uν∇νu
µ) + Rρνu

ρuν = 0 (2)

which is the Raychaudhuri equation. Raychaudhuri’s important contribution
amounts to understanding the physical implications of this relation. Observe
that, in the case that uµ defines a (affinely parametrized) geodesic vector
field, then uν∇νu

µ = 0 and the third term vanishes. The second term can
be rewritten by splitting

∇µuν = Sµν + Aµν

into its symmetric Sµν and antisymmetric Aµν parts, so that

∇µuν∇
νuµ = SµνS

µν − AµνA
µν .

Now the point is to realize that (i) if uµ is time-like (and normalized) or null,
then both SµνS

µν and AµνA
µν are non-negative; and (ii) uµ is proportional

to a gradient (therefore defining orthogonal hypersurfaces) if and only if
Aµν = 0. In summary, for hypersurface-orthogonal geodesic time-like or null
vector fields uµ one has

uν∇ν∇µu
µ = −SµνS

µν − Rρνu
ρuν

so that the sign of the derivative of the divergence ∇µu
µ along these geodesics

is governed by the sign of Rρνu
ρuν. If the latter is non-negative, then the
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former is non-positive. In particular, if the divergence is negative at some
point and Rρνu

ρuν ≥ 0 then necessarily the divergence will reach an infinite
negative value in finite affine parameter (unless all the quantities are zero
everywhere).

If there are physical particles moving along these geodesics, then clearly
a physical singularity is obtained, as the average volume decreases and the
density of particles will be unbounded. This was the situation treated by
Raychaudhuri for the case of irrotational dust. In general, no singularity is
predicted, though, and one only gets a typical caustic along the flow lines
of the congruence defined by uµ. This generic property is usually called the
focusing effect on causal geodesics. For this to take place, of course, one
needs the condition

Rρνu
ρuν ≥ 0 (3)

which is a geometric condition and independent of the particular theory.
However, in General Relativity, one can relate the Ricci tensor to the energy-
momentum tensor Tµν via Einstein’s field equations

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν (4)

where R is the scalar curvature, G is Newton’s gravitational constant, c is
the speed of light in vacuum and Λ the cosmological constant. Thereby,
the condition (3) can be rewritten in terms of physical quantities. This is
why sometimes (3), when valid for all time-like uµ, is called the strong energy
condition (Hawking and Ellis, 1973). One should bear in mind, however, that
this is a condition on the Ricci tensor (a geometrical object) and therefore
it will not always hold: see the discussion in Section 3 below and (Senovilla,
1998a, sect. 6.2).

An important remark of historical importance is that, before 1955, Gödel
wrote his famous paper (Gödel, 1949) in a volume dedicated to Einstein’s
70th anniversary. This paper is considered (see Tipler, Clarke and Ellis,
1980, sect. 3) the genesis of many of the necessary techniques and some
of the global ideas which were used in the path to the singularity theorems,
specially concerning causality theory. For further information the reader is
referred to (Ellis, 1998). However, the subject was not ripe and had to wait,
first, to the contribution by Raychaudhuri, and then, to the imaginative and
fruitful ideas put forward by Roger Penrose in the 1960s.
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2 Remarks on singularities and extensions

The problem of the definition of the concept of singularity in General Relativ-
ity is very difficult indeed, as can be appreciated by reading on its historical
development (Hawking and Ellis, 1973; Tipler, Clarke and Ellis, 1980). The
intuitive ideas are clear: if any physical or geometrical quantity blows up,
this signals a singularity. However, there are problems of two kinds:

• the singular points, by definition, do not belong to the space-time which
is only constituted by regular points. Therefore, one cannot say, in
principle, “when” or “where” is the singularity.

• characterizing the singularities is also difficult, because the divergences
(say) of the curvature tensor can depend on a bad choice of basis, and
even if one uses only curvature invariants, independent of the bases, it
can happen that all of them vanish and still there are singularities.

The second point is a genuine property of Lorentzian geometry, that is, of
the existence of one axis of time of a different nature to the space axes.

Therefore, the only sensible definition with a certain consensus within
the relativity community is by “signalling” the singularities, “pointing at
them” by means of quantities belonging to the space-time exclusively. And
the best and simplest pointers are curves, of course. One can imagine what
happens if a brave traveller approaches a singularity: he/she will disappear
from our world in a finite time. The same, but time-reversal, can be imagined
for the “creation” of the Universe: things suddenly appeared from nowhere
a finite time ago. All in all, it seems reasonable to diagnose the existence
of singularities whenever there are particles (be them real or hypothetical)
which go to, or respectively come from, them and disappear unexpectedly
or, respectively, subito come to existence.

And this is the basic definition of singularity (Geroch, 1968; Hawking and Ellis,
1973), the existence of incomplete and inextensible curves. That is to say,
curves which cannot be extended in a regular manner within the space-time
and do not take all possible values of their canonical parameter. Usually, only
causal (time-like or null) curves are used, but in principle also incomplete
space-like curves define singularities. The curves do not need to be geodesic,
and as a matter of fact there are known examples of geodesically complete
space-times with incomplete time-like curves of everywhere bounded accel-
eration (Geroch, 1968). It must be remarked, however, that all singularity
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theorems prove merely the existence of geodesic incompleteness, which of
course is a sufficient condition for the existence of singularities according to
the definition.

Some fundamental questions, which sometimes are omitted, arise at this
point. How can one give structure and properties to the singularities? What
is the relation between geodesic incompleteness and curvature problems, if
any? Singularities in the above sense clearly reach, or come from, the edge of
space-time. This is some kind of boundary, or margin, which is not part of
the space-time but that, somehow, it is accessible from within it. Thus the
necessity of a rigurous definition of the boundary of a space-time. Given that
a Lorentzian manifold is not a metric space in the usual sense, one cannot
use the traditional completion procedure by means of Cauchy sequences. The
most popular approach in this sense has been the attempt to attach a causal
boundary to the space-time, see (Garćıa-Parrado and Senovilla, 2005) for an
up-to-date review. But this is not exempt of recurrent problems which have
not been completely solved yet.

Furthermore, the existence of incomplete geodesics which are not exten-
sible in a given space-time may indicate not a problem with the curve and
the geometrical properties along it when approaching the edge, but rather
incompleteness of the space-time itself. For instance, flat space-time without
the origin has infinite inextensible incomplete curves. These cases, how-
ever, are to be avoided, as one can easily see that the problem arises due
to the excision of regular points. This is why one usually restricts consid-
erations to inextensible space-times when dealing with singularity theorems
(Hawking and Ellis, 1973). The physical problem, however, is hidden under
the carpet with this attitude because: what are we supposed to do with given
extensible space-times? The answer may seem simple and easy: just extend
it until you cannot extend it anymore. However, this is not so simple for
several reasons (see Senovilla, 1998a, sects. 3 and 7):

• extensions are not obvious, and generally not unique. Usually there are
infinite inequivalent choices.

• not even analytical extensions are unique in general, let alone smooth
extensions.

• it can happen that there are incomplete curves, no curvature problems,
and no possible (regular) extension.
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• sometimes, for a given fixed extensible space-time, there are exten-
sions leading to new extensible space-times, other extensions leading
to singular space-times, and even other extensions which are free of
singularities and inextensible. It may seem obvious that the last choice
would be the preferred one by relativists, but this is simply not the
case —if the singularity-free extension violates a physical condition,
such as causality or energy positivity, then the other extensions will be
chosen—.

• which physical reasons are to be used to discriminate between inequiv-
alent extensions?

As a drastic example of the above, take the traditional case of the Schwarzschild
solution which, as is known, is extensible through the horizon. In textbooks
one usually encounters the unique maximal analytical vacuum extension due
to Kruskal and Szekeres keeping spherical symmetry. However, if one drops
any one of the conditions (vacuum, analyticity) many other maximal ex-
tensions are possible, see e.g. (Senovilla, 1998a) where at least eleven in-
equivalent extensions were explicitly given. This should make plain that the
question of singularities is intimately related to the problem of how, why and
to where a given extensible space-time must be extended.

3 Singularity theorems: Critical appraisal

The first singularity theorem in the modern sense is due to Penrose (Penrose,
1965), who in this seminal paper introduced the fundamental concept of
closed trapped surface and opened up a new avenue of fruitful research. His
main, certainly innovative idea, was to prove null geodesic incompleteness if
certain initial conditions, reasonable for known physical states of collapse,
were given irrespective of any symmetry or similar restrictive properties.

Since then, many singularity theorems have been proven (see Hawking and Ellis,
1973; Senovilla, 1998a), some of them applicable to cosmological situations,
some to star or galaxy collapse, and others to the collision of gravitational
waves. The culmination was the celebrated Hawking-Penrose theorem (Hawking and Penrose,
1970), which since then is the singularity theorem par excellence. However,
all of the singularity theorems share a well-defined skeleton, the very same
pattern. This is, succintly, as follows (Senovilla, 1998a)
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Theorem 1 (Pattern Singularity Theorem) If a space-time of sufficient
differentiability satisfies

1. a condition on the curvature

2. a causality condition

3. and an appropriate initial and/or boundary condition

then there are null or time-like inextensible incomplete geodesics.

I have started by adding explicitly the condition of sufficient differentia-
bility. This is often ignored, but it is important from both the mathematical
and the physical points of view. A breakdown of the differentiability should
not be seen as a true singularity, specially if the problem is mild and the
geodesic curves are continuous. The theorems are valid if the space-time
metric tensor field gµν is of class C2 (twice differentiable with continuity),
but they have not been proven in general if the first derivatives of gµν satisfy
only the Lipshitz condition. This problem is of physical relevance, because
the entire space-time of a star or a galaxy, say, is usually considered to have
two different parts matched together at the surface of the body, and then the
metric tensor is not C2 at this surface: it cannot be, for there must exist a
jump in the matter density which is directly related to the second derivatives
of gµν via equations (4). As an example, the Oppenheimer-Snyder collapsing
model does not satisfy the C2 condition. A list of the very many places where
this condition is used in the singularity theorems can be found in (Senovilla,
1998a, p. 799).

Then there is the “curvature condition”. I have preferred this name rather
than the usual energy and generic condition to stress the fact that this as-
sumption is of a geometric nature, and it is absolutely indispensable: it
enforces the geodesic focusing via the Raychaudhuri equation —and other
similar identities—. The majority of the theorems, specially the stronger
ones, use the condition (3), which is usually called strong energy condition
if it is valid for all time-like uµ, and null convergence condition if it is valid
only for null vectors. The former name is due to the equivalent relation, via
the field equations (4)

Tρνu
ρuν ≥

c4Λ

8πG
−

1

2
T ρ

ρ
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for unit time-like uµ. This involves energy-matter variables. However, this
condition does not have to be satisfied in general by realistic physical fields.
To start with, it depends on the sign of Λ. But furthermore, even if Λ = 0,
the previous condition does not hold in many physical systems, such as for
instance scalar fields (Hawking and Ellis, 1973, p. 95). As a matter of fact,
most of the inflationary cosmological models violate the above condition.
Let us stress that the physically compelling energy condition is the dominant
energy condition (Hawking and Ellis, 1973), but this has in principle nothing
to do with the assumptions of the singularity theorems. In particular, there
are many examples of reasonable singularity-free space-times satisfying the
dominant, but not the strong, energy condition (see e.g. Senovilla, 1998a,
sect.7.3). In my opinion, this is one of the weak points of the singularity
theorems.

The “causality condition” is probably the most reasonable and well-
founded, and perhaps also the less restrictive, condition. There are several ex-
amples of singularity theorems without any causality condition (Hawking and Ellis,
1973, Theorem 4, p. 272) (Maeda and Ishibashi, 1996). The causality condi-
tion is assumed for two types of reasons. Firstly, to prevent the possibility of
avoiding the future, that is to provide a well-defined global time-arrow. This
may seem superfluous, but it is known since the results in (Gödel, 1949) that
there may be closed time-like lines, that is, curves for which the time passes
to the future permanently and nevertheless reach their own past. And sec-
ondly, to ensure the existence of geodesics of maximal proper time between
two events, and therefore geodesics without focal points (Hawking and Ellis,
1973, Prop. 4.5.8).

Recapitulating, the first two conditions in the theorems imply

• the focusing of all geodesics, ergo the existence of caustics and focal
points, due to the curvature condition

• the existence of geodesics of maximal proper time, and therefore nec-
essarily without focal points, joining any two events of the space-time

Obviously, a contradiction starts to glimmer if all geodesics are complete.
There is not such yet, though, and this is because at this stage there is
no finite upper bound for the proper time of selected families of time-like
geodesics (and analogously for null geodesics).

To get the final contradiction one needs to add the third condition. And
this is why the initial/boundary condition is absolutely essential in the the-
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orems. There are several possibilities for this condition, among them (i) an
instant of time at which the whole Universe is strictly expanding, (ii) closed
universes so that they contain space-like compact slices; (iii) the existence of
closed (that is, compact without boundary) trapped surfaces.

This last concept, due to Penrose (Penrose, 1965), has become the most
popular and probably the most important one, specially due to its relevance
an applicability in many other branches of Relativity. Trapped surfaces are
2-dimensional differentiable surfaces (such as a donut’s skin or a sphere) with
a mean curvature vector which is time-like everywhere, or in simpler words,
such that the initial variation of area along any future direction is always
decreasing (or always increasing). An example of a non-compact trapped
surface in flat space-time (in Cartesian coordinates) is given by

et = cosh z, x = const.

There cannot be, however, compact trapped surfaces in flat space-time. An
example of a compact trapped surface is given for instance by any 2-sphere
t =const., x2 + y2 + z2 = R2 =const., in a Friedman model

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

as long as R > 1/|ȧ|, which is always possible.
Whether or not the initial or boundary condition is realistic, or satisfied

by the actual physical systems, is debatable. We will probably find it very
difficult to ascertain if the Universe is spatially finite, or if the whole Universe
is strictly expanding now. There is a wide agreement, however, that it is at
least feasible that in some situations the third condition in the theorems will
hold. For example, given the extremely high degree of isotropy observed
in the cosmic microwave background radiation, one can try to infer that
the Universe resembles a Friedman-Lemâıtre model, thus containing trapped
spheres as the one shown above. Nevertheless, there are several way outs to
this scheme of reasoning, for example a cosmological constant, or deviations
from the model at distances (or redshifts) of the order or higher than the
visible horizon. For a discussion see (Senovilla, 1998a, sects. 6.4 and 7.2).

Let us finally pass to the conclusion of the theorems. In most singularity
theorems this is just the existence of at least one incomplete causal geodesic.
This is very mild, as it can be a mere localized singularity. This leaves one
door open (extensions) and furthermore it may be a very mild singularity. In
addition, the theorems do not say anything, in general, about the situation
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and the character of the singularity. We cannot know whether it is in the
future or past, or whether it will lead to a blow-up of the curvature or not.

In the next section I am going to present a very simple solution of Ein-
stein’s field equations which shows explicitly the need of the “small print”
in the theorems, and that sometimes their assumptions are more demanding
than generally thought.

4 An illustrative singularity-free space-time

Nowadays there are many known singularity-free space-times, some of them
are spatially inhomogeneous universes, others contain a cosmological con-
stant, and there are a wide variety of other types (see Senovilla, 1998a, and
references therein). Perhaps the most famous singularity-free “cosmological
model” was presented in (Senovilla, 1990), because it had some impact on
the scientific community (see e.g. Maddox, 1990) and opened up the door for
many of the rest. The impact was probably due to the general belief that
such a space-time was forbidden by the singularity theorems. But, of course,
this was simply a misunderstanding, and it only meant that we had thought
that the singularity theorems were implying more than they were actually
saying.

The space-time has cylindrical symmetry, and in typical cylindrical coor-
dinates {t, ρ, ϕ, z} its line-element takes the form

ds2 = cosh4(act) cosh2(3aρ)(−c2dt2 + dρ2) +
1

9a2
cosh4(act) cosh−2/3(3aρ) sinh2(3aρ)dϕ2 + cosh−2(act) cosh−2/3(3aρ)dz2

where a > 0 is a constant. This is a solution of the field equations (4) for
Λ = 0 and an energy-momentum tensor of perfect-fluid type

Tµν = ρuµuν + p (gµν + uµuν)

where ρ is the energy density of the fluid given by

8πG

c4
̺ = 15a2 cosh−4(act) cosh−4(3aρ) ,

p its isotropic pressure and

uµ =
(

−c cosh2(act) cosh(3aρ), 0, 0, 0
)

11



defines the unit velocity vector field of the fluid. Observe that uµ is not
geodesic (except at the axis). The fluid has a realistic barotropic equation of
state

p =
1

3
ρ .

This is the canonical equation of state for radiation-dominated matter and
is usually assumed at the early stages of the Universe. Note that the density
and the pressure are regular everywhere, and one can in fact prove that
the space-time is completely free of singularities and geodesically complete
(Chinea, Fernández-Jambrina and Senovilla, 1992).

The space-time satisfies the stronger causality conditions (it is globally
hyperbolic), and also all energy conditions (dominant, strict strong). The
fluid divergence is given by

∇µuµ = 3a
sinh(act)

cosh3(act) cosh(3aρ)
(5)

so that this universe is contracting for half of its history (t < 0) and expanding
for the second half (t > 0), having a rebound at t = 0 which is driven by the
spatial gradient of pressure. Observe that the whole universe is expanding
(that is, ∇µu

µ > 0) everywhere if t > 0, and recall that this was one of the
possibilities we mentioned for the third condition in the singularity theorems:
an instant of time with a strictly expanding whole universe. Thus, how can
this model be geodesically complete and singularity-free?

Well, the precise condition demanded by one of the theorems in globally
hyperbolic space-times is that ∇µu

µ > b > 0 for a constant b. That is,
∇µu

µ has to be bounded from below by a positive constant. But this is not
the case for (5), which is strictly positive everyhwere but not bounded from
below by a positive constant because limρ→∞

∇µu
µ = 0. This minor, subtle,

difference allows for the model to be singularity-free! All other possibilities for
the initial/boundary condition in the several would-be applicable singularity
theorems can be seen to just fail in the model, in a similar manner. For
a complete discussion see (Chinea, Fernández-Jambrina and Senovilla, 1992)
and (Senovilla, 1998a, sect. 7.6). One can also see that the focusing effect
on geodesics takes place fully in this space-time, but nevertheless there is no
problem with the existence of maximal geodesics between any pair of points
(see Senovilla, 1998a, pp. 829-830).

This simple model showed that there exist well-founded, well-behaved
classical models expanding everywhere, satisfying all energy and causality
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conditions, and singularity-free. Of course, the model is not realistic in the
sense that it cannot describe the actual Universe —for instance, the isotropy
of the cosmic background radiation cannot be explained—, but the question
arises of whether or not there is room left over by the singularity theorems
to construct geodesically complete realistic universes.

It should be stressed that this model does not describe a “cylindrical
star”, because the pressure of the fluid does not vanish anywhere. Never-
theless, as can be seen from the previous formulae, for example the energy
density is mainly concentrated in an area around the axis of symmetry, dy-
ing away from it very quickly as ρ increases. This may somehow put some
doubts about the relevance of this type of models for cosmological purposes.
In this sense, there was an interesting contribution by Raychaudhuri himself
(Raychaudhuri, 1998), where he tried to quantify this property in a mathe-
matical condition. Unfortunately, this time he was not completely right (see
Senovilla, 1998b), because he used space-time averages of the physical vari-
ables such as the energy density. But one can easily seen that the vanishing
of such averages is a property shared by the majority of the models, be them
singular or not. However, his work provided some inspiration, and I believe
that the vanishing of the spatial averages of the physical variables is probably
a condition which may allow to distinguish between the singularity-free mod-
els allowed by the singularity theorems and the singular ones. A conjecture
of the singularity-theorem type was put forward in (Senovilla, 1998b) with
this purpose.

All in all, the main conclusion of this contribution is to remind ourselves
that it is still worth to develop further, understand better, and study careful
the singularity theorems, and their consequences for realistic physical sys-
tems.
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and Physics: Kurt Gödel’s Legacy Lectures Notes in Logic 6, Petr Hajek
ed. Berlin: Springer, 34-49

Friedman, Alexander (1922) “Über die Krümmung des Raumes” Zeitschrift
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Garćıa-Parrado, Alfonso and Senovilla, José M.M. (2005), “Causal structures
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