Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik

 $http://www.mathematik.tu-ilmenau.de/Math-Net/index_de.html$

Postfach 10 05 65 D - 98684 Ilmenau Germany

Tel.: 03677/69 3267 Fax: 03677/69 3272 Telex: 33 84 23 tuil d.

email: werner.neundorf@tu-ilmenau.de

Preprint No. M 06/04

 π und e

Werner Neundorf

März 2004

 $^{^{\}ddagger}$ MSC (2000): 11-01, 11A99, 11Y60

Zusammenfassung

Die Kreiszahl π und die Eulersche Zahl e gehören zu den wichtigsten und kompliziertesten Zahlen der Mathematik. Sie haben schon früher die Menschen fasziniert und halten auch heute die Wissenschaftler in ihren Bann. Man kann deshalb schon von einem Phänomen π und e sprechen.

Es gibt richtige Fan-Gemeinden zu Pflege des Erbes der Zahlen sowie zur Gewinnung neuer Informationen, Erkenntnisse und Zusammenhänge über sie. Im Gegensatz zu π ist das Interesse für e doch sichtbar kleiner. Das liegt auch daran, dass es nicht besonders prestigefördernd ist, für die Zahl e möglichst viele Stellen nach dem Komma zu bestimmen und das eigentlich mit einer einfachen Formel bei elementaren Rechenoperationen.

Die ursprüngliche Zuordnung der Zahl π zur elementaren Mathematik und e zur höheren Mathematik ist heute nicht mehr zutreffend.

Anliegen in diesem Preprint ist das Aufzeigen von ganz unterschiedlichen Möglichkeiten und Zugängen zur Berechnung der beiden Zahlen und wie dabei ganz verschiedene und interessante Aspekte der Mathematik zusammenspielen. Aus der immensen Fülle des Angebots, das auch im Internet problemlos auffindbar ist und zur Verfügung steht, lässt sich hier nur eine subjektive Auswahl treffen.

Johann Wolfgang von Goethe

Ich denke immmer, wenn ich einen Druckfehler sehe, es sei etwas Neues erfunden.

Die Wissenschaft wird dadurch sehr zurückgehalten, daß man sich abgibt mit dem was nicht wissenswert, und mit dem was nicht wisbar ist.

Inhaltsverzeichnis

1	Hist	for sches und Wissenwertes über π und e	1
	1.1	Eigenschaften der Zahlen π und e	3
	1.2	Zusammenspiel der Zahlen π und e $\ \ldots$ $\ \ldots$ $\ \ldots$	4
	1.3	Die Irrationalität von π	7
	1.4	Die Irrationalität von e^k	Ĝ
	1.5	Ausgewählte Internetseiten zu den Zahlen π und e	11
2	Die	Kreiszahl π	13
	2.1	Rekursion von Integralen und die Formel von Wallis	13
		2.1.1 Rekursivität von Integralen	13
		2.1.2 Die Formel von Wallis	16
	2.2	Die Formel von Stirling	18
	2.3	Die Arcustangens-Funktion	21
	2.4	Der Integralsinus	23
	2.5	Das Poisson-Integral	27
		2.5.1 Anwendung der Formel von Wallis	27
		2.5.2 Anwendung von Bereichsintegralen	29
	2.6	Die Euler-Funktion	31
	2.7	Elliptische Integrale	33
	2.8	Die Fourier-Reihe	34
	2.9	Die Riemannsche Zeta-Funktion und Euler	36
	2.10	Zahlenreihen	37
	2.11	Numerische Integration der Glockenkurve	38
	2.12	Die Methode von Archimedes	41

		2.12.1 Umfang ein- und umbeschriebener n -Ecke	42
		2.12.2 Fläche ein- und umbeschriebener $n\text{-Ecke}$	48
	2.13	Ein- und Umbeschreibung von Rechtecken	52
	2.14	Die Monte-Carlo-Methode	54
	2.15	Die Leibniz-Reihe	57
	2.16	Ausgewählte Berechnungsformeln für π	58
3	Die	Eulersche Zahl e	71
	3.1	Grenzwertformel und Reihe	71
	3.2	$Zahlenreihen \dots \dots$	72
	3.3	Funktionenreihe	73
	3.4	Ansatz mit Koeffizientenvergleich	74
	3.5	Integration und Rückwärtsrekursion	75
\mathbf{Li}	terat	urverzeichnis	86

Kapitel 1

Historisches und Wissenwertes über π und e

Die Zahl

$$\pi = 3.141592653589793238462643383279502884197169399375...$$
 (1.1)

ist das konstante Verhältnis von Kreisumfang zum Durchmesser.

Man nennt sie auch Ludolfsche Zahl nach dem holländischen Mathematiker Ludolfsvan Ceulen (1540-1610), der sich im Rahmen der Lösung von algebraischen Gleichungen auch mit der näherungsweisen Berechnung von π beschäftigte. Ihre Wurzeln gehen jedoch bis zu den Babyloniern ins 2. Jahrtausend vor unserer Zeitrechnung zurück. Viele stets verbesserte Näherungen der Zahl wurden seitdem gefunden.

Erwähnt werden sollen hier nur $\pi=18(3-2\sqrt{2})$ aus dem indischen Sulvasutras (Seil- oder Schnurregeln) in den Jahren 800 bis 500 v.u.Z., das nämlich Regeln und geometrische Methoden zur Konstruktion von Opferaltären mit Hilfe von Schnüren und damit Versuche eine Kreisflächenberechnung enthält, sowie aus dem heiligen Buch der Jaina Religion um 500 v.u.Z. die Zahl $\pi=\sqrt{10}$. Nicht vergessen darf man natürlich den größten griechischen Mathematiker und Physiker der Antike ARCHIMEDES (ca. 287-212 v.u.Z.), der bei Schülern von Euklides (Euklid, ca. 365-300 v.u.Z.) in Alexandria gelernt hat und später in seine Heimat Syrakus zurückgekehrt ist. Er interpretierte die Kreiszahl als Quotient aus Kreisumfang zum Durchmesser und fand als gute Näherung $3\frac{10}{71} < \pi < 3\frac{1}{7}$.

Inzwischen ist π auf über eine Trillion Dezimalziffern genau bestimmt.

Die Zahl

$$e = 2.718281828459045235360287471352662497757247093699...$$
 (1.2)

wurde zunächst bekannt als Basis des natürlichen Logarithmus $\ln(x)$ benutzt. Dies tat der schottische Lord John Napier (Neper) (1550-1617 in Merchiston Castle bei Edinburgh), der eher durch die Neperschen Rechenstäbe bekannt ist, in seinen Untersuchungen zu Logarithmen und trigonometrischen Funktionen sowie entsprechenden

Tafelwerken Mirifici logarithmorum canonis descriptio (1614) und Mirifici logarithmorum canonis constructio (1620), so dass e auch als Nepersche Zahl bekannt ist.

Anschaulich kann man die Zahl e als sogenannte und ganz spezielle Wachstumsrate einführen.

Dazu betrachtet man die Entwicklung von Kapital bei stetiger Verzinsung. Darunter ist Folgendes zu verstehen. Man stellt sich vor, dass eine Bank 100 Prozent Zinsen gibt, wobei jährlich abgerechnet wird. Nach einem Jahr werden dann aus einem Euro zwei Euro.

Wird jeweils nach einem halben Jahr abgerechnet und werden die Zinsen gleich wieder angelegt, so liefert die Zinseszinsrechnung ein Kapital von

$$\left(1+\frac{1}{2}\right)^2$$

nach einem Jahr. Analog: Wird das Jahr in n gleiche Teile geteilt, so wird aus einem Euro unter Berücksichtigung der Zinseszinsen ein Kapital von

$$\left(1+\frac{1}{n}\right)^n$$

Euro. Die Frage ist dann interessant, ob auf diese Weise ein beliebig hoher Zinsertrag erwirtschaftet werden kann. Überraschenderweise streben die Zahlen $(1 + \frac{1}{n})^n$ aber gegen einen Grenzwert, nämlich gegen die Zahl 2.718 281 828 459 045....

Ihre aktuelle Bezeichnung verdankt sie dem genialen schweizer Mathematiker, Physiker und Astronomen Leonard Euler (1707-1783), mit dem die Mathematik und angrenzende Disziplinen in Sankt Petersburg und Berlin ein Blütezeit erfuhren. Die Eulersche Zahl ist definiert als

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \sum_{n=0}^{\infty} \frac{1}{n!}.$$
 (1.3)

Auf Euler verweisen auch die Eulersche Konstante

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right) = \int_{0}^{1} \left(\frac{1}{1-x} + \frac{1}{\ln(x)} \right) dx = 0.577215664901532...$$
 (1.4)

sowie die Eulerschen Zahlen $E_{2k+1}=0$, $E_0=1$, $E_2=-1$, $E_4=5$, $E_6=-61$,... in der Entwicklung der Funktion $1/\cosh(x)$ in die Maclaurin-Reihe (COLIN MACLAURIN (1698-1746)) (siehe [14])

$$\frac{1}{\cosh(x)} = \sum_{n=0}^{\infty} E_n \frac{x^n}{n!}.$$
(1.5)

1.1 Eigenschaften der Zahlen π und e

Dazu erinnern wir uns kurz an die folgenden Mengen von Zahlen.

 \mathbb{N} natürliche Zahlen $0,1,2,..., \mathbb{N}_{+} = \mathbb{N} \setminus \{0\},$

 $\mathbb{Z} \ \ \text{ganze Zahlen} \qquad \qquad 0,\pm 1,\pm 2,...,p,q,..., \quad \mathbb{Z}_+ = \{1,2,...\},$

 $\mathbb{Q} \ \ \text{rationale Zahlen} \qquad \quad \frac{p}{q}, \ p,q \in \mathbb{Z}, \ q \neq 0,$

 \mathbb{P} irrationale Zahlen $\neq \frac{p}{q}$, z. B. $\sqrt{2}$,

allein die Irrationalität von π^2 zu beweisen.

 \mathbb{R} reelle Zahlen x, y, ...,

 \mathbb{C} komplexe Zahlen z = x + iy, x, y reell,

S algebraische Zahlen Wurzeln der algebraischen Gleichung

 $a_0x^n + a_1x^{n-1} + \dots + a_n = 0$ mit $a_i \in \mathbb{Z}$ oder $a_i \in \mathbb{Q}$,

T transzendente Zahlen keine Wurzeln einer algebraischen Gleichung.

Als Beispiele algebraischer Zahlen findet man zur Gleichung $a_0x + a_1 = 0$, n = 1, die Lösung (rationale Zahl) $x = -a_1/a_0$, oder für $x^2 - 2 = 0$ als eine Lösung (irrationale Zahl) $x = \sqrt{2}$.

Unter den irrationalen Zahlen gibt es noch besondere, eben die transzendenten Zahlen. Dazu gehören z. B. $2^{\sqrt{2}}$, $3^{\sqrt{10}}$, π , e. Potenzen von irrationalen algebraischen Zahlen können rational sein, bei Potenzen von transzendenten Zahlen geht das nicht. JOHANN HEINRICH LAMBERT (1728-1777) zeigte die Irrationalität von π und e, hatte aber schon den Verdacht, dass π nicht Wurzel einer algebraischen Gleichung sein kann. Es war mit den damals zur Verfügung stehenden Methoden extrem schwierig,

Der in Königsberg geborene Mathematiker Christian Goldbach (1690-1764) behauptete, dass er unendlich viele Reihen angeben kann, deren Summe eine transzendente Zahl ist. Also solche nannte er 1729 die Zahl

$$\sum_{n=0}^{\infty} 10^{-2^n} = 0.1 + 0.01 + 0.001 + 0.00000001 + \dots$$
 (1.6)

Jedoch musste man noch lange auf exakte Beweise für die Transzendenz (etwas "Übersinnliches") von Zahlen warten.

Der Franzose Joseph Liouville (1809-1882) hat 1844 die Existenz von transzendenten Zahlen gezeigt und Beispiele angegeben. 1873 bewies sein Landsmann Charles Hermite (1822-1901), das e eine solche ist, neun Jahre später zeigte dies der deutsche Ferdinand Lindemann (1852-1939) für π , was wesentlich schwieriger war. Dabei hat er ein Resultat von Lambert verallgemeinert: e^a , $a \in \mathbb{S}$, $a \neq 0$, kann nicht rational sein. Weil jedoch nach Euler $e^{\pi i} = -1$ ist, ist also πi und somit π transzendent. Danach sind auch die Zahlen der Gestalt e^a mit $a \in \mathbb{S}$ transzendent.

Am weitesten ging 1934 der Russe Aleksandr Osipovich Gelfond (1906-1968) mit dem Nachweis, dass alle Potenzen a^b tranzendent sind für $a,b \in \mathbb{S}$, wobei $a \neq 0, \ a \neq 1$ und b irrational sind.

Aus der Tatsache, dass π eine transzendente Zahl ist, ergibt sich die Nichtausführbarkeit der Quadratur des Kreises mit Zirkel und Lineal.

Beweise, dass die Zahlen π und e nicht rational sind, oder auch ihre Potenzen π^2 , π^3 ,... und e^2 , e^3 , e^4 ,... nicht rational sind, können noch relativ einfach geführt werden. Dabei kann man in manchen Fällen für e^k den Multipliziere-mit-n!-Trick (für beliebiges großes n) anwenden (siehe [1]). So erhält man aus der Annahme, dass $e^k = \frac{p}{q}$, k = 1, 2, 4, und der Reihenentwicklung (1.3) nach Umformung und Multiplikation

$$n!qe = n!p$$
, $n!qe = \frac{n!p}{e}$ bzw. $\frac{n!}{2^{n-1}}qe^2 = \frac{n!}{2^{n-1}}\frac{p}{e^2}$ (1.7)

und Gegenüberstellung der beiden Seiten bald einen Widerspruch.

1.2 Zusammenspiel der Zahlen π und e

Wir notieren einige Basisformeln wie binomische Formel, Fakultät, Binomialkoeffizient, geometrische Reihe, die in Umformungen gelegentlich gebraucht werden.

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

$$2^{n} = (1+1)^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

$$0 = (1-1)^{n} = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots \pm \binom{n}{n}$$

$$2^{n-1} = \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

$$n! = 1 \cdot 2 \cdot \dots \cdot n \quad \text{(Christian Kramp (1760-1826), 1808)}$$

$$(2n)!! = 2 \cdot 4 \cdot \dots \cdot 2n, \quad (2n-1)!! = 1 \cdot 3 \cdot \dots \cdot (2n-1)$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! (n-k)!} = \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{1 \cdot 2 \cdot \dots \cdot k}$$

$$\frac{1-q^{n+1}}{1-q} = 1 + q + q^{2} + \dots + q^{n}, \quad \frac{1}{1-q} = \sum_{n=0}^{\infty} q^{n} \quad \text{für } |q| < 1$$

$$1 = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots$$

$$[x] = \max\{z : z \leq x, z \in \mathbb{Z}\}, \ x \in \mathbb{R} \quad \text{(Gaußsche Klammer)}$$

Einige Beziehungen zwischen π und e findet man in den folgenden Formeln.

$$e^{\pi} - \pi^{e} = 0.681 \dots$$

$$0 = -1 + 1 = \cos(\pm \pi) + i \sin(\pm \pi) + 1 = e^{\pm i \pi} + 1 \text{ (Eulersche Formel)}$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n}$$

$$e\pi^{2} = \int_{0}^{\pi} 2x e^{\cos(2x)} \left[1 - x \sin(2x)\right] dx \tag{1.9}$$

Abb. 1.1 Datei *int*_03.*ps*, Fläche $e\pi^2 = \int_0^{\pi} 2x \, e^{\cos(2x)} \left[1 - x \, \sin(2x)\right] dx$

$$\sqrt{\pi} = \int_{-\infty}^{\infty} e^{-x^2} dx = 2 \int_{0}^{\infty} e^{-x^2} dx \quad \text{(Poisson-Integral)}$$

$$\underbrace{0.5}_{-2} = \underbrace{0.5}_{0} e^{-x^2} dx \quad \text{(Poisson-Integral)}$$

$$\underbrace{0.5}_{0} = \underbrace{0.5}_{0} e^{-x^2} dx \quad \text{(Poisson-Integral)}$$

Abb. 1.2 Datei $int_02.ps$, Fläche $\sqrt{\pi} = \int_{-\infty}^{\infty} e^{-x^2} dx$

Formeln von Srinivasa Ramanujan

$$\pi \approx \frac{3}{\sqrt{67}} \ln(5\,280) = \mathbf{3.141\,592\,652\,9...} \quad \text{(auf 9 Ziffern genau)}$$

$$\pi \approx \frac{3}{\sqrt{163}} \ln(640\,320) = \frac{\ln(640\,320^3)}{\sqrt{163}} = \mathbf{3.141\,592\,653\,589\,793\,016...} \quad (1.11)$$
(auf 16 Ziffern genau)

Aus der Kenntnis der Größe

$$e^{\pi\sqrt{163}} = 262\,537\,412\,640\,768\,743.999\,999\,999\,999\,250\,072\,597...$$

kann man durch Umstellung von $e^{\pi\sqrt{163}}=z,\ z\in\mathbb{Z}_+,$ auf Näherungswerte der Kreiszahl der Form

$$\pi \approx \pi(z) = \frac{\ln(z)}{\sqrt{163}} \tag{1.12}$$

bei vorgegebenen z kommen.

z	$\pi(z) = \ln(z) / \sqrt{163}$	$\pi - \pi(z)$
262537412640768000 $=640320^3$	3.141 592 653 589 793 016 495 888 653 196 723	$\mathcal{O}(10^{-15})$
262 537 412 640 768 700 262 537 412 640 768 740 262 537 412 640 768 743 262 537 412 640 768 744	3.141 592 653 589 793 225 335 577 243 328 598 3.141 592 653 589 793 237 269 273 734 193 260 3.141 592 653 589 793 237 164 300 971 008 110 3.141 592 653 589 793 238 462 643 383 279 726	$\mathcal{O}(10^{-16})$ $\mathcal{O}(10^{-17})$ $\mathcal{O}(10^{-18})$ $\mathcal{O}(10^{-30})$

Tab. 1.1 Näherungswerte $\frac{\ln(z)}{\sqrt{163}}$ und Fehler $\pi - \frac{\ln(z)}{\sqrt{163}}$ für ausgewählte $z \in \mathbb{Z}_+$

Auf Grund der besonderen Situation der Nähe von $e^{\pi\sqrt{163}}$ zu einer ganzen Zahl bemerken wir die sehr gute Approximation im Fall $z=262\,537\,412\,640\,768\,744$. Ein solche Konstellation von Größen hat man selten.

Bilden wir die Differenz $\pi\sqrt{163}-\ln(z)$, so geht in der Genauigkeit ca. eine Zehnerpotenz verloren. Man kann auch die Differenz $e^{\pi\sqrt{163}}-z$ berechnen. Dann sind die obigen Genauigkeiten mit 10^{18} zu multiplizieren.

z	$e^{\pi\sqrt{163}} - z$
262537412640768000 $=640320^3$	743.999 999 999 999 250 072
262 537 412 640 768 700	$43.999999999999250072\dots$
262 537 412 640 768 740	$3.999999999999250072\dots$
262 537 412 640 768 743	$0.999999999999250072\dots$
262 537 412 640 768 744	$-0.000000000000749927\dots$

Tab. 1.2 Wert $e^{\pi\sqrt{163}}$ im Vergleich mit ausgewählten $z\in\mathbb{Z}_+$

1.3 Die Irrationalität von π

Der Beweis geht auf IVAN NIVEN (1947) zurück.

Angenommen, die Zahl π sei rational und $\pi=\frac{p}{q},\ p,q\in\mathbb{Z}_+.$

Wir definieren die zwei Polynome

$$f(x) = \frac{1}{n!} x^{n} q^{n} \left(\frac{p}{q} - x\right)^{n} \ge 0 \quad \text{für } x \in [0, p/q]$$

$$= \frac{x^{n} (p - qx)^{n}}{n!}$$

$$= \frac{x^{n}}{n!} \left[p^{n} - {n \choose 1} p^{n-1} qx + {n \choose 2} p^{n-2} q^{2} x^{2} - \dots + (-1)^{n-1} {n \choose n-1} pq^{n-1} x^{n-1} + (-1)^{n} q^{n} x^{n} \right]$$

$$= \frac{1}{n!} p^{n} x^{n} - \frac{1}{n!} {n \choose 1} p^{n-1} qx^{n+1} + \frac{1}{n!} {n \choose 2} p^{n-2} q^{2} x^{n+2} - \dots$$

$$+ (-1)^{n-1} \frac{1}{n!} {n \choose n-1} pq^{n-1} x^{2n-1} + (-1)^{n} \frac{1}{n!} q^{n} x^{2n}$$

$$(1.13)$$

und mit $f^{(k)}(x) = d^k f(x)/dx^k$

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - f^{(6)}(x) + \dots + (-1)^n f^{(2n)}(x). \tag{1.14}$$

Zur Größe $n \in \mathbb{N}_+$ wird später eine geeignete Annahme getroffen. Es gilt

$$f(p/q - x) = f(x). (1.15)$$

Weiter enthält die Funktion n! f(x) nur ganzzahlige Koeffizienten und Terme mit Potenzen x^k bei $k \ge n$.

Die Funktion f(x) sowie alle ihre Ableitungen $f^{(j)}(x)$, j=1,2,...,2n, haben an der Stelle x=0 ganzzahlige Werte. Es f(0)=0. Für $f^{(j)}(x)$, j=1,2,...,n-1, ist offensichtlich $f^{(j)}(x)=x\,Q(x)$ und $f^{(j)}(0)=0$.

Für j = 0, 1, ..., n gilt

$$f^{(n+j)}(x) = (-1)^{j} \frac{(n+j)!}{n!} {n \choose j} p^{n-j} q^{j} + x Q_{n-j-1}(x), \tag{1.16}$$

wobei $Q_{n-j-1}(x)$, j=0,1,...n-1, ein Polynom vom Grad n-j-1 und speziell $Q_{-1}(x)=0$ ist. Alle Glieder im ersten Summanden, der bei x=0 verbleibt, sind ganzzahlig. Wegen (1.15) ist die Ganzzahligkeit von $f^{(j)}(x)$, j=0,1,...,2n, auch bei $x=\frac{p}{q}$ erfüllt.

Mit elementaren Rechnungen überprüft man die Beziehungen

$$[F'(x)\sin(x) - F(x)\cos(x)]' =$$

$$= F''(x)\sin(x) + F'(x)\cos(x) - F'(x)\cos(x) + F(x)\sin(x)$$

$$= [F''(x) + F(x)]\sin(x)$$

$$= [f^{(2)}(x) - f^{(4)}(x) + f^{(6)}(x) + \dots + (-1)^{n-1}f^{(2n)}(x) +$$

$$f(x) - f^{(2)}(x) + f^{(4)}(x) - f^{(6)}(x) + \dots + (-1)^n f^{(2n)}(x)]\sin(x)$$

$$= f(x)\sin(x)$$
(1.17)

und

$$\int_{0}^{\pi} f(x)\sin(x) dx = \left[F'(x)\sin(x) - F(x)\cos(x)\right]_{0}^{\pi}$$

$$= F(\pi) + F(0).$$
(1.18)

Da alle $f^{(j)}(0)$ und $f^{(j)}(\frac{p}{q})=f^{(j)}(\pi)$ ganzzahlig sind, ist der Ausdruck $F(\pi)+F(0)$ ebenfalls eine ganze Zahl.

Aber für $0 < x < \pi$ gilt

$$0 < f(x)\sin(x) \le f(x) \le \max_{0 \le x \le \pi} \frac{x^n (p - qx)^n}{n!}$$

$$= \frac{1}{n!} \max_{0 \le x \le \pi} x^n p^n \left(1 - \frac{q}{p}x\right)^n$$

$$= \frac{1}{n!} \max_{0 \le x \le \pi} x^n p^n \left(1 - \frac{x}{\pi}\right)^n$$

$$= \frac{p^n}{\pi^n n!} \max_{0 \le x \le \pi} [x(\pi - x)]^n, \quad x(\pi - x) \le \pi^2 \qquad (1.19)$$

$$\le \frac{p^n}{\pi^n n!} \left[\frac{\pi}{2} \left(\pi - \frac{\pi}{2}\right)\right]^n, \quad x(\pi - x) \le \frac{\pi}{2} \left(\pi - \frac{\pi}{2}\right)$$

$$= \frac{p^n}{\pi^n n!} \frac{\pi^{2n}}{2^{2n}}$$

$$= \frac{p^n \pi^n}{2^{2n} n!}.$$

Somit ist das Integral (1.18) positiv, jedoch beliebig klein für hinreichend großes n. Das heißt, das Ergebnis (1.18) ist falsch, und damit auch unsere Annahme, dass π rational sei.

1.4 Die Irrationalität von e^k

(1) Der Beweis, dass die Eulersche Zahl e irrational ist, ist klassich und einfach. So erhält man aus der Annahme $e = \frac{p}{q}$ und der Reihenentwicklung (1.3) nach Multiplikation mit n!, $n \in \mathbb{N}$, und den Umformungen

$$p = qe,$$

$$n!p = n!qe$$

$$= n!q \left[\left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) + \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots \right) \right]$$

$$= \underbrace{q \left(n! + \frac{n!}{1!} + \frac{n!}{2!} + \dots + \frac{n!}{n!} \right)}_{\text{ganzzahlig}} + q \left(\frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \dots \right).$$

Der zweite Summand liegt im Intervall $(\frac{q}{n+1}, \frac{q}{n})$ und beträgt ungefähr $\frac{q}{n}$, wie man aus dem Vergleich mit einer geometrischen Reihe sieht.

$$\frac{1}{n+1} < \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \ldots < \frac{1}{n+1} + \frac{1}{(n+1)^2} + \ldots = \frac{1}{n}.$$

Damit kann die rechte Seite für hinreichend großes n keine ganze Zahl sein und man hat den Widerspruch.

(2) Die Irrationalität von e^2 ist eine stärkere Aussage, denn daraus folgt, dass e irrational ist.

Man nimmt wiederum an, dass $e^2 = \frac{p}{q}$, $p, q \in \mathbb{Z}_+$.

Mit den Reihenentwicklungen für e und e^{-1} sowie nach Multiplikation mit n!, $n \in \mathbb{N}$, macht man die folgenden Umformungen.

$$e^{2} = \frac{p}{q},$$

$$n!pe^{-1} = n!qe$$

$$n!p \left[\left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{(-1)^{n}}{n!} \right) + \left(\frac{(-1)^{n+1}}{(n+1)!} - \frac{(-1)^{n+1}}{(n+2)!} + \dots \right) \right]$$

$$= n!q \left[\left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) + \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots \right) \right]$$

$$\underbrace{p \left(n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + \frac{(-1)^{n} n!}{n!} \right)}_{= g_{1} \text{ ganzzahlig}} + p(-1)^{n+1} n! \left(\frac{1}{(n+1)!} - \frac{1}{(n+2)!} + \dots \right)$$

$$= q_{2} \text{ ganzzahlig}$$

$$= \underbrace{q \left(n! + \frac{n!}{1!} + \frac{n!}{2!} + \dots + \frac{n!}{n!} \right)}_{= g_{2} \text{ ganzzahlig}} + qn! \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots \right).$$

Wenn n gerade und hinreichend groß ist, gilt $g_1 = g_2$ und beide Reste r_i sind betragsmäßig kleiner als Eins. Der Rest

$$r_2 = qn! \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots \right) \approx \frac{q}{n}$$

ist positiv, aber der andere Rest

$$r_1 = p(-1)^{n+1} n! \left(\frac{1}{(n+1)!} - \frac{1}{(n+2)!} + \dots \right) \approx -\frac{p}{n}$$

negativ. Damit können beide Seiten nicht gleich sein und unsere Annahme ist falsch.

(3) Etwas aufwendiger ist der Nachweis der Irrationalität von e^4 .

Der Multipliziere-mit-n!-Trick mit der Gleichung $pe^{-2}=qe^2$ bringt nichts, denn die Summe der restlichen Terme wird rechts ungefähr $q^{\frac{2^{n+1}}{n+1}}$ sein und links $p(-1)^{n\frac{2^{n+1}}{n+1}}$. Beides wird für großes n also sehr groß sein.

Die neue Strategie ist:

- man arbeitet mit $n = 2^m \gg 1$,
- man multipliziert beidseitig mit $\frac{n!}{2^{n-1}}$.

Dann brauchen wir eine kleine Hilfsaussage.

Für eine Zahl $n \in \mathbb{N}_+$ enthält n! den Primfaktor 2 höchsten n-1 Mal, und genau dann n-1 Mal, wenn $n=2^m$ ist.

Nachweis: $\left[\frac{n}{2}\right]$ der Faktoren von n! sind gerade und damit durch 2 teilbar, $\left[\frac{n}{4}\right]$ von ihnen sind durch 4 teilbar, usw. Wenn 2^r die größte Zweierpotenz mit $2^r \leq n$ ist, so enthält n! den Primfaktor 2 also genau

$$\left[\frac{n}{2}\right] + \left[\frac{n}{4}\right] + \dots + \left[\frac{n}{2^r}\right] \le \frac{n}{2} + \frac{n}{4} + \dots + \frac{n}{2^r} = n\left(1 - \frac{1}{2^r}\right) \le n - 1$$

Mal, mit Gleichheit in beiden Ungleichungen für $n=2^r$.

Zurück zu $pe^{-2}=qe^2$ und zur Multiplikation mit $\frac{n!}{2^{n-1}}\gg 1$ bei $n=2^m.$

$$\frac{p \, n!}{2^{n-1}} \left[\left(1 - \frac{2}{1!} + \frac{2^2}{2!} - \dots + \frac{(-1)^n 2^n}{n!} \right) + \left(\frac{(-1)^{n+1} 2^{n+1}}{(n+1)!} - \frac{(-1)^{n+1} 2^{n+2}}{(n+2)!} + \dots \right) \right] \\
= \frac{q \, n!}{2^{n-1}} \left[\left(1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} \right) + \left(\frac{2^{n+1}}{(n+1)!} + \frac{2^{n+2}}{(n+2)!} + \dots \right) \right] \\
\underbrace{\frac{p \, n!}{2^{n-1}} \left(1 - \frac{2}{1!} + \frac{2^2}{2!} - \dots + \frac{(-1)^n 2^n}{n!} \right) + (-1)^{n+1} \frac{p \, n!}{2^{n-1}} \left(\frac{2^{n+1}}{(n+1)!} - \frac{2^{n+2}}{(n+2)!} + \dots \right) (1.22) \\
= g_1 \text{ ganzzahlig} \\
= \underbrace{\frac{q \, n!}{2^{n-1}} \left(1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} \right) + \frac{q \, n!}{2^{n-1}} \left(\frac{2^{n+1}}{(n+1)!} + \frac{2^{n+2}}{(n+2)!} + \dots \right) . \\
= g_2 \text{ ganzzahlig}$$

Die Ganzzahligkeit von g_i ergibt sich aus der seiner Summanden.

Für r=0 ist das trivial, bei $0< r\le n=2^m$ folgt dies aus $n!=2^{n-1}k,\ r=2^{r'-1}l,\ r'\le r$ und l|k gemäß

$$\frac{n!}{2^{n-1}} \frac{2^r}{r!} = \frac{2^{n-1} k}{2^{n-1}} \frac{2^r}{2^{r'-1} l} = 2^{r-r'+1} \frac{k}{l}.$$

Für r > 0 sind die Summanden sogar gerade.

Nun vergleichen wir den Rest beider Reihen. Der Rest auf der linken Seite ist

$$r_1 = -p\left(\frac{2^2}{n+1} - \frac{2^3}{(n+1)(n+2)} + -\dots\right) \approx -\frac{4p}{n+1} \in (-1,0),$$

rechts haben wir

$$r_2 = q\left(\frac{2^2}{n+1} + \frac{2^3}{(n+1)(n+2)} + \ldots\right) \approx \frac{4q}{n+1} \in (0,1),$$

wie man durch Vergleich mit entsprechenden geometrischen Reihen sieht. Damit können aber beide Seiten nicht gleich sein - Widerspruch.

Die Tranzendenz einer Zahl x bedeutet letztendlich, dass die Zahl irrational ist und mit mir auch alle ihre Potenzen x^k .

Damit kann x^k keine Lösung einer algebraischen Gleichung sein.

1.5 Ausgewählte Internetseiten zu den Zahlen π und e

The π Pages

www.cecm.sfu.ca www.cecm.sfu.ca/pi/pi.html

The Life of π : History and Computation (J. M. AND P. B. BORWEIN) www.cecm.sfu.ca/personal/jborwein/pi_cover.html

- π Story the history of the computation of π www.cecm.sfu.ca/projects/ISC/Pihistory.html
- π Records current records of computation www.cecm.sfu.ca/projects/ISC/records.html
- π People involved in the computation of π www.cecm.sfu.ca/projects/ISC/people.html
- π Art www.cecm.sfu.ca/pi/pideyves.gif
- π Formulas

www.cecm.sfu.ca/pi/formulas.ps

Berechnung von π

www.uni-leipzig. $de/\sim sma/pi$ _einfuehrung/

Die Eulersche Zahl e

 $www.mathematik.de/04information/s4_2/zahlen/lk_e.htm$

The MacTutor History of Mathematics archive and website at the University of St.

Andrews Scotland

www-history.mcs.st-andrews.ac.uk/history/index.html

Simon M. Plouffe Home page

 $www.cecm.sfu.ca/\sim plouffe$

Recognizing Numerical Constants by David H. Bailey and Simon M. Plouffe www.cecm.sfu.ca/organics/papers/bailey/

Simon M. Plouffe constant

www.mathsoft.com/asolve/constant/table.html

The miraculous Bailey-Borwein-Plouffe π Algorithm www.mathsoft.com/asolve/plouffe/plouffe.html

David H. Bailey on π

www.lbl.gov/wonder/bailey.html

The favorite mathematical constants by Steve Finch pauillac.inria.fr/algo/bsolve/constant/constant.html

From Number to Formula

 $www.maa.org/mathland/mathland_11_11.html$

A Passion for π by Ivars Peterson

www.maa.org/mathland/mathland_3_11.html

 π : A 2000-Year Search Changes Direction by Stan Wagon and Victor Adamchik $www.wri.com/{\sim}victor/articles/pi/pi.html$

Mathworld Constants

www.mathworld/wolfram.com/topics/Constants.html

Mathematicians

dir.yahoo.com/Science/Mathematics/Mathematicians $www-groups.dcs.st-and.ac.uk/\sim history/Indexes/A.html$

Kapitel 2

Die Kreiszahl π

Kommen wir zu einigen Formeln für π und Näherungsverfahren zu seiner Berechnung.

2.1 Rekursion von Integralen und die Formel von Wallis

Wir verwenden direkte Rekursivität von Integralen, um daraus eine Berechnungsvorschrift für π zu finden.

2.1.1 Rekursivität von Integralen

Wir betrachten zunächst die unbestimmten Integrale

$$I_n = \int \sin^n(x) \, dx, \quad n \ge 2, \tag{2.1}$$

und

$$J_n = \int \cos^n(x) \, dx, \quad n \ge 2. \tag{2.2}$$

Durch partielle Integration

$$\int uv' = uv - \int u'v$$

bei Vernächlässigung der Integrationskonstanten und Verwendung bekannter trigonometrischer Formeln erhält man dazu direkte lineare Rekursionsformeln.

$$I_{n} = \int \underbrace{\sin^{n-1}(x)}_{u} \underbrace{\sin(x)}_{v'} dx$$

$$= -\sin^{n-1}(x) \cos(x) - \int (n-1) \sin^{n-2}(x) \cos(x) (-\cos(x)) dx$$

$$= -\sin^{n-1}(x) \cos(x) + (n-1) \int \sin^{n-2}(x) (1 - \sin^{2}(x)) dx$$

$$= -\sin^{n-1}(x) \cos(x) + (n-1) \int \sin^{n-2}(x) dx - (n-1) \underbrace{\int \sin^{n}(x) dx}_{= I_{n}},$$

$$nI_{n} = -\sin^{n-1}(x) \cos(x) + (n-1)I_{n-2},$$

$$I_{n} = -\frac{1}{n} \sin^{n-1}(x) \cos(x) + \frac{n-1}{n} I_{n-2}, \quad n = 1, 2, 3, ...,$$

$$\text{wobei } I_{-1} = 0,$$

$$I_{0} = x,$$

$$I_{1} = -\cos(x),$$

$$I_{2} = \frac{1}{2}(x - \sin(x) \cos(x)).$$

$$(2.3)$$

Analog findet man

$$J_{n} = \frac{1}{n} \cos^{n-1}(x) \sin(x) + \frac{n-1}{n} J_{n-2}, \quad n = 1, 2, 3, ...,$$
wobei $J_{-1} = 0,$

$$J_{0} = x,$$

$$J_{1} = \sin(x),$$

$$J_{2} = \frac{1}{2}(x + \sin(x)\cos(x)).$$
(2.4)

Damit gilt natürlich auch

$$I_{2n} = \int \sin^{2n}(x) dx = -\frac{1}{2n} \sin^{2n-1}(x) \cos(x) + \frac{2n-1}{2n} I_{2n-2},$$

$$J_{2n} = \int \cos^{2n}(x) dx = \frac{1}{2n} \cos^{2n-1}(x) \sin(x) + \frac{2n-1}{2n} J_{2n-2},$$
(2.5)

und für das bestimmte Integral dann

$$\hat{I}_{2n} = \int_{0}^{\pi/2} \sin^{2n}(x) dx \to 0 \quad \text{für } n \to \infty$$

$$= \left[-\frac{1}{2n} \sin^{2n-1}(x) \cos(x) \right]_{0}^{\pi/2} + \frac{2n-1}{2n} \hat{I}_{2n-2}$$

$$= \frac{2n-1}{2n} \hat{I}_{2n-2}$$

$$= \frac{2n-1}{2n} \frac{2n-3}{2n-2} \hat{I}_{2n-4}$$

$$= \frac{2n-1}{2n} \frac{2n-3}{2n-2} \cdot \dots \cdot \frac{1}{2} \hat{I}_{0}$$

$$= \frac{(2n-1)(2n-3) \cdot \dots \cdot 1}{2n(2n-2) \cdot \dots \cdot 2} \frac{\pi}{2}$$

$$= \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}.$$
(2.6)

Genauso verfahren wir bei

$$\hat{I}_{2n+1} = \int_{0}^{\pi/2} \sin^{2n+1}(x) dx
= \left[-\frac{1}{2n+1} \sin^{2n}(x) \cos(x) \right]_{0}^{\pi/2} + \frac{2n}{2n+1} \hat{I}_{2n-1}
= \frac{2n}{2n+1} \hat{I}_{2n-1}
= \frac{2n}{2n+1} \frac{2n-2}{2n-1} \hat{I}_{2n-3}
= \frac{2n}{2n+1} \frac{2n-2}{2n-1} \cdot \dots \cdot \frac{2}{3} \hat{I}_{1}
= \frac{2n(2n-2) \cdot \dots \cdot 2}{(2n+1)(2n-1) \cdot \dots \cdot 1} \cdot 1
= \frac{(2n)!!}{(2n+1)!!}.$$
(2.7)

Wegen der Flächengleichheit gilt $\hat{J}_{2n} = \hat{I}_{2n}$ und $\hat{J}_{2n+1} = \hat{I}_{2n+1}$.

Um auf eine Formel für π zu kommen, muss man, wie man sieht, die Integrale \hat{I}_{2n} und \hat{I}_{2n+1} miteinander vergleichen.

2.1.2 Die Formel von Wallis

Man erhält mit der Eigenschaft der sin-Funktion im Intervall $[0, \pi/2]$ und mit (2.7) folgende Abschätzungen.

$$0 \leq x \leq \frac{\pi}{2},$$

$$0 \leq \sin(x) \leq 1,$$

$$0 \leq \sin^{2n+1}(x) \leq \sin^{2n}(x) \leq \sin^{2n-1}(x) \leq 1,$$

$$0 < \int_{0}^{\pi/2} \sin^{2n+1}(x) dx \leq \int_{0}^{\pi/2} \sin^{2n}(x) dx \leq \int_{0}^{\pi/2} \sin^{2n-1}(x) dx \leq \frac{\pi}{2},$$

$$0 < \hat{I}_{2n+1} \leq \hat{I}_{2n} \leq \hat{I}_{2n-1} \leq \frac{\pi}{2}$$

$$0 < 1 \leq \frac{\hat{I}_{2n}}{\hat{I}_{2n+1}} \leq \frac{\hat{I}_{2n-1}}{\hat{I}_{2n+1}} \leq \frac{\pi/2}{\hat{I}_{2n+1}},$$

$$0 < 1 \leq \frac{\hat{I}_{2n}}{\hat{I}_{2n+1}} \leq \frac{(2n-2)!!(2n+1)!!}{(2n-1)!!(2n)!!} = \frac{2n+1}{2n} \leq \frac{\pi/2}{\hat{I}_{2n+1}},$$

also

$$1 \le \frac{\hat{I}_{2n}}{\hat{I}_{2n+1}} \le \frac{2n+1}{2n}. \tag{2.8}$$

Im Grenzübergang $n \to \infty$ folgt daraus

$$1 = \lim_{n \to \infty} \frac{\hat{I}_{2n}}{\hat{I}_{2n+1}}$$

und das heißt

$$1 = \lim_{n \to \infty} \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} \frac{(2n+1)!!}{(2n)!!}$$

$$= \lim_{n \to \infty} \frac{\pi}{2} \frac{[(2n-1)!!]^2 (2n+1)}{[(2n)!!]^2}$$

$$= \lim_{n \to \infty} \frac{\pi}{2} (2n+1) \left[\frac{(2n-1)!!}{(2n)!!} \right]^2,$$

$$\pi = \lim_{n \to \infty} \frac{2}{2n+1} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2.$$

Damit erhalten wir mit $\lim_{n\to\infty}\frac{2}{2n+1}=\lim_{n\to\infty}\frac{1}{n}$ die Formel von John Wallis (1616-1703) oder das Wallis'sche Produkt

$$\pi = \lim_{n \to \infty} \frac{1}{n} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2. \tag{2.9}$$

Die Notation

$$\pi = \frac{1}{n} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \dots \cdot (2n-2)(2n-2)(2n)(2n) \cdot \dots}{1 \cdot 1 \cdot 3 \cdot 3 \cdot \dots \cdot (2n-3)(2n-3)(2n-1)(2n-1) \cdot \dots}$$

ist nicht so günstig, besser eignen sich die Darstellungen

$$\frac{\pi}{2} \approx \frac{1}{2n} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \dots \cdot (2n-2)(2n)(2n)}{1 \cdot 1 \cdot 3 \cdot 3 \cdot \dots \cdot (2n-3)(2n-1)(2n-1)} = \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \dots \cdot (2n-2)(2n)}{1 \cdot 3 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)(2n-1)}$$

oder

$$\frac{2}{\pi} = \frac{1 \cdot 3 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)(2n-1) \cdot \dots}{2 \cdot 2 \cdot 4 \cdot 4 \cdot \dots \cdot (2n-2)(2n) \cdot \dots} \approx \frac{1 \cdot 3 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)(2n-1)}{2 \cdot 2 \cdot 4 \cdot 4 \cdot \dots \cdot (2n-2)(2n)},$$

wie in der Formel (2.60). In Wallis Arbeit Arithmetica infinitorum (Oxoniae 1656) findet man die Form

$$\frac{4}{\pi} = \frac{3 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)(2n-1) \cdot \dots}{2 \cdot 4 \cdot 4 \cdot \dots \cdot (2n-2)(2n) \cdot \dots}.$$

Die einfachen Umformungen

$$\pi = \lim_{n \to \infty} \frac{1}{n} \left[\frac{2 \cdot 4 \cdot \dots \cdot 2n}{1 \cdot 3 \cdot \dots \cdot (2n-1)} \right]^{2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \left[\frac{2^{n} n!}{(2n)!/(2^{n} n!)} \right]^{2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \left[\frac{2^{2n} (n!)^{2}}{(2n)!} \right]^{2}$$

führen auf die modifizierte Formel

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{\sqrt{n} (2n)!}.$$
 (2.10)

John Wallis hat 1685 in seiner Arbeit *Traktat der Algebra* unter anderem folgende Problem behandelt und gelöst.

- Die Zahlen $p/(2^m 5^n)$, $p, m, n \in \mathbb{N}$, haben eine endliche dezimale Darstellung.
- Periodische dezimale Zahlen sind rational.
- Irrationale Zahlen \sqrt{p} , $p \in \mathbb{N}$, können keine Periode haben.

2.2 Die Formel von Stirling

Die Formel des Engländers James Stirling (1692-1770) lautet

$$1 = \lim_{n \to \infty} \frac{n!}{\sqrt{2\pi} \sqrt{n} \, n^n \, e^{-n}}.$$
 (2.11)

Wir schreiben die Aussage um als

$$g = \lim_{n \to \infty} a_n, \quad a_n = \frac{n! \, e^n}{\sqrt{n} \, n^n} > 0,$$
 (2.12)

und zeigen schrittweise $g = \sqrt{2\pi}$.

(a) Es gilt die Ungleichungskette

$$e = a_1 > a_2 > \dots > a_n > a_{n+1} > 0.$$

Dazu untersuchen wir den Ausdruck

$$\ln\left(\frac{a_n}{a_{n+1}}\right) = \ln\left(\frac{1}{e} \frac{(n+1)^{n+1/2}}{n^{n+1/2}}\right)$$

$$= \ln(e^{-1}) + \ln\left(\left(\frac{n+1}{n}\right)^{n+1/2}\right)$$

$$= -1 + \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right), \quad x = \frac{1}{n} \in (0,1]$$

$$= -1 + \left(\frac{1}{x} + \frac{1}{2}\right) \ln(1+x)$$

$$= -1 + (1+\delta), \quad \delta > 0$$

wobei als Nebenrechnung noch die Abschätzung mit dem $1+\delta$ gebraucht wird.

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + -\dots, \quad x > 0,$$

$$\frac{1}{2}\ln(1+x) = \frac{x}{2} - \frac{x^2}{4} + \frac{x^3}{6} - \frac{x^4}{8} + \frac{x^5}{10} - +\dots,$$

$$\frac{1}{x}\ln(1+x) = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \frac{x^4}{5} - \frac{x^5}{6} + -\dots,$$

$$\left(\frac{1}{x} + \frac{1}{2}\right)\ln(x+1) = 1 + \frac{x^2 - x^3}{12} + \frac{9x^4 - 8x^5}{120} + \frac{10x^6 - 9x^7}{168} + \dots = 1 + \delta > 1$$
für $0 < x \le 1$,

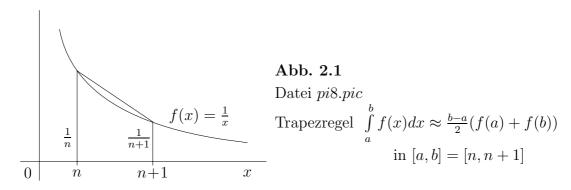
das allgemeine Glied ist
$$\frac{(n^2+n-2)x^n-n^2x^{n+1}}{2n(n+1)(n+2)}>0 \quad \text{für } n>2.$$

Aus $\ln(a_n/a_{n+1}) > 0$ folgt $a_n/a_{n+1} > 1$ und damit die fallende Monotonie der Folge $\{a_n\}$. Aus ihrer Beschränktheit von unten kann man nun auf die Existenz eines Grenzwerts g schließen, also

$$g = \lim_{n \to \infty} a_n \ge 0.$$

(b) Wir untersuchen noch etwas genauer die Folgenglieder und berechnen dann den Grenzwert g mittels der modifizierten Formel von Wallis (2.10).

Zunächst wenden wir die einfache Trapezregel (Quadraturformel) auf die Funktion $f(x) = \frac{1}{x}$ an.



Auf Grund der Konvexität der Funktion $\frac{1}{x}$ für x > 0 gelten

$$0 < \int_{n}^{n+1} \frac{dx}{x} = \ln(n+1) - \ln(n) < \frac{(n+1) - n}{2} \left(\frac{1}{n} + \frac{1}{n+1}\right),$$
$$\ln\left(1 + \frac{1}{n}\right) < \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1}\right)$$

und damit weiter die Abschätzungen

$$\ln\left(\frac{a_n}{a_{n+1}}\right) = -1 + \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right)$$

$$< -1 + \left(n + \frac{1}{2}\right) \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1}\right)$$

$$= -1 + \frac{(2n+1)^2}{4n(n+1)}$$

$$= \frac{1}{4} \frac{1}{n(n+1)}$$

$$= \frac{1}{4} \left(\frac{1}{n} - \frac{1}{n+1}\right),$$

$$\ln\left(\frac{a_1}{a_n}\right) = \ln\left(\frac{a_1}{a_2} \frac{a_2}{a_3} \cdot \dots \cdot \frac{a_{n-2}}{a_{n-1}} \frac{a_{n-1}}{a_n}\right)$$

$$= \ln\left(\frac{a_1}{a_2}\right) \ln\left(\frac{a_2}{a_3}\right) \cdot \dots \cdot \ln\left(\frac{a_{n-1}}{a_n}\right)$$

$$< \frac{1}{4} \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n}\right)$$

$$= \frac{1}{4} \left(1 - \frac{1}{n}\right),$$

$$\ln(a_1) - \ln(a_n) < \frac{1}{4}, \quad a_1 = e,$$

$$1 - \frac{1}{4} < \ln(a_n),$$

$$a_n > e^{3/4}.$$

Somit ist $g \ge e^{3/4} > 0$.

Jetzt formen wir den Ausdruck in der modifizierten Formel von Wallis durch geeignete Erweiterung auf einen mit a_n um.

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{\sqrt{n} (2n)!}, \quad a_n = \frac{n! e^n}{\sqrt{n} n^n}$$

$$= \lim_{n \to \infty} \frac{(n!)^2 e^{2n}}{n n^{2n}} \frac{n^{2n} 2^{2n} \sqrt{n}}{e^{2n} (2n)!}$$

$$= \lim_{n \to \infty} \left(\frac{n! e^n}{\sqrt{n} n^n}\right)^2 \frac{1}{\sqrt{2}} \frac{\sqrt{2n} (2n)^{2n}}{(2n)! e^{2n}}$$

$$= \frac{1}{\sqrt{2}} \lim_{n \to \infty} \left(\frac{n! e^n}{\sqrt{n} n^n}\right)^2 \frac{1}{\frac{(2n)! e^{2n}}{\sqrt{2n} (2n)^{2n}}}$$

$$= \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{a_n^2}{a_{2n}}, \quad \lim_{n \to \infty} a_n = g > 0$$

$$= \frac{1}{\sqrt{2}} \frac{g^2}{g}$$

$$= \frac{g}{\sqrt{2}}.$$

Letztendlich erhält man den gewünschten Grenzwert $g = \sqrt{2\pi}$.

Aus der Stirlingschen Formel (2.11) folgt für $n \gg 1$ durch einfache Umstellung die Formel von Moivre-Stirling (Abraham de Moivre (1667-1754))

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n. \tag{2.13}$$

2.3 Die Arcustangens-Funktion

Die Funktion $\arctan(x)$ spielt bei der Berechnung von π an vielen Stellen eine Rolle. Es gilt natürlich

$$\tan\left(\frac{\pi}{4}\right) = \frac{\sin\left(\frac{\pi}{4}\right)}{\cos\left(\frac{\pi}{4}\right)} = 1 \tag{2.14}$$

und damit

keinen Sinn.

$$\frac{\pi}{4} = \arctan(1). \tag{2.15}$$

In diesem Zusammenhang sollen noch einige weitere Eigenschaften aufgeführt werden. Mit

$$x = \frac{\sin(t)}{\cos(t)} = \tan(t)$$
 und $\frac{dx}{dt} = \frac{1}{\cos^2(t)}$

erhält man das unbestimmte Integral (ohne Integrationskonstante)

$$\int \frac{dx}{1+x^2} = \int \frac{\frac{dt}{\cos^2(t)}}{1+\frac{\sin^2(t)}{\cos^2(t)}} = \int 1 dt = t = \arctan(x).$$

Das bedeutet aber für Ableitung und Funktion

$$(\arctan(x))' = \frac{1}{1+x^2}$$

$$= 1 - x^2 + x^4 - x^6 + \dots, |x| < 1,$$

$$\int (\arctan(x))' dx = \int (1 - x^2 + x^4 - x^6 + \dots) dx,$$

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, |x| \le 1,$$

$$\frac{\pi}{4} = \arctan(1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots,$$

$$\frac{\pi}{4} = \lim_{n \to \infty} s_n, \quad s_n = \sum_{l=1}^n \frac{(-1)^{k-1}}{2k-1} \text{ (Partial summe)}.$$

Die letzte Zahlenreihe ist nicht absolut konvergent. Man darf also die Reihenfolge der Glieder in der Summe nicht beliebig vertauschen. So macht die Darstellung

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = 1 + \frac{1}{5} + \frac{1}{9} + \dots - \frac{1}{3} - \frac{1}{7} - \frac{1}{11} - \dots = \infty - \infty$$

Den Nachweis der Konvergenz der alternierenden Reihe gelingt mit der Untersuchung zweier begrenzender Teilfolgen, einmal von oben

$$\{\overline{s}_n\}_{n=1}^{\infty} : 1, 1 - \frac{1}{3} + \frac{1}{5}, 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{11}, ...,$$

und von unten

$$\{\underline{s}_n\}_{n=1}^{\infty} : 1 - \frac{1}{3}, 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7}, \dots$$

Für die Konvergenz beider wird die Abschätzung

$$0 < \frac{1}{2k-1} - \frac{1}{2k+1} = \frac{2}{4k^2 - 1} < \frac{4}{4k^2} = \frac{1}{k^2} < \frac{1}{(k-1)k} = \frac{1}{k-1} - \frac{1}{k}$$

benötigt, so dass sich dann im allgemeinen Folgenglied bis auf einen konstanten Anteil fast alle Summanden gegenseitig aufheben. Außerdem ist

$$0 < \overline{s}_n - \underline{s}_n = \frac{1}{2n+5}$$

mit dem Ergebnis eines gemeinsamen Grenzwerts.

Aus

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, \quad |x| \le 1,$$
(2.16)

folgt

$$x = \tan(x) - \frac{1}{3}\tan^3(x) + \frac{1}{5}\tan^5(x) - \frac{1}{7}\tan^7(x) + \dots$$
 (2.17)

Bleibt nur noch eine kurze Erläuterung zur Beziehung

$$\tan(x) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \dots, \quad |x| < \pi/2.$$
 (2.18)

Dazu verwenden wir den Ansatz

$$a_0x + a_1x^3 + a_2x^5 + a_3x^7 + \dots = \tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots}$$

mit der plausiblen Einschränkung auf die ungeraden Potenzen von x in tan(x).

Nach Multiplikation beider Seiten mit dem Nenner und dem Vergleich der Koeffizienten bei gleichen Potenzen ergeben sich rekursive Bedingungen an a_n , n = 0, 1, 2, ...

$$a_{0} = 1,$$

$$a_{1} = -\frac{1}{3!} + \frac{a_{0}}{2!},$$

$$a_{2} = \frac{1}{5!} - \frac{a_{0}}{4!} + \frac{a_{1}}{2!},$$

$$a_{3} = -\frac{1}{7!} + \frac{a_{0}}{6!} - \frac{a_{1}}{4!} + \frac{a_{2}}{2!},$$
...
$$a_{n} = (-1)^{n} \left[\frac{1}{(2n+1)!} - \frac{a_{0}}{(2n)!} + \frac{a_{1}}{(2n-2)!} - \dots + \frac{(-1)^{n} a_{n-1}}{2!} \right].$$

2.4 Der Integralsinus

Hier soll der Integralsinus (sinus integralis)

$$\operatorname{Si}(t) = \int_{0}^{t} \frac{\sin(x)}{x} dx \tag{2.19}$$

in Verknüpfung mit weiteren Integralen zu Berechnung von π verwendet werden. Wegen

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

ist der Integrand stetig.

(1) Integrale unter Glockenkurven

Wir kennen das Integral (2.42)

$$G_1 = \int_0^1 \frac{dx}{1+x^2} = \left[\arctan(x)\right]_0^1 = \arctan(1) = \frac{\pi}{4}.$$

Analog ist die Berechnung von

$$G_2 = \int_0^\infty \frac{dx}{1+x^2} = \left[\arctan(x)\right]_0^\infty = \frac{\pi}{2}.$$

Im Kapitel 2.1.1 haben wir die Integralformeln

$$\hat{I}_{2n} = \int_{0}^{\pi/2} \sin^{2n}(x) \, dx = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}, \quad \hat{J}_{2n} = \int_{0}^{\pi/2} \cos^{2n}(x) \, dx = \hat{I}_{2n}$$

und

$$\hat{I}_{2n+1} = \int_{0}^{\pi/2} \sin^{2n+1}(x) \, dx = \frac{(2n)!!}{(2n+1)!!}, \quad \hat{J}_{2n+1} = \int_{0}^{\pi/2} \cos^{2n+1}(x) \, dx = \hat{I}_{2n+1}$$

hergeleitet.

Dazu kommen noch die zwei folgenden Integrale, die bei geeigneter Substitution der Integrationsvariablen bestimmt werden.

$$G_{3} = \int_{0}^{\infty} \frac{dx}{(1+x^{2})^{n}}, \quad x = \tan(t), \quad \frac{dx}{dt} = \frac{1}{\cos^{2}(t)} = 1+x^{2}$$

$$= \int_{0}^{\pi/2} \cos^{2n}(t) \frac{1}{\cos^{2}(t)} dt = \int_{0}^{\pi/2} \cos^{2n-2}(t) dt$$

$$= \hat{J}_{2n-2}, \quad n \ge 1$$

$$= \frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2}, \quad (-1)!! = 0!! = 1,$$
(2.20)

$$G_{4} = \int_{0}^{1} (1 - x^{2})^{n} dx, \quad x = \sin(t), \quad \frac{dx}{dt} = \cos(t), \quad 1 - x^{2} = \cos^{2}(t)$$

$$= \int_{0}^{\pi/2} (1 - \sin^{2}(t))^{n} \cos(t) dt = \int_{0}^{\pi/2} \cos^{2n+1}(t) dt$$

$$= \hat{J}_{2n+1}, \quad n \ge 0$$

$$= \frac{(2n)!!}{(2n+1)!!}.$$
(2.21)

(2) Umformung des Integrals

$$G = \int_{0}^{\infty} \frac{\sin(x)}{x} dx. \tag{2.22}$$

Es gilt

$$G = \lim_{z \to \infty} \int_{0}^{z} \frac{\sin(x)}{x} dx, \quad z = na, \quad a > 0$$

$$= \lim_{n \to \infty} \int_{0}^{na} \frac{\sin(x)}{x} dx, \quad x = ny, \quad dx = n dy, \quad y \in [0, a]$$

$$= \lim_{n \to \infty} \int_{0}^{a} \frac{\sin(ny)}{ny} n dy$$

$$= \lim_{n \to \infty} \int_{0}^{a} \frac{\sin(nx)}{x} dx, \quad a = \frac{\pi}{2}$$

$$= \lim_{n \to \infty} \int_{0}^{\pi/2} \frac{\sin(nx)}{x} dx$$

$$= \lim_{n \to \infty} \int_{0}^{\pi/2} \frac{\sin((2n+1)x)}{x} dx.$$

Zur Berechnung von G machen wir später einen Vergleich mit dem Integral

$$G_5 = \int_0^{\pi/2} \frac{\sin((2n+1)x)}{\sin(x)} dx,$$

$$\frac{\sin((2n+1)\frac{t}{2})}{2\sin(\frac{t}{2})} = \frac{1}{2} + \cos(t) + \cos(2t) + \dots + \cos(2nt), \ t = 2x$$

$$= \int_0^{\pi/2} \left[1 + 2\cos(2x) + 2\cos(4x) + \dots + 2\cos(2nx)\right] dx$$

$$= \frac{\pi}{2} + 2\sum_{j=1}^n \int_0^{\pi/2} \cos(2jx) dx, \quad \int_0^{\pi/2} \cos(2jx) dx = 0$$

$$= \frac{\pi}{2}.$$

Somit gilt auch $\lim_{n\to\infty} G_5 = \frac{\pi}{2}$.

(3) An dieser Stelle zeigen wir eine Hilfsaussage.

Es sei f(x) eine stetige und beschränkte Funktion auf [a,b] und auf einer hinreichend feinen Intervallunterteilung $a=a_0 < a_1 < a_2 < ... < a_m = b$ gelte für eine beliebig kleine Toleranz $\varepsilon > 0$ die Bedingung

$$x, x' \in [a_{k-1}, a_k] \rightarrow |f(x) - f(x')| < \varepsilon.$$

Dann ist

$$\lim_{n \to \infty} \int_{a}^{b} f(x) \sin((2n+1)x) dx = 0.$$

Sei l = 2n + 1 und $|f(x)| \le M$. Unter den gegebenen Vooraussetzungen betrachten wir dieses Integral und schätzen es ab.

$$H = \int_{a}^{b} f(x) \sin(lx) dx = \sum_{k=1}^{m} \int_{a_{k-1}}^{a_{k}} f(x) \sin(lx) dx$$

$$= \sum_{k=1}^{m} \int_{a_{k-1}}^{a_{k}} [f(a_{k}) + f(x) - f(a_{k})] \sin(lx) dx$$

$$= \sum_{k=1}^{m} \left[f(a_{k}) \int_{a_{k-1}}^{a_{k}} \sin(lx) dx + \int_{a_{k-1}}^{a_{k}} [f(x) - f(a_{k})] \sin(lx) dx \right]$$

$$|H| \leq \sum_{k=1}^{m} |f(a_{k})| \left| \int_{a_{k-1}}^{a_{k}} \sin(lx) dx \right| + \sum_{k=1}^{m} \int_{a_{k-1}}^{a_{k}} |f(x) - f(a_{k})| |\sin(lx)| dx$$

$$\leq \sum_{k=1}^{m} M \left| \left[-\frac{\cos(lx)}{l} \right]_{a_{k-1}}^{a_{k}} \right| + \sum_{k=1}^{m} \int_{a_{k-1}}^{a_{k}} \varepsilon \cdot 1 dx$$

$$\leq \sum_{k=1}^{m} M \frac{2}{l} + \sum_{k=1}^{m} \varepsilon(a_{k} - a_{k-1})$$

$$= \frac{2mM}{l} + \varepsilon(b - a).$$

Für $l=2n+1\to\infty$ und beliebig kleines ε kann die rechte Seite beliebig klein gemacht werden. Also ist

$$\lim_{n \to \infty} H = 0.$$

(4) Jetzt können wir die Integrale G und G_5 mit $[0, \frac{\pi}{2}] = [a, b]$ auf dieses Ergebnis anwenden.

$$G - G_5 = \lim_{n \to \infty} \left[\int_0^{\pi/2} \frac{\sin((2n+1)x)}{x} dx - \int_0^{\pi/2} \frac{\sin((2n+1)x)}{\sin(x)} dx \right]$$

$$= \lim_{n \to \infty} \int_0^{\pi/2} \frac{x - \sin(x)}{x \sin(x)} \sin((2n+1)x) dx$$

$$= 0,$$

denn die Funktion

$$f(x) = \frac{x - \sin(x)}{x \sin(x)}$$

erfüllt alle Voraussetzungen des Hilfssatzes, insbesondere gilt $\lim_{n\to 0} f(x)=0$. Damit ist auch $G=\frac{\pi}{2},$ d.h.

$$\int_{0}^{\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2} \tag{2.23}$$

gezeigt.

2.5 Das Poisson-Integral

Im Kapitel 1.2 haben wir das Poisson-Integral (SIMÉON DENIS POISSON (1791-1840)) als Fläche unter einer Glockenkurve schon kennengelernt.

Wir zeigen nun die Gültigkeit der Beziehung

$$I = \int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$
 (2.24)

unter Verwendung anderer Zusammenhänge und Formeln.

2.5.1 Anwendung der Formel von Wallis

Zunächst machen wir eine Transformation der Integrationsvariablen gemäß $x = \sqrt{n} z$, $dx = x = \sqrt{n} dz$, $n \in \mathbb{N}_+$, und erhalten

$$I = \int_{0}^{\infty} e^{-x^2} dx = \sqrt{n} \int_{0}^{\infty} e^{-nz^2} dz.$$

Dann haben wir mit der Funktionenreihe $e^x=1+x/1!+x^2/2!+...,\ x\geq 0,$ und den Formeln (2.20), (2.21) die Abschätzungen

$$1 - x^{2} \leq e^{-x^{2}} = \frac{1}{e^{x^{2}}} \leq \frac{1}{1 + x^{2}},$$

$$(1 - x^{2})^{n} \leq e^{-nx^{2}} \leq \frac{1}{(1 + x^{2})^{n}},$$

$$\int_{0}^{1} (1 - x^{2})^{n} dx \leq \int_{0}^{1} e^{-nx^{2}} dx \leq \int_{0}^{\infty} e^{-nx^{2}} dx \leq \int_{0}^{\infty} \frac{1}{(1 + x^{2})^{n}} dx,$$

$$\frac{(2n)!!}{(2n + 1)!!} \leq \int_{0}^{\infty} e^{-nx^{2}} dx \leq \frac{(2n - 3)!!}{(2n - 2)!!} \frac{\pi}{2},$$

$$\sqrt{n} \frac{(2n)!!}{(2n + 1)!!} \leq \sqrt{n} \int_{0}^{\infty} e^{-nx^{2}} dx \leq \sqrt{n} \frac{(2n - 3)!!}{(2n - 2)!!} \frac{\pi}{2},$$

$$a_{n} \leq I \leq b_{n}.$$

Die Anwendung der Formel von Wallis (2.9) in der Gestalt

$$\frac{\sqrt{\pi}}{2} = \lim_{n \to \infty} c_n, \quad c_n = \frac{1}{2\sqrt{n}} \frac{(2n)!!}{(2n-1)!!}, \quad \frac{\sqrt{\pi}}{2} < c_{n+1} < c_n$$
 (2.25)

ergibt

$$a_n = \frac{2\sqrt{n^2}}{2n+1} c_n = \frac{2n}{2n+1} c_n,$$

$$b_n = \sqrt{n} \frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2} = \frac{1}{\frac{1}{2\sqrt{n}} \frac{(2n)!!}{(2n-1)!!}} \frac{2n}{2n-1} \left(\frac{\sqrt{\pi}}{2}\right)^2$$

$$\leq \frac{1}{c_n} \frac{2n}{2n-1} c_n^2$$

$$= \frac{2n}{2n-1} c_n.$$

So folgt für beliebiges n

$$\frac{2n}{2n+1}c_n \le I \le \frac{2n}{2n-1}c_n$$

und mit (2.25) auch $I = \frac{\sqrt{\pi}}{2}$.

2.5.2 Anwendung von Bereichsintegralen

Wir zeigen nun die Gültigkeit der Beziehung

$$I = \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$
 (2.26)

Dazu betrachten wir Breichsintegrale als Doppelintegrale über einfach strukturierten Gebieten, wie Kreise und Vierecke der Gestalt

$$B_r = \{(x,y) : x^2 + y^2 \le r, r > 0\},$$

 $D = [0,r] \times [0,2\pi],$
 $C_r = [-r,r] \times [-r,r].$

Die Transformationsgleichungen zwischen den kartesischen Koordinaten (x, y) und den Polarkoordinaten (r, φ) sind - ohne die Sonderfälle zu nennen -

$$r(x,y) = \sqrt{x^2 + y^2}, \quad x = r\cos(\varphi),$$

 $\varphi(x,y) = \arctan\left(\frac{x}{y}\right), \quad y = r\sin(\varphi).$

Damit haben wir die Funktionsdarstellung in den Systemen

$$h(x,y) = h(x(r,\varphi), y(r,\varphi)) = g(r,\varphi)$$

sowie die Integraltransformation

$$I_{1} = \iint_{B_{r}} h(x, y) dxdy$$
$$= \iint_{D} g(r, \varphi) |\det(f')| drd\varphi$$
$$= \iint_{D} h \circ f |\det(f')| drd\varphi,$$

wobei

$$f = \begin{pmatrix} x \\ y \end{pmatrix}, f' = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} \end{pmatrix}$$
 Funktionalmatrix mit part. Ableitungen,

und $\det(f') = r \text{ sind.}$

Für die spezielle Funktion

$$h(x,y) = e^{-(x^2+y^2)} = e^{-r^2} = g(r,\varphi) > 0$$

ergibt sich

$$I_{1} = \iint_{B_{r}} e^{-(x^{2}+y^{2})} dxdy = \iint_{0}^{r} re^{-r^{2}} drd\varphi$$

$$= \iint_{0}^{r} re^{-r^{2}} \left[\varphi\right]_{0}^{2\pi} dr$$

$$= 2\pi \int_{0}^{r} re^{-r^{2}} dr$$

$$= 2\pi \left[-\frac{1}{2}e^{-r^{2}}\right]_{0}^{r}$$

$$= \pi \left(1 - e^{-r^{2}}\right),$$

$$\lim_{r \to \infty} I_{1} = \pi.$$

Wegen

$$\int_{-r}^{r} e^{-x^2} dx = \int_{-r}^{r} e^{-y^2} dy$$

gilt

$$\left(\int_{-r}^{r} e^{-x^{2}} dx\right)^{2} = \int_{-r}^{r} e^{-x^{2}} dx \int_{-r}^{r} e^{-y^{2}} dy$$
$$= \int_{-r-r}^{r} \int_{-r-r}^{r} e^{-(x^{2}+y^{2})} dx dy$$
$$= \int_{C_{r}}^{r} h(x,y) dx dy.$$

Damit bleibt noch

$$\lim_{r \to \infty} \iint_{C_r} h(x, y) \, dx dy = \lim_{r \to \infty} \iint_{B_r} h(x, y) \, dx dy$$

zu zeigen.

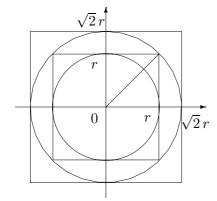


Abb. 2.2 Datei pi10.pic Gebietseinschließungen

$$B_r \subset C_r \subset B_{\sqrt{2}r} \subset C_{\sqrt{2}r}$$

Wegen der Gebietseinschließungen gilt

$$\iint\limits_{B_r} h \leq \iint\limits_{C_r} h \leq \iint\limits_{B_{\sqrt{2}r}} h \leq \iint\limits_{C_{\sqrt{2}r}} h \leq \pi$$

und somit für $r \to \infty$

$$\lim_{r \to \infty} \iint_{C_r} h(x, x) \, dx dy = \lim_{r \to \infty} \iint_{B_r} h(x, x) \, dx dy,$$

$$\lim_{r \to \infty} \left(\int_{-r}^{r} e^{-x^2} \, dx \right)^2 = \lim_{r \to \infty} \pi \left(1 - e^{-r^2} \right),$$

$$\int_{-r}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

2.6 Die Euler-Funktion

Nicht nur als Verallgemeinerung der Fakultätsfunktion spielt die Euler-Funktion (LEONARD EULER (1707-1783)) eine große Rolle.

Hier soll die Euler- oder Gamma-Funktion

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt, \quad x > 0, \tag{2.27}$$

in Verbindung mit π gebracht werden.

Dazu folgen Umformungen und Berechnungen für

$$\Gamma(x) = \int_{0}^{1} t^{x-1} e^{-t} dt + \int_{1}^{\infty} t^{x-1} e^{-t} dt.$$

Die Summanden sind

$$\begin{split} I_1 &= \int_0^1 t^{x-1} \, e^{-t} \, dt, \quad -t \leq 0 \, \to \, e^{-t} \leq e^0 = 1 \, \to \, 0 \leq t^{x-1} \, e^{-t} \leq t^{x-1}, \\ &\leq \int_0^1 t^{x-1} \, dt \, = \, \left[\frac{t^k}{x} \right]_0^1 \, = \, \frac{1}{x} \, < \, \infty, \\ I_2 &= \int_1^\infty t^{x-1} \, e^{-t} \, dt \, = \, \int_1^{t_1} t^{x-1} \, e^{-t} \, dt \, + \, \int_{t_1}^\infty t^{x-1} \, e^{-t} \, dt \\ &= \int_1^{t_1} t^{x-1} \, e^{-t} \, dt \, + \, \int_{t_1}^\infty \frac{t^{x+1}}{t^2} \, dt, \quad \text{für } 1 < t_1 \leq t \, \text{ sei } \, \frac{t^{x+1}}{e^t} \leq 1, \\ &\leq \int_1^{t_1} t^{x-1} \, e^{-t} \, dt \, + \, \int_{t_1}^\infty \frac{1}{t^2} \, dt \\ &= \int_1^{t_1} t^{x-1} \, e^{-t} \, dt \, + \, \left[-\frac{1}{t} \right]_{t_1}^\infty \\ &= \int_1^{t_1} t^{x-1} \, e^{-t} \, dt \, + \, \frac{1}{t_1} \, < \, \infty. \end{split}$$

Somit existieren alle Integrale.

Bei x > 1 und partieller Integration folgt

$$\Gamma(x) = \int_{0}^{\infty} \underbrace{t^{x-1}}_{u} \underbrace{e^{-t}}_{v'} dt = \left[-t^{x-1} e^{-t} \right]_{0}^{\infty} + \int_{0}^{\infty} (x-1)t^{x-2} e^{-t} dt$$

$$= (x-1) \int_{0}^{\infty} t^{x-2} e^{-t} dt$$

$$= (x-1) \Gamma(x-1).$$
(2.28)

Der Sonderfall mit $x = \frac{1}{2}$ liefert

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_{0}^{\infty} e^{-z^{2}} dz = \sqrt{\pi}.$$
 (2.29)

Spezielle Fälle sind $x=n\in\mathbb{N}_+$. Dann erhält man

$$\Gamma(1) = \int_{0}^{\infty} e^{-t} dt = 1 = 0!,$$

$$\Gamma(2) = 1 \cdot \Gamma(0) = 1! \text{ und}$$

$$\Gamma(n) = (n-1)! \text{ mittels Induktion.}$$

$$(2.30)$$

2.7 Elliptische Integrale

Integrale, die keine elementaren Funktionen sind, heißen elliptische Integrale. Oft lassen sich diese zumindest mittels einiger Grundintegrale darstellen. Dazu gehört das elliptische Integral 1. Art in der Legendre-Form (Andrien Marie Legendre (1752-1833))

$$\int \frac{d\varphi}{\sqrt{1 - k^2 \sin^2(\varphi)}}, \quad 0 < k < 1. \tag{2.31}$$

Wir wollen es als bestimmtes Integral in Zusammenhang mit einer Formel für π verwenden.

$$I = \int_{0}^{\pi/2} \frac{dx}{\sqrt{1 - k^2 \sin^2(x)}}.$$
 (2.32)

Für seine Berechnung brauchen wird folgende Beziehungen.

$$(1+z)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} z^n = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!} z^n,$$

$$\frac{1}{\sqrt{1-t^2}} = (1-t^2)^{-1/2} = 1 + \frac{1}{2} t^2 + \frac{1 \cdot 3}{2 \cdot 4} t^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} t^6 + \dots,$$
Substitution $t = k \sin(x),$

$$\frac{1}{\sqrt{1-k^2 \sin^2(x)}} = 1 + \frac{1}{2} k^2 \sin^2(x) + \frac{1 \cdot 3}{2 \cdot 4} k^4 \sin^4(x) + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} k^6 \sin^6(x) + \dots$$

Somit ist

$$I = \int_{0}^{\pi/2} \left(1 + \frac{1}{2}k^{2}\sin^{2}(x) + \frac{1 \cdot 3}{2 \cdot 4}k^{4}\sin^{4}(x) + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}k^{6}\sin^{6}(x) + \dots\right) dx$$

$$= \int_{0}^{\pi/2} dx + \frac{1}{2}k^{2} \int_{0}^{\pi/2} \sin^{2}(x) dx + \frac{1 \cdot 3}{2 \cdot 4}k^{4} \int_{0}^{\pi/2} \sin^{4}(x) dx + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}k^{6} \int_{0}^{\pi/2} \sin^{6}(x) dx + \dots$$

$$= \frac{\pi}{2} + \frac{1}{2}k^{2} \frac{1}{2} \frac{\pi}{2} + \frac{1 \cdot 3}{2 \cdot 4}k^{4} \frac{1 \cdot 3}{2 \cdot 4} \frac{\pi}{2} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}k^{6} \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{\pi}{2} + \dots$$

$$= \frac{\pi}{2} \left[1 + \left(\frac{1}{2}\right)^{2}k^{2} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2}k^{4} + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2}k^{6} + \dots \right].$$

2.8 Die Fourier-Reihe

Die Fourier-Reihenentwicklung einer Funktion, nach dem Franzosen Jean Baptiste Joseph Fourier (1768-1830) benannt, ist ihre Approximation im Mittel mit trigonometrischen Polynomen. Sie kann geschickt für die Berechnung von Konstanten verwendet werden.

Dazu zunächst einige kurze Informationen zur Konstruktion der Fourier-Reihe.

Sei f(x) eine 2π -periodische hinreichend glatte Funktion mit dem Periodizitätsintervall $[-\pi, \pi]$. Dann kann man diese auf der Grundlage des orthonormalen Systems der trigonometrischen Polynome

$$\frac{1}{\sqrt{2\pi}}, \ \frac{1}{\sqrt{\pi}}\cos(x), \ \frac{1}{\sqrt{\pi}}\sin(x), \ \frac{1}{\sqrt{\pi}}\cos(2x), \ \frac{1}{\sqrt{\pi}}\sin(2x), \ \dots$$
 (2.34)

als Funktionenreihe

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{n} \left[a_k \cos(kx) + b_k \sin(kx) \right]$$
 (2.35)

mit den Fourier-Koeffizienten

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \quad k = 0, 1, 2, ..., n,$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, \quad k = 1, 2, ..., n,$$
(2.36)

schreiben (siehe [13]).

Mehr noch, analog zum Lehrsatz von Pythagoras gilt

$$||f||^2 = \pi \left[\frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2) \right], \quad ||f||^2 = (f, f) = \int_{-\pi}^{\pi} f^2(x) \, dx.$$
 (2.37)

Wir wenden die Formeln auf die Sprungfunktion an.

$$f(x) = sign(sin(x)), x \in [-\pi, \pi),$$

$$= \begin{cases} 1, & \text{falls } 0 < x < \pi, \\ -1, & \text{falls } \pi < x < 2\pi, \end{cases} f(x) = f(x + 2\pi).$$

$$0, & \text{falls } x = k\pi,$$

Zur Auswertung der Fourier-Koeffizienten (2.36) zerlegen wir das Integrationsintervall in zwei Hälften, auf denen jeweils die Stammfunktionen und somit die Teilintegrale bestimmt werden.

Die Koeffizienten a_k als Flächen sind alle Null wegen der Symmetrie von $\cos(kx)$ und Asymmetrie von f(x) zum Nullpunkt (Intervallmitte). Für die anderen erhält man, ebenfalls bei Beachtung der Symmetrieeigenschaften

$$b_k = \frac{1}{\pi} \left[\int_{-\pi}^0 (-1)\sin(kx) \, dx + \int_0^{\pi} (+1)\sin(kx) \, dx \right] = \frac{2}{\pi} \int_0^{\pi} \sin(kx) \, dx$$

$$= \frac{2}{\pi} \left[\frac{-\cos(kx)}{k} \right]_0^{\pi} = \frac{2}{\pi} \frac{-\cos(k\pi) + 1}{k}$$

$$= \begin{cases} 0, & \text{falls } k \text{ gerade,} \\ \frac{4}{k\pi}, & \text{falls } k \text{ ungerade.} \end{cases}$$

Die gesuchte Fourier-Reihe ist somit

$$f(x) = \frac{4}{\pi} \left[\sin(x) + \frac{\sin(3x)}{3} + \frac{\sin(5x)}{5} + \frac{\sin(7x)}{7} + \dots \right]$$
 (2.38)

und eine ungerade Funktion. Nach dem Satz von "Pythagoras" haben wir

$$||f||^2 = (f, f) = \int_{-\pi}^{\pi} 1^2 dx = 2\pi$$

und somit

$$2\pi = \pi \left[\left(\frac{4}{\pi} \right)^2 + \left(\frac{4}{3\pi} \right)^2 + \left(\frac{4}{5\pi} \right)^2 + \dots \right]$$

und als positiven Nebeneffekt der Fourier-Reihenentwicklung eine Zahlenreihe für π^2 .

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$
 (2.39)

2.9 Die Riemannsche Zeta-Funktion und Euler

Auf Leonard Euler gehen einige Formeln zur Berechnung von π^2 zurück, so z. B.

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots$$

Der deutsche Mathematiker und Physiker BERNHARD GEORG FRIEDRICH RIEMANN (1826-1866) hat diese als Sonderfall einer allgemeinen Funktion erkannt, nämlich der ζ -Funktion

$$\zeta(n) = \sum_{k=1}^{\infty} \frac{1}{k^n}.$$
 (2.40)

Es gilt

$$\zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \quad \zeta(6) = \frac{\pi^6}{945}.$$
 (2.41)

Die Berechnung von $\zeta(2)$ ist mit der Betrachtung von unendlichen Polynomen, wie es ja Funktionenreihen sind, verknüpft. So ist

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = x \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots\right)$$

ein Polynom R(x) sehr hohen Grades mit Nullstellen, die genau die Nullstellen der sin-Funktion - die $k\pi$ sind solche - sind.

Also kann man R(x) als Faktorpolynom schreiben.

$$R(x) = x \left(1 - \frac{x}{\pi}\right) \left(1 + \frac{x}{\pi}\right) \left(1 - \frac{x}{2\pi}\right) \left(1 + \frac{x}{2\pi}\right) \left(1 - \frac{x}{3\pi}\right) \left(1 + \frac{x}{3\pi}\right) \cdot \dots$$

Aus der Übereinstimmung

$$1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + -\dots$$

$$= \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \cdot \dots$$

$$= 1 - \frac{x^2}{\pi^2} \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots\right)$$

$$+ \frac{x^4}{\pi^4} \left(\frac{1}{1 \cdot 4} + \frac{1}{1 \cdot 9} + \frac{1}{1 \cdot 16} + \dots + \frac{1}{4 \cdot 9} + \frac{1}{4 \cdot 16} + \dots + \frac{1}{9 \cdot 16} + \dots\right) + \dots$$

folgt die Gleichheit der Koeffizienten bei x^2 , also

$$\frac{1}{3!} = \frac{1}{\pi^2} \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots \right),$$

was aber genau die Eulersche Formel ist.

Weitere Zusammenhänge sind nicht ganz so einfach nachzurechnen.

2.10 Zahlenreihen 37

2.10 Zahlenreihen

Notieren wir noch einige Zahlenreihen im Zusammenhang mit π .

$$\frac{\pi}{8} = \frac{1}{2} - \sum_{n=1}^{\infty} \frac{1}{(4n-1)(4n+1)} = \frac{1}{2} - \frac{1}{3 \cdot 5} - \frac{1}{7 \cdot 9} - \frac{1}{11 \cdot 13} - \dots,$$

$$\frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - + \dots,$$

$$= \prod_{n=1}^{\infty} \left(1 - \frac{1}{(2n+1)^2}\right) = \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{5^2}\right) \left(1 - \frac{1}{7^2}\right) \cdot \dots,$$

$$\frac{2}{\pi} = \prod_{n=1}^{\infty} \left(1 - \frac{1}{(2n)^2}\right) = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{4^2}\right) \left(1 - \frac{1}{6^2}\right) \cdot \dots,$$

$$(1 + \sqrt{2}) \frac{\pi}{16} = \frac{1}{2} - \sum_{n=1}^{\infty} \frac{1}{(8n-1)(8n+1)} = \frac{1}{2} - \frac{1}{7 \cdot 9} - \frac{1}{15 \cdot 17} - \frac{1}{23 \cdot 25} - \dots,$$

$$\frac{\pi}{3\sqrt{3}} = \frac{1}{3} \ln(2) + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n-1} = \frac{1}{3} \ln(2) + \frac{1}{2} - \frac{1}{5} + \frac{1}{8} - \frac{1}{11} + - \dots,$$

$$\frac{\pi}{3\sqrt{3}} = -\frac{1}{3} \ln(2) + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n-2} = -\frac{1}{3} \ln(2) + 1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + - \dots,$$

$$\frac{\pi}{12\sqrt{3}} = \frac{1}{4} \ln(3) - \frac{1}{6} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(3n+1)(3n+2)(3n+3)(3n+4)}$$

$$= \frac{1}{4} \ln(3) - \frac{1}{6} + \sum_{n=1}^{\infty} \frac{1}{(3n+1)(3n+2)(3n+3)(3n+4)} + \dots,$$

$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots,$$

$$\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - + \dots,$$

$$\frac{\pi^2}{12} = \ln(2) + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{(n+1)^2} = \ln(2) + \frac{1}{2^2} - \frac{2}{3^2} + \frac{3}{4^2} - \frac{4}{5^2} + - \dots,$$

$$\frac{\pi^2}{16} = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{(4n^2-1)^2} = \frac{1}{2} + \frac{1}{3^2} + \frac{1}{15^2} + \frac{1}{35^2} + \dots,$$

$$\frac{\pi^3}{32} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3} = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + - \dots,$$

$$\frac{\pi^4}{96} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = 1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \dots,$$

$$\frac{5\pi^5}{1536} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^5} = 1 - \frac{1}{3^5} + \frac{1}{5^5} - \frac{1}{7^5} + \dots$$

2.11 Numerische Integration der Glockenkurve

Das bestimmte Integral zur Glockenkurve

$$I = \int_{0}^{1} \frac{dx}{1+x^{2}} = \left[\arctan(x)\right]_{0}^{1} = \arctan(1) = \frac{\pi}{4}$$
 (2.42)

soll näherungsweise mit der zusammengesetzten Trapezregel (Qudraturformel) berechnet werden. Man beginnt mit der einfachen Trapezregel

$$T(h_0) = \frac{b-a}{1} \frac{1}{2} (f(a) + f(b)), \quad [a,b] = [0,1], \quad h_0 = b-a, \quad f(x) = \frac{1}{1+x^2}, \quad (2.43)$$

und bildet dann die Summen von solchen Trapezen über gleichgroßen Teilintervallen, die durch stete Halbierung des Intervalls entstehen, also

$$T(h_1) = \frac{b-a}{2} \left[\frac{1}{2} \left(f(a) + f\left(\frac{a+b}{2}\right) \right) + \frac{1}{2} \left(f\left(\frac{a+b}{2}\right) + f(b) \right) \right], \ h_1 = h_0/2$$

$$T(h_2) = \frac{b-a}{4} \left[\frac{1}{2} \left(f(a) + f\left(\frac{3a+b}{4}\right) \right) + \frac{1}{2} \left(f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+b}{2}\right) \right) + \frac{1}{2} \left(f\left(\frac{a+b}{4}\right) + f\left(\frac{a+b}{2}\right) + f\left(\frac{a+b}{4}\right) \right) + \frac{1}{2} \left(f\left(\frac{a+b}{4}\right) + f(b) \right) \right], \ h_2 = h_1/2,$$

usw. Die Formeln lassen sich durch Zusammenfassen natürlich vereinfachen.

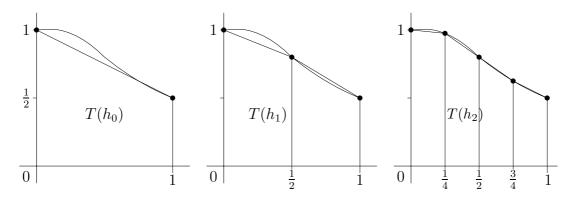


Abb. 2.3 Datei pi9.pic Einfache und zwei zusammengesetzte Trapezregeln für $\int_{0}^{1} \frac{dx}{1+x^2}$

Den allgemeinen Fall notieren wir mit $N=2^m$ Teilintervallen und $h_m=(b-a)/N$

$$T(h_m) = h_m \left\{ \frac{1}{2} [f(a) + f(b)] + \sum_{i=1}^{N-1} f(a+ih) \right\}.$$
 (2.44)

Bei der Berechnung von $T(h_m)$ kann man den vorherigen Wert $T(h_{m-1})$ benutzen. Die aufeinanderfolgenden Näherungswerte, die alle eine Genauigkeitsordnung $\mathcal{O}(h^2)$ haben, bilden die Grundlage für die Extrapolationsmethode nach WERNER ROMBERG (1909-...) (siehe [13]). Dabei ist eine wichtige Voraussetzung die Existenz einer asymptotischen Entwicklung der Form

$$T(h) = \int_{a}^{b} f(x)dx + \tau_{2}h^{2} + \tau_{4}h^{4} + \dots + \tau_{2k}h^{2k} + \mathcal{O}(h^{2k+2}). \tag{2.45}$$

So ist dann aus einer geeigneten Linearkombination von zwei Näherungen

$$I - T(h) = -\tau_2 h^2 - \tau_4 h^4 - \tau_6 h^6 - \dots,$$

$$I - T\left(\frac{h}{2}\right) = -\tau_2 \left(\frac{h}{2}\right)^2 - \tau_4 \left(\frac{h}{2}\right)^4 - \tau_6 \left(\frac{h}{2}\right)^6 - \dots$$

sofort die Beziehung

$$\frac{4(I-T(\frac{h}{2}))-(I-T(h))}{4-1} = \frac{-\frac{4\tau_4}{16}h^4+\tau_4h^4}{4-1}+\mathcal{O}(h^6)$$

bzw.

$$I - \frac{2^2 T\left(\frac{h}{2}\right) - T(h)}{2^2 - 1} = \frac{\tau_4}{4} h^4 + \mathcal{O}(h^6)$$
 (2.46)

sichtbar. Somit erhält man eine aus Feinrechnung und Grobrechnung kombinierte neue und genauere Integrationsformel

$$S(h) = \frac{2^2 T\left(\frac{h}{2}\right) - T(h)}{2^2 - 1},\tag{2.47}$$

welche die Simpson-Regel (Thomas Simpson (1710-1761)) darstellt. Diese Technik lässt sich bei entsprechender Glattheit des Integranden mehrmals wiederholen und führt auf immer bessere Approximationen.

Rechentechnische Umsetzung

- 1. Zerlegung des Intervalls [a, b] in N Teilintervalle mit h = (b a)/N.
- 2. Schrittweitenfolge $\{h_i\}$ mit $h_i = h/2^i$, i = 0, 1, ..., m.
- 3. Berechnung der Werte $T_{00}, T_{10}, T_{20}, ..., T_{m0}$ der zusammengesetzten Trapezregel

$$T_{i0} = T(h_i), i = 0, 1, ..., m.$$

k	0	1	2	3	•••	m-1	m
	T_0	T_1	T_2	T_3	•••	T_{m-1}	T_m
i	T_{i0}	T_{i1}	T_{i2}	T_{i3}	•••	$T_{i,m-1}$	T_{im}
0	T_{00}						
1	T_{10}	T_{11}					
2	T_{20}	T_{21}	T_{22}				
3	T_{30}	T_{31}	T_{32}	T_{33}			
:	:	:	:	:	٠.		
m-1	$T_{m-1,0}$	$T_{m-1,1}$	$T_{m-1,2}$	$T_{m-1,3}$		$T_{m-1,m-1}$	
m	T_{m0}	T_{m1}	T_{m2}	T_{m3}		$T_{m,m-1}$	T_{mm}

Tab. 2.1 Romberg-Schema für die Werte T_{ik}

Die Berechnung der Spalten k=1,2,...,m des Schemas erfolgt mit der rekursiven Beziehung

$$T_{ik} = \frac{4^k T_{i,k-1} - T_{i-1,k-1}}{4^k - 1} = T_{i,k-1} + \frac{T_{i,k-1} - T_{i-1,k-1}}{4^k - 1}, \ i = k, k+1, ..., m.$$
 (2.48)

Rechnung in Turbo Pascal nit GP-Format double bei $h_m = 2^{-m}, m = 0, 1, ..., 8$.

Romberg-Extrapolations-Verfahren

```
0.750000000000000
0.775000000000000
                   0.783333333333333
0.782794117647059
                   0.785392156862745
                                      0.785529411764706
0.784747123622772
                   0.785398125614677
                                      0.785398523531472
                                                          0.785396445940468
0.785235403010347
                   0.785398162806206
                                      0.785398165285641
                                                          0.785398159599199
0.785398166319429
0.785357473293744
                   0.785398163388209
                                      0.785398163427009
                                                          0.785398163397507
0.785398163412403
                   0.785398163409561
0.785387990871414
                   0.785398163397304
                                      0.785398163397910
                                                          0.785398163397449
0.785398163397448
                   0.785398163397434
                                      0.785398163397431
0.785395620265938
                   0.785398163397446
                                      0.785398163397455
                                                          0.785398163397448
0.785398163397448
                   0.785398163397448
                                      0.785398163397448
                                                          0.785398163397448
0.785397527614571
                   0.785398163397449
                                      0.785398163397449
                                                          0.785398163397449
0.785398163397449
                   0.785398163397449
                                      0.785398163397449
                                                          0.785398163397449
0.785398163397449
```

Anzahl der durchgefuehrten/benoetigten Iterationen iter 8 Integral 7.85398163397449E-0001

Da sich gleiche Werte schon in der Zeile für m=7 wiederholen - es bildet sich ein sogenanntes Nest gleicher Werte heraus - ist der nächste Schritt eigentlich nicht nötig. Der exakte Wert $\frac{\pi}{4}=0.785\,398\,163\,397\,448\,096...$ wird sehr gut approximiert.

2.12 Die Methode von Archimedes

Durch die iterative Bestimmung der Umfänge von ein- und umbeschriebenen regelmäßigen Vielecken im Kreis kann man die Kreiszahl π einschachteln.

Analog kann man mit der Kreisfläche und den Flächen dieser regelmäßigen Vielecke verfahren.

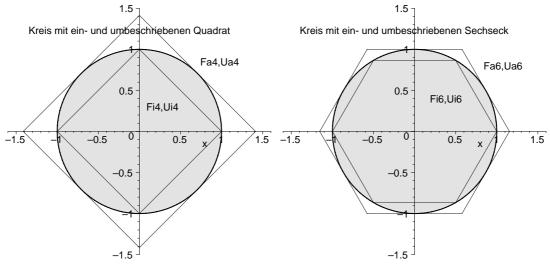
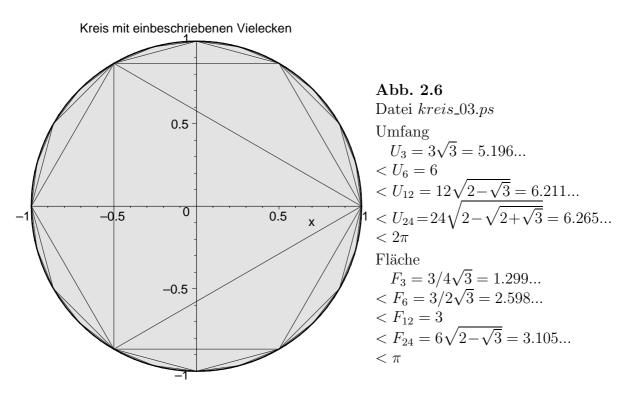


Abb. 2.4 Datei $kreis_01.ps$ $U_{i4} = 4\sqrt{2} = 5.656... < 2\pi < U_{a4} = 8,$ $F_{i4} = 2 < \pi < F_{a4} = 4$

Abb. 2.5 Datei
$$kreis_02.ps$$
 $U_{i6} = 6 < 2\pi < U_{a6} = 4\sqrt{3} = 6.928...,$ $F_{i6} = 3/2\sqrt{3} = 2.598... < \pi < F_{a6} = 2\sqrt{3}$



2.12.1 Umfang ein- und umbeschriebener n-Ecke

Einbeschriebene n-Ecke

Die Seitenlänge s_{2n} des einbeschriebenen 2n-Ecks im Kreis mit dem Radius r=1 berechnet sich mittels Rekursion aus der Seitenlänge s_n des n-Ecks.

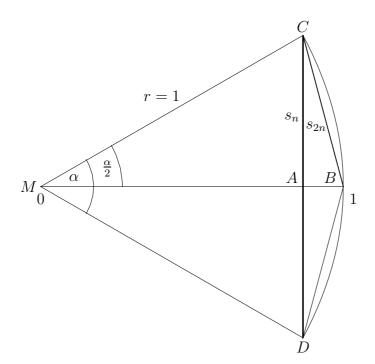


Abb. 2.7 Datei pi1a.pic Ausschnitt aus der Situation zwischen 6-Eck und 12-Eck im Kreis, $n=6,\ \alpha=\frac{\pi}{3}$

Es gelten in den rechtwinkeligen Dreiecken MAC und CAB die folgenden Beziehungen.

$$U_n = ns_n$$
, Umfang des n -Ecks, $s_n = \overline{CD}$, α Dreiecksinnenwinkel, $U_{2n} = 2ns_{2n}$, $s_{2n} = \overline{CB}$,
$$1 = (s_n/2)^2 + x^2, \quad x = \overline{MA},$$

$$s_{2n}^2 = (s_n/2)^2 + (1-x)^2 = (s_n/2)^2 + 1 - 2x + x^2,$$

$$x = 1 - s_{2n}^2/2,$$

$$0 = s_{2n}^4 - 4s_{2n}^2 + s_n^2, \quad z = s_{2n}^2,$$

$$0 = z^2 - 4z + s_n^2,$$

$$z = s_{2n}^2 = 2 \pm \sqrt{4 - s_n^2}.$$
 Vorzeichen + ist auszuschließen,
$$s_{2n} = \sqrt{2 - \sqrt{4 - s_n^2}}.$$

Somit ergibt sich die Rekursionsformel zwischen den Seitenlängen in zwei Varianten

$$s_{2n} = \sqrt{2 - \sqrt{4 - s_n^2}} = \frac{s_n}{\sqrt{2 + \sqrt{4 - s_n^2}}}, \ n = 6, 12, ..., \ s_6 = 1,$$
 (2.49)

aus denen die Kreiszahl $\pi \approx \frac{1}{2} U_{2n} = ns_{2n}$ folgt.

Die algebraisch gleichwertigen Formeln für s_{2n} verhalten sich numerisch sehr verschieden. Wegen $\lim_{n\to\infty} s_n = 0$ führt die erstere zu einer Subtraktion von annähernd gleichen Zahlen im Computer mit endlicher Mantissenlänge des Gleitpunktformats (GP-Format) und damit zu unerwünschten und katastrophalen Stellenauslöschung. Nicht nur in diesem Fall lässt sich die Subtraktionskatastrophe durch eine geeignete Termumformung von (2.49) umgehen.

	Variante	e 1	Variante	e 2
j	$s_{2n} = \sqrt{2 - \sqrt{4 - s_n^2}}$ $n = 6 \cdot 2^j$	$\pi^{(1)}$	$s_{2n} = \frac{s_n}{\sqrt{2 + \sqrt{4 - s_n^2}}}$	$\pi^{(2)}$
0	1.000000000E-00	3.0000000000	1.000000000E-00	3.0000000000
1	5.1763809020E-01	3.1058285412	5.1763809020E-01	3.1058285412
2	2.6105238444E-01	3.1326286132	2.6105238444E-01	3.1326286133
3	1.3080625846E-01	3.1393502029	1.3080625846E-01	3.1393502030
4	6.5438165642 E-02	3.1410319508	6.5438165643E- 02	3.1410319509
5	3.2723463242 E-02	3.1414524712	3.2723463253E-02	3.1414524723
6	1.6362279155 E-02	3.1415575977	1.6362279208 E-02	3.1415576079
7	8.1812079465E- 03	3.1415838514	8.1812080524 E-03	3.1415838921
8	4.0906125332 E-03	3.1415904255	4.0906125823E- 03	3.1415904632
9	2.0453070448E-03	3.1415916208	2.0453073607E- 03	3.1415921060
10	1.0226528554E-03	3.1415895717	1.0226538140E-03	3.1415925167
11	5.1132598302 E-04	3.1415868397	5.1132692372E-04	3.1415926194
12	2.5566299151E-04	3.1415868397	2.5566346395E-04	3.1415926450
13	1.2782793831E-04	3.1414994119	1.2783173224E-04	3.1415926514
14	6.3903295775 E-05	3.1409747940	6.3915866151E- 05	3.1415926530
15	3.1944530915E-05	3.1402751671	3.1957933079 E-05	3.1415926534
16	1.5958023577 E-05	3.1374750995	1.5978966540E- 05	3.1415926535
17	7.9790117887E-06	3.1374750995	7.9894832701E-06	3.1415926535
18	3.8146972656E-06	3.0000000000	3.9947416351E-06	3.1415926536
19	1.9073486328E-06	3.0000000000	1.9973708175E-06	3.1415926536
20	0.000000000E-00	0.0000000000	9.9868540877E-07	3.1415926536
21	0.0000000000E-00	0.0000000000	4.9934270438E-07	3.1415926536

Tab. 2.2 π nach Archimedes mit einbeschriebenen Vielecken, TP mit GP-Format real, 6 Byte, 11-12 gültige Dezimalen der Mantisse

Rechnungen in Maple

Kreiszahl π nach Archimedes mit einbeschriebenen regelmäßigen Vielecken

```
> p1:=implicitplot(x^2+y^2=1,x=-1..1,y=-1..1,scaling=constrained,
      thickness=2,
      title='
                 Kreiszahl Pi nach Archimedes mit
                 einbeschriebenen Vielecken'):
  112:=[seq([cos(Pi*t/6),sin(Pi*t/6)],t=0..12)]:
  p2:=plot(112,color=blue):
  16:=[seq([cos(Pi*t/3),sin(Pi*t/3)],t=0..6)]:
  p3:=plot(16,color=green):
  p4:=plot([[0,0.005],[1,0.005],[cos(Pi/6),sin(Pi/6)+0.01],[0,0],
            [\cos(Pi/6), -\sin(Pi/6)], [\cos(Pi/6), \sin(Pi/6)], [1,0.005],
            [\cos(Pi/6), -\sin(Pi/6)+0.01]], \operatorname{color=black}, \operatorname{thickness=4}):
  p5:=textplot([[0.5,0.38,'r=1']]):
  plots[display](p1,p2,p3,p4,p5);
> dateiname:='pi_01.ps':
   pifile:=cat('C:/D/Neundorf/Maple3/',dateiname):
  interface(plotdevice=ps,plotoutput=pifile,
             plotoptions='color,portrait,noborder');
  plots[display](p1,p2,p3,p4,p5);
  interface(plotdevice=win);
```

Kreiszahl Pi nach Archimedes mit einbeschriebenen Vielecken

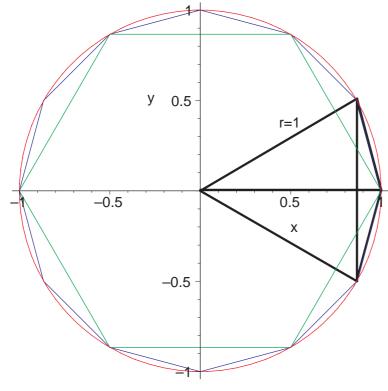


Abb. 2.8 Datei $pi_01.ps$ π nach Archimedes mit einbeschriebenen 6- und 12-Eck

Anwendung der 2 Rekursionen für die Berechnung der Vieleckseite und daraus π

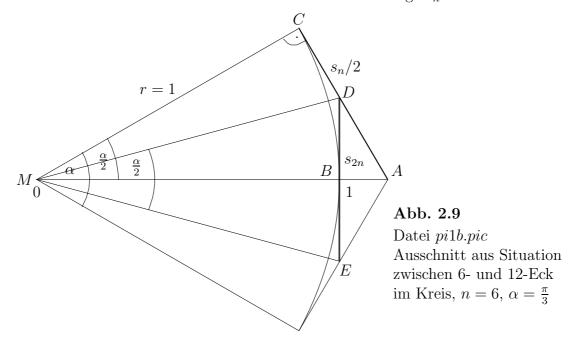
```
> Digits:=12:
                # Teste 22, 24, ...
 n := 21:
  s1:=1.0: Pi1:=3*s1: s2:=1.0: Pi2:=3*s2:
 lprint('2 Rekursionsformeln fuer Seitenlaenge: Digits=12'):
 lprint('1. mit Stellenausloeschung, 2. ohne'):
 fprintf(default, ' '):
 fprintf(default,
                               Pi1
                                                            Pi2\n'):
    i
                                              s2
 fprintf(default, ' %2d
                              %12.10f %13.10f %13.10f \n',
                 0,s1,Pi1,s2,Pi2):
  i:='i':
 for i from 1 to n do
  s1:=sqrt(2-sqrt(4-s1^2)): Pi1:=3*2^i*s1:
  s2:=s2/sqrt(2+sqrt(4-s2^2)): Pi2:=3*2^i*s2:
  fprintf(default, '%2d
                               %12.10f %13.10f %13.10f %13.10f\n',
                  i,s1,Pi1,s2,Pi2):
  end do:
```

- 2 Rekursionsformeln fuer Seitenlaenge: Digits=12
- 1. mit Stellenausloeschung, 2. ohne

i	s1	Pi1	s2	Pi2
0	1.0000000000	3.0000000000	1.000000000	3.0000000000
1	.5176380902	3.1058285412	.5176380902	3.1058285412
2	. 2610523844	3.1326286133	.2610523844	3.1326286133
3	. 1308062585	3.1393502028	.1308062585	3.1393502030
4	.0654381656	3.1410319499	.0654381656	3.1410319509
5	.0327234633	3.1414524763	.0327234633	3.1414524723
6	.0163622792	3.1415576028	.0163622792	3.1415576079
7	.0081812077	3.1415837702	.0081812081	3.1415838921
8	.0040906124	3.1415903413	.0040906126	3.1415904632
9	.0020453068	3.1415912801	.0020453074	3.1415921060
10	.0010226534	3.1415912801	.0010226538	3.1415925167
11	.0005113316	3.1416213194	.0005113269	3.1415926193
12	.0002556756	3.1417414740	.0002556635	3.1415926450
13	.0001278280	3.1415011602	.0001278317	3.1415926514
14	.0000639531	3.1434231556	.0000639159	3.1415926530
15	.0000319374	3.1395779882	.0000319579	3.1415926535
16	.0000161245	3.1702087428	.0000159790	3.1415926536
17	.0000083666	3.2898810899	.0000079895	3.1415926536
18	.0000044721	3.5170308234	.0000039947	3.1415926536
19	.0000031623	4.9738326897	.0000019974	3.1415926536
20	0.000000000	0.000000000	.0000009987	3.1415926536
21	0.000000000	0.000000000	.0000004993	3.1415926536

Umbeschriebene n-Ecke

Die Seitenlänge s_{2n} des umbeschriebenen 2n-Ecks im Kreis mit dem Radius r=1 berechnet sich ebenfalls mittels Rekursion aus der Seitenlänge s_n des n-Ecks.



Es gelten in den rechtwinkeligen Dreiecken MCA und MBD die folgenden Beziehungen.

$$U_n = ns_n$$
, Umfang des n -Ecks, $s_n/2 = \overline{CA}$, α Dreiecksinnenwinkel, $U_{2n} = 2ns_{2n}$, $s_{2n} = \overline{ED}$, $s_{2n}/2 = \overline{BD}$,
$$\tan(\alpha/2) = \frac{\overline{CA}}{\overline{CM}} = \frac{s_n/2}{1} = \frac{s_n}{2},$$

$$\tan(\alpha/4) = \frac{\overline{BD}}{\overline{BM}} = \frac{s_{2n}/2}{1} = \frac{s_{2n}}{2}.$$

Sei $\gamma = \alpha/2 \in (0, \pi/4)$. Aus der trigonometrischen Beziehung

$$\tan(\gamma) = \frac{2\tan(\gamma/2)}{1 - \tan^2(\gamma/2)}$$

folgt $tan(\gamma/2)$ als Lösung einer quadratischen Gleichung gemäß

$$\tan(\gamma/2) = -\frac{1}{\tan(\gamma)} \pm \sqrt{1 + \frac{1}{\tan^2(\gamma)}}$$
, Vorzeichen – ist auszuschließen $= \sqrt{1 + \frac{1}{\tan^2(\gamma)}} - \frac{1}{\tan(\gamma)}$.

Somit erhält man mit $\gamma = \alpha/2$ und $\tan(\alpha/2) = s_n/2$ die Formel

$$s_{2n} = 2 \tan\left(\frac{\alpha/2}{2}\right) = 2 \left[\sqrt{1 + \frac{1}{(s_n/2)^2}} - \frac{1}{s_n/2}\right] = 2 \frac{\sqrt{4 + s_n^2} - 2}{s_n}.$$
 (2.50)

Auch in diesem Fall ist wieder eine Erweiterung des Bruches sinnvoll, um die unerwünschte Stellenauslösung bei numerischen Rechnungen in endlicher GP-Arithmetik - hier sind es Divisionen durch sehr kleine Zahlen - zu vermeiden.

Die Rekursionsformel zwischen den Seitenlängen ist

$$s_{2n} = \frac{2s_n}{2 + \sqrt{4 + s_n^2}}, \quad n = (3,)6, 12, \dots$$
 (2.51)

Man startet die Rekursion mit dem regelmäßigen Dreieck oder Sechseck und $s_3=2\sqrt{3}$ bzw. $s_6=2/\sqrt{3}=1.154\,700\,538\,4.$

	Variante	: 1	Variante 2		
j	$s_{2n} = 2\frac{\sqrt{4+s_n^2} - 2}{s_n}$ $n = 6 \cdot 2^j$	$\pi^{(1)}$	$s_{2n} = \frac{2s_n}{2 + \sqrt{4 + s_n^2}}$	$\pi^{(2)}$	
0	1.1547005384E-00	3.4641016151	1.1547005384E-00	3.4641016151	
1	5.3589838487E-01	3.2153903092	5.3589838486E-01	3.2153903092	
2	2.6330499518E-01	3.1596599422	2.6330499517E-01	3.1596599421	
3	1.3108692563E-01	3.1460862152	1.3108692563E-01	3.1460862151	
4	6.5473220825E-02	3.1427145996	6.5473220826E-02	3.1427145996	
5	3.2727844301E-02	3.1418730529	3.2727844270E-02	3.1418730500	
6	1.6362826814E-02	3.1416627483	1.6362826807E-02	3.1416627470	
7	8.1812764040E-03	3.1416101391	8.1812765015E-03	3.1416101766	
8	4.0906211043E-03	3.1415970081	4.0906211384E-03	3.1415970343	
9	2.0453097629E- 03	3.1415957958	2.0453084302E-03	3.1415937487	
10	1.0226561654 E-03	3.1415997402	1.0226539477E-03	3.1415929274	
11	5.1133099810E-04	3.1416176523	5.1132694043E-04	3.1415927220	
12	2.5567471344E-04	3.1417308787	2.5566346604E-04	3.1415926707	
13	1.2783274952E-04	3.1416176523	1.2783173250E-04	3.1415926578	
14	6.3918678360E- 05	3.1417308787	6.3915866183E-05	3.1415926546	
15	3.1986645251E-05	3.1444151747	3.1957933083E-05	3.1415926538	
16	1.6150271045E-05	3.1752724896	1.5978966541E-05	3.1415926536	
17	8.1092903452E-06	3.1887027124	7.9894832702E-06	3.1415926536	
18	4.4861864013E-06	3.5280805439	3.9947416351E-06	3.1415926535	
19	3.2437161381E-06	5.1019243398	1.9973708175E-06	3.1415926535	
20	2.2430932006E-06	7.0561610879	9.9868540876E-07	3.1415926535	
21	3.2437161381E-06	20.407697359	4.9934270438E-07	3.1415926535	

Tab. 2.3 π nach Archimedes mit umbeschriebenen Vielecken, TP mit GP-Format real, 6 Byte, 11-12 gültige Dezimalen der Mantisse

2.12.2 Fläche ein- und umbeschriebener n-Ecke

Auch diese Untersuchungen gehen auf Archimedes zurück.

Man betrachtet ein- und umbeschriebene regelmäßige Vielecke, wobei nun aber ihre Flächen zu Grunde gelegt werden. Bei einem Radius r=1 des Kreises nähern sich mit wachsender Seitenanzahl die Flächen der umschließenden und eingeschlossenen regelmäßigen n-Ecke dem Wert (Kreisfläche) $F_o=\pi$ an.

Wie kann man nun die Rekursionsformeln zur Flächenberechnung erhalten? Dazu nehmen wir uns einen Ausschnitt aus der geometrischen Darstellung der Situation.

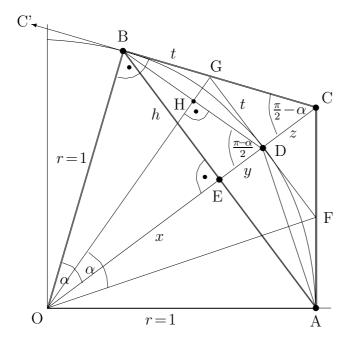


Abb. 2.10 Datei pi7.pic π nach Archimedes mit Flächen

ein- und umbeschriebener regelmäßiger n-Ecke

Zum Kreissektor BOA sollen folgende Bezeichnungen von Strecken und Winkeln gelten.

$$x = \overline{OE}, \ y = \overline{ED}, \ x + y = r = 1,$$

$$z = \overline{DC}, \ 1 + z = \overline{OC},$$

$$h = \overline{EB} = \overline{EA}, \quad 1 = r = \overline{OB} = \overline{OD} = \overline{OA},$$

$$t = \overline{BG} = \overline{GD} = \overline{DF} = \overline{FA},$$

$$\alpha = \angle BOD = \angle GOF = \angle DOA,$$

$$\frac{\alpha}{2} = \angle GOD = \angle DOF,$$

$$\frac{\pi - \alpha}{2} = \angle ODH = \angle OGD,$$

$$\frac{\pi}{2} - \alpha = \angle OCB.$$

Kreissektor BOA	Fläche S	
Regelmäßige n-Ecke	einbeschrieben	Basisdreieck BOA
		mit Innenwinkel 2α
		Fläche $\Delta_n = \overline{OE} \cdot \overline{EB} = xh$
	Fläche $f_n = n\Delta_n$	
	umbeschrieben	Basisdreieck C'OC
		mit Innenwinkel 2α
		Fläche $\Box_n = \overline{OB} \cdot \overline{BC}$
	Fläche $F_n = n \square_n$	entspricht
		Basisviereck BOAC
		mit gleicher Fläche
		$\Box_n = \overline{OC} \cdot \overline{EB} = (1+z)h$

BC, AC sind Tangenten an den Kreis

Dann nehmen wir die Verfeinerung auf regelmäßige 2n-Ecke vor. Der Radius \overline{OD} teilt den Kreissektor BOA in zwei gleich große Sektoren BOD und DOA mit dem Innenwinkel α . Gleichzeitig ist die Strecke \overline{ODC} eine Symmetrielinie in der Figur.

Kreissektoren BOD+DOA	summierte Fläche S	
Regelmäßige 2 <i>n</i> -Ecke	einbeschrieben	Basisdreieck BOD
		mit Innenwinkel α
		Fläche $\Delta_{2n} = \overline{OD} \cdot \overline{EB} = h$
	Fläche $f_{2n} = 2n\Delta_{2n}$	
	umbeschrieben	Basisdreieck GOF
		mit Innenwinkel α
		Fläche $\square_{2n} = \overline{OD} \cdot \overline{DG}$
	Fläche $F_{2n} = 2n \square_{2n}$	entspricht
		Basisviereck BODG
		mit gleicher Fläche
		$\square_{2n} = \frac{1}{2}\overline{OG} \cdot \overline{BD}$

BG, DG sind Tangenten an den Kreis

Die Verhältnisse der Gesamtflächen von F_o zu f_n und F_n bzw. f_{2n} und F_{2n} übertragen sich auf die Verhältnisse im Kreissektor BOA, also von S zu Δ_n und \square_n bzw. $2\Delta_{2n}$ und $2\square_{2n}$.

Sei
$$i_1 = \Delta_{BOA} = hx$$
, $I_1 = \Box_{BOAC} = (1+z)h$.
Die nächste Verfeinerung liefert $i_2 = \Delta_{BOD} + \Delta_{DOA} = 2\Delta_{BOD} = h$ und $I_2 = \Box_{BODG} + \Box_{DOAF} = 2\Box_{BODG} = 4\Delta_{GOD} = 2t$. Analog konstruiert man $i_3, I_3, i_4, I_4, ...$

Die Berechnung der Flächen genügt den rekursiven Formeln

$$i_n = \sqrt{i_{n-1}I_{n-1}}, \quad I_n = \frac{2i_nI_{n-1}}{i_n + I_{n-1}}, \quad n = 2, 3, \dots$$
 (2.52)

Geometrisch ist dann die Konvergenz $\lim_{n\to\infty} (I_n - i_n) = 0$ sofort einleuchtend, obwohl das natürlich analytisch nachgewiesen werden kann.

Wir möchten an dieser Stelle nur die Gültigkeit der Beziehungen (2.52) überprüfen und nehmen dazu o.B.d.A. und wegen der einfacheren Schreibweise n=2.

Zunächst haben wir durch die rechtwinkeligen Dreiecke im Kreissektor die Aussagen

$$h = \sin(\alpha), \ x = \cos(\alpha), \ t = \tan(\alpha/2), \ h/x = \tan(\alpha), \ h/y = \tan((\pi - \alpha)/2)$$

und die trigonometrischen Formeln

$$\tan(\pi/2 - \alpha) = \cot(\alpha) = \cos(\alpha)/\sin(\alpha),$$

$$\tan(\alpha/2) = \sin(\alpha)/(1 + \cos(\alpha)) = (1 - \cos(\alpha))/\sin(\alpha).$$

Die erste Beziehung in (2.52) vereinfachen wir zu

$$i_2 = \sqrt{i_1 I_1},$$
 $i_2^2 = i_1 I_1,$
 $h^2 = hx h(1+z),$
 $1 = x(1+z),$
 $z = \frac{1-x}{x}.$

Im rechtwinkeligen Dreieck GDC gilt

$$\tan\left(\frac{\pi}{2} - \alpha\right) = \frac{t}{z}.$$

Daraus folgen

$$z = \frac{t}{\tan(\pi/2 - \alpha)}, \quad t = \tan(\alpha/2)$$

$$= \frac{1 - \cos(\alpha)}{\sin(\alpha)\cot(\alpha)}$$

$$= \frac{1 - \cos(\alpha)}{\cos(\alpha)}$$

$$= \frac{1 - x}{x},$$

was zu zeigen war.

Die zweite Beziehung in (2.52) vereinfachen wir ebenfalls und erkennen, dass ein schon bewiesener Zusammenhang entsteht.

$$I_{2} = \frac{2i_{2}I_{1}}{i_{2} + I_{1}},$$

$$\frac{I_{2}}{I_{1}} = \frac{2i_{2}}{i_{2} + I_{1}},$$

$$\frac{2t}{(1+z)h} = \frac{2h}{h + (1+z)h},$$

$$\frac{t}{(1+z)h} = \frac{1}{2+z},$$

$$z = \frac{2t - h}{h - t}, \quad t = \tan\left(\frac{\alpha}{2}\right) = \frac{\sin(\alpha)}{1 + \cos(\alpha)} = \frac{h}{1+x},$$

$$z = \frac{1-x}{x}.$$

Wir wählen als Beispiel den Anfangswinkel $2\alpha = \pi/3$, d. h. zum Kreis ein- und umbeschriebene Sechsecke. Dann sind

$$i_1 = \frac{\sqrt{3}}{4}, I_1 = \frac{\sqrt{3}}{3},$$

 $i_2 = \frac{1}{2}, I_2 = 4 - 2\sqrt{3}.$

Es gilt

$$6i_1 < 6i_2 < \dots < F_o = \pi < \dots < 6I_2 < 6I_1$$
.

Wenn wir zur Rekursion (2.52) als Anfangswerte die Gößen $6i_1=6\frac{\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}$ und $6I_1=6\frac{\sqrt{3}}{3}=2\sqrt{3}$ nehmen, erhalten wir zwei den Wert π einschließende Folgen. Man kann in (2.52) die Reihenfolge der Berechnungen umtauschen. Dann ergibt sich jedoch

$$I_n = \frac{2I_{n-1}i_n}{I_{n-1} + i_n}, \quad i_{n+1} = \sqrt{I_n i_n}, \quad n = 2, 3, ...,$$
(2.53)

und man muss die Startwerte I_1 und i_2 haben.

Nach erneuter Multiplikation mit 6 sind das die Größen $6\frac{\sqrt{3}}{3} = 2\sqrt{3}$ und $6\frac{1}{2} = 3$. Damit ist auch die Berechnungsvorschrift (2.57) erklärt.

Überlegenswert sind eventuell auch andere Startwinkel α .

2.13 Ein- und Umbeschreibung von Rechtecken

Wir machen die Betrachtungen in einem Einheitskreis mit dem Radius 1 und dem Flächeninhalt π . Es genügt uns sogar, nur ein Viertel des Kreises, im ersten Quadranten liegend, zu nehmen. Seine Überdeckung erfolgt mit entsprechenden Rechtecken (Streifen gleicher Breite), die ein- oder umbeschrieben sind. Das entspricht der Riemannschen Unter- bzw. Obersumme bzw. der Quadraturformeln als zusammengesetzte Rechteckregel "rechts" oder "links'. Den Fehler, den wir dabei machen, können wir minimieren, wenn wir mehr und damit schmalere Rechtecke in den Kreis zeichnen.

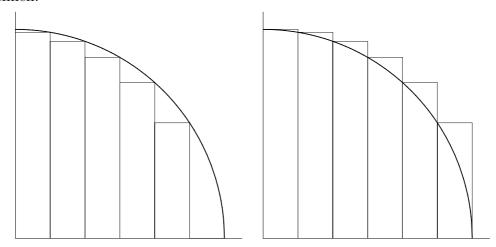


Abb. 2.11 Dateien pi1r.ps, pi2r.ps π mit ein- und umbeschriebenen Rechtecken (n=6 Abschnitte)

Der gesuchte Flächeninhalt

$$\frac{\pi}{4} = \int_{0}^{1} \sqrt{1 - x^2} \, dx \tag{2.54}$$

des Viertelkreises liegt also offenbar zwischen diesen Rechteckflächen-Summen, d. h. $A_i < \pi/4 < A_a$. Beide Summen unterscheiden sich genau durch die Fläche des linken Streifens $[0,\frac{1}{n}]\times[0,1]$, so dass $A_a-A_i=\frac{1}{n}$ bzw. $\lim_{n\to\infty}A_{i,a}=\frac{\pi}{4}$ ist Die Berechnung erfolgt mit einem Computerprogramm in C.

```
#include <math.h>
void main (void)
{
  int nanf,nend,s,n,k;
  double sum,ai,aa;

printf ("\n\nEin- und Umbeschreibung von Rechtecken:");
```

```
printf ("\n\nGib Mindestzahl der Rechtecke: ");
scanf ("%d", &nanf);
printf ("\nGib Hoechstzahl der Rechtecke: ");
scanf ("%d", &nend);
printf ("\nGib Schrittweite: ");
scanf ("%d", &s);
                     n 4*Ai 4*Aa");
printf ("\n\n
printf ("\n
for (n= nanf; n <= nend; n+= s)
  sum= 0.0;
  for (k=1; k \le n - 1; k++)
  { sum += sqrt (1.0 - pow (((double) k)/((double) n), 2.0)); }
  ai= sum/(double) n;
  aa = ai + 1.0/(double) n;
                      %lf %lf", n, 4.0*ai, 4.0*aa);
  printf ("\n %8d
}
}
```

Wir lassen die Näherungswerte für n=1(1)15 berechnen. Wegen der langsamen Konvergenz wie $\frac{1}{n}$ testen wir auch größere Werte n.

n	4*Ai	4*Aa
1	0.000000	4.000000
2	1.732051	3.732051
3	2.250887	3.584220
4	2.495709	3.495709
5	2.637049	3.437049
6	2.728650	3.395316
7	2.792658	3.364086
8	2.839819	3.339819
9	2.875963	3.320408
10	2.904518	3.304518
15	2.988058	3.254725
1000	3.139555	3.143555
2000	3.140580	3.142580
4000	3.141088	3.142088
9000	3.141369	3.141813
10000	3.141391	3.141791
Pi	3.14159265	3

2.14 Die Monte-Carlo-Methode

Wir gehen wieder aus von der Betrachtung eines Einheitskreises, dem wir ein Quadrat umbeschreiben. Nun lassen wir n zufällig verteilte "Regentropfen" auf dieses Quadrat fallen und beobachten dabei, wieviele davon, nämlich k, in den Kreis fallen. Für nicht zu schwache Regenfälle ist dann der Quotient $\frac{k}{n}$ ungefähr gleich dem Quotienten A_k/A_q , wenn A_k die Fläche des Einheitskreises und A_q die Quadratfläche ist. Im Grenzfall erhält man $\frac{\pi}{4}$. Wir beschränken uns wieder auf den Viertelkreis.

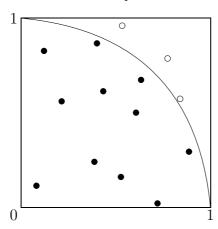


Abb. 2.12 Datei pi4.pic Monte-Carlo-Methode im Viertelkreis zur Bestimmung von π

Dazu das folgende Turbo Pascal-Programm (Variante 1).

```
program Pi_Erzeugung;
uses crt;
var k,n,x,y,z:real;
     ch:char;
 writeln('Pi - BESTIMMUNG DURCH ZUFALLSZAHLEN');
               ABBRUCH DURCH TASTENDRUCK!');
 gotoxy(2,6); writeln('VERSUCHE : ');
 gotoxy(2,7); writeln('TREFFER
 gotoxy(2,8); writeln('TEST-Pi
                                 : ');
 gotoxy(2,9); writeln('PC-Pi
                                 : ',Pi:14:10);
 k:=0; n:=0;
 randomize; {Initialisierung des Zufallszahlengenerators}
 repeat
  n := n+1;
  x:=random; { Zufallszahlengenerator auf [0,1) }
  y:=random;
  if sqr(x)+sqr(y)<1 then k:=k+1;
  z:=4*k/n;
  gotoxy(14,6); write(W:8:0);
  gotoxy(14,7); write(T:8:0);
```

```
gotoxy(14,8); write(Z:13:10);
until keypressed;
end.
```

Natürlich spielen die Ränder der beiden Gebiete keine Rolle.

Wir können sie aber durchaus berücksichtigen, obwohl die random-Funktion nur gleichverteilte Zufallszahlen aus dem Intervall [0,1) erzeugt. Wir transformieren zunächst in eineindeutiger Weise das Intervall auf das abgeschlossene Intervall [0,1], damit haben wir das Einheitsquadrat, und entsprechend die Punkte (x,y). Der Test ihrer Zugehörigkeit zum Viertelkreis mit Rand ist dann $x^2 + y^2 \le 1$.

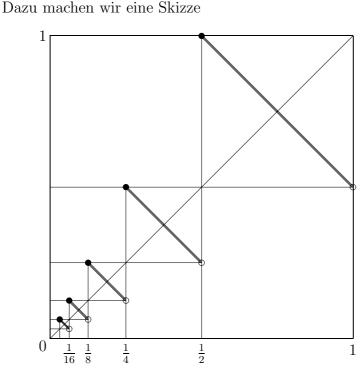


Abb. 2.13
Datei pi5.pic
Transformation
zwischen den
Intervallen
[0,1) und [0,1]

und eine kurze Erläuterung zur Intervalltransformation.

$$[0,1) \rightarrow [0,1] = [1,0]$$

$$[\frac{1}{2},1) \rightarrow [1,\frac{1}{2})$$

$$[\frac{1}{4},\frac{1}{2}) \rightarrow [\frac{1}{2},\frac{1}{4})$$

$$[\frac{1}{8},\frac{1}{4}) \rightarrow [\frac{1}{4},\frac{1}{8})$$
...
$$[\frac{1}{2^{i}},\frac{1}{2^{i-1}}) \rightarrow [\frac{1}{2^{i-1}},\frac{1}{2^{i}})$$
...
$$0 \rightarrow 0$$

Wenn ein Wert z zum Intervall $[u_i, 2u_i)$, $u_i = \frac{1}{2^i}$, gehört, dann ist die transformierte Größe $3u_i - z$.

Im Programm sind dann in der Schleife folgenden Ergänzungen bzw. Veränderungen vorzunehmen (Variante 2).

```
xh:=x; x1:=1;
while xh<1 do begin xh:=2*xh; x1:=x1/2; end;
yh:=y; y1:=1;
while yh<1 do begin yh:=2*yh; y1:=y1/2; end;
x:=3*x1-x;
y:=3*y1-y;
if sqr(x)+sqr(y)<=1 then k:=k+1;</pre>
```

Hier sind nun die Ergebnisse der Rechnungen der beiden Varianten bei aufsteigenden Testzahlen.

n	4*k/n	
	Variante 1	Variante 2
10	3.2	3.6
20	3.0	3.2
30	3.0666666667	3.2
40	2.9	3.1
50	2.8	2.88
60	2.8666666667	2.9333333333
70	2.9142857143	3.0285714286
80	3.2	2.95
90	3.022222222	2.977777778
100	3.04	3.0
200	3.0	2.98
300	3.04	3.04
400	3.0	3.12
500	2.992	3.2
1000	3.064	3.104
10000	3.14	3.1236
100000	3.144476	3.13956
1000000	3.1375532	3.144752
Pi	3.141592653	

Es sind also sehr große Tropfenzahlen erforderlich, um eine brauchbare Statistik zu erhalten.

2.15 Die Leibniz-Reihe

Die Leibniz-Reihe, auch Gregory-Leibniz-Reihe genannt (JAMES GREGORY (1638-1675), GOTTFRIED WILHELM LEIBNIZ (1646-1716)), ist

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} - + \dots$$
 (2.55)

Sie ist nicht absolut konvergent, so dass man die Reihenglieder nicht beliebig vertauschen kann. Einige Partialsummen

$$s_n = 4\sum_{i=1}^n \frac{(-1)^{i-1}}{2i-1} \tag{2.56}$$

sind berechnet worden und man sieht die langsame Konvergenz.

n	sn
1	1.000000
2	2.666667
3	3.466667
4	2.895238
5	3.339683
6	2.976046
7	3.283738
8	3.017072
9	3.252366
10	3.041840
1000	3.140593
2000	3.141093
4000	3.141343
6000	3.141426
8000	3.141468
10000	3.141493
20000	3.141543
30000	3.141559
40000	3.141567
50000	3.141573
100000	3.141583
200000	3.141588
400000	3.141590
500000	3.141591
Pi	3.141592653

2.16 Ausgewählte Berechnungsformeln für π

Archimedes of Syracuse (ca. 287-212 v.u.Z.), ca 250 v.u.Z.

Sei $a_0 = 2\sqrt{3}, \ b_0 = 3 \text{ und}$

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n} \text{ und } b_{n+1} = \sqrt{a_{n+1} b_n}.$$
 (2.57)

Dann konvergieren a_n und b_n linear gegen π mit dem Konvergenzfaktor $\frac{1}{4}$ pro Iterationsschritt.

Ghiyath al-Din Jamshid Mas'ud al-Kashi (ca. 1380-1429), ca. 1429

Die auf 14 Ziffern genaue Formel ist

$$2\pi = 6 + \frac{16}{60^1} + \frac{59}{60^2} + \frac{28}{60^3} + \frac{1}{60^4} + \frac{34}{60^5} + \frac{51}{60^6} + \frac{46}{60^7} + \frac{14}{60^8} + \frac{50}{60^9}.$$
 (2.58)

François Viète (1540-1603), ca. 1579

$$\frac{2}{\pi} = \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{8}\right) \cos\left(\frac{\pi}{16}\right) \cdot \dots
= \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2} + \frac{1}{2}} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2} + \frac{1}{2}} \sqrt{\frac{1}{2} + \frac{1}{2}} \sqrt{\frac{1}{2}} \cdot \dots
= \frac{\sqrt{2}}{2} \frac{\sqrt{2 + \sqrt{2}}}{2} \sqrt{\frac{2 + \sqrt{2} + \sqrt{2}}{2}} \cdot \dots$$
(2.59)

John Wallis (1616-1703), ca. 1656

$$\frac{\pi}{2} = \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot \dots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \cdot \dots} = \prod_{n=1}^{\infty} \frac{(2n)(2n)}{(2n-1)(2n+1)} = \prod_{n=1}^{\infty} \frac{4n^2}{4n^2 - 1}$$

$$= \lim_{n \to \infty} \frac{1}{2n} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2$$
(2.60)

William Brouncker (1620-1684), ca. 1650

Kettenbruch

$$\pi = \frac{4}{1 + \frac{1}{2 + \frac{9}{2 + \frac{49}{2 + \frac{49}{2 + \dots}}}}} \tag{2.61}$$

bzw.

$$\frac{4}{\pi} = 1 + \frac{1}{2 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + \dots}}}}$$

Madhāva of Sangamagramma (1350-1425), James Gregory (1638-1675), Gott-fried Wilhelm Leibniz (1646-1716)

$$\frac{\pi}{4} = \arctan(1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} - + \dots$$
 (2.62)

Sir Isaac Newton (1642-1727), ca. 1666

Ausgangspunkt ist die Flächenberechnung eines Kreises mit dem Radius $\frac{1}{2}$ und dem Mittelpunkt $O=(\frac{1}{2},0)$, von dem wir nur den Kreissektor AOC mit dem Innenwinkel $\alpha=\frac{\pi}{3}$ (ein Sechstel des Kreises) betrachten. Diese Teilfläche setzt sich aus dem halben Kreisabschnitt ABC und dem rechtwinkeligen Dreieck BOC zusammen.

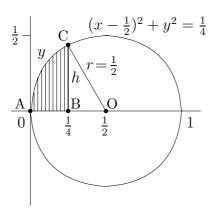


Abb. 2.14

Datei pi6.picNewton-Methode im Kreissektor zur Bestimmung von π

Es gelten mit $F_o = \pi r^2 = \frac{\pi}{4}$, $h = \frac{\sqrt{3}}{4}$ und $y = f(x) = \sqrt{\frac{1}{4} - (\frac{1}{2} - x)^2} = \sqrt{x(1-x)}$ für den Kreissektor die folgenden Beziehungen.

$$F_{AOC} = F_{BOC} + F_{ABC}$$

$$= \frac{1}{2}\overline{BO}h + \int_{0}^{1/4} f(x)dx$$

$$= \frac{\sqrt{3}}{32} + \int_{0}^{1/4} \sqrt{x}\sqrt{1-x} dx$$

und mit

$$\sqrt{1-x} = 1 - \frac{1}{2}x - \frac{1 \cdot 1}{2 \cdot 4}x^2 - \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6}x^3 - \frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}x^4 - \dots$$

weiter

$$F_{AOC} = \frac{\sqrt{3}}{32} + \int_{0}^{1/4} \left(x^{1/2} - \frac{1}{2} x^{3/2} - \frac{1}{8} x^{5/2} - \frac{1}{16} x^{7/2} - \frac{5}{128} x^{9/2} - \dots \right) dx$$

$$= \frac{\sqrt{3}}{32} + \left[\frac{1}{3/2} x^{3/2} - \frac{1}{5} x^{5/2} - \frac{1}{28} x^{7/2} - \frac{1}{72} x^{9/2} - \frac{5}{704} x^{11/2} - \dots \right]_{0}^{1/4}$$

$$= \frac{\sqrt{3}}{32} + \frac{2}{3 \cdot 2^{3}} - \frac{1}{5 \cdot 2^{5}} - \frac{1}{28 \cdot 2^{7}} - \frac{1}{72 \cdot 2^{9}} - \frac{5}{704 \cdot 2^{11}} - \dots$$

Damit ist

$$\pi = \frac{3\sqrt{3}}{4} + 24\left(\frac{2}{3\cdot 2^3} - \frac{1}{5\cdot 2^5} - \frac{1}{28\cdot 2^7} - \frac{1}{72\cdot 2^9} - \frac{5}{704\cdot 2^{11}} - \dots\right)$$
 (2.63)

Formeln vom John-Machin-Typ, JOHN MACHIN (1680-1751)

Anwendung von

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

auf

$$\frac{\pi}{4} = 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right)$$

$$= 4\left(\frac{1}{5} - \frac{1}{3 \cdot 5^3} + \frac{1}{5 \cdot 5^5} - \frac{1}{7 \cdot 5^7} + -\dots\right)$$

$$-\left(\frac{1}{239} - \frac{1}{3 \cdot 239^3} + \frac{1}{5 \cdot 239^5} - \frac{1}{7 \cdot 239^7} + -\dots\right)$$

$$\frac{\pi}{4} = \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) \text{ (L. Euler, 1738)}$$

$$= \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + -\dots + \frac{1}{3} - \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} - \frac{1}{7 \cdot 3^7} + -\dots$$

$$\frac{\pi}{4} = 2 \arctan\left(\frac{1}{2}\right) - \arctan\left(\frac{1}{7}\right)$$

$$\frac{\pi}{4} = 2 \arctan\left(\frac{1}{3}\right) + \arctan\left(\frac{1}{7}\right) \text{ (aus beiden vorherigen Formeln)}$$

$$\frac{\pi}{4} = \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{5}\right) + \arctan\left(\frac{1}{8}\right)$$

$$\frac{\pi}{4} = 8 \arctan\left(\frac{1}{10}\right) - \arctan\left(\frac{1}{239}\right) - 4 \arctan\left(\frac{1}{515}\right)$$

$$\frac{\pi}{4} = \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{8}\right) + \arctan\left(\frac{1}{18}\right) + \dots + \arctan\left(\frac{1}{2n^2}\right) + \dots$$
Formelgenerator: $\arctan(x) + \arctan(y) = \arctan((x+y)/(1-xy))$

$$\frac{\pi}{4} = 12 \arctan\left(\frac{1}{18}\right) + 8 \arctan\left(\frac{1}{57}\right) - 5 \arctan\left(\frac{1}{239}\right) \quad \text{(C. F. Gauß)}$$

$$\frac{\pi}{4} = 3 \arctan\left(\frac{1}{4}\right) + \arctan\left(\frac{1}{20}\right) + \arctan\left(\frac{1}{1985}\right)$$

$$\text{(D. F. Ferguson, 1947)}$$

$$\frac{\pi}{4} = 6 \arctan\left(\frac{1}{8}\right) + 2 \arctan\left(\frac{1}{57}\right) + \arctan\left(\frac{1}{239}\right)$$

$$\text{(Störmer, 1961)}$$

Leonard Euler (1707-1783), ca. 1748

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots$$

$$\frac{\pi^4}{90} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^4} + \dots$$

$$\frac{\pi^2}{6} = 3 \sum_{n=1}^{\infty} \frac{1}{n^2 \binom{2n}{n}}$$
(2.64)

Johann Martin Zacharias Dase (1824-1861), 1844

$$\frac{\pi}{4} = \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{5}\right) + \arctan\left(\frac{1}{8}\right) \tag{2.65}$$

Srinivasa Ramanujan (1887-1920), 1914

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} {2n \choose n}^3 \frac{5+42n}{2^{4+12n}} = \sum_{n=0}^{\infty} \left(\frac{2n \choose n}{16^n}\right)^3 \frac{5+42n}{16}$$

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{1103+26390n}{396^{4n}}$$
(2.66)

In der 2. Formel bringt jeder Summand ungefähr 8 genaue Ziffern.

Guilloud, Boyer, 1973

Anwendung von

$$\arctan\left(\frac{1}{x}\right) = x \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! (x^2+1)^{n+1}}$$
 (L. Euler) (2.67)

auf

$$\frac{\pi}{4} = 12 \arctan\left(\frac{1}{18}\right) + 8 \arctan\left(\frac{1}{57}\right) - 5 \arctan\left(\frac{1}{239}\right)$$

$$= 216 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! 325^{n+1}} + 456 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! 3250^{n+1}}$$

$$-1195 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! 57 122^{n+1}}$$
(2.68)

Der zweite Summand enthält einen dezimalen Shift im Vergleich mit dem ersten.

Louis Comtet, 1974

$$\frac{\pi^2}{6} = \frac{36}{17} \sum_{n=1}^{\infty} \frac{1}{n^4 \binom{2n}{n}} \tag{2.69}$$

Eugene Salamin, Richard Brent, 1976

Sei $a_0 = 1$, $b_0 = 1/\sqrt{2}$ und $c_0 = 1/2$.

Man berechnet für n=1,2,3,...

$$a_{n} = \frac{a_{n-1} + b_{n-1}}{2},$$

$$b_{n} = \sqrt{a_{n-1}b_{n-1}},$$

$$d_{n} = a_{n}^{2} - b_{n}^{2},$$

$$c_{n} = c_{n-1} - 2^{n}d_{n},$$

$$p_{n} = \frac{2a_{n}^{2}}{c_{n}}.$$
(2.70)

Dann konvergiert p_n quadratisch gegen π . Die sukzessive Iteration erzeugt anfänglich 2, 4, 10, 21, 43, 86, 174, 348 und 698 genaue Ziffern. Für t genaue Stellen beträgt der Aufwand $\mathcal{O}(\operatorname{Id}(t))$.

Der erste p-Wert ist

$$p_1 = \frac{11 + 8\sqrt{2}}{7} = 3.187672...$$

Die folgenden Rechnungen in Maple mit der Prozedur pie1 machen wir hinreichend genau, um nicht noch zusätzliche Rundungseffekte zu verursachen.

```
> Digits:=90:
> pie1:=proc(n::posint,s)
   local a,aa,b,c,d,k,p;
   a:=1;
   if s=1 then b:=sqrt(1/2)
                               # fuer symbolische Rechnung
          else b:=sqrt(0.5)
   end if;
   c:=1/2;
   for k from 1 to n do
   aa:=a;
    a := (a+b)/2;
   b:=sqrt(aa*b);
   d:=a^2-b^2;
    c := c-2^k*d;
   p:=2*a^2/c;
    lprint(p);
                 # Ausgabe in Prozedur
   end do;
   NULL;
                  # Rueckgabewert, kann auch letzte Iterierte sein
  end:
> pie1(6,0);
  lprint('Pi=');
  lprint(evalf(Pi,90));
```

Ergebnis

- $3.18767264271210862720192997052536923265105357185936922648763398627512283252812233011472862\\ 3.14168029329765329391807042456000938279571943881540283264418946319566300101025531938888948\\ 3.14159265389544649600291475881804348610887923726131158965110135768465307950308650177409770\\ 3.14159265358979323846636060270663132175770241134242935648684601523841094860692775826806238\\ 3.14159265358979323846264338327950288419716994916472660583469612594874800609532900585185180\\ 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862804724\\ \text{Pi}=\text{C}$

Wir heben die Genauigkeit der Iterierten durch eine günstigere Darstellung hervor.

n	p_n	t
1	3.1 8	2
2	3.141 6	4
3	3.1415926538 9	10
4	3.14159265358979323846 6	21
5	$3.141592653589793238462643383279502884197169 \ 9$	43
6	3.1415926535897932384626433832795028841971693	86
	$993751058209749445923078164062862089986280\ 4$	

Tab. 2.4 π nach Algorithmus von Salamin/Brent mit ungefährer Verdopplung der Anzahl t der genauen Stellen

In der Literatur findet man auch folgende Modifikation des Algorithmus.

Prozedur

pie(n,s) takes n steps of an arithmetic-geometric mean algorithm of Gauss derived by Richard Brent for computing pi.

The result is for s=1 a symbolic expression, whose length roughly doubles with each step, otherwise by s=0 a numerical value.

The number of correct digits in the evaluated string also roughly doubles with each step.

Example: pie(5,1) is a symbolic expression with 1167 characters which, when evaluated, agrees with pi to 84 decimal digits.

```
> Digits:=90:
> pie := proc(n::posint,s)
  local a,b,c,d,k,t;
   a:=1;
   if s=1 then b:=sqrt(1/2)
                               # fuer symbolische Rechnung
          else b:=sqrt(0.5)
   end if;
   c := 1/4;
   t:=1;
   for k from 1 to n do
    d:=(b-a)/2;
    b:=sqrt(a*b);
    a:=a+d;
    c:=c-t*d^2;
    t:=2*t;
   end do;
   (a+b)^2/(4*c):
                      # Rueckgabewert
```

Wir machen also einen Test dieser Maple-Prozedur.

Das Kommando simplify(pie(1,1)) liefert

$$\widetilde{p}_1 = \frac{\sqrt{2}(2 + \sqrt{2} + 2\sqrt{2}\sqrt[4]{2})^2}{8(4 - \sqrt{2})} = 3.140579...$$

Die Iterierte \tilde{p}_1 hat fast dieselbe Genauigkeitsordnung wie $p_2 = 3.141\,680...$ aus der Prozedur pie1. Beim Vergleich von \tilde{p}_k und p_{k+1} für k=2,3,... wird ihre Nähe eher deutlich.

```
> lprint(pie(1,0));
 lprint(pie(2,0));
 lprint(pie(3,0));
 lprint(pie(4,0));
 lprint(pie(5,0));
 lprint('Pi=');
 lprint(evalf(Pi,90));
```

Ergebnis

- 3.14159265358979323846264338327950288419711467828364892155661710697602676450064306171100658
- 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862562870
 'Pi='

Wir heben wieder die Genauigkeit der Iterierten durch eine günstigere Darstellung hervor.

n	\widetilde{p}_n	t
1	3.14 0	3
2	3.1415926 4	8
3	3.141592653589793238 2	19
4	3.1415926535897932384626433832795028841971 1	41
5	3.1415926535897932384626433832795028841971693	84
	9937510582097494459230781640628620899862 5	

Tab. 2.5 π nach modifizierten Algorithmus von Brent mit ungefährer Verdopplung der Anzahl t der genauen Stellen

Wir entnehmen aus der Prozedur pie den modifizierten Algorithmus.

Sei
$$a_0 = 1$$
, $b_0 = 1/\sqrt{2}$, $\tilde{c}_0 = 1/4$ und $t_0 = 1$.

Man berechnet für n = 1, 2, 3, ...

$$\widetilde{d}_{n} = \frac{b_{n-1} - a_{n-1}}{2},
b_{n} = \sqrt{a_{n-1}b_{n-1}},
a_{n} = a_{n-1} + \widetilde{d}_{n},
\widetilde{c}_{n} = \widetilde{c}_{n-1} - t_{n-1}\widetilde{d}_{n}^{2} = \widetilde{c}_{n-1} - 2^{n-1}\widetilde{d}_{n}^{2},
t_{n} = 2t_{n-1},
\widetilde{p}_{n} = \frac{(a_{n} + b_{n})^{2}}{4\widetilde{c}_{n}}.$$
(2.71)

Die Variable t_n wird eigentlich nicht gebraucht.

Wir stellen nun beide Algorithmen (2.70) und (2.71) gegenüber und bemerken die Übereinstimmung in den Rechnungen bis auf einen kleinen Unterschied bei den Formeln für die Iterierten p_n und \widetilde{p}_n .

Alg. (2.70) Algorithmus (2.71)
$$a_n = \frac{a_{n-1} + b_{n-1}}{2} \qquad a_n = a_{n-1} + \widetilde{d}_n == a_{n-1} + \frac{b_{n-1} - a_{n-1}}{2} = \frac{a_{n-1} + b_{n-1}}{2}$$

$$b_n = \sqrt{a_{n-1}b_{n-1}} \qquad b_n = \sqrt{a_{n-1}b_{n-1}}$$

$$d_n = a_n^2 - b_n^2 \qquad \widetilde{d}_n = \frac{b_{n-1} - a_{n-1}}{2} = \pm \sqrt{a_n^2 - b_n^2}$$

$$\text{wegen } a_{n-1} = a_n \pm \sqrt{a_n^2 - b_n^2}$$

$$b_{n-1} = a_n \mp \sqrt{a_n^2 - b_n^2}$$

$$damit \quad a_{n-1} + b_{n-1} = 2 a_n$$

$$c_n = c_{n-1} - 2^n d_n \qquad \widetilde{c}_n = \widetilde{c}_{n-1} - 2^{n-1} \widetilde{d}_n^2 = \widetilde{c}_{n-1} - 2^{n-1} (a_n^2 - b_n^2)$$

$$2\widetilde{c}_n = 2\widetilde{c}_{n-1} - 2^n (a_n^2 - b_n^2)$$

$$c_n = c_{n-1} - 2^n d_n$$

$$p_n = \frac{2a_n^2}{c_n} \qquad \widetilde{p}_n = \frac{(a_n + b_n)^2}{4\widetilde{c}_n} = \frac{(2a_{n+1})^2}{2c_n} = \frac{2a_{n+1}^2}{c_n}$$

Alle Folgen $\{a_n\}$, $\{b_n\}$ und $\{c_n\}$ konvergieren.

Der Grenzwert der Folgen $\{p_n\}$ und $\{\widetilde{p}_n\}$ ist der gleiche, nur dass die Iterierte \widetilde{p}_n wegen der Wahl von a_{n+1} zwar einen Schritt einspart, aber dann bezüglich der Genauigkeit um 1-2 Dezimalstellen wieder verliert (siehe Tabellen 2.4 und 2.5 mit $4 \to 3$, $10 \to 8$, $21 \to 19$, $43 \to 41$,...).

Setzt man im Algorithmus (2.70) in der Formel $p_n = 2 a_n^2/c_n$ die rechte Seite als $2 a_{n-1}^2/c_n$, so handelt man sich einen zusätzlichen Schritt mit $p_1 = 8/(2\sqrt{2} - 1) = 4.37...$ ein und die Anzahl der genauen Dezimalstellen beträgt dann der Reihe nach 0, 2, 4, 10, 21, 43, 86,....

Jonathan M. Borwein, Peter B. Borwein, 1985, 1991

(1) Sei $a_0 = 6 - 4\sqrt{2}$ und $y_0 = \sqrt{2} - 1$.

Man berechnet für n = 1, 2, 3, ...

$$y_n = \frac{1 - \sqrt[4]{1 - y_{n-1}^4}}{1 + \sqrt[4]{1 - y_{n-1}^4}},$$

$$a_n = a_{n-1}(1 + y_n)^4 - 2^{2n+1}y_n(1 + y_n + y_n^2).$$
(2.72)

Dann konvergiert a_n^{-1} mit vierter Ordnung gegen π .

(2) Sei $a_0 = 1/3$ und $s_0 = (\sqrt{3} - 1)/2$.

Man berechnet für n = 1, 2, 3, ...

$$r_{n} = \frac{3}{1 + 2\sqrt[3]{1 - s_{n-1}^{3}}},$$

$$s_{n} = \frac{r_{n} - 1}{2},$$

$$a_{n} = r_{n}^{2} a_{n-1} - 3^{n-1}(r_{n}^{2} - 1).$$
(2.73)

Dann konvergiert a_n^{-1} kubisch gegen π .

David Chudnovsky, Gregory Chudnovsky, 1989

$$\frac{1}{\pi} = 12 \sum_{n=0}^{\infty} (-1)^n \frac{(6n)!}{(3n)! (n!)^3} \frac{13591409 + 545140134n}{(640320^3)^{n+1/2}}$$
 (2.74)

In der Formel bringt jeder Summand ungefähr 15 genaue Ziffern.

Jonathan M. Borwein, Peter B. Borwein, 1985, 1989

 $(1)\,$ Die folgende Gleichung ist keine Identität, aber sie ist korrekt auf 42 Billionen Ziffern.

$$\pi = \left(\frac{1}{10^5} \sum_{n=-\infty}^{\infty} e^{-10^{-10} n^2}\right)^2 \tag{2.75}$$

(2) Mit

$$A = 212175710912\sqrt{61} + 1657145277365,$$

$$B = 13773980892672\sqrt{61} + 107578229802750,$$

$$C = [5280(236674 + 30303\sqrt{61})]^3$$

gilt

$$\frac{1}{\pi} = 12 \sum_{n=0}^{\infty} (-1)^n \frac{(6n)!}{(3n)! (n!)^3} \frac{A+Bn}{C^{n+1/2}},$$
(2.76)

wobei in der Formel jeder Summand ungefähr 31 genaue Ziffern bringt.

68 Die Kreiszahl π

Roy North, 1989

Die endliche Gregory/Leibniz-Reihe

$$4\sum_{n=1}^{500000} \frac{(-1)^{n-1}}{2n-1} = 3.14159\underline{2}6535897932\underline{38}4626433832\underline{7}9502884197 \quad (2.77)$$

für π ergibt eine 40-stellige "Genauigkeit", wobei nur die unterstrichenen Ziffern falsch sind.

David H. Bailey, Peter B. Borwein, Simon M. Plouffe, 1996

$$\pi = \sum_{n=0}^{\infty} \frac{1}{16^n} \left(\frac{4}{8n+1} - \frac{2}{8n+4} - \frac{1}{8n+5} - \frac{1}{8n+6} \right)$$
 (2.78)

Der Nachweis ist wie folgt bei 0 < k < 8.

$$\sum_{n=0}^{\infty} \frac{1}{16^n (8n+k)} = \sum_{n=0}^{\infty} \frac{1}{2^{4n} (8n+k)}$$

$$= \sum_{n=0}^{\infty} \left(2^{k/2} \left[\frac{x^{8n+k}}{8n+k} \right]_0^{2^{-1/2}} \right)$$

$$= \sum_{n=0}^{\infty} \left(2^{k/2} \int_0^{1/\sqrt{2}} x^{k-1+8n} dx \right)$$

$$= 2^{k/2} \int_0^{1/\sqrt{2}} \left(\sum_{n=0}^{\infty} x^{k-1+8n} \right) dx$$

$$= 2^{k/2} \int_0^{1/\sqrt{2}} \frac{x^{k-1}}{1-x^8} dx.$$

Mit der Wahl von k = 1, 4, 5, 6 erhält man

$$S = \sum_{n=0}^{\infty} \frac{1}{16^n} \left(\frac{4}{8n+1} - \frac{2}{8n+4} - \frac{1}{8n+5} - \frac{1}{8n+6} \right)$$

und bei Ersetzen der Reihen durch die entsprechenden Integrale

$$S = 4 \cdot 2^{1/2} \int_{0}^{1/\sqrt{2}} \frac{1}{1 - x^{8}} dx - 2 \cdot 2^{4/2} \int_{0}^{1/\sqrt{2}} \frac{x^{3}}{1 - x^{8}} dx$$

$$-1 \cdot 2^{5/2} \int_{0}^{1/\sqrt{2}} \frac{x^{4}}{1 - x^{8}} dx - 1 \cdot 2^{6/2} \int_{0}^{1/\sqrt{2}} \frac{x^{5}}{1 - x^{8}} dx$$

$$= \int_{0}^{1/\sqrt{2}} \frac{4\sqrt{2} - 8x^{3} - 4\sqrt{2}x^{4} - 8x^{5}}{1 - x^{8}} dx, \quad y = \sqrt{2}x$$

$$= \int_{0}^{1} \frac{4\sqrt{2} - 2\sqrt{2}y^{3} - \sqrt{2}y^{4} - \sqrt{2}y^{5}}{1 - y^{8}/16} \frac{1}{\sqrt{2}} dy$$

$$= \int_{0}^{1} 16 \frac{4 - 2y^{3} - y^{4} - y^{5}}{16 - y^{8}} dy$$

$$= \int_{0}^{1} 16 \frac{(y - 1)(y^{2} + 2y + 2)(y^{2} + 2)}{(y^{2} - 2y + 2)(y^{2} + 2y + 2)(y^{2} + 2)} dy$$

$$= \int_{0}^{1} \frac{16y - 16}{(y^{2} - 2)(y^{2} - 2y + 2)} dy$$

$$= \int_{0}^{1} \left(\frac{4y}{y^{2} - 2} - \frac{4y - 8}{y^{2} - 2y + 2}\right) dy$$

$$= 2\int_{0}^{1} \frac{-2y}{2 - y^{2}} dy - \int_{0}^{1} \frac{4y - 8}{y^{2} - 2y + 2} dy.$$

Gemäß

$$\int \frac{my+n}{ay^2 + by + c} \, dy = \frac{n}{2a} \ln|ay^2 + by + c| + \frac{2an - bm}{a\sqrt{4ac - b^2}} \arctan\left(\frac{2ax + b}{\sqrt{4ac - b^2}}\right)$$

70 Die Kreiszahl π

für $4ac - b^2 > 0$ und Nenner > 0 folgt weiter

$$S = 2 \left[\ln(2 - y^2) \right]_0^1 - \left[2 \ln(y^2 - 2y + 2) - 4 \arctan(y - 1) \right]_0^1$$
$$= -2 \ln(2) + \left[2 \ln(2) - 4 \arctan(-1) \right] = \pi.$$

Mit der hypergeometrischen Funktion (Reihe)

$$F(\alpha, \beta; \gamma; z) = 1 + \frac{\alpha\beta}{1! \gamma} z + \frac{\alpha(\alpha + 1)\beta(\beta + 1)}{2! \gamma(\gamma + 1)} z^{2} + \frac{\alpha(\alpha + 1)(\alpha + 2)\beta(\beta + 1)(\beta + 2)}{3! \gamma(\gamma + 1)(\gamma + 3)} z^{3} + \dots,$$

$$F\left(1, \frac{1}{4}; \frac{5}{4}; -\frac{5}{4}\right) = 0.955933837...$$

folgt

$$\pi = 4F\left(1, \frac{1}{4}; \frac{5}{4}; -\frac{5}{4}\right) + 2\arctan\left(\frac{1}{2}\right) - \ln(5).$$
 (2.79)

Fabrice Bellard, 1997

$$\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n (2n+1)} - \frac{1}{64} \sum_{n=0}^{\infty} \frac{(-1)^n}{1024^n} \left(\frac{32}{4n+1} + \frac{8}{4n+2} + \frac{1}{4n+3} \right)$$
 (2.80)

David H. Bailey

$$\pi^{2} = \frac{2}{27} \sum_{n=0}^{\infty} \frac{1}{3^{9n}} \left[\frac{243}{(12n+1)^{2}} - \frac{405}{(12n+2)^{2}} - \frac{81}{(12n+4)^{2}} - \frac{27}{(12n+5)^{2}} - \frac{72}{(12n+6)^{2}} - \frac{9}{(12n+7)^{2}} - \frac{9}{(12n+8)^{2}} - \frac{5}{(12n+10)^{2}} + \frac{1}{(12n+11)^{2}} \right]$$
(2.81)

Yasumasa Kanada, 2002

$$\pi = 48 \arctan\left(\frac{1}{49}\right) + 128 \arctan\left(\frac{1}{57}\right) - 20 \arctan\left(\frac{1}{239}\right) + 48 \arctan\left(\frac{1}{110443}\right)$$

$$\pi = 176 \arctan\left(\frac{1}{57}\right) + 28 \arctan\left(\frac{1}{239}\right) - 48 \arctan\left(\frac{1}{682}\right) + 96 \arctan\left(\frac{1}{12943}\right)$$
(2.82)

Damit war es ihm möglich, $1.03\cdot 10^{12}$ hexadezimale Ziffern bzw. nach Konvertierung $1.24\cdot 10^{12}$ dezimale Ziffern von π zu berechnen.

Kapitel 3

Die Eulersche Zahl e

3.1 Grenzwertformel und Reihe

Wir wollen die Formel (1.3)

$$e = \lim_{n \to \infty} a_n, \quad a_n = \left(1 + \frac{1}{n}\right)^n > 1,$$

für die Eulersche Zahl e herleiten.

Die Folgenglieder erfüllen die Bedingungen

$$a_{1} = 2, \quad a_{2} = \frac{9}{4}, \quad a_{3} = \frac{64}{27}, \quad a_{4} = \frac{625}{256}, \dots,$$

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= 1 + n\frac{1}{n} + \binom{n}{2}\frac{1}{n^{2}} + \dots + \binom{n}{n-1}\frac{1}{n^{n-1}} + \frac{1}{n^{n}}$$

$$= 2 + \binom{n}{2}\frac{1}{n^{2}} + \dots + \binom{n}{n-1}\frac{1}{n^{n-1}} + \frac{1}{n^{n}} > 2 \quad \text{für } n \ge 2,$$

$$a_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}$$

$$= 2 + \binom{n+1}{2}\frac{1}{(n+1)^{2}} + \dots + \binom{n+1}{n}\frac{1}{(n+1)^{n}} + \frac{1}{(n+1)^{n+1}}.$$

Für diese gilt $a_{n+1} > a_n$, weil im Vergleich ihrer entsprechenden 2. bis n-ten Summanden die Ungleichungen $\frac{k}{k+1} > \frac{k-1}{k}$ bzw. $\frac{k+1}{l+1} > \frac{k}{l}$ verwendet werden können. Nun nehmen wir für die monoton wachsende Folge noch eine Abschätzung von oben vor.

Eine obere Schranke erhält man gemäß

$$a_{n} = 2 + \frac{1}{2!} \frac{n(n-1)}{n^{2}} + \frac{1}{3!} \frac{n(n-1)(n-3)}{n^{3}} + \dots + \frac{1}{n!} \frac{n(n-1) \cdot \dots \cdot 1}{n^{n}}$$

$$< 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 2 + \frac{1}{2} + \frac{1}{2 \cdot 2} + \dots + \underbrace{\frac{1}{2 \cdot 2 \cdot \dots \cdot 2}}_{n-1 \text{ Mal}}$$

$$= 2 + \frac{1}{2} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{n-2}} \right)$$

$$= 2 + \frac{1}{2} \frac{1 - (1/2)^{n-1}}{1 - 1/2} = 2 + 1 - \left(\frac{1}{2} \right)^{n-1} = 3 - \left(\frac{1}{2} \right)^{n-1} < 3.$$

Der Grenzwert dieser beschränkten und monoton wachsenden Zahlenfolge ist die Eulersche Zahl.

Für ihre Darstellung als unendliche Reihe nimmt man meist die Funktionenreihe e^x . Aber man kann auch über die binomische Formel bei $n \to \infty$ gehen.

$$\left(1 + \frac{1}{n}\right)^n = 1 + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^2} + \dots + \binom{n}{n} \frac{1}{n^n}$$

$$= 1 + \frac{1}{1!} \frac{n}{n} + \frac{1}{2!} \frac{n(n-1)}{n^2} + \frac{1}{3!} \frac{n(n-1)(n-3)}{n^3} + \dots$$

$$n \to \infty$$

$$e = 1 + \frac{1}{1!} \cdot 1 + \frac{1}{2!} \cdot 1 + \frac{1}{3!} \cdot 1 + \dots = \sum_{n=0}^{\infty} \frac{1}{n!} .$$

3.2 Zahlenreihen

Wir listen einige weitere Zahlenreihen mit der Eulerschen Zahl auf.

$$\frac{1}{e} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + -\dots,$$

$$\frac{1}{e} = \sum_{n=1}^{\infty} \frac{n}{(2n+1)!},$$

$$\frac{1}{2} \left(e + \frac{1}{e} \right) = \sum_{n=0}^{\infty} \frac{1}{(2n)!},$$

$$\frac{1}{2} \left(e - \frac{1}{e} \right) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!},$$

$$15e = \sum_{n=1}^{\infty} \frac{(n+1)^3}{n!},$$

$$e = \frac{2}{1} \sqrt[2]{\frac{4}{3}} \sqrt[4]{\frac{6 \cdot 8}{5 \cdot 7}} \sqrt[8]{\frac{10 \cdot 12 \cdot 14 \cdot 16}{9 \cdot 11 \cdot 13 \cdot 15}} \cdot \dots$$

Von Interesse sind in diesem Zusammenhang auch die folgenden Summen- und Produktformeln.

$$1 = \sum_{n=1}^{\infty} \frac{n}{(n+1)!} = \sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)},$$

$$\frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1},$$

$$\frac{3}{4} = \sum_{n=2}^{\infty} \frac{1}{(n-1)(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n^2 - 1},$$

$$\frac{1}{8} = \sum_{n=1}^{\infty} \frac{n}{(4n^2 - 1)^2},$$

$$\frac{1}{2} = \prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2}\right),$$

$$\sqrt{2} = \prod_{n=1}^{\infty} \left(1 + \frac{(-1)^{n+1}}{2n-1}\right).$$

3.3 Funktionenreihe

Für die Exponentialfunktion hat man den Grenzwert

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{nx}$$

$$= \lim_{n \to \infty} \left(1 + \frac{x}{nx} \right)^{nx}$$

$$= \lim_{k \to \infty} \left(1 + \frac{x}{k} \right)^{k}$$
(3.1)

oder die Funktionenreihe

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
 (3.2)

Damit ist

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \text{ und } (e^x)' = e^x.$$

3.4 Ansatz mit Koeffizientenvergleich

Auf Isaac Newton (1642-1727) geht die folgende Berechnung der inversen Funktion einer polynomialen Funktion zurück (Umkehrung von Reihen). Sei

$$y = ax + bx^2 + cx^3 + dx^4 + \dots$$

Dann kann man mit dem Ansatz

$$x = \alpha y + \beta y^2 + \gamma y^3 + \delta y^4 + \dots$$

durch Einsetzen auf der rechten Seite von y und Koeffizientenvergleich die Parameter in x sukzessiv ermitteln. Man erhält

$$\alpha = \frac{1}{a}, \quad \beta = -\frac{b}{a^3}, \quad \gamma = \frac{2b^2 - ac}{a^5}, \quad \delta = \frac{5abc - 5b^3 - a^2d}{a^7}, \dots$$

Die Vorgehensweise ist natürlich mühseelig.

Trotzdem wollen wir sie auf die konkrete Funktion, den natürlichen Logarithmus

$$y = \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - + \dots$$
 (3.3)

anwenden. Man rechnet einfach nach, dass $\alpha=1,\ \beta=\frac{1}{2},\ \gamma=\frac{1}{6},\ \delta=\frac{1}{24},...$ ist und damit

$$x = \frac{y}{1!} + \frac{y^2}{2!} + \frac{y^3}{3!} + \dots$$

gilt. Die Exponentialfunktion als Reihe selber ergibt sich dann aus

$$y = \ln(1+x),$$

$$e^{y} = 1+x,$$

$$e^{y} - 1 = x,$$

$$e^{y} - 1 = \frac{y}{1!} + \frac{y^{2}}{2!} + \frac{y^{3}}{3!} + \dots,$$

$$e^{y} = 1 + \frac{y}{1!} + \frac{y^{2}}{2!} + \frac{y^{3}}{3!} + \dots$$

3.5 Integration und Rückwärtsrekursion

Dieser Zugang zu e führt über die Betrachtung und Auswertung des bestimmten Integrals

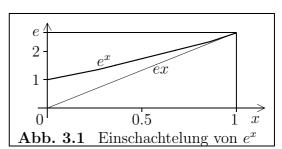
$$I_n = \frac{1}{e} \int_{0}^{1} e^x x^n dx , \quad n = 0, 1, ...,$$
 (3.4)

mittels Rekursionsformeln. Dazu nehmen wir zunächst eine Abschätzung von I_n durch Einschachtelung vor.

$$ex \leq e^{x} \leq e, x \in [0, 1],$$

$$\frac{1}{e} \int_{0}^{1} exx^{n} dx < I_{n} < \frac{1}{e} \int_{0}^{1} ex^{n} dx,$$

$$\frac{1}{n+2} < I_{n} < \frac{1}{n+1},$$



und somit gilt

$$1 > I_0 > \frac{1}{2} > I_1 > \frac{1}{3} > I_2 > \dots, \quad \lim_{n \to \infty} I_n = 0 \text{ und } \lim_{n \to \infty} nI_n = 1.$$
 (3.5)

Durch partielle Integration erhalten wir die typische lineare Rekursion

$$I_n = 1 - nI_{n-1}$$
, falls $n > 0$,
 $I_0 = 1 - \frac{1}{e} = 0.63212055882855767840...$ (3.6)

Diese kann man auch als Iteration $I_n = 1 - nI_{n-1}$, $n = 1, 2, ..., I_0$ gegeben, interpretieren, zumal theoretisch ja auch ein Grenzwert der Folge $\{I_n\}$ existiert. Durch Entrekursivierung folgt

$$I_n = 1 - n + n(n-1) - n(n-1)(n-2) + \dots + (-1)^n n(n-1) \cdot \dots \cdot 4 \cdot 3 - (-1)^n n!/e.$$
(3.7)

Bei Ausführung der Rekursion mit einem Näherungswert für I_0 bemerkt man sehr bald, dass die Einschließung

$$I_n \in \left(\frac{1}{n+2}, \frac{1}{n+1}\right)$$

und damit die Monotonie der Folge verletzt werden.

Die Rekursionsformel ist numerisch instabil. Ein Eingangsfehler, der bei der Näherung der Eulerschen Zahl e gemacht wird, wirkt sich durch die Multiplikation mit n! sehr drastisch aus.

In der GP-Arithmetik in Turbo Pascal mit den Zahlenformaten double (15-16 dezimale Mantissenstellen) und extended (19-20 Mantissenstellen, 18 Stellen werden angezeigt) sowie mit einem bestmöglichen Startwert I_0 , wandert pro Rekursionsschritt die erste ungültige Mantissenstelle um durchschnittlich eine Position nach links.

	I_n	I_n mit Rekursion und GP-Format	
n	auf 20 Dezimalstellen	double	extended
	genau	16 Nachkommastellen	18 Nachkommastellen
0	0.63212055882855767840	0.6321205588285577	0.632120558828557678
1	0.36787944117144232160	0.3678794411714423	0.367879441171442322
2	0.26424111765711535681	0.2642411176571153	0.264241117657115357
3	0.20727664702865392957	0.207276647028654 0	0.207276647028653930
4	0.17089341188538428171	0.170893411885384 0	0.17089341188538428 1
5	0.14553294057307859146	0.14553294057308 01	0.14553294057307859 3
6	0.12680235656152845122	0.1268023565615 195	0.1268023565615284 41
7	0.11238350406930084144	0.1123835040693 635	0.112383504069300 915
8	0.10093196744559326848	0.100931967445 0921	0.10093196744559 2678
9	0.09161229298966058367	0.09161229299 41707	0.09161229298966 5896
10	0.08387707010339416334	0.0838770700 582927	0.0838770701033 41042
11	0.07735222886266420323	0.077352229 3587803	0.077352228863 248537
12	0.07177325364802956125	0.07177324 76946367	0.07177325364 1017554
13	0.06694770257561570369	0.0669477 799697233	0.066947702 666771802
14	0.06273216394138014834	0.06273 10804238732	0.06273216 2665194768
15	0.05901754087929777487	0.0590 337936419019	0.0590175 60022078475
16	0.05571934593123560215	0.055 4593017295701	0.055719 039646744406
17	0.05277111916899476344	0.05 71918705973076	0.05277 6326005345098
18	0.05011985495809425803	- 0.0 294536707515363	0.050 026131903788240
19	0.04772275579620909737	1.5596197442791890	0.04 9503493828023437
20	0.04554488407581805262	-30.1923948855837807	0.0 09930123439531258

Tab. 3.1 Rekursion $I_n = 1 - nI_{n-1}, n = 1, 2, ..., 20, I_0$ maximal genau

Bemerkung 3.1 Es liegt eine gewisse Verwandtschaft der Rekursion zur Fixpunktiteration auf der Basis von x = g(x), g(x) = 1 - nx abhängig vom Iterationsindex, $n \ge 1$, vor. Die Instabilität der Rekursion korrespondiert sozusagen mit der Divergenz des allgemeinen Iterationsverfahrens $I_n = g(I_{n-1}), \ g'(I) = -n \le -1$. Der Fixpunkt wandert mit dem Index von 1/2 nach 0, kann aber wegen wachsenden $|g'| \ge 1$ nicht angenähert werden.

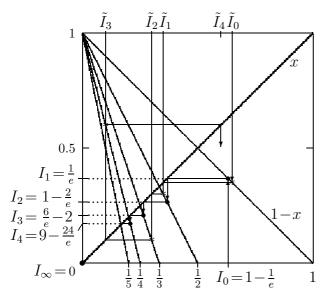


Abb. 3.2 Interpretation der Rekursion $I_n = 1 - nI_{n-1}, \ n = 1, 2, ..., \ I_0 = 1 - \frac{1}{e},$

als "wandernde" Fixpunktiteration, Divergenz ist beim Startwert $\tilde{I}_0 \neq I_0$ sichtbar

So problematisch und eigentlich nicht anwendbar die Rekursionsformel ist, die Rückwärtsrekursion erweist sich als das positive Gegenteil.

Mit $I_{n-1} = (1 - I_n)/n$, n = m, m-1, ...1, könnte man bei einem guten Startwert I_m die vorherliegenden Werte und damit schließlich mittels I_0 die Eulersche Zahl ziemlich genau bestimmen.

	\tilde{I}_n mit Rückwärtsrekursion	
n	$\tilde{I}_{10} = 1/12$	$\tilde{I}_{10} = 1/11$
10	0.083 3333333333333	0.0 909090909090909
9	0.0916 666666666667	0.09 09090909090909
8	0.1009 259259259	0.101 0101010101010
7	0.11238 42592592593	0.1123 737373737374
6	0.126802 2486772487	0.12680 37518037518
5	0.1455329 585537919	0.145532 7080327080
4	0.17089340 82892416	0.1708934 583934584
3	0.207276647 9276896	0.2072766 354016354
2	0.264241117 3574368	0.26424112 15327882
1	0.367879441 3212816	0.36787943 92336059
0	0.632120558 6787184	0.63212056 07663941

Tab. 3.2 Rückwärtsrekursion $\tilde{I}_{n-1}=(1-\tilde{I}_n)/n,\ n=10,9,...,1,$ \tilde{I}_{10} gegeben, Turbo Pascal mit GP-Format double

Was passiert, wenn I_m fehlerbehaftet ist? Wir rechnen also mit $\tilde{I}_m = I_m - \delta_m$.

$$\tilde{I}_{m-1} = \frac{1 - \tilde{I}_m}{m} = \frac{1 - (I_m - \delta_m)}{m} = \frac{1 - I_m}{m} + \frac{\delta_m}{m} = I_{m-1} - \delta_{m-1},
\delta_{m-1} = -\frac{\delta_m}{m},
\tilde{I}_{m-2} = \frac{1 - \tilde{I}_{m-1}}{m-1} = \frac{1 - (I_{m-1} - \delta_{m-1})}{m-1} = \frac{1 - I_{m-1}}{m-1} + \frac{\delta_{m-1}}{m-1} = I_{m-2} - \delta_{m-2},
\delta_{m-2} = -\frac{\delta_{m-1}}{m-1} = \frac{\delta_m}{(m-1)m} \quad \text{usw.}$$

Ein Anfangsfehler δ_m wird bei hinreichend großem m nach wenigen Schritten sehr klein werden. Die Anzahl der Schritte der Vorwärtsrekursion, die alle gültigen Mantissenstellen auslöscht, charakterisiert den Wert m, mit dem die Rückwärtsrekursion bei $\tilde{I}_m \approx 0$ den (genauen) Wert I_0 liefert.

	\tilde{I}_n mit Rückwärtsrekursion und GP-Format	
n	double	extended
	16 Nachkommastellen	18 Nachkommastellen
20		0. 0000000000000000000
19		0.05 00000000000000000
18		0.050 0000000000000000
17	0. 00000000000000000	0.05277 777777777778
16	0.05 88235294117647	0.055718 954248366013
15	0.058 8235294117647	0.0590175 65359477124
14	0.0627 450980392157	0.06273216 2309368192
13	0.06694 67787114846	0.066947702 692187986
12	0.071773 3247145012	0.0717732536 39062463
11	0.07735222 29404582	0.07735222886 3411462
10	0.083877070 6417765	0.083877070103 326231
9	0.0916122929 358223	0.0916122929896 67377
8	0.1009319674 515753	0.10093196744559 2514
7	0.11238350406 85531	0.112383504069300 936
6	0.126802356561 6353	0.1268023565615284 38
5	0.1455329405730 608	0.14553294057307859 4
4	0.17089341188538 78	0.17089341188538428 1
3	0.20727664702865 30	0.207276647028653930
2	0.264241117657115 7	0.264241117657115357
1	0.367879441171442 2	0.367879441171442322
0	0.632120558828557 9	0.632120558828557678

Tab. 3.3 Rückwärtsrekursion $\tilde{I}_{n-1} = (1 - \tilde{I}_n)/n$, n = m(-1)1, $\tilde{I}_m = 0$, m = 17, 20, Turbo Pascal

Bei Rückwärtsrekursion wird mit wachsendem Index m zuerst \tilde{I}_0 immer genauer bis die Genauigkeit eine immer größere Anzahl von anfänglichen Werten erfasst.

m	$ ilde{I}_0$	$\delta_0 = I_0 - \tilde{I}_0$
2	0.5	0.13
4	0.625	0.0071
6	0.63194	0.00017
8	$0.63211\ 805$	$0.00000 \ 25$
10	$0.63212\ 05357$	0.00000 0023
12	$0.63212\ 05586\ 78718$	0.00000 00001 5
14	$0.63212\ 05586\ 27838$	$0.00000\ 00000\ 0072$
16	$0.63212\ 05586\ 28555$	0.00000 00000 00003
17	$0.63212\ 05586\ 28558$	0

Tab. 3.4 Verbesserung der Genauigkeit bei Rückwärtsrekursion $\tilde{I}_{n-1}=(1-\tilde{I}_n)/n,\ n=m,m-1,...,1,\ \tilde{I}_m=0,$ mit wachsendem Startindex m, Turbo Pascal mit GP-Format double

m	k	$\delta_k = I_k - \tilde{I}_k$	
m 20 21 22 23 24 25 26 27 28	k 4 6 7 9 11 12 14 14 16	$\delta_k = I_k - \tilde{I}_k$ $1E-18$ $-1E-18$ $-1E-18$ $1E-18$ $-3E-18$ $-1E-18$ $7E-18$ $-1E-18$ $2E-18$	Tab. 3.5 Vergrößerung der Mengen der genauen Werte $\tilde{I}_0, \tilde{I}_1,, \tilde{I}_{k-1}$
29 30 31 32 33	17 17 20 20 21	1E-18 -1E-18 1E-18 1E-18	bei Rückwärtsrekursion mit wachsendem m , $\tilde{I}_m = 0$, Turbo Pascal mit GP-Format $extended$

Bezüglich des stark gedämpften Fehlers betrachten wir noch einige Abschätzungen. Für die Werte $\{I_m, \tilde{I}_m\}$ gilt

$$\frac{1}{m+2} < I_m < \frac{1}{m+1} < I_{m-1} < \frac{1}{m} < I_{m-2} < \frac{1}{m-1} < \dots$$
 (3.8)

und mit $\tilde{I}_m = 0$

$$0 = \tilde{I}_m < \frac{1}{m+1} < \tilde{I}_{m-1} = \frac{1}{m} = \tilde{I}_{m-2} < \frac{1}{m-1} < \dots$$

und weiter

$$|I_{m} - \tilde{I}_{m}| < \frac{1}{m+1} = \mathcal{O}(1/m),$$

$$|I_{m-1} - \tilde{I}_{m-1}| = \frac{1}{m} - \frac{1}{m+1} = \frac{1}{m(m+1)} = \mathcal{O}(1/m^{2}),$$

$$|I_{m-2} - \tilde{I}_{m-2}| = \frac{1}{m-1} - \frac{1}{m} = \frac{1}{(m-1)m}.$$

Die wachsende Größenordnung der nächsten Verbesserung ist in der Abschätzung nicht zu erkennen. Einen Hinweis darauf erhält man jedoch schon, wenn man z. B. mit der Annahme $I_m = 1/(m + \frac{3}{2})$ rechnet. Daraus ergeben sich

$$I_{m-1} = \frac{2m+1}{m(2m+3)}, \quad I_{m-2} = \frac{2m^2+m-1}{(m-1)m(2m+3)},$$

und somit

$$|I_{m-2} - \tilde{I}_{m-2}| = \frac{2m^2 + m - 1}{(m-1)m(2m+3)} - \frac{1}{m} = \frac{2}{(m-1)m(2m+3)} = \mathcal{O}(1/m^3).$$

Wir fassen die wichtigsten Schlussfolgerungen der Rückwärtsrekursion zusammen:

- Je größer m ist oder je genauer \tilde{I}_m , desto kleiner $|I_0 \tilde{I}_0|$ bzw. desto mehr Anfangselemente $\tilde{I}_0, \tilde{I}_1, ..., \tilde{I}_{k-1}$ sind genau. Hat man so mit maximaler Genauigkeit die Größe \tilde{I}_0 , so egibt sich die Eulersche Zahl $e = 1/(1 - \tilde{I}_0)$.
- Je größer m ist, desto näher "rückt" der erste genaue Wert \tilde{I}_{k-1} .
- Bei $m=10^5$ und $\tilde{I}_m=0$ gilt für den relativen Fehler $\varepsilon_m=|(I_m-\tilde{I}_m)/I_m|$

$$\varepsilon_m = 1,$$
 $\varepsilon_{m-1} = \mathcal{O}(1/m) = \mathcal{O}(10^{-5}),$
 $\varepsilon_{m-2} = \mathcal{O}(1/m^2) = \mathcal{O}(10^{-10}),$
 $\varepsilon_{m-3} = \mathcal{O}(10^{-15}),$

so dass man bei 15–16 Mantissenstellen nach 3 Rekursionsschritten den "genauen Bereich" erreicht. Mittels dieser Rückwärtsrekursion kann man mit geringem Aufwand für jedes n das Integral I_n mit gegebener Maschinengenauigkeit berechnen.

Rechnungen in Maple

Fehlerfortpflanzung bei Rekursion und Stabilität Rekursive Berechnung von bestimmten Integralen

Grafik zum Verhalten des bestimmten Integrals (Fläche)

```
> ff:=(x,n)-\exp(x-1)*x^n:
 i:='i':
 m:=10:
 p1:=array(0..m,[]):
  for i from 0 to m do
  p1[i]:=plot(ff(x,i),x=0..1,color=black,thickness=1);
  end do:
  p2:=plot(ff(x,3),x=0..1,filled=true,color=yellow):
  p21:=plot(ff(x,3),x=0..1,color=black,thickness=3):
 p3:=plot([[1,0],[1,1]], color=black,thickness=3):
 p4:=textplot([[0.5,0.65,'n=0'],[0.5,0.36,'n=1'],[0.7,0.31,'n=3']]):
 pp:=plots[display]([p2,p21,p3,p4,seq(p1[i],i=0..m)],
               Flaeche als bestimmtes Integral
             von f(x)=\exp(x-1)x^n ueber [0,1]':
  display(pp);
> pfad:='C:/D/Neundorf/Maple3/':
 dateiname:='int_01':
  file:=cat(pfad,dateiname,'.ps'):
  interface(plotdevice=ps,plotoutput=file,
            plotoptions='portrait,noborder');
            # Standard ist Dim.=(414,560)pt mit Transl.=(72,72)pt
            # Bildgroesse ca. 145.5*196.8mm
  plots[display](pp);
  interface(plotdevice=win);
```

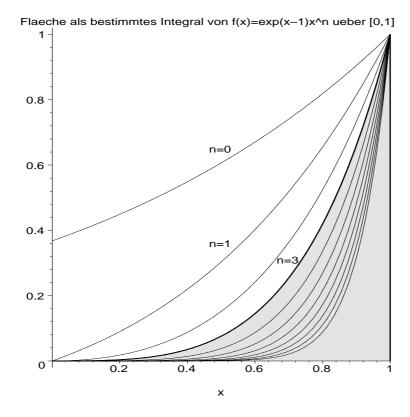


Abb. 3.3 Datei $int_01.ps$ Fläche als $\int_{0}^{1} e^{x-1}x^{n} dx,$ n = 0(1)10

Rekursive Prozeduren für I_n

> In(0), In(1), In(2), In(3);

$$1 - \frac{1}{e}, \frac{1}{e}, 1 - \frac{2}{e}, -2 + \frac{6}{e}$$

$$In1(0) := 1 - \frac{1}{e}$$

> In1(0), In1(1), In1(2), In1(3);

$$1 - \frac{1}{e}, \frac{1}{e}, 1 - \frac{2}{e}, -2 + \frac{6}{e}$$

Test von Arithmetik und Stellenauslöschung.

Man beachte die abweichenden Ergebnisse der Prozeduren In und In1 mit reellem bzw. ganzzahligem Argument für große n.

```
> Digits:=16;
                # 6,10,16,20,40
                 # 10,20, ...
  n:=20;
  xn:=n*1.0;
  In(n)=evalf(In(n));
  In(xn)=evalf(In(xn));
  Digits:=20;
  In(n)=evalf(In(n));
  In(xn)=evalf(In(xn));
                                Digits := 16
                                   n := 20
                                 xn := 20.0
                                   \frac{2432902008176640000}{-} = -200.
           895014631192902121 -
                                   0.243290200817664010^{19}
        0.8950146311929022\, 10^{18} - \\
                                Digits := 20
                                    \frac{2432902008176640000}{2432902008176640000} = 0.06
            895014631192902121 -
                                   \underline{0.2432902008176640\,10^{19}}
        0.8950146311929022\, 10^{18} - \\
                 # 6,10,16,20,40
> Digits:=16;
  n:=20;
                  # 10,20, ...
  xn:=n*1.0;
  In1(n)=evalf(In1(n));
  In1(xn)=evalf(In1(xn));
  Digits:=20;
  In1(n)=evalf(In1(n));
  In1(xn)=evalf(In1(xn));
                                Digits := 16
                                   n := 20
                                 xn := 20.0
                                   \frac{2432902008176640000}{} = -200.
           895014631192902121 -
       0.8950146311929022\, {10^{18}} - \frac{0.2432902008176640\, {10^{19}}}{}
                                Digits := 20
            895014631192902121 - \frac{2432902008176640000}{2432902008176640000} = 0.06
```

i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

> Digits:=20:

Achtung: ungültige Stellen durch 0 am Ende zu erkennen.

Man beachte auch hier die abweichenden Ergebnisse der Prozeduren mit reellem bzw. ganzzahligem Argument im Überlaufbereich (für großes i bzw. ix)

Teste 22, 24, 40, 60, ...

```
n := 25;
In1(0) := 1-1/exp(1.0);
            # 0.63212055882855767841
In1(0):
            # siehe auch Tabelle bei i=0 # In1(0.0):=1-1/exp(1.0);
In1(0.0);
'In(0)'=In(0);
printf(' i
                                                                   In(i)\n'):
                                                In(ix)
                             In1(ix)
printf('%2d
                %24.16f %27.16f
         24.16f\n',0,In1(0.0),evalf(In(0.0)),evalf(In(0)):
for i from 1 to n do
 ix:=1.0*i:
 printf('%2d
                 %24.16f %27.16f
          %24.16f\n',i,evalf(In1(ix)),evalf(In(ix)),evalf(In(i)))
end do:
                                 n := 25
                   In1(0) := 0.63212055882855767841
                             In(0) = 1 - \frac{1}{e}
             In1(ix)
                                         In(ix)
                                                                   In(i)
       1.0000000000000000
                                     .6321205588285577
                                                              .6321205588285577
        .3678794411714423
                                     .3678794411714423
                                                              .3678794411714423
        .2642411176571154
                                     .2642411176571154
                                                              .2642411176571154
        .2072766470286539
                                     .2072766470286539
                                                              .2072766470286539
        .1708934118853843
                                     .1708934118853843
                                                              .1708934118853843
        .1455329405730786
                                     .1455329405730786
                                                              .1455329405730786
        .1268023565615285
                                     .1268023565615285
                                                              .1268023565615285
        .1123835040693008
                                     .1123835040693008
                                                              .1123835040693008
        .1009319674455930
                                    .1009319674455930
                                                              .1009319674455930
        .0916122929896600
                                    .0916122929896600
                                                              .0916122929896600
        .0838770701034000
                                     .0838770701034000
                                                              .0838770701034000
        .0773522288620000
                                     .0773522288620000
                                                              .0773522288620000
        .0717732536500000
                                     .0717732536500000
                                                              .0717732536500000
        .0669477025000000
                                     .0669477025000000
                                                              .0669477025000000
        .0627321640000000
                                     .0627321640000000
                                                              .0627321640000000
        .0590175300000000
                                     .0590175300000000
                                                              .0590175300000000
        .0557195000000000
                                                              .0557195000000000
                                     .0557195000000000
        .0527700000000000
                                     .0527700000000000
                                                              .0527700000000000
        .0502000000000000
                                     .0502000000000000
                                                              .0502000000000000
      -3.9530000000000000
                                  -3.9530000000000000
                                                              .0470000000000000
      79.0600000000000000
                                  79.0600000000000000
                                                              .0600000000000000
   -1659.0000000000000000
                               -1659.0000000000000000
                                                             0.0000000000000000
   36510.00000000000000000
                               36510.0000000000000000
                                                            -839600.0000000000000000
                             -839600.0000000000000000
                                                          -200.0000000000000000
20150000.0000000000000000
                            20150000.0000000000000000
                                                             0.0000000000000000
```

Rückwärtsrekursion

```
> Digits:=20:
     n := 20:
                  # Teste 21,22,...
     Inr:=0.0:
     printf(' i
                               Inr\n'):
     printf('%2d
                   %24.20f\n',n,Inr):
     for i from n to 1 by -1 do
      Inr:=(1-Inr)/i:
      printf('%2d
                    %24.20f\n',i-1,Inr)
     end do:
i
                  Tnr
20
       .050000000000000000000
19
18
        .05000000000000000000
17
        .052777777777777778
16
        .05571895424836601307
15
        .05901756535947712418
14
        .06273216230936819172
13
        .06694770269218798631
12
        .07177325363906246259
        .07735222886341146145
11
10
        .08387707010332623078
9
        .09161229298966737692
8
        .10093196744559251368
 7
        .11238350406930093579
 6
        .12680235656152843774
 5
        .14553294057307859371
 4
        .17089341188538428126
 3
        .20727664702865392968
 2
        .26424111765711535677
 1
        .36787944117144232162
        .63212055882855767838
```

Vergleiche der Näherungen (genaue Ziffern fett hervorgehoben) mit den exakten Werten

Literaturverzeichnis

- [1] AIGNER, M. und G. M. ZIEGLER: Das BUCH der Beweise. Springer-Verlag, Heidelberg, Berlin 2000.
- [2] BERGGREN, L., BORWEIN, J. M. und P. B. BORWEIN: $\pi:A$ Source Book. Springer-Verlag, 2000.
- [3] BORWEIN, J. M. und P. B. BORWEIN: π and the AGM. A Study in Analytic Number Theory and Computational Complexity, John Wiley, New York, 1987.
- [4] NEUNDORF, W.: Lösungsmethoden mit Maple. Betrachtung von Fehlern und Kondition sowie Darstellungsmöglichkeiten. (96 S.) Preprint No M 08/03 April 2003 IfMath TU Ilmenau.
- [5] ABRAMOWITZ, M. und I. A. STEGUN: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York, 1992.
- [6] Bailey, D. H.: The Computation of to 29,360,000 Decimal Digits Using Borweins' Quartically Convergent Algorithm
- [7] Bailey, D. H., Borwein, J. M. und R. Girgensohn, R.: Experimentation in Mathematics. Computational Paths to Discovery, A.K. Peters Ltd., 2003.
- [8] SLOANE, N. J. A. und S. PLOUFFE: *The encyclopedia of integer sequences*. With a separately available computer disk. Academic Press, Inc., San Diego, CA, 1995.
- [9] BORWEIN, J. M. und P. B. BORWEIN: A Dictionary of Real Numbers. Pacific Grove, Calif.: Wadsworth & Brooks/Cole, 1990.
- [10] CRANDALL, R. E.: Topics in Advanced Scientific Computation. Springer/TELOS, New York, 1995.
- [11] JUSZKIEWICZ, A. P. (RED.).: *Historia matematyki*. Bd. I,II,III Übers. ins Poln. von S. Dobrzycki, PWN Warszawa 1975-1977.
- [12] NIVEN, I., ZUCKERMAN, H. S. und H. L. MONTGOMERY: An introduction to the theory of numbers. Wiley, New York 1991.
- [13] NEUNDORF, W.: Numerische Mathematik. Vorlesungen, Übungen, Algorithmen und Programme. Shaker Verlag, Aachen 2002.
- [14] Gradstein, I. S. und I. M. Ryshik: *Tablicy integralow, summ, rjadow i proiswedenij.* Izdatelstwo Nauka Moskwa 1971.

Anschrift:

Dr. rer. nat. habil. Werner Neundorf Technische Universität Ilmenau, Institut für Mathematik PF 10 05 65 D - 98684 Ilmenau

E-mail: werner.neundorf@tu-ilmenau.de

 $Homepage: http://www.mathematik.tu-ilmenau.de/{\sim}neundorf/index_de.html$