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Introduction

Hilbert schemes X[ of n-tuples of points on a complex projective manifold X are
natural compactifications of the configuration spaces of unordered distinct n-tuples
of points on X. Their geometry is determined by the geometry of X itself and the
geometry of the ‘punctual’ Hilbert schemes of all zero-dimensional subschemes in
affine space that are supported at the origin. Thus one is naturally led to the following
problem:

Determine explicitly the geometric or topological invariants of the Hilbert schemes
X[ such as the Betti numbers, the Hodge numbers, the Chern numbers, the cohomol-
ogy ring, from the corresponding data of the manifold X itself.

This problem ismost attractive when X isasurface, since then the Hilbert schemes
are themselves irreducible projective manifolds, by aresult of Fogarty [9], whereas for
higher dimensional varieties the Hilbert schemes are in general neither irreducible nor
smooth nor pure of expected dimension.

In the surface case, the answer to the problem above for the Betti numbers was
first given by Gottsche in [11]. The answer turns out to be particularly beautiful (cf.
Theorem 2.1 below). The problem for the Hodge numbers was solved by Sorgel and
Gottsche [12]. For a different approach to both results see [3]. The answer for the
Chern classes will be implicitly given in a forthcoming paper by Ellingsrud, Gottsche
and the author [4].

The question for the ring structure of the conomology is more difficult. In general,
X2 is the quotient of the blow-up of X x X along the diagonal by the canonical
involution that exchanges the factors. Thus the case of interest is H(X ™), n > 3.
The ring structure was found for (2)!?! by Ellingsrud and Stremme [5], and for X3,
X smooth projective of arbitrary dimension, by Fantechi and Gottsche [8]. In another
direction, Ellingsrud and Stremme [6] gave generators for H((IP2)["), Z), n arbitrary,
and an implicit description of the relations.

Vafa and Witten [27] remarked that Gottsche's Formula for the Betti numbers is
identical with the Poincaré series of a Fock space modelled on the cohomology of
X. Nakajima [21] succeeded in giving a geometric construction of such a Fock space
structure on the cohomology of the Hilbert schemes, leading to anatural ‘ explanation’
of Gottsche's result. Similar results have been announced by Grojnowski [13].



Following the presentation of Grojnowski, this can be made more precise as fol-
lows: sending a pair (¢,¢") of subschemes of length »/ and »n”, respectively, and of
disjoint support to their union ¢ U ¢ defines arational map

m: X'l x"1_ _ s xn'+n"]
This map induces linear maps on the rational cohomology
My = H(XQ) @ B (XP,Q) — HH (X4 Q)

and
m? ™ (X Q) — B (x M Q) @ Y (X! Q).

If welet H := @, H*(X["; Q), then these maps define a multiplication and a comul-
tiplication
my, : HOH — H, m':H— H®H,
which make H a commutative and cocommutative bigraded Hopf algebra. The result
of Nakagima and Grojnowski says that this Hopf algebra is isomorphic to the graded
symmetric algebra of the vector space H*(X; Q) ® tQ][t].
More explicitly, Nakajima constructed linear maps?

qn : H*(X;Q) — Endg(H), n € Z,

and proved that they satisfy the ‘ oscillator’ or ‘Heisenberg' relations

()80 (9)] = (1" 18- [ s,
Here the commutator is to be taken in a graded sense.

The multiplication and the comultiplication of H are not obviously related to the
quite different ring structure of H, which is given by the usual cup product on each
direct summand H*(X["; Q). (Strictly speaking, H contains a countable number of
idempotents 1y, € H°(X™: Q) but not a unit unless we pass to some completion).

This paper attempts to relate the Hopf algebra structure and the cup product struc-
ture. More precisely:

Let F be locally free sheaf of rank r on X. Attaching to a point ¢ € X", i.e
a zero-dimensional subscheme ¢ C X, the C-vector space F' ® (& defines alocally
free sheaf FI™ of rank rn on X", The Chern classes of al sheaves on X" of this
type generate a subalgebra A C H. We will describe a purely agebraic algorithm to
determine the action of .4 on H in terms of the Q-basis of H provided by Nakajima's
results. We collect the Chern classes of al sheaves F"! for a given sheaf F into
operators

ch(F): H — H, ¢(F):H— H

and geometrically compute the commutators of these operators with the ‘ standard op-
erators defined by Nakajima.

*Our presentation differs in notations and conventions slightly from Nakajima's.



A central role is played by the operator 0 := ¢ (Ox), which — up to a factor
(—1/2) — can aso be interpreted as the intersection with the ‘boundaries’ of the
Hilbert schemes, i.e. the divisors X" ¢ X"l of all tuples ¢ which have amultiple
point somewhere. The derivative of any operator f € End(H) isdefined by f := [0, f].
Our main technical result then says that

Iy () = g > avan-v0(c) +n |n|2_ ! n (K ), D

where § : H*(X;Q) — H*(X;Q) ® H*(X;Q) isthe map induced by the diagonal
embedding and K is the canonical class of X. Animmediate algebraic consequence
of thisrelationis

[qu (@), dm(B)] = —nm - qnym(af) )

for n,m > 0. By induction one concludes that the operators ¢ and 0o suffice to
generate all g, n > 1.

The commutator of the Chern character operator ch(F') with the standard operator
g1 can be expressed in terms of higher derivatives of g :

0(F), a1 ()] = 3 ol (ch(F)a). ®)

n>0

Equations (1), (2) and (3) together give a complete description of the action of 4 on
H. Here are two applications:

1. We give a general agebraic solution to Donaldson’s question for the integral
N,, of the top Segre class of the bundles 1] associated to aline bundle L for any n
and explicitly compute N,, for n < 7.

2. We prove the following formula conjectured by Gottsche: If L isaline bundle

on X then
_1\ym—1
S (2" = exp (Z (ﬁ)nqmw(L))zm) .

n>0 m>1

This paper is organised as follows: In Section 1 we recall the basic geometric
notions used in the later parts. Section 2 provides an introduction to Nakajima's results.
Section 3 contains the core of this paper: we first define Virasoro operators §, in
analogy to the standard construction and show how these arise geometrically. We then
introduce the operator » and compute the derivative of g,. Finally, in Section 4 we
apply these results to compute the action of the Chern classes of tautological bundles.

Discussions with A. King were important to me in clarifying and understanding
the picture that Nakajima draws in his very inspiring article. | am very grateful to
G. Ellingsrud for al the things | learned from his talks and conversations with him
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about Hilbert schemes. To some extend the results in this article are a reflection on an
induction method entirely due to him. Most of the research for this paper was carried
out during my stay at the SFB 343 of the University of Bielefeld. On various occasions
| was allowed to lecture on Hilbert schemes and their cohomology in the seminar of the
algebraic geometry group in Bielefeld: it is a pleasure to thank S. Bauer, R. Brussee
and T. Zink for their willingness to listen attentively and critically even to not yet
fully correct preliminary results. |1 owe specia thanks to S. Bauer for his continuous
encouragement, interest and support.

Bielefeld, 8 October, 1997. Manfred Lehn
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1 Preliminaries

In this section we introduce the basic notations that will be used throughout the paper
and collect anumber of results from the literature, mostly without proof.

1.1 Symmetric products

Let Y be a quasi-projective scheme over C. The symmetric group G, actson Y™ by
permutation of the factors, and there exists a geometric quotient = : Y* — S™Y for
thisaction. S™Y isagain quasi-projective, and if Y isirreducible (reduced, integral or
normal) then the same istrue for S"Y. Moreover, this construction is functorial: any
morphism f : Y/ — Y induces amorphism S"f : S"Y' — S"Y.

It follows from the theorem on elementary symmetric functions that SLA! = A™.
Consequently, the symmetric products of smooth curves are again smooth. On the
other hand, if Y isasmooth variety of dimension greater than one, then 'Y is singu-
lar forn > 1.

By aresult of Grothendieck [15], the natural map

T H*(S"Y;Q) — H*(Y™Q) = H*(Y; Q"

is an isomorphism onto the subring of invariant elements under the action of G,. From
this Macdonald computed the following formula for the Betti numbers of §'Y by a
purely algebraic argument:

Theorem 1.1 (Macdonald [20]) — The Betti numbers of the symmetric products are
given by the formula

2dim(Y") ‘
SN wsm )it = [ (- (<1t DO,
n>0 >0 i=0

O

Thereisanother property of the symmetric product, which isimportant for the defi-
nition of the Hilbert-Chow morphism. Consider the following set-valued contravariant
functor M,,(Y") on the category of locally Noetherian C-schemes:

Let .S beaC-scheme, andletp : S x Y — S bethe projection. Then M, (Y)(S)
isthe set of all isomorphism classes of coherent sheaves F' on S x Y, where F' is S-flat,
p : Supp(F) — Sisafinite map, and p, F islocaly freeof rank n. If f : & — S'is
a C-morphism, then M, (Y)(f) : M(Y)(S) — M, (Y)(S") maps the class of F to
[y F. Hereand in the following we write f;- instead of f x idy-.

Grothendieck [14] asserted that there is a natural transformation M, (Y') — S™Y
sending any zero-dimensiona sheaf F' to its weighted support. This means that for
any [F] € M,(Y)(S) there is a classifying morphism &7 : § — S™Y such that
Dp(s) =X ey U(Fsy) -y forals € S, wherefor any coherent sheaf G welet £(G,)
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denote the length of the stalk G, as a module over Oy,,,. Moreover, ®¢: p = ®p o f
forany f: 5" — S.

This was first proved by Iversen [18] using the technique of linear determinants.
Infact, if Y isnormal then S™Y corepresents the functor M,, (Y') (cf. [16, Ex. 4.3.6]).

1.2 Hilbert schemes and Hilbert-Chow morphism

Throughout this paper, the term ‘Hilbert scheme’ will always refer to Hilbert schemes
of zero-dimensional subschemes.

Let Y be aquasi-projective scheme over C. The Hilbert functor is the following
set-valued functor on the category of locally Noetherian C-schemes:

Let Hilb(Y,n)(S) be the set of al closed subschemes Z C S x Y such that the
projection p : Z — S isflat and finite of degreen. If f : § — S isa C-morphism,
the induced map is given by pull-back: Z — f:1(Z) = S' x5 Z.

Grothendieck [14] showed that Hilb(Y,n) is represented by a quasi-projective
scheme Y™, If Y is projective, Y™/ is projective as well.

‘Functoriality’ inY islimited to afew cases: if f : Y — Y isan (open, closed)
immersion, then there is a natural (open, closed) immersion

il )il yin),

defined by taking the image of subschemes under f. Moreover, supposethat f : Y —
Y is an éale (surjective) morphism. Let U  (Y")[" denote the open subset of all
subschemes ¢ C Y’ such that the set-theoretic support of ¢ ismapped injectively to Y.
Then taking images under f defines an étale (surjective) morphism U — Y.

For small values of n there are explicit descriptions of Y"I: Clearly, Y is a
reduced point, Y ~ Y, and Y2/ is the quotient for the &,-action on the blow-up of
Y x Y aong the diagonal. Proceeding by induction, it is not difficult to see that all
Hilbert schemes Y™ are connected if Y is connected.

Observe that there isanatural transformation of functors

Hilb(Y, n) — My (Y)

which sends a subscheme Z C S x Y toits structure sheaf O, € Coh(S x Y). As
Hilb(Y, n) isrespresented by Y™, thistransformation induces amorphism of schemes

p: Yl 5 gny,

the Hilbert-Chow morphism. On a point [v] € Y™, i.e. a subscheme v C Y, this
morphism is given by

p([]) = Y UOuy) - y-

yey

For example, if C is asmooth curve, then p : ¢} — S™C' is an isomorphism.
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1.3 Hilbert schemes of smooth surfaces

From now on, let X denote a smooth irreducible projective surface. The basic geo-
metry of the Hilbert schemes of points on surfaces is governed by two theorems due to
Fogarty [9] and Briangon [1].

Theorem 1.2 (Fogarty) — X" js a 2n-dimensional smooth irreducible projective
variety.

Here is a short sketch of the proof: projectivity is due to Grothendieck. He also
showed that the Zariski tangent space of X"l at a point ¢ is canonically isomorphic to
Hom(Z¢, O¢). Since we aready know that X is connected, it therefore suffices to
show that hom(Z¢, O¢) = 2n for al € € X["l. This can be done using Serre dudlity
and the Hirzebruch-Riemann-Roch Theorem applied to the groups Exf (O¢, O¢). O

Remark 1.3 — We aready mentioned that C{"/ is smooth for smooth curves. Com-
puting the dimension of the tangent space one can show that Y3/ is smooth for a
smooth variety Y of any dimension. On the other hand, Y™™l issingular if dim(Y) > 2
andn > 3.

Fix apoint p € X and let X" ¢ X denote the closed subset of all subschemes
¢ C X with Supp(¢) = {p} (with the reduced induced subscheme structure). Thisis
indeed a closed subset, asit is the fibre o (np) of the Hilbert-Chow morphism over
the point np € S” X.

Let (O, m) denote the local ring of X at p. Since any point £ € X,{Q”] may be
considered as a subscheme of Spec(O/n'*), and since O/m" = Clz,y]/(z,y)", dl
schemes X,[Q"] — for varying X and p — are (non-canonically) isomorphic. Clearly,
X,[,” = {p} and X,[,Z] = P(T,X"), moreover it is not too difficult to see that X,[,?’} is
isomorphic to the projective cone over the twisted cubic G C P3, the vertex of the
cone corresponding to the subscheme Spec(Q/n?). It is not accidental that in these
examples the dimension of XIE"} increases by onein each step:

Theorem 1.4 (Briangon) — Foraln > 1, XIE"} isanirreducible variety of dimension
n — 1. [

For aproof see[1]. A new proof with a more geometric and conceptual argument
was recently given by Ellingsrud and Stramme [7].

Briancon’s Theorem emphasises the importance of curvilinear schemes: recall that
azero-dimensional subscheme ¢ C X iscalled curvilinear at x € X, if & iscontained
in some smooth curve C' C X. Equivalently, one might say that (% . isisomorphic to
the C-algebra C[z]/ (%), where ¢ = £(¢&,). Hence ¢ is curvilinear at « if &, is either
empty, areduced point, or if dim T, = 1. From thiscriterion it isclear, that in any flat
family of zero-dimensional subschemes the points in the base space which correspond
to curvilinear subschemes form an open subset.
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In particular, we may consider the open subset Xgﬂmu C X,[,”]. Thisset hasavery
nice structure;

Lemmal5 —Ifn > 2, then the morphism

t: Xl

[
p,cur

v — P(T,XY), [€] = [Tp¢]

]

is a bundle morphism with affine fibres A*~2. In particular, X, [,Cum isan irreducible
smooth variety of dimensionn — 1.

Proof. Let z,y € Ox, beloca coordinates and consider the open subset U =
{{y + axz)|ay € C} C P(Tp,X"). Then there is an isomorphism A*~1 — ¢~1(U)
sending the (n — 1)-tuple (ay, ... ,a, 1) to the subsheaf corresponding to the ideal
(y+az+...+apz" )+ I O

As a consequence of this lemma we see that Briangcon's Theorem is equivalent
to saying that X, @um isdensein X,E"]. This is a very important information: curvi-
linear subschemes are far easier to handle than any of the others. They contain only
one subscheme for any given smaller length, any small deformation of a curvilinear
subscheme is again locally curvilinear etc.

Generalising the definition of XIE"} dightly, let A € §" X denote the diagonal, and
let X" := p=1(A), endowed with the reduced induced subscheme structure. Thus
Xé”] consists of all subschemes ¢ C X of length n which are supported at some point

in X. The fibres of the surjective morphism p : X"l — X are the schemes X/
considered above. In fact, a choice of regular parameters near a point p leads to a
trivialisation of the morphism p : X"l — X near p, i.e. p is afibre bundle for the
Zariski topology.

As an immediate consequence of Briangon's Theorem we get

Corollary 1.6 —X[[)"} isanirreducible variety of dimensionn + 1. d

Note that X" and X" have complementary dimensions as subvarieties in X"/,
Their homological intersection is therefore zero-dimensional. However, the inclusion
X,[,”] C Xé”] complicates the computation of the intersection product. The following
result was obtained by Ellingsrud and Stregmme [7] by an inductive geometric argu-
ment:

Theorem 1.7 (Ellingsrud, Stramme) — deg([X)"] - [X[[)"}) =(-1)"1t.n. O

1.4 Incidence schemes

Since X" represents the functor Hilb" (X)), there is auniversal family of subschemes

=, c X" x x.
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Again, for small values of n there are explicit descriptions. &) is empty, Z; is the
diagonal in X x X, and Z; isthe blow-up Bla (X x X)) of thediagona in X x X. The
identification is given by the quotient map Bla (X x X) — X2l = BIa(X x X)/&,
and any of the two projections By (X x X) — X.

Assume that ' > n > 0. Then there is auniquely determined closed subscheme
X'l = xI'T « X7 with the property that any morphism

f=(fi,fa): T — x '« xlnl

factors through X"l if and only if £, {(E,) C f, i (En). Closed pointsin X"'n]
correspond to pairs (¢, &) of subschemeswith ¢ C ¢'. Let

xM'] P xln';n] P2, x(n]

denote the two projections. Then X' parametrises two flat families

—_

—1 /— -1
pZ,X(‘:n) - pl,X(‘:n’)'
Consider the corresponding exact sequence
0= Zypn — pi xO0=, = p5 xO=, = 0. (4)

Theideal sheaf 7, ,, isacoherent sheaf on X'»l x X which isflat over X'
and fibrewise zero-dimensional of length 1/ —n. It therefore induces a classifying mor-
phism to the symmetric product, analogoudly to the Hilbert-Chow morphism, which
we will also denote by

p: Xnl _y gn'=nx

As before let X([)""”] .= p~1(A), where A ¢ §"' "X isthe small diagonal. A point
in xi"" isatriple (¢/,z,&) with ¢ C ¢ and Supp(Z¢/e') = {z}.
We may decompose X([)"”"} into locally closed subsets 7, ¢ > 0, with
Zp = {(€,2,8)(&) = £}

Lemma 1.8 — 7, and Z; areirreducible of dimensionn +r/ +1 andn + n', respec-
tively, and dim(Z;) < n+ n' foral ¢ > 1. Moreover, Z, is contained in the closure
of Zj.

Proof. If ¢ =0 or 1, themap (£, z, &) — (£ — &, £,) iSan open immersion
Zy — X0 x[=nth,
It follows from Briangon's Theorem that % isirreducible and
dim(Zp)) =2(n—£0)+(n' —n+L+1)=n+n'+1-L
For ¢ > 2 consider the embedding

Zp — Xl (X([f] X x X([)n’_nH}), (€, 2,8) = (€ = &y &, &)



Infact, theimage of Z, is contained in aproper closed subset of the target variety: For
either & is curvilinear, in which case there is only a unique subscheme & C ¢, of
length ¢, or &, is not curvilinear and therefore contained in a proper closed subset of

X"~ Now, the variety on the right hand side has dimension

2 —O)+U+1)+ (0 —n+l+1)—2=n+n'

Finally, a genera point in 7 is of the form ({ U n,z,{ U {z}) where n is a
curvilinear subscheme supported at = and digoint from ¢. Now it is easy to deform 5
to a subscheme {z:} U7/ with n’ supported at apoint 2/ # x. Hence ageneral point of
Z, deformsinto Z;. O

Definition 1.9 — For any pair of nonnegative integers define subvarieties
gl @'l o xT o x % xl

asfollows: if ' > n > 0 let Q""" and E["" be the closure of Z, and Z;, respec-
tively. Moreover, Q™0 .= X(g”,], EW0 .— ¢ and Q") := (), whereas E["" .=
{(&,2,8)|z € €} = E,. Onthe other hand, if n > 7/, let Q"' = T(Q!""') and
Enl = 7(EM"']) under the twist

T: XM« X x XVl 5 x[ « x x x,

By construction Q'] and E™"'] are empty or irreducible varieties of dimension
n+n'+1andn + n’, respectively.

Let us return to the particular case 7 — n = 1, the most basic of all incidence
situations: consider the projectivisation o : P(%&,) — X" x X . Itisan easy exercise
to see that there is a natural isomorphism P(Z, ) = X *+1.7] such that the diagram

PIz,) ——  XPH

TN\ (p2.0)
Xl x x

commutes.

Theorem 1.10 (Ellingsrud, Stremme [7]) — The incidence scheme X"+ s an
irreducible variety.

An immediate corollary is the following: there is a natural closed immersion
Blz, (X" x X) — P(Zz,); since both are irreducible varieties, this must be an iso-
morphism. The exceptional divisor E is precisely the variety F"+1."] defined above.
Hence in this situation we may write the sequence (4) as

0 = (id, p)+Ox 1. (= E) = pi xO=,,, = p5 xO=, — 0. ®)

n+1

In fact, the incidence scheme is smooth. This has independently be proved by
Ellingsrud, Tikhomirov and Cheah. The proofs are unpublished.
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2 The structure of the cohomology

Asbefore, let X be asmooth irreducible projective surface. By Fogarty’s Theorem the
Hilbert schemes X[ are projective manifolds of rea dimension 4n. The motivating
problem in this study is to understand the cohomology rings H* (X ["}) in terms of the
cohomology ring H*(X).

As far as the vector space structure of the cohomology is concerned, i.e. if we
only ask for the dimensions of the graded pieces of the cohomology, this problem was
solved by Gottsche [11]. The answer is given by the following beautiful formula for
the Betti numbers.

Theorem 2.1 (Géttsche) — The Betti numbers b;(X'™) are determined by the Betti
numbers b;(X). More precisely, the following formula holds:

> > nx g = T T~ (-apem 2oy Come

n>0 i>0 m>03>0

Gottsches origina proof uses the Weil Conjectures [11]. For a different approach
see[3].

Among other things one learns from this formulathat it is a good idea to consider
al Hilbert schemes simultaneously. This will become even more striking through
Nakagjima's method which we will review in the next sections. As a preparation we
collect afew definitions:

Definition 2.2 — Let H := €p,, ;5 H™* denote the double graded vector space with
components H** = H'(X[:Q). Since X% is apoint, H = Q. The unit in
H°(Xx%); Q) iscalled the ‘vacuum vector’ and denoted by 1.

A linear map § : H — H is homogeneous of bidegree (v, ) if f(H"*) C HPT»i+
foral nandi. If f,f € End(H) are homogeneous linear maps of bidegree (v, 1) and
(v',1"), respectively, their commutator is defined by

5,1 =fof — (=1)"“f of.

We use the notation |/, |f| etc. to denote the cohomological degree of homogeneous
cohomology classes, homogeneous linear maps etc.

Setting
(@p)= [ af

for any o, 3 € H*(X!";Q) defines a non-degenerate (anti)symmetric bilinear form
on H*(X!": @) and hence on H. For any homogeneous linear map f : H — H its
adjoint f' is characterised by the relation

(f(@), B) = (=) (a, §7(8)).
Clearly, (jo g)T = g0 1.
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2.1 Correspondences

Let Y7 and Y5 be smooth projective varieties, and let u be a class in the Chow group
Ap (Y1 x Ys). (Wetacitly assume rational coefficients. Thiswill not always be neces-
sary. On the other hand, we are not interested in integrality questions for the moment,
and hence will not pay attention to this problem). The image of u in H, (Y; x Y>)

will be denoted by the same symbol. « induces a homogeneous linear map

Uy Hl(YQ) N Hi+2(dimY17n)(Y1), y PDilpl*(U ﬁpéy)7

where PD : H*(Y,) — H,(Y1) isthe Poincaré duality map.
Assume that Y3 is another smooth projective variety, and v € A, (Y2 x Y3). Let
pi; bethe projection fromY; x Y5 x Y3 to thefactors Y; x Y}, and consider the element

w = P13«(P1a% - P33V) € Anym—dimy, (Y1 X Y3).

Then

Wy = Uy O Vy.

See[10, Ch. 16] for details.
Suppose U C V7 x Yo and V C Y, x Y3 are closed subschemes such that u €
A,(U)andv € A.(V). Let

W = p13(piy (U) Npay (V)

Then the class w defined above is already defined in A, (W).

The following type of arguments will often show up in the sequel: one shows that
the dimension of W is smaller than the degree of w, which forces w to be zero; or
that there is at most one irreducible component 1 of W of maximal dimension with
‘correct’ dimension dim(W}) = deg(w). Inthis case one must have w = p - [Wp] and
it suffices to determine the multiplicity .

LetT : Y1 x Yo — Y, x Y7 exchange the factors. Then a Chow cycle u induces
two maps

w,: H*(Yy) = H*(Y)) and  (Tw), : H*(Y;) — H*(Ys)

which are related by the formula
[ wle-p=[ a-u.e)
Yl Yg

Thisfollows directly from the projection formula. Thus (Tu). = ul.

The following operators were introduced by Nakgjima [21]. The study of their
propertiesis the major theme of this article. We take the liberty to change the notations
and sign conventions.

Recall that we defined (1.9) subvarities

Qrmal « xIml x x x x[e]
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of dimension n; + ny + 1. Their fundamental classes are cycles

[QP12]] € Ay, nyrr (XM x X x X[P2]),
Let the projections to the factors be denoted by n, p and po.
Definition 2.3 (Nakajima) — Define linear maps

qe : H*(X; Q) — End(H), tel,
asfollows: assume first that £ > 0. For o € H*(X;Q) andy € H*(X["; Q) let
qe(@)(y) == [Q" "¢ ®@y) = PD 'pr. Q"] N (p*a - piy)).
The operators for negative indices then are determined by the relation
q-o(@) = (=1)’qe(e)".
By definition, g,(«v) is a homogeneous linear map of bidegree (¢,2¢ — 2 + |«]).

Moreover, qo = 0, and if £ > 0, the operator q,(c)' is induced by the subvarieties
Q[n,n—l—é}’ n > 0.

2.2 Nakajima’s Main Theorem

In this section we review the main result of [21] and some of the immediate conse-
guences. Similar results have been announced by Grojnowski [13].

Theorem 2.4 (Nakajima) — For any integers n and m and cohomology classes «
and 3, the operators g, («) and q,,,(3) satisfy the following ‘oscillator relations’:

[0 (), G (B)] = 70+ G /X off - idg.

O

Here and in the following we adopt the convention that §, equals 1 if v = 0 and is
zero else, and that any integral [, o iszero if deg(a) # dimg(Z).

In [21] Nakajimaonly showed that the commutator relation hold with some univer-
sal nonzero constant instead of the coefficient n. The correct value was first computed
directly by Ellingsrud and Stremme[7]: up to asign factor, which depends on our con-
vention, this number is the intersection number of Theorem 1.7. Briefly afterwards,
Nakajima gave a different proof using ‘vertex operators’ [22].

Consider the vector spaces

W, = H (X;Q) ®tQ[t] and W_:=H*(X;Q) @t 'Q[t™'].
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Define anon-degenerate skew-symmetric pairing on the vector space W := W oW
by
{a@t", Bt} =1 Opim / ap.
X
Note that we are taking the expression ‘ skew-symmetric’ in a graded sense:
{a@t", ot} = —(-1)Pg o™ oo t"}.

The Heisenberg algebra is the quotient of the tensor algebra 7W by the two-sided
ideal I generated by the expressions [v, w| — {v,w} - 1 withv,w € W

H:=TW/I.

‘H is the (restricted) tensor product of countably many copies of Clifford algebras
arising from H°%(X; Q) and countably many copies of Weyl algebras arising from
Heve"(X;Q). AsW, isisotropic with respect to the skew-form {, }, the subalgebra
in H generated by W, isthe symmetric algebra S*W (taken again in agraded sense).
This becomes a double graded vector space if we define the bidegree of a ® * as
(n,2n — 2+ |al).

Using these notations, Nakajima's Theorem can be rephrased by saying:
Sending a ® t" € W to g, () € End(H) defines arepresentation of # on H.

The subspace W_ of monomials of negative degree annihilates the vacuum vector
1 € H for obvious degree reasons. Hence there is an embedding

S Wy 2H/H-W_ -5 H-1CH

It is not difficult to check that the Poincaré series of S*W.. equals the right hand side
of Gottsche's formula. Thisimplies:

Corollary 2.5 (Nakajima) — The action of H on H induces a module isomorphism
S*W, — H. Inparticular, H is irreducible and generated by the vacuum vector. [

In fact, this can be strengthened as follows:

Consider therational map a : X" x XM — — x[n+ml which is defined on the
open subset of all pairs (¢, ¢') with digoint support by a(¢,¢) := ¢ U¢'. Thisrational
map induces homomorphisms

Qy H*(X[n};Q) ®H*(X[m];Q) . H*(X["+m];(@)
and
a H*(X[n+m]§Q) N H*(X[n];(@) ®H*(X[m};(@)
and hence
g, HOXH—H and o HoHH

Corollary 2.6 (Nakajima, Grojnowski) — The homomorphism ¢ and a., endow H
with the structure of a Hopf algebra. If S*W_. is given the canonical Hopf algebra
structure of the symmetric product, then SW, — H is an isomorphism of Hopf
algebras. O
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3 The boundary operator

This section contains the main technical results of the paper. The key to our solution
of the Chern class problem is the introduction of the boundary operator © € End(H).
Thisisdonein 3.2. We begin with the discussion of related topics and ingredients for
later proofs.

3.1 Virasoro generators

Starting from the basic generators g, and the fundamental oscillator relations we will
define the corresponding Virasoro generators &, in analogy to the procedure in con-
formal field theory. We will then give concrete geometric interpretations for these
generators.

Let o : H*(X) - H*(X x X) = H*(X) ® H*(X) be the push-forward
map associated to the diagonal embedding. Equivalently, this is the linear map ad-
joint to the cup-product map. If 6(a) = >, o) ® o, we will write g,,q,,0(c) for

> An () qm ().

Definition 3.1 — Define operators £, : H*(X; Q) — End(H), n € Z, asfollows:

1 .
Ly = 3 ;Zq,,qn_,,é, ifn#0

o= q9-,0.

v>0

and

Remark 3.2 — i) The sums that appear in the definition are formally infinite. How-
ever, as operators on any fixed vector in H, only finitely many of them are nonzero.
Hence the sums are locally finite and the operators &, are well-defined. £,(«) is
homogeneous of bidegree (n,2n + |«|)

ii) Using the physicists’ hormal order convention

. L dndm if n >m,
FAnfm © = mn ifn <m,

the operators £,, can be uniformly expressed as

L, = %Z S Qv ;O
VEL

Theorem 3.3 — Theoperators £, and q,,, satisfy the following commutator relations:
1. [Ln(), qm(B)] = —m - dnim ().

2. [€4(a), L (B)] = (n —m) - Lpim(aB) — 526,10 - [y aff - idg.
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Proof. Assume first that n # 0. For any classes o and 8 with
§(a) = Za; ® af
we have

(40 (%) dn—v (), 4m ()] qu () [qnﬂ;(a;/), dm ()]
+(=1) Mg, (), 4 (8] ()

= (—m)bntm—v - qn-l—m(a;') / a;’
X

) ) [ B i)
X
If we sum up over al v and ¢, we get

Q[Qn(a)v dm (ﬁ)] = Z[quqn—ué(a)v qm(ﬁ)] = (_m) : qn+m(7)

with
v = pri(6(a) - pri(8)) + (=1)BHel pro (pr(B) - 6(a)) = 2 af.
Similarly, for v > 0,
[qu_y(5(a), dm (ﬁ)] =—-m: qM(aﬁ) : (6m—1/ + 6m+u)-
Thus summing up over al v > 0 wefind again
[Lo(a), qm (B)] = —m - am(aB).

This proves the first part of the theorem.
As for the second part, assume first that n» > 0. In order to avoid case considera-
tions let us agree that qn iszero if N isodd. Then we may write:
2

1
Sn =580+ ) Gudm—ud.
n>
By the first part of the theorem we have
[En(a)a quqm—ué(ﬁ)] = ( — Wn+p9m—p + (:U - m)quqn+m—u>5(a/8)-

In the following calculation we suppress «, 8 and § up to the very end. Summing up
over al u > 0, we get:

m
[Cn,&m] = = (@nipay +dpduy)
+ Z (:u - m)qﬂanrmf;L + Z (_N)anrﬂqu;L
p>5 p>5

m
=~ nspan +andun)

+ Z (:u - m)qﬂanrmf;L + Z (n - :u)q,uanrmf,u
p> p>n+3
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Hence

m
(S0, ol = (=) Y Gullnpmp = — (nrzdz +a20urz)

+
> ntm

+ Z (H’ - m)ququrnf,u

+
T <psET

— > (= ) Tulntmep

Y <psnt
Now split off the summands corresponding to the indices ¢ =4 and p = n + %

from the sums. Substituting n +m — p for p in the second sum on the right hand side,
we are left with the expression:

m
(£, €] — (n—m)Cpim = _Z[q%a qn+%] + Z (1 — m)[qua qn+m7u]
B <p<pm

Theright hand side is zero unless n + m = 0. Hence we see that

[Ln(@), L (B)] = (n — m)Lpim(aB) + nym - /X af - N,

where N is the number

N= > wvlw—n) ifnisodd,

0<v<y
and
n2 . .
N = Z u(u—n)—; if niseven.
0<v<y
An easy computation shows that in both cases N equals (n — %) /12. O

Recall the definition of the varieties B ¢ X"l x X x X[ in (1.9).
Definition 3.4 — Let ¢ be anonnegative integer and let
¢s: H*(X) — End(H)
be the linear map
er()(y) = [EM ] (a @ y) = PD™'pu ((B™ M) N (0" - piy)

for o € H*(X;Q) andy € H*(X"; Q).

The following theorem gives a‘finite’ geometric interpretation of the infinite sums
which define the Virasoro operators.
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Theorem 3.5 — Let n be anonnegative integer.
1
[en (@), am (B)] =

m - qpam(aB) ifm>0o0rm< —n.
0 else.

1
en + £, = 3 Oén quv9n—v0.

Proof. Ad 1. Assumefirst that m > 1. To simplify the notations we introduce the
short-hand
X[nl]r[nﬂ:"':[nk] = X[nl] X X[nz] X ... X X[nk'}

Suppose ¢ > 0, and consider the following diagram

X[f-l-n-i-m},[l]a[ﬁ-i-m] & X[E-I-n—l—m]:[1},[1"‘"@,[1]:[(} &) X[£+m]7[1}7[€]

lplms

X [e+n4m],[1],[1],[¢)
The product operator ¢, q,, isinduced by the class

Z 1= P1245% (pT23 [E[Z-i-m—l—n,l-i-m}] ’ p§45 [Q[ﬁ—l—m,ﬂ]) € A2£+n+m+1 (ZI)

where

7' = proas (pigg (B 0 pn QU ))
C Z:={( 7y,8I: & —n=nw,n—-E{=my,z €n}
Here the notation n — £ = my should comprise the conditions:. £ is a subscheme of 7,

and the ideal sheaf of ¢ in 7 isof length m and is supported at y etc.
Similarly, the operator g, ¢, isinduced by aclassv € Ay pin1 (V') with

VeV i={(¢, 2,9, & —n =mz,n — ¢ =ny,y €&

Moreover, if T : X[E+mtnlLALIE _y xle+m+n][1[1L[0 exchanges the two copies
of X inthe middle, then the commutator [e,, q,,,] iSinduced by z — T'(v).

Now observe that off the diagonal {z = y} c XUt +nLlLILE the subsets Z
and T'(V') are equal. Moreover, there is only one component of (maximal possible)
dimension 2/ +n +m + 1. Itiseasy to see that this component has multiplicity 1 both
in z and T'(v): the intersection

p1—213(E[£+m+n,£+m}) N p§415 (Q[ler,l})

is transversal over a genera point in this component of Z, and maps injectively into
Z. Thus the only contributions to z — T'(v) may arise from the diagonal part. Now

Vﬂ{(L‘:y} = {(£,v$a$a£)|£,_£: (n+m)x7x € f}
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We have seen earlier (1.8) that this set has dimension < 2/ + n + m and hence may be
disregarded. On the other hand

Zn{z =y} ={(¢ 22,0l == (n+m)z}.

Again using 1.8 we see that this set has only one component D of (maximal) dimension
2¢ +n + m + 1. Moreover, this component is the image of the embedding

L Q[ﬂ‘l*n‘l*m,f] N X[l+n+m],[1},[1],[l}, (é—l’ z, é—) — (é—l’ T, é-)
Leto, € H*(X;Q) andy € H*(X?; Q). Then we have

p1([D] N p3s(a ® B) - pyy)

pre(e [ QU™ A phs (o ® B) - piy)
pr([QET T N (phs(a ® B) - piy))
= p(QT" ™ N3 (aB) - piy)

This shows that
[en (@), am (/8)] = 1t Gnim(afB)
for someinteger 1. Hence it remains to compute the multiplicity o of [D] in z. To this
end we pick a general point d € D and inspect the intersection of g5 (B +m4)
and py 5 (QIF™4]) along the fibre piy; (d).
A genera pointin D is of the form

d=(,2,2¢ with ¢=¢Ug,

where ( isacurvilinear subscheme of X of length n + m, supported in a single point
x which isdigoint from &. Since ( is curvilinear, there is a unique subscheme n C ¢
of length m, and hence p,., (d) consists of the single point

d =(Ul,z,EUn,x,€)

Near d' the varigties XE+m+nlL1LI+m] 1L gng X [LELIE « xIm+n]LLImL] gre |o-
cally isomorphic; and similarly Elf+mtntiml 1 X x glmtnml gng Qlé+m. to
X4 x x™. Thuswe may split off the factors X' from the geometric picture. In the
end this amounts to saying that we may assume without loss of generality that / = 0.
Moreover, the calculation islocal in X, so that we may assume that X = & =
SpecClz,w] and Z; = (w, 2z"*™), I, = (w,2z™) and Z, = (w, z). Then d’ has an
affine neighbourhood & A*m+2n+4 jn x[n+ml[1:mL 1] with coordinate functions

apgy .- - ,an+m_1,b0,... ,bn+m_1,w1,21,00,... ,Cm_l,d(),... ,dm_l,UJQ,ZQ,

which parametrises quadrupels (¢, z, 7, y) of subschemesin X given by the ideals
(w_gl(z)afl(z))a (w_wlaz_zl)a (w_QQ(Z)afZ(Z))a (w_w%Z_ZZ)a
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where
filz)=a+az+... 42" gi(z) =bg+biz+ ...+ bppmo12" !

and
fa(z) =co+crz+...+2™, go(z) =do+diz+...+2".

Now (7, y) belongs to X(gm}, i.e. Supp(n) = {y}, if and only if
f2(z) = (z — 22)™ and we = go(22). (6)

And (¢, z,n) belongs to Q™™ if and only if the following three conditions are
satisfied: n C ¢, i.e

91(2) = g2(2) + fa(2) - h(z) and fi(z) = fa(2) - k(2) (7)

with polynomials » and k of degree n — 1 and n, respectively; the ideal sheef 7 is
supported at z, i.e.

k(z) = (2 — 21)™ and w1 = g1(21) (8

and finadly, = must be contained in n, which imposes the condition

fa(z1) =0 ©)
One easily checks that the equations (6) - (8) cut out a smooth subvariety which
projects isomorphically to the affine space Spec C[z , 22, bo, - - - , bp+m—1]. Moreover,

in these coordinates the last condition (9) simply reads (4 — z2)™ = 0. Hence the
multiplicity 1 equals the exponent 1.

Next, we consider the case [¢,, q—,,,] With 0 < m < n. There isnothing to prove
if m = 0. Hence assume that m > 0. Dimension arguments similar to the ones above
show that the cycle v which induces the commutator [g-,,, ¢,] must be supported on
the closed subsets

V= {(& 22,0 D¢ 33,6 — (= (n+m)e} c XEmIILILE g >,

The cycle v has degree 2¢ + n — m + 1, so that it suffices to show that dim(V) <
2¢ + n — m. Thisfollows from Lemma 1.8.

It remains to consider the case [¢,, q,,] Withm < —n. A dimension check of the
set-theoretic support of the intersection cycle shows that we must have

[en(@), a—m(B)] = 1t dn—m(af)

for some integer p, independently of o and 8. To determine u, we proceed alge-
braically and take the commutator with g, (1):

[[en(@), a-m(B)]; dm—n(D)] = - [dn—m(a@B), dm-—n(1)] = p(n —m) / af -idg.

X
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On the other hand, combining the Jacobi identity, the oscillator relations and the first
part of the proof yields

[[en (), a—m(B)]; dm—n ()] = [[en(®), dm—n(1)], g—m ()]
= (m—n)[dgm(a), q-m(B)]

= m(m—n)/xozﬁ-idH.

It followsthat y = —m.

Ad 2: Consider the difference v := ¢, (a) + £,(@) — 3 "] q,q5—,0(cr). Com-
paring the expressions in 3.3 and part 1 of the theorem we see that y commutes with
al operators g,,, , m € Z. Since H is a smple A'-module, y must be a scalar (in
some algebraic extension of @), which isimpossible: if n > 0, then y has non-trivial
bidegree (n,2n + |a), andif n = 0, it iseasy to see directly thaty -1 = 0. O

Remark 3.6 — In particular, the operator £(«) has the following geometric inter-
pretation: the universal family 5, ¢ X[ x X induces a homomorphism

[En)s : HY(X;Q) — H*(X[";Q),

and
Lo(a)(y) = [Enli(a) -y foral ye H (XM Q).

In particular, if weinsert a = 1y, we get
Lo(1x)(y) =n-yforaly e H*(XM; Q).

Thus £y(1x) isthe ‘energy’ or ‘counting’ operator, that measures with which ‘ energy
level’, i.e. how many points we are dealing. This can, of course, also be deduced
directly from the definition of £,.

3.2 The boundary of the Hilbert scheme

For any partition A = (A > Ay > ... > Ay > 0) of n thetuples D, _, ., iz,
z; € X, form alocally closed subset 52X in S"X. Let X" = p=1(57.X). It follows
from Briangon’s Theorem that X&”] isirreducible and

dim(X/[\n]) = Z Ai+1)=n+s.
1<i<s

The generic open stratum is X([ﬂ 1) It corresponds to the configuration space of
unordered n-tuples of pairwise distinct points. Furthermore, there is precisely one

stratum of codimension 1, namely Xg}l n
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IfA=(N,..., ) and g = (p1,...,uy) are partitions of n, then XL"} is con-
tained in the closure of X/[\"] if and only if there is a surjection

w:{l,...,s} = {1,...,5'}

such that y1; = X; for all 5. It follows that

ico=1(9)
ox = U Xgn] = X([;,]L...,l)
A (Lo 1)

isan irreducible divisor in X", Asit isthe complement of the configuration space in
X" we might and will call it the boundary of X,

Lemma 3.7 — Let E ¢ X["t1"l pethe exceptional divisor. Then
pioxntl _proxrl = 2. .

Proof. Pointsin X1l are triples (¢, z,¢) with ¢ C ¢ and Z; /e = k(x), and
py ' (0X 1) consists of those triples such that thereisapoint y € X with £(¢) > 2.
Now either y = z, in which case £(&,) = £(¢.) — 1 > 1 and therefore (¢, z,€) € E,
ory # z, inwhich case £(&,) = £(¢}) > 2 sothat (¢,z,¢) € p, ' (0XM). Hence
set-theoretically, we have p, H(0X["*+1) = p, 1 (0X[") U E. We must check the
multiplicities.

Off the exceptional divisor E we have XI"t171\ F = X[l x X\ =, which embeds
as an open subset into X" 1. Clearly, (X"l x X'\ 2,) nox+1 = prroXl. Thus
ps0X Mt —pra X" = . E. In order to compute the multiplicity 1 we pick ageneral
point in E which is of theform (n U ¢, z,n U {z}), where z ¢ n and ¢ has length 2
and is supported at . Without loss of generality we may assume that 7 is empty, i.e.,
that n = 1. But then X[ is the blow-up of X x X along the diagonal, E is the
exceptional divisor, and p, : X%! — X2 jsthe quotient map for the action of &,
on the blow-up. In this picture E is the ramification divisor, 9X?! is the branching
divisor, and the ramification order is 2. Hence indeed, i = 2. O

We will need a different description of the divisor 9X"! in sheaf theoretic terms.
Letp : 2, — X[ bethe projection, and define sheaves

o = p,(0s,) € Coh(x").

Asp isflat and finite of degree n, OE(,L] islocaly free of rank n. The fibre at a point
¢ € Xl isthe C-vector space underlying the algebra (.

Lemma38 — ¢ (0W) = -1 [oxM].
Proof. Consider the following incidence scheme with the natural projections:

xht] . xlntin] o xln]
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We have seen earlier in 1.4 that Z,.,, = (id, p)+Oxm+1..(—F) and hence that
peTniin = OF T (—E). Thisshows
pien (OFY) = pser (OF) = —E.
On the other hand, by Lemma 3.7,
proxntl _proxrl = 2. .
Therefore, if we put , := CI(OE?}) + 20X, we get pivy, = piyni1. Now yp =
v1 = 0, since (’)%] ~ Oy and 09X = (). Assume by induction that , = 0. It

follows that pi7y, 1 = 0, and since p; : X*t1nl 5 X+l js genericaly finite and
surjective, we must have v, .1 = 0 aswell. O

Definition 3.9 — Letd : H — H be the homogeneous linear map of bidegree (0, 2)
given by
o(z) = cl((’)g?]) cr = —% [6X[”]] .z foralz e H*(XM).

For any endomorphism § € End(H) its derivative is{ := [0, f]. Asusua, we write
§() .= (ad )" () for the higher derivatives.

It follows directly from the definition of the commutator that f — f isaderivation,
i.e. for any two operators a, b € End(H) the ‘Leibniz rule’ holds:

(ab) =d'b+ab’ and [a,b] =[d,b] + [a,b].

Moreover, if f : H*(X¥)) — H*(X[") is a homogeneous linear map, then |f| =
|f| + 2, so that f and ' have the same parity. Furthermore,

()T = ().
Indeed,

[ 1wz = [ - few) -»

Let n' > n be nonnegative integers, and consider the incidence variety X'
X1 x X", Recall the definition of the ideal sheaf 7, ,, and the exact sequence

0—=Zy,— p’{,XOER, — p’g,XOEn — 0.

Then p.(Z,.,,) isalocaly free sheaf of rank o/ — n on X7,
In acertain sense, the following lemma simply is areformulation of the definition
of the derivative.
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Lemma3.10 — Let u, H*( ,Q) — H*(X!"']:Q) be the induced linear map
associated to aclassu € A*( nl), Then
(us)' = (c1 (P (Zyr ) - 1) -
Proof. Lety € H*(X™; Q). Then

(u)'(y) = (ux(y)) —us(d(y))
= a(pOz,) - PD 'pr.(u-psy)
—PD 7 'p1u(u- pi(ci(p:0z,) - y))
= PD_lpl*((p*{cl(p*Ogn,) —p3c1(p«0z,)) - u - p3y)
= u.(y)
withv = (pic1(p.O= ,) — p3c1(p«Oz=,)) - u, and

pic1(p«0= ) —p3c1(p«0=,) = ci(ppi xO=,,) — c1(p«p5 xOx,)
= Cl(p*In’,n)-

3.3 The derivative of g,

In order to understand the intersection behaviour of the boundary 9X™ we need to
know how the operator ® commutes with the basic operators g,, in other words: we
need to compute the derivative of g,.

The following theorem is the main technical theorem of this paper. It describes
the derivative of the operator g, in two ways. By its action on any of the other basic
operators, and as a polynomial expression in the basic operators.

Let K denote the canonical class of the surface X .

Theorem 3.11 — Foradln,m € Z and a, f € H*(X; Q) the following holds:

L [4,(@), am(8)] = =nm - {anim(@B) + 2550 - [ Ko -id }.

2 (@) =n- Lu() + 2D g (Ka).

Corollary 3.12 — The operators » and g (), « € H*(X), suffice to generate H
from the vacuum 1. O

Proof of the theorem. The second assertion is an immediate consequence of the
first: by Nakajima s relations 2.4 and the relations 3.3 we see that

- 2a(e) + "=V (1), g (9] =

—nm - qnam(af) + 5n+mL / Kaf -idy.
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Hence the difference of ¢, and the expression on the right hand side in the theorem
commutes with all operators g,,, m € Z. Since H is an irreducible A'-module, it
follows from Schur's Lemma that this difference is given by multiplication with a
scalar (say, after passage to some algebraic closure of Q). But thisis impossible for
degree reasons: the bidegree of d,(«) is (n,2n + |a|). (The casen = 0 being trivia
anyhow.)

The proof of the first assertion has two parts of quite different nature: We need to
distinguish the casesn + m # 0 and n + m = 0 and deal with them separately.

Proposition 3.13 — [¢, (@), 4 (8)] = —nm - qnm(aB) for any two integers n,m
withn +m # 0 and cohomology classes o, 5 € H*(X).

Proof. Step 1: Assume that n and m are positive. We proceed as in the proof of
Theorem 3.5. Let / be nonnegative, and consider the diagram

Xtntml 1] [evm] (P13 yfetndm] [ [Chml 0L P35 yefetm]1],[0

lp1245

x[e+ntml [1],[1),[

Let
V= p’f23[Q[Z+m+n’e+m}] “ D345 [Q[Hm’a] € Aspymint2(V),

Vo= pﬁlg(Q[lerJrn,ler}) ﬂp:;llg)(Q[éer’é]).

According to Lemma 3.10, the operator d, g, isinduced by the class

W = P1245« (pT23CI (IE—I—m—i—n,E—l—m) : U) € A%—i—m—l—n—l—l(W)v W= p1245(V).

Let V! C V and W' C W denote the open subsets of those tuples (¢, z, o, y, () and
(&, z,y, (), respectively, where either x # y or x = y but & iscurvilinear. Certainly,
V' = prgis(W'), but in fact we even have that pjoys @ V! — W' is an isomorphism:
for the conditions imposed on V' imply that o is aready determined by the remaining
daa (f? $7 y? C)

Claim: V' is irreducible of dimension 2/ + n + m + 2.

For it follows from Briangon’s Theorem that the open part V' \ {z = y} isir-
reducible of dimension 2¢ + (n + 1) + (m + 1), and tuples of the second kind, i.e.
(&, z,x,C) with &, curvilinear, are easily seen to deform into this open subset.

Claim: dim(W \ W') < 2¢ 4+ m + n + 1. In particular, the complement of W’ in
W cannot support any contribution to w.

Indeed, the set T' = {(&,z,2,()|¢ — ¢ = (n + m)z} has a stratification T =
[1;>( Ti, where the stratum T; is the locally closed set of all tuples with length(¢,) =
i. Let T}, C Ty be the closed subset that consists of tuples where & is not curvilinear.
Then W\W' C T{UT 1 UT;. ... Now Ty isirreducible of dimension 20+ (n+m+1),
and T} is a proper closed subset and therefore has strictly smaller dimension. The
assertion now follows from Lemma1.8.
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Claim: The intersection of pi,,[QT™ ] and pi,s[Q™™] is transversal at
general points of V.
In fact, the intersection istransversal at al points with 2z # y and ¢ curvilinear.

We conclude, that the intersection cycle v equas [V'] + r, where r is a cycle
supported on p,,< (W \ W) and therefore irrelevant for our further computations for
dimension reasons. Let us return to the definition of the cycle w.

Identifying V' and W' we see that the variety W’ parametrises three families

ZCYCECcW xX

of subschemes in X. In terms of these we can summarise the discussion above by
stating that ¢/, q,,, isinduced by the cycle

c1(pZyyz) - [W'] € A (W).

Having reached this point we pause to reflect what changes in this picture if we
exchange the order of the operators g, and g,,,. Up to the usual twist T' that flips the
factors X in X[+m+nLULALIY not aiotais changed in W”. Indeed, W' parametrises
not only three but rather four families of subschemes

EI

where Y2’ and X" are characterised by the property that at apoint s = (5, z,y, Zs) €
W' the subschemes X}, X C E, are the unique ones with

! _ - !
Yg—Zs=mxz, Eg—X,=ny

and
E” 7. = e E” _
s —4s=ny, Zg— 2, =M.

This means: the commutator [d,, q,,,] isinduced by the cycle
<C1(p*sz/s) o (p*IZ/E”)> W) € Agpim s (XIEPHRLILOLLEY.

The ideal sheaves corresponding to the various inclusions between the families
Z, %', ¥" and = are related by the following commutative diagram of short exact
sequences

0 — Iyyz — Iz — Iz — O

¢l H |

0 «—— Iz/zu — Iz/g — IE”/E «— 0

26



The homomorphism
P Py jz = peLy s
is an isomorphism off the diagonal {z = y} C W. On the other hand the clo-

sure of W' N {z = y} equals the image of the ‘diagonal’ embedding Q¢+m+m-f
X [e+m+nl,[LALIE 1t follows that

<C1 (p+Isy /=) — 1 (p*IZ/EH)) (W] = —p - [QUFm )

where 1. isthe length of coker (p, ) at the generic point of the variety Q¢+t This
proves

[qu (a), dm (/8)] =Kt An+m (Ozﬁ),
and it remains to show that

B = nm.

A general point d = (&, z,y,¢) of Q™+t jsof theform (¢ U, z, z, ¢) where
nN¢ = @ and n is a curvilinear subscheme supported at =. As the computation
islocal in X we may apply the same reduction process as in the proof of Theorem
3.5 we may assume that / = 0, that X = A?> = SpecClz,w], z = (0,0) and
Ir = (w,2"). Then there is an open neighbourhood of this point d in W which
isomorphic to A"*™+2 = SpecClay, - .- ,anim—1,$,t] such that the families =, 3
and X" are given by the ideals

Iz=(w—f(2),(z=8)"(z = 8)"), Iy =(w-[f(2),(z—3s)")
and
IE” = (w - f(Z), (Z - t)n)v
where f(z) = ag + a1z + ... + apim_12"T™ 1. Wefind

p«Osn = Cla, s, t][2]/(z — )"

and
p:Iyz = (2 — )" - Cla, s, t][2]/(z — )™ (2 = )"

The cokerndl of
pep i (2= 5)" - Cla,s,t][2]/(z — s)"(z = )" — Cla, s, 1][z]/(z — )"
isisomorphic to the Cla, s, #]-module
Cla, s, t][z]/((z = s)™, (z = 1)") 2 Cla, s + t][z — 5,2 — t]/((z — 5)", (z = £)").

This module is supported along the diagonal {s = ¢} (as we expected), and its stalk at
the generic point of the diagonal has length nm (as we had to prove).

Step 2: Assume that m is positive and —m < n < 0. First one shows as above
that the commutator [, q,,,] is induced by cycles in Aypy o (X EHmHRLUILILIE)
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for each ¢ > 0, which are supported on the diagonally embedded varieties (¢t +m4,
so that

[qu (a)v dm (/8)] = —Cnm" qn-l—m(a/B)

for certain constants ¢, ,,,. In order to determine these constants we apply the commu-
tator [ ., g—n—m(1)]. Then the oscillator relations yield for the right hand side

—cpm(n+m) / af - idg.

X

On the other hand

[[0(0), G (B, d-n-m(D)] = [[00(),q-n-m(1)], 4 (B)]
Now
[9,(), dn—m (D] = (=1)™[(a",) (@), a} 4, (1)]
= —(=)"[Gnsm(1), 0" (@],

which by Step 1 equals (—1)"n(n + m)qm ()t = n(n +m)q_.(a). Hence

[[o7.(), am (B)], 4—n-m(1)] = n(n+m)[a-m(),qm(B)]
= n(n+m)(—m) / af - idg.

-

Choose classes «, 5 with [ a3 # 0. It follows that ¢, ,, = nm.

Step 3: The general case can now be reduced formally to the cases already treated.
The assertion is certainly trivia if either n = 0 or m = 0. If the assertion is known to
be true for some pair (n, m), we may apply the operation { to both sides and find:

420 (@), 4-m(B)] = (=1)"""[(a})"(e), b (B)]
= —(=D)""(a) (@), ah(B)]
= (=" (@), 4 (B = —nm - ()" g, (@B)
= (=n)(=m) - q—n-m(af).

This and the identity

[a7(@), 4 (B)] = (=1)I*"l[q7, (8), dn ()]
alow us to reduce anything to cases checked in Step 1 and Step 2. O

In order to prove part 1 of Theorem 3.11, it remains to treat the case n + m =
0. This will be done in two steps. First, we prove a quaitative statement about the
structure of the * correction term’, and afterwards we determine the precise value of the
‘coefficient’ K,:
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Proposition 3.14 — There exist rationd divisors K,, € Pic(X) ® Q, n € Z, with
Ky=0and K_,, = K,, and such that

4 (), 4 (B)] = n? /X Knaf - idg (10)

fordl o, € H (X).

Proof. Thereis nothing to prove for n = 0. Moreover,

[0 (@), a-n(B)] = (=) (g, (8), 4u (@)):

It followsthat if thereisadivisor K, so that (10) holds for n, then (10) also holds for
—n with the choice K_,, = K,,. Hence it suffices to prove the proposition for positive
integers n.

Let £ be anonnegative integer and consider the diagram

XL (P28 sl [eknl 1100 P35 xrlesn] 1))

lp1245

x L0,

Let
V= p>f23[Q[l’£+n]] 'P§45 [Q[”n’g]] € A2[+2(V)a

V= pig Q) Npgs (@),

According to Lemma 3.10, the operator ¢_,,q,, isinduced by the class

w = (—1)"p12454(PT23¢1 (Zpp4n) - v) € Aopr1 (W), W 1= praas (V).

Consider the diagona part W N {z = y} first. It is contained in|J,-,T;, where
T; = {(&,2,2,0)[€(&;) = £(¢) = i. The closure of Ty isthe diagonal A = X8 x
X c x40 and istherefore irreducible of dimension 2¢ + 2. Whereasfori > 1,
the set 7, embeds into the irreducible variety X x (X! x x X1 of dimension
20—+ (i +1)+(+1)—-2=2C

The off-diagonal part W N {z # y} isempty if £ < n. If £ > n it has precisely
one irreducible component W’ of maximal dimension 2/ + 2: it contains as a dense
subset the image of the embedding

{(n,&,¢") e X1 x x M s X[, ¢ and ¢’ are pairwise digioint} —» W,

(0,€',¢") = (0 UE p(€), p(¢"), 0 Ul).

Since the function (¢, z,y,¢) — #(&) is semicontinuous and is at least n on w,
it follows that W’ N A is contained in | J, ., T,,. In particular, this intersection has

v>n
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dimension < 2/. Aswe want to compute a cycle of degree 2/ + 1, we may restrict our
attention to the open part W’ and may disregard the complement of W' in its closure.

P1245 : Ploys (W) — W' isan isomorphism, which we use to identify T and the
off-diagonal part of V.. Now W’ parametrises four flat families of subschemes on X':
besides the families = and Z of fibrewise length ¢, these are the families = N Z and
E U Z of fibrewise length # — n and £ + n. The contribution of W to w isthe class

(—1)"c1(peZz/zuz) - W] € Agey 1 (W).

Reversing the order of the operators d_,, and g,, shows that the part of the cycle u
inducing the commutator [¢_,,, q,,], that is supported on W, isthe class

(-n" <C1 (p+Zz/zuz) — a1 (P*IEnZ/E)> - (W

Since the ideal sheaves 7= =, ; and Zz =, are isomorphic, this class is zero.

Thus we may fully concentrate on the contribution of the diagonal part A. (Also
note that for the reversed order g,q’_,, any diagonal parts must be contained in{J,,.,, 7.,
and are therefore too small and irrelevant.) B

The complement of the open subset 7) = XYl x X \ Z, in A, has codimension
> 2. Localy near pr,,5(To) there are isomorphisms between X1+ and X1 x
X, and similarly between Q+4 and X1 x X" Henceif w € A;(X) isthe
intersection cycle for the special case ¢ = 0, then the general cycle is simply given by
w = [XW] x @ € Agpy1 (X9 x X). But that was all we had to prove: acycle of this
form induces the linear map

a®ﬂ®yH/aﬁ-y, o, f € H'(X;Q),y € H

w

Corollary 3.15 — For all positive integers n. one has
4, () = nly(a) + ng,(Kya).

Proof. Use the same argument as in the first paragraph of the proof of the main
theorem after Corollary 3.12. O

To finish the proof of Theorem 3.11 it remains to show:

Proposition 3.16 — For all positive integers n the rational divisor defined by Propo-
sition 3.14 is given by
n—1
2
where K is the canonical class of the surface X .

K, =

K,

Thiswill be done in the next section.
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3.4 The vertex operator, completion of the proof

Definition 3.17 — Lety € H*(X) be an element which is of even degree though not
necessarily homogeneous, and let ¢ be a formal parameter. Define operators $,(7),
m > 0, by

_1\n—1
S.8) = 3 Su(n)e™ = exp (Z( Y qn(w-t").

m>0 n>0

Since « is of even degree by assumption, any two operators ¢,(y) and g, ()
commute in the ordinary, i.e. ‘ungraded’ sense. In particular, there is no ambiguity in
the meaning of the expression on the right hand side in the definition.

The geometric meaning of the operators .S, isexplained by the following theorem:
let C' be asmooth curvein X. Thereisan induced closed embedding 9'C = Cl"l —
XM, Let[C] € H*(X) and [C")] € H*(X") be the corresponding cohomology
classes, i.e., the Poincaré dual classes of the fundamental classes of these varieties.

Theorem 3.18 (Nakajima, Grojnowski) — The following relation holds for all non-
negative integersn.:

For proofs see [22] and [13]. O

Lemma3.19 — Lety € H*(X) be an element of even degree. Then
n—1;n n—1
S'(1) = S(r,8) - ) (=1)" e {2"(7)+qn(7Kn+72T)}'
n>0

Proof. Assume first that a is an operator of even degree, and that [d, a] commutes
with a. Then

o an / o0 1 n
_ —1 ! —1
(25) - Tyt
n=0 n=1 =1
1 n
= ZH-{na"1a'+2a”2-(n—i)-[a',a]}
i=1

X n X n-2

_ LAY a "1y

= D rdd (2>[ava]
n=0 n=1

= exp(a)- {a' + %[a’, a]} :

Next, let a, be a family of commuting operators of even degree such that any
[a},, a,,] commutes with every ag. Then it follows from Step 1 and

[a},, exp(a,)] = exp(a,) - [a),, a,]
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that

(o0 () =en(T0): (S i}

v v

Now apply this formula to the family q, = #qy(y)t” and use our previous

results ), = (1) 4(S0(7) + Gu(Ky7)) a0 [d, 0] = — (~)"*#qy.,(1?). One
gets S'(vy,t) = S(v,t) - (x) with

(6) = D (=D H(Laly) + dal(Knv)) — Z 8 s (7°)

n>0 u>0
- Z(_l)n_ltn ’ {Qn(f)') + qn(Kn7 + ENn’YQ)}
n>0

where N,, is the number of pairs of positive integers v and . that add up to n, i.e,
N, =n—1. [

Let C C X be asmooth projective curve. The boundary 9X™ intersects C!™l
generically transversely in the boundary 9™ of C[", i.e. in the set of all tuples with

multiple points. The subvarieties Xé”] and 9C™ have complementary dimensions
n+1andn — 1in X" and we may compute the intersection number

I:= / (xiMuoct).
XIn]

We will do thisfirst using our algorithmic language, and afterwards using a geometric
argument. The comparison of the two results will lead to the identification of the
divisors K,,.

Lemma3.20 — [X["] = q,(1x) -1 and [oC™M] = —2.5([C)) - 1.

Proof. The first assertion follows from the definition of the operators g¢,. By
Nakajima's Theorem, S,,([C]) - 1 is the class of the submanifold ¢! ¢ x| and
hence according to Lemma 3.8:

Lemma 3.21 —

[ (i) 1) (sh00n-1) = [ {mm (g) 02} |
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Proof. Indeed,
[ @00 (S0eD- ) = (1" [ aa)sio) 1
X Xx10]

= 0" [ TS 1,

sinceq_p(lx)-1 = 0. Now q_,, commuteswith any product ¢, -...-q;, if s > 2,4; >
0and ), i; = n. Thusthe only summand in S, that contributes to the commutator
with g, is (—1)""1q,(C(K,, + C(n —1)/2)). Hence

4-a(1): S, = (-1 [ € (10 +

2

n—1

c) idg

This proves the lemma. O
Next, we give the geometric computation of I:

Lemma 3.22 —

/ (XM [0C] = —n(n—1) - C(C + K).
XIn]

Proof. We have [X"]-[oC")] = [ax )] ([x[™]-[c[)]). Theintersection of X!
and C" istransversal andisequal to theimage of the closed immersion A : ¢’ — "
sending a point ¢ to the unique subscheme of C' of length » that is supported in ¢. Thus

I = deg(O 1 (0X™)|a(c) = deg(Opm (9C™)| A (c).-

The embedding A factors through the diagona embedding C' — C* and the quotient
map m : C" — CI"l. Moreover, if pr;; : C" — C? denotes the projection to the
product of the i-th and j-th factor,

®2
7 (Om (0C™)) = | R priOcwc(Ae) |
i<j
From this we conclude:
I = deg(@" 0 (00™) = 2 () des(Ocrcldolsc)
= —-n(n—-1)-C(C+K).

O
Proof of Proposition 3.16. From Lemma 3.20 and Lemma 3.21 we conclude
I=(-2) C(nK,+ (Z) 0).
Comparison with Lemma 3.22 shows that K, = 21 K. O

Thisfinishes the proof of Theorem 3.11.
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4  Towards the ring structure of H

4.1 Tautological sheaves

There is a natural way to associate to a given vector bundle on X a series of tauto-
logical’ vector bundles on the Hilbert schemes X!, n > 0. The Chern classes of the
tautological bundles may be grouped together to form operators on H.

Consider the standard diagram

=, ¢ XMxx L X

x[n]

Let F' bealocally free sheaf on X. For each n > 0 the associated tautological bundle
on X" isdefinded as
FU .= p, (0=, © ¢*F).

Since p is aflat finite morphism of degree n, FI! islocally free with
rk(FIM) = n - rk(F).

Notethat I =0 and FIl = F.

Furthermore, if 0 - F} — F — F, — 0 isashort exact sequence of locally free
sheaves on X, the corresponding sequence 0 — F™ — FInl 5 FI" - 0 is again
exact. Hence sending the class [F] of alocally free sheaf F to [F"]] gives a group
homomorphism

Il k(X)) — K(xM).

Definition 4.1 — Let u beaclassin K(X). Define operators
¢(v) € End(H) and ch(u) € End(H)

asfollows: For eachn > 0, the action on H*(X"; Q) is given by multiplication with
the total Chern class c¢(ul™) and the Chern character ch(u™), respectively.

Let
c(u) =) cp(u) and  eh(u) =) chy(u)

k>0 k>0

be the decompositions into homogeneous components of bidegree (0, 2k). Since al
of these operators are of even degree and only act ‘vertically’ on H by multiplication,
they commute with each other and in particular with the previously defined boundary
operator 0 = ¢;(Ox).

Moreover, we have

c(u+v)=clu)-c(v) and ch(u+v)=ch(u)+ch(v)

forall u,v € K(X).



Theorem 4.2 — Letwu beaclassin K(X) of rank r and let « € H*(X). Then
[ch(w), a1 ()] = exp(ad 0) (a1 (ch(u)a)),

or, more explicitely,

0, (), a1 (@] = 3 0 (chny (w)a).

Similarly,
) afe) < = 3 (7))l et

v,k>0

Proof. We may assume that « is the class of alocally free sheaf F'. Recall the
standard diagram for the incidence variety X%¢+1:

X L xleey Yy xlen)]

xl

The variety X!“¢*1 parametrises two families of subschemes of X. Their structure
sheaves fit into an exact sequence

0— p;(OAX ®p*OX["sl+1](_E) - Q/);((OEZ-H) - 90;((051) — 0,

wherep : X641 X — X6H+1] jsthe projection and E is the exceptional divisor.
Applying the functor p. (- ® ¢*F) to this exact sequence yields

0= p*F ® Oy (—E) — * FIF o o pld 5 0, (11)
Let A = ¢1(Oxiees1(—E)). Then

W ch(FEFY = o*ch(FU) + p*ch(F) - exp())

wrert = grer) - 3 (7 F)padn)

v,k>0
It follows for any = € H*(X!¥; Q):
ch(F)ai(a)(z) = ch(FIH) . PD ™y (XN P*(a)SD*(l“))
= PD . (X gt (eh(F ”H)) p* (o
= PD 'y (XY 0 p* ()" (ch(F)z
+ %PD*H/)*(A” XA (e

v>0

= qu(@)(ch(F)z) + %q(”)ql(ch(F)a) ().

v>0
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Here we used Lemma3.10 which says that the cycle X - [ X [4¢+1]] induces the operator

q§”> . Thisisthe equation for the Chern character. The equation for thetotal Chern class
is proved analogously. O

Remark 4.3 — The sequence (11) was used by Ellingsrud in a recursive method to
determine Chern classes and Segre classes of tautological bundles (unpublished, but
see [25],[4]). He expresses the classes (g, p).c(E) in terms of the Segre classes of the
universal family Z,; € X x X ™. Thus one needs to control the behaviour of these
Segre classes under the induction procedure. This method yields qualitative results
on the structure of certain classes and integrals, but all attempts to get numbers have
ended so far in unsurmountable combinatorical difficulties. O

Remark 4.4 — The results of the present and the previous section provide an algo-
rithmic description of the multiplicative action of the subalgebra A C H which is
generated by the Chern classes of all tautological bundles: The elements g, (a1) -

... 05, (as) - 1 generate H as a Q-vector space. By Corollary 3.12, each such element
can be written as a linear combination of expression w - 1, where w isaword in an
alphabet consisting of © and operators ¢ (), & € H*(X;Q). By Theorem 4.2 the
commutator of ch(F') with any of these is again aword in this alphabet. And finaly,
Theorem 3.11 shows how such a word can be expressed in terms of the basic oper-
ators g,,. Admittedly, without a further understanding of the algebraic structure this
description is useful for computations in H* (X ¥; Q) only for small values of ¢ or if

one implements it in some computer algebra system.

4.2 The line bundle case

The results of the previous section suffice to compute the Chern classes of the tauto-
logical bundles LIl associated to aline bundle L in terms of the basic operators.

Theorem 4.5 — Let L bealine bundle on X. Then

mly — =ymt .
doelllf)y =exp | Y —"—aqm(c(D)) | 1.

n>0 m2>1

Remark 4.6 — Expanding the term on the right hand side, one realises that the coho-
mological degree of any summand contained in H*(X[™; Q) is < 2n, and, moreover,
the maximal degree 2n can only be attained if the arguments of all operators g in-
volved have degree 2. In other words, considering elements of top degree only, the
equation of the theorem specialises to

_1\ym—1
S () = exp (Z (ﬁjlqm(cl(L») 1 (12)

n>0 m2>1
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ThisisNakajima'sresult 3.18: for suppose C' C X isasmooth curveand L = Ox (C).
If ¢ € X[, the natural homomorphism Ox — O¢(C) vanishesif and only if ¢ C C.
Hence the vanishing locus of the global vector bundle homomorphism

Ot — (Ox(C))" = LI

isthe subvariety CI"l. Therefore [C1™] = ¢, (LI™). Inserting thisinto (12), we recover
Nakagjima's formula 3.18

n>0 m>1

mly _ (=™ .
dolCM =exp | 30— —am((C)) ] 1

Based on this observation, the theorem was conjectured by L. Gottsche in a letter to
G. Ellingsrud and the author.

Proof of the theorem. We shall give two variants of the proof which differ slightly
in flavour. Observe that the left hand side in the theorem equals

S (@) = (L) - 3 Ly = e(L) - exp(ar (1x)) - 1.

n>0 n>0
Variant 1. Applying Theorem 4.2 with F' = L and r = 1 we get
o(L) - qu(lx) - (L) 7 = {au(lx + e (L) +di(1x)}

Hence
(L) -exp(ai(1x) -1 = (L) exp(ar(Ly)) - e(L)”"
= exp(e(L) -q(Ly) <L) )
= exp(@i(e(L)) + 4 (1x)) - 1
= 3 @) + e (x)" 1.
n>0

-1
-1

Expanding the right hand side yields summands which are words in the two symbols
q1(c(L)) and ¢} (1x). Moving al factors ¢, (1x) within a given word as far to the
right as possible using the commutation relations of the main theorem we can write

S L @uelZ) + ) — 14 B (1) 1L
n>0

where 2l isa sum of expressions of the form

D N (D) (D) o)

vil- ool
vy Vs
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Let @ = (1*12%23% ... ) denote a partition and let |« = ) ;5 iy, and ol :=

[L;(E)>. We get
I (e

i>1

Z %(ql(C(L)) +qi(ly))" 1= ZN(X%
n>0 :

where the natural number NN, counts how often the operator

o[ ((_1)i_IZF|i(C(L))>ai

i>1

arises from aword in ¢} (1x) and q1(c(L)) of length |«|. It isnot difficult to see that
N, equals the number of possibilities to partition a set of |«| elements into subsets in
such away that there are «; subsets of cardinality . Hence

1 la|!
Na T ol ol
1lan

Inserting this into equation (13) above one gets

1)l (e o
> o)+ oy = S (SRR

;! 1
n>0 a i>1
1 /(=1 g (e(L)\™
_ Hza_i!(( ) ;(())) 1
1>1 a; >0
_ ox (=1)""gqi(c(L)) 1
e
_1\i—1
= exp (Z“jqxc(m)) 3
i>1

Variant 2. Starting again from the sequence

¢(L) - qu(lx) = {a(Lx + (L)) + a1 (Lx)} - (L),

we multiply by %ql(lx)"t" from the right and sum up over al n > 0:

- (c(L) >3 ﬁ;m(lxwt") SEEUD SETTAE

n>0 n>0

={a1(lx + a1 (L)) + a1 (1x)} - <C(L) : Z i!ql(lx)”t”> 1.

n>0

This means that the series



satisfies the linear differential equation

9y — {qu(ix + (D) + qu(lx)} - X (14)

dt
with initial condition

X(0) =1. (15)

On the other hand, consider the operator

(_1)m—1 m
S(e(L), t) = exp (Z S dm(c(L))t ) :

m>1

We find

£ 5(e(L),1) = S(e(L), 1) (Z(1>mqm+1tm) ,

m>0

and

[{a1(1x + e1(L)) + 6 (1x)}, S(e(D), 1)

This shows
{a1(1x + (L)) + 91 (1x)} - S(e(L),t) - 1
= S(c(L),t) - (Z(l)mqu(C(L))tm) -1
m2>1

+5(c(L),1) - qu(e(L)) - 1

= S(e(L)1) - (Z(l)mqu(C(L))tm) -1

m>0

Hence S(c(L),t) - 1 satisfies the system (14) and (15) as well and therefore equals
¢(L) - exp(qi(1lx)t) - 1. This proves the theorem. O
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4.3 Top Segre classes

The following problem was posed by Donaldson in connection with the computation
of instanton invariants: let n be an integer > 1, and consider a linear system |H| of
dimension 3n — 2 inducing amap X — — —P"~2. A zero-dimensional subscheme
¢ € X[ does not impose independent conditions on the linear system |H]| if the
natural homomorphism

HP (B2, 05(1)) — H" (€, O¢(H))

fails to be surjective. The subscheme of al such ¢ € X" has virtual dimension zero,
and its classis given by o, (W), where W isthe virtual vector bundle

HO(P*"2 Op(H)) @ Oxm — O(H)M.
Thus the number of those ¢ that impose dependent conditions is given by

- Conl— ]y — — .ql(lX)n
N, = /X[n] on(—O(H) )_/X[n] «(~O(H)) - T 1,

More explicitly, N; is the degree of the linear system, N, is the number of double
points, N3 is the number of trisecants to a surface in ¥ and N, is the number of
quadrupels of points on asurface in P'0 that span a plane.

Problem: Express N, in terms of intrinsic invariants of X such as the degree
d := H.H, the intersection x := H.K and x := K.K and the topological Euler
characteristic .

Note that even the fact that such an expression in terms of the given invariants
existsis not evident a priori. This has been proved by Tikhomirov [25]. It also follows
immediately from our approach.

Using our algorithm, we can attack this problem as follows. Theorem 4.2 yields
for F = —O(H) and r = —1 theformula:

-0t - al1x) -0 = 3 (7 am)

v,k>0

v>0

Denote the operator sum on the right hand side by 91. It follows as in the proof
of Theorem 4.5 that ¢(—O(H)) - exp(qi(1x)t) - 1 satisfies the following differential
eguation and initial value condition:

d
ZX=Mx ad X(0)=1.
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As long as no explicit generating function is available we must be content with the
following semi-explicit solution to Donaldson’s problem:

1

Note that the right hand side is more than a mere reformulation of the definition of 1y;:
the expression on the right hand side is alinear combination of words in the operators
g1 and 9 and can be explicitly evaluated by applying the rules of Theorem 3.11.

Example 4.7 — As a specia case, let us compute N,. Thisis the number of secant
lines to an embedded surface in P that pass through a fixed but general point z € IP.
Hence we should find Severi’s double point formula[23] (see aso [2]). We have

2
_ n(n) n+ 2
2.N2_/X[2] (;0(1) a0 (1—(n+1)H+( N >H2)> 1.

Since q&") (o) -1 =0foraln > 0andfor all «, and for degree reasons the integral

reduces to
2+ Ny :/ I
X12]

I = (a(H @ H?) + (2B © H + 3H @ H?)

+qq1(6H*® 1+ 3H @ H+ 1 ® H?)
+q'(4H @1+ 10 H) +q{"n(1®1)) - 1.

Since g} () - 1 = 0, one easily sees that

1Mq(e®p) 1=—q8" " (ap) - 1.

with

Thisyields
I = (a7 (H® ® H?) — q5(10H?) — q5(5H) — g5’ (1)) - 1.
Theterm gy vanishes for degree reasons. Moreover, for n > 2 we have

clén)(oz) 1 = (q3(0.(e)) + qZ(Ka))(n—l) 1
= (—a"(e(X)a) + o' (Kw) - L.

(Note that the composite map H*(X) - H*(X) ® H*(X) —% H*(X) is the
multiplication with the self intersection of the diagonal, i.e. the second Chern class
co(X) of X.) Applying thisto I, we find

T-a(H2 o )1 = —(100,(H?) + 5a5(H) + ay'(1)) - 1
= (00108 — &2(X)) + g§(5H + K)) - 1

= —gh(10H? — c3(X) + 5HK + K?) - 1.
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Thisyields:
I=q}(H?>® H?) 4 6,(—10H? + co(X) —5HK — K?)) - 1,

and therefore
2-N2:/ I=d*—10d — 57 — k + Y.
XI2]

O

Obvioudly, for higher n, the practical calculation of N, quickly becomes rather
difficult. Already the case of N; surpassed my personal calculation skills. Using
MAPLE, | computed the following expressions:

3. N3 = d®—30d® +224d — 3d(57 + K — X)
+1927 + 56K — 40y,

41-Ny = d* —60d® + d*(1196 — 307 + 6x — 6k)
—d(7920 — 10687 + 220 — 284k) + 3x% + 1944y — 6y~
—30x7 + 7572 + 3k + 30k — 904271 — 3300k,

5 N5 = d°—100d* + d(3740 4+ 10x — 507 — 10k)
—d?(62000 — 34207 + 700y — 860k) + d(384384 + 15x>
+15960x — 30xk — 1507y + 1562 + 150km — 756107
—24340k + 375m%) — 4002 — 117120 + 39207 + 960k
4226560k — 4720k7 — 560k + 5308807 — 96007,

6!- Ng = db—150d° + d*(8980 — 15k 4 15x — 757)
—d3(268200 — 2020k + 1700y — 83407)
+d*(3996064 + 45x> + 71100x — 90K — 450
+450km + 112572 — 101040k + 45K% — 3405307)
—d(23761920 + 28502 + 1292320 — 280207
—6660x~ + 3810K% + 32820kT — 59957407
—2224040% + 688507%) + 15x> + x? (45160 — 45k — 2257)
+x(8517120 + 112572 + 450km — 4350307 — 123460k + 45K2)
—18151200% + 5981707 — 18757 — 377685601 — 11257
—15K% 4+ 104679072 — 225k%7 4 8086052

These calculations verify LeBarz' trisecant formula for N; [19, Théoreme 8] and
the computation of N, by Tikhomirov and Troshina [26]. The formulae for N5 and
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Ng seem to be new. | omit the presentation of V;: the information is contained in the
following analysis of these numerical data.

It is aways possible to organise these data into the following form:

ZNn(—z)” = exp (— Z %dm> .

n>0 m>0

What is suprising is that the polynomials d,, in the variables d, =, , and x should
depend linearly on the three expressions d, m := m — 2k, and xo := x — 11k. This
holds for m < 7 according to the computations above, which imply that

dy=d
d2 = 10d+57r0 — X0
d3 =112d + 9671'0 - 20X0
dy = 1320d 4 15077y — 324x0
ds = 16016d + 221207y — 4880x0
deg = 198016d + 314738my — 709760
dr = 2480640d + 44027207 — 10120320,

and it is only natural to conjecture that this holds in general. Observe aso that the

sequence of coefficients of xy seems to be the square of the sequence of coefficients
of d. More precisaly:

Conjecture 4.8 — Let f(2) == 3,20 2" 2(*""")2™. Then there is a power series
9(z) :=>_,,51(3m — 1)B,2™ with positive integral coefficients such that

—Zdiz log(d>  Nu(—2)") = f(2)d + g(2)mo — f(2)*X0- (16)

n>0

O

The fact that the right hand side in (16) depends linearly on g can be proved by
the methods in the forthcoming paper [4].

We thank Don Zagier for pointing out to us the existence of Sloan€e's ‘ Encyclope-
dia of Integer Sequences [24]. We had had reasons to believe that the sequence of
coefficients of d be divisible by the binomial coefficients(*";"). After dividing by
these, we are left with the sequence 1, 1,4, 24,176, 1456. A search for this reduced
sequence in the encyclopedia was successful and led to the above given (conjectural)
identification of the coefficients of f. Unfortunately, the corresponding ‘reduced’ se-
quence of coefficients 3,, of my remains mysterious:

0,1,12,137, 1580, 18514, 220136 . ..
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