
Problems and Remarks:
Each session of the Symposium was concluded by a period devoted to remarks
and open problems. These are given in this section, in the chronological order in
which they were presented.
1. Remark. For every n 2 N let kn be an integer with 0 � kn � n. For an
arbitrary real number �1 2 [0; 1[ de�ne �n := 1

n!

�
�1 +

Pn�1
�=1 �!k�

�
for all n 2 N.

It is well known that then

f
�m
n!

�
= e2�m�ni (m 2 Z; n 2 N)

de�nes a homomorphism f from (Q;+) into the torus group (T; �) and that
conversely every f 2 Hom(Q;T ) is obtained in this way.

Theorem. The function f is continuous ifand only if

i) kn = 0 for almost all n 2 N, or

ii) kn = n for almost all n 2 N.

If it is continuous f has the form f(x) = e2�cxi (x 2 Q), where c � 0 in case i)
and c < 0 in case ii).
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J. R�atz

2. Remark and problem. Using a recently developed method for solving
certain types of inhomogeneous di�erence equations, we needed the following
system of functional equations for d : R� R! R:

d(x+ y; y) = d(x; y); d(x; y) = d(y; x): (1)

L. Paganoni has proved that (1) has solutions di�erent from identically constant
functions, which we describe below.

Let H be a Hamel basis for the reals over the rationals Q and let H0 be an
arbitrary subset of H. Further, Iet S0 = V (H0;Q;+; �) be the subspace of reals
generated by H0. We de�ne the function h : R! R by:

h(x) =
�

1 if x 2 S0
0 if x =2 S0:

Then the function
d(x; y) = 1� h(x)h(y)

ful�ls conditions (1) and is obviously not constant.
Quite di�erent ��s the situation if we suppose continuity of d. Under this

assumption all solutions of (1) are identically constant functions. This can be
proved in a quite elementary way.
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Problem. Is it true that under the supposition of measurability the general
solution of (1) is given by a.e. constant functions?

I. Feny}o

3. Remark. In [1], Lorentz transformations in Rn (where n � 3) were charac-
terized in a way for which there is no analogue in R2. For the inde�nite metric

d((x1; y1); (x2; y2)) := (x1 � x2)2 � (y1 � y2)2

on R2, the bijective mappings T : R2 ! R2 with T (0; 0) = (0; 0) satisfying

d((x1; y1); (x2; y2)) = 0 i� d(T (x1; y1); T (x2; y2)) = 0

are precisely those for which there exist � 2 f�1;+1g and �;  : R! R bijective
such that �(0) = 0 =  (0) and

T (x; y) =
�
�
�
x+ y

2

�
+  

�
x� y

2

�
; ��

�
x+ y

2

�
� � 

�
x� y

2

��
for all x; y 2 R ([2]). For these mappings, the condition

T (x1; y1)� T (x2; y2) = T (x1; y2)� T (x2; y2) (E)

(where x1; x2; y1; y2 2 R) is necessary and su�cient for T to be additive, while
the condition that there exists � 2 f�1;+1g such that whenever x1; x2; y1; y2 2 R

d((x1; y1); (x2; y2)) > 0 implies �d(T (x1; y1); T (x2; y2)) > 0 (M)

is necessary and su�cient for T to be continuous.

References
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J. R�atz

4. Remark and Problem. Linearizing coordinate transformations for graph
papers.

Semi-log and log-log graph papers provide a means of plotting exponential and
monomial functions, respectively, as straight lines. This fact yields a convenient
method for determining if empirical data are associated with one of these two
types of functions.

The author [1] has developed analogous kinds of graph papers for functions
satisfying the logistics equation:

_x = x(a� bx)

and the Gompertz equation:

_x = x(a� b lnx):

Appropriately normalized solutions of these equations plot as straight lines on
the graph papers. (Normalization is necessary since the general solutions of these
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equations involve four arbitrary parameters, while straight line are determined
by two.)

The form of all four kinds of graph paper was determined from the explicit
form of the functions in question, rather than from the form of the corresponding
functional or di�erential equation. (In the case of semi-log and log-log papers, of
course, the "corresponding equations" are the appropriate multiplicative forms
of Cauchy's equation.) This leads to the following open problem: how can the
suitable coordinate spacing for the axes of the linearizing graph paper be obtained
directly from the functional or di�erential equation without �nding the explicit
form of its solution?

To solve this problem we may require information about f�1 (whose func-
tional equation is often obtainable from the functional equation for f , assuming f
is invertible), and we may also require some means of numerically approximating
the solution of the functional equation directly from the equation (see [2]).
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D. R. Snow

5. Remark. This is a result by C. Wagner (lnstitute of Advanced Studies in the
Behavioural Sciences, Stanford, CA. and the University of Tennessee, Knoxville),
C. T. Ng, Pl. Kannappan, and myself. Let f : [0; s]n ! R+ (= fx : x � 0g) be
such that f(0; 0; : : : ; 0) = 0 and

mX
i=1

xij = s (j = 1; 2; : : : ; n) implies
mX
i=1

f(xi1; xi2; : : : ; xin) = s

(where m > 2; n; s �xed). Then there exist wj � 0 (j = 1; 2; : : : ; n);
Pn
j=1 wj = 1

such that

f(x1; x2; : : : ; xn) =
nX
j=1

wjxj for all (x1; x2; : : : ; xn) 2 [0; s]n:

One of the possible interpretations is the following. A (say, grant) amount
s should be allocated to m applicants. The decision maker (committee chair-
man) asks n advisors (committee members). The j-th advisor recommends
that the i-th applicant obtain the amount xij . The decision maker allocates
f(xi1; xi2; : : : ; xin) to the i-th applicant. The only conditions are that each advi-
sor and also the decision maker allocate non-negative amounts to each applicant
and the entire amount s is allocated by them to all appticants taken together,
and the decision maker has to respect unanimous rejection (0 allocation) by all
advisors. (Notice that the result compels the decision maker to respect also all
other unanimous advice. The wj in the result will be the "weight" of the j-th
advisor and the �nal allocation will be a weighted arithmetic mean of the indi-
vidual recommendations.) This is a characterization of the weighted arithmetic
mean.

The cases m � 2 are also completely settled (then there are other solutions
too).
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The above results are stronger (the conditions weaker) than those reported
at the 1979 meeting.

J. Acz�el

6. Remark. Concerning Professor Feny}o's remark (Remark 2, these Proceed-
ings) about non-constant and regular solutions d : R2 ! R2 of the system

d(x+ y; y) = d(x; y); d(x; y) = d(y; x):

Consider Paganoni's solution d := 1��V�V (with � denoting characteristic func-
tian), where V is an arbitrary subgroup of the additive group of all reals. If V is
countable, then d is Borel measurable and locally integrable.

K. Baron

7. Remark. M. Laczkovich (University of Budapest) has solved Kemperman's
problem (Aequationes Math. 4 (1970), 248{249) by proving that every solution
of

2f(x) � f(x+ h) + f(x+ 2h)

(for all real x and all positive h) is nondcreasing.

J. Acz�el

8. Problem. In connection with the construction of a collective preference from
any n given individual preferences, the following problem arises:

Let n;m 2 N;x1; x2; : : : ; xn 2 S � Rm. Find all (continuous or even dif-
ferentiable) vector-valued solutions fn : Sn ! S of the system of functional
equations:

(1) fn(x�(1); : : : ; x�(n)) = fn(x1; : : : ; xn), for all permutations � and for all
x1; : : : ; xn 2 S,

(2) fn(x; x; : : : ; x) = x for all x 2 S.

(3) fn(fk(x1; : : : ; xk); : : : ; fk(x1; : : : ; xk); xk+1; : : : ; xn) = fn(x1; : : : ; xk;
xk+1; : : : ; xn) for all natural numbers k � n and for all x1; : : : ; xn 2 S,

where additionally the i-th component of fn (i.e. fni ) is a strictly monotonically
increasing function of the i-th components of the vectors x1; : : : ; xn (i.e. of the
variables x1

i ; x2
i ; : : : ; xni ).

Remark. It is known that the functions fn de�ned by

fni (x1; : : : ; xn) = g�1

 
1
n

nX
l=1

g(xli)

!
(i = 1; 2; : : : ;m)

with an arbitrary strictly monotonic (continuous or even di�erentiable) function
g, de�ned on a proper subset G � R, are solutions for any n 2 N.

F. Stehling

9. Remark. Let us consider the following functional equation:

f(x+ y)[f(x) + f(y)� 1] = f(x)f(y) x; y 2 S (1)

where S is a given subset of the reals. l. Feny}o and L. Paganoni have proved the
following theorem (see C. R. Math. Rep. Acad. Sci. Canada 2 (1980), 113{117).
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Theorem 1. The most general solution f : S ! R(S � R) of equation (1) is
the following:

f(x) =

8<: 0 if x 2 S0
1 if x =2 S1

1
1�g(x) if x 2 S2

(2)

where S0; S1; S2 are disjoint half-groupoids (some of which may be empty), whose
union is the set S and which have the following properties:

S \ (S0 + S2) � S0; (3a)
S \ (S1 + S2) � S1; (3b)

and g is an arbitrary solution of the Cauchy functional equation which does not
take the values 0 and 1.

Corollary. If the domain of f contains the origin, then the most general solution
of (1) is the characteristic function of a half-groupoid contained in S.

The following problem suggested by J. Acz�el arises: given an arbitrary subset
S of the set of nonzero real numbers, is it in any case possible to cut it into three
disjoint nonempty halfgroupoids so that conditions (3a) and (3b) are ful�lled? A
partial answer to this problem is contained in the following theorem.

Theorem 2. Let S be a subset of the nonzero reals; and let V (S) be the rational
subspace of R generated by S. If dimV (S) > 2, then it is possible to �nd three
disjoint nonempty halfgroupoids Si (i = 0; 1; 2) for which the conditions (3a) and
(3b) are ful�lled.

In a more general way we can state that the answer to the question above is
surely a�rmative if a maximal hyperplane H exists with S \H 6= ; and which
divides all other elements of S into two disjoint parts.

I. Feny}o

10. Remark (concerning the talk of Professor J. Baker). Recently P. Cholewa
(Silesian University, Katowice) has proved a generalization of Professor Baker's
�rst result on a problem of E. Lukacs concerning the stability of the functional
equation

f(x+ y) = f(x)f(y):

In particular, if a nonempty set S, a positive real number �, and a metric space
(X; �) are given, then any function f : S ! X ful�lling the condition

�(f(G(x; y));H(f(x); f(y))) < �; x; y 2 S;
has to be either (metrically) bounded or to satisfy the funetional equation

f(G(x; y)) = H(f(x); f(y)); x; y 2 S;
where G : S�S ! S and H : X�X ! X are given functions subjected to some
rather natural and fairly general assumptions.

R. Ger

11. Problem. Let f : Rn ! R be a function with the properties that f(0) =
@f
@xi (0) = 0 (i = 1; 2; : : : ; n), and that the rank of the matrix

��� @2f
@xi@xj

��� is r at each
point of Rn.
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Does there exist a linear coordinate transformation such that f can be ex-
pressed as a function of just r variables?

The answer is known to be a�rmative in the case r = 2 and is negative on
certain proper subsets of Rn.

M. A. McKiernan

12. Remark. The functional equation

f(xy) + f(x+ y) = f(xy + x) + f(y) (1)

where f : R ! G, and R is a ring, G is a group, was introduced at the 17th In-
ternational Symposium on Functional Equations at Oberwolfach. At the present
Symposium, R. Ger has announced some results on this equation, so it may be
of interest to show (below) that if f satis�es (1), then the function taking x to
f(�x) satis�es Hossz�u's functional equation:

f(xy) + f(x+ y � xy) = f(x) + f(y): (H)

So assume f satis�es (1). Let y = �1 in (1). Then we deduce

f(x� 1) = f(0) + f(�1)� f(�x): (2)

Again in (1), let x = u+ 1, v = y � 1, and use (2) to show

�f(u� v � uv) + f(u+ v) = f(uv + v)� f(�v): (3)

A �nal use of (1), with x = v; y = u allows one to replace f(uv + v) in (3) by
f(uv) + f(u+ v)� f(u); and so (3) becomes:

f(uv) + f(u� v � uv) = f(u) + f(�v): (4)

Replacing u by �u we deduce

f(�(u+ v � uv)) + f(�uv) = f(�u) + f(�v): (5)

Hence, if we let g(x) := f(�x), then g satis�es Hossz�u's functional equation (H).
If R is a division ring with at least 5 elements, then solutions of Hossz�u's

equation satisfy

f(x+ v) + f(0) = f(x) + f(y): (6)

For such division rings R, therefore, the solutions of (1) are precisely tlte solu-
tions of (6).

T. Davison

13. Remark. The characterization of the inner product in R3 given by J. Acz�el
([1], p. 310, Satz l; [2], pp. 27{28) may be generalized as follows:

If (X : h�; �i) is a reat inner product space, let SO(X; 2) denote the set of all
linear isometries T : X ! X with a 2-dimensional invariant subspace M such
that the restrietion TM : M !M of T is an orientation-preserving rotation of M
(i.e. TM 2 SO(M : h�; �i)) and Tx = x for every x in the orthogonal complement
of M . Suppose that the mapping g : X �X ! R has the properties

1) g(Tx; Ty) = g(x; y) for all x; y 2 X and every T 2 SO(X; 2).
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2) g(x1 + x2; y) = g(x1; y) + g(x2; y) for all x1; x2; y 2 X,

3) g(x; �y) = �g(x; y) = g(�x; y) for all x; y 2 X and all � 2 R.

Then the following statements can be proved:

a) If dimX 6= 2, then hx; yi = 0 implies g(x; y) = 0.

b) If e; e0 2 X, with kek = ke0k = 1, then g(e; e) = g(e0; e0).

c) g is additive in its second variable, i.e. g is bilinear.

d) If dimX 6= 2, g is symmetric.

e) If dimX 6= 2, there exists � 2 R such that g(x; y) = � hx; yi for all x; y 2 X.

f) For the case dimX = 2, the conclusions in a), d), and e) do not hold.
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J. R�atz

14. Remark. Some results of D. Zupnik on congruences and endomorphisms.
Let S be a set and n a positive integer. An n-ary operation on S is a functionG

from Sn into S. An equivalence relation { on S is a congruence on S with respect
to G if xi � yi for i = 1; 2; : : : ; n implies G(x1; : : : ; xn) = G(y1; : : : ; yn). At the
I976 Symposium at Lecce and Castro Marina, congruences were characterized
in terms of functional equations (see Aequationes Math. 15 (1977), p. 284).
Recently, D. Zupnik has developed this characterization and used it to obtain
related results. Among these are the ones which follow.

De�nition 1. A function f is an n-congruence on an n-ary operation G on S if
Dom f = S, f is idempotent, and

f(G(x1; : : : ; xn)) = f(G(f(x1); : : : ; f(xn))) (1)

for all x1; : : : ; xn in S.

Theorem 1. An equivalence relation { on S is a congruence on S with respect
to the n-ary operation G on S if and only if there exists an n-congruence f on
G such that x� y i� f(x) = f(y).

An n-congruence f on G is always an endomorphism of the n-ary operation
f �G, but need not be an endomorphism of G itself.

Theorem 2. Let f be an n-congruence on the n-ary operation G. Let G0 be
the restriction of G to (Ran f)n. Then f is an endomorphism of G if and only if
G0 is an n-ary operation on Ran f , or equivalently, if and only if

f(G(x1; : : : ; xn)) = G(x1; : : : ; xn) (2)

for all x1; : : : ; xn in Ran f .
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De�nition 2. An n-congruence f on an n-ary operation G admits an endomor-
phism of G if there exists an invertible function f1 such that Dom f1 = Ran f
and f1 � f is an endomorphism of G.

It is easily seen that if f is an endomorphism of G; then f admits an endo-
morphism of G. Furthermore, we have:

Theorem 3. Let f be an n-congruence on an n-ary operation G. Then f admits
an endomorphism of G if and only if there exists a subset S1 of S such that

a) CardS1 = Card(Ran f),

b) if G1 denotes the restricrion of G to Sn1 , then G1 is an n-ary operation on
S1,

c) the n-ary operation G1 is isomorphic to the n-ary operation f2 �G0, where
G0 is as in the preceding theorem.

A. Sklar

15. Remark. G. Fredricks (Texas Tech University) has proved the following
result.

Let U be open in Rk, A a smooth map of U into the gr�oup of symmetric
n � n matrices, p and q nonnegative integers with p + q � n. Then there exists
a smooth map G : U ! GL(n) satisfying

G(x)A(x)GT (x) = diag(1; : : : ; 1;�1; : : : ;�1; 0; : : : ; 0)

for all x 2 U (with p 1's and q -1's in the diagonal matrix on the right) if A has p
positive and q negative eigenval�ues at each x 2 U and U is smoothly contractible.

B. Ebanks

16. Remark. The solution of a problem of Alsina, and its generalization.
Let F and G be functions from the unit square onto the unit interval that are

associative, continuous, and non-decreasing in each place, and having no interior
idempotents.

ln problem P193 (Aequationes Math. 20 (1980), p. 308), C. Alsina proposed
the equation

F (x; y) �G(x; y) = xy:

Its only solutions consist of the one-parameter family

F�(x; y) = (x��+y���1)� 1
� ; G�(x; y) = (x�+y��x�y�)

1
� ; 0 < � <1:

(Note the limiting case F1 = min. G1 = max.)
The related equation

F (x; y) +G(x; y) = x+ y

is solved in my paper (Aequationes Math. 19 (1979),194{226). Extensions of
this result to functions de�ned on unbounded intervals yield the solutions of the
rnore general equation

H(F (x; y); G(x; y)) = H(x; y)

for any H which can be written H(x; y) = k(h(x) + h(y)), with continuous and
monotonic h and k. In particular. when h(0) = �1 and h(1) = 0, the functions
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f�(x) = 1� exp[��h(x)]; 0 < � <1, generate the family of solutions F�.

M. J. Frank

17. Problems Let

D = f(x; y) : x; y 2 [0; 1[; x+ y � 1g
and let

D0 = f(x; y) : x; y; x+ y 2]0; 1[g
be its interior.

(1) Determine the general real-valued solutions f of

f(x; u) + (1� x)f
�

y
1� x;

v
1� u

�
= f(y; v) + (1� y)f

�
x

1� y ;
u

1� v
�

(1)

on D0 �D0.
(2) Determine the general (real-valued) solutions F;G;H;K (all four functions

unknown) of

F (x) + (1� x)�G
�

y
1� x

�
= H(y) + (1� y)�K

�
x

1� y
�

(2)

on D0, (� a �xed constant).
The second problem may lead to the solution of the �rst, but there may be

a simpler way. Equation (1) has been solved on D � D and on D � D0 (the
solutions are essentially di�erent): equation (2) has been solved on D.

(3) Determine the general solutions of (2) on D0 when t� is replaced on both
sides by m(t), m :]0; 1[! R being an arbitrary multiplicative function (m(tu) =
m(t)m(u); t; u 2]0; 1[). Again, similar equations (but not this one) have been
solved by Kannappan and Ng.

The general solution, on D0�D0, of equations similar to (1), but with (1�x)
replaced by (1 � x)�(1 � u)� [and (1 � y) by (1 � y)�(1 � v)� ] (�; � arbitrary
constants but (�; �) 6= (0; 1); (1; 0)), and of similar n-dimensional equations, have
been determined by Ng.

J. Acz�el

18. Remark. A relationship of Catalan Numbers to Pascal's Triangle. We will
call the identity �

n+ 1
r

�
=

rX
k=0

�
n� r + k

k

�
the "stocking theorem" for Pascal's triangle, for the reason suggested by the
�gure below.
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Figure 1:

(where in this case the overlay pattern illustrates the special.case 10 = 1 � 6 + 1 �
3 + 1 � 1 of the "stocking theorem").

The author has obtained generalizations of Pascal's triangle through the use of
functional equations, and for each of these, there is a stocking theorem, analogous
to the one above, which expresses each element of the generalized triangle as a
certain linear combination of "higher" elements of the triangle. The coe�cients in
this linear combination are the �rst r elements of the stocking sequence associated
with the triangle. (In the case of Pascal's triangle, the stocking sequence is simply
1; 1; 1; : : : .)

The generalized Pascal triangle T01 gives the number of ways of choosing n
objects r at a time where, if an element is used at all, it must be used twice. The
recurrence relation for this triangle is

C(n+ 1; r) = C(n; r) + C(n; r � 2);

and the associated stocking sequence is

1; 0; 1; 0; 2; 0; 5; 0; 14; 0; 42; 0; 132; 0; : : : :

which turns out to be the sequence of Catalan numbers

Ti =
1

i+ 1

�
2i
i

�
;

with zeros interspersed (see [1]).
For T01, it can be easily shown that C(n; r) = 0 for odd r. If we remove

these zero columns from T01, we get Pascal's triangle T1, which means that the
stocking theorem for T01 can be reinterpreted as the following statement relating
the binomial coe�tcients to the Catalan numbers Ti (de�ned above):�

n+ 1
r

�
=

r�1X
i=0

Ti
�
n� 2i
r � i� 1

�
;

where, for negative m,
�m
k

�
is the (unique) number determined by the Pascal

recurrence relation �
m+ 1
k

�
=
�
m
k

�
+
�

m
k � 1

�
and by

�m
0

�
= 0 for all integers m.
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D. R. Snow

19. Problem. Assume that
kX
i=1

�if(x+ �i(t)) = f(x) (1)

for all x 2 Rn; t 2 � � R: where
Pk
i=i �i = 1; �i > 0 for i = 1; : : : ; k, and there

exists an � 2 � such that �i(�) = 0 for i = 1; : : : ; k.
If the set of �0i(�) (for i = 1; : : : ; k) spans RN , then every locally integrable

solution f of (1) is a C1 function (see [1]).

Question. Are all the locally integrable solutions of (1) C1 functions if f(�0i(�) :
i = 1; : : : ; kg does not span RN , but f(�00i (�) : i = 1; : : : ; kg does?

References
[1] �Swiatak, H., Criteria for the regularity of continuous and locally integrable so-

lutions of a class of linear functional equarions, .Aequationes Math. 6 (1971),
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H. �Swiatak

20. Problem. Find all functions F :]0;1[! R satisfying:

F (xy) = F (x)F (y) and F (x+ y) � F (x) + F (y)

for all x > 0 and v > 0.
This problem arises in the calculation of entropy functions of degree � < 1.

Discontinuous solutions of the system are known to exist.

Gy. Maksa

21. Remark. It has been pointed out by V. I. Arnold and A. A. Kirilov that
the function Min(x; y) admits no representation of the form

Min(x; y) = f(g(x) + g(y));

where f and g are continuous. A stronger result is easily established:

Theorem. Let A = [a; b] be a subinterval of the extended real line, and let
T : A�A! A de�ne a semigroup on A such that for some a < x < b,

T (a; a) = a; T (x; x) = x; T (b; b) = b:

Then there are no continuous functions f; g such that T can be represented in
the form T (x; y) = f(g(x) + g(y)).

G. Krause

22. Remark. The following problem of Colin Rogers arises in gas dynamics in
connection with the theory of B�acklund transformations. Given real constants
�; a; b; c; d, �nd smooth solutions � :]0;1[! R such that

�(x) = �(x+ c)2
�
�
�
a+

b
x+ c

�
+ d
�
; x > 0: (1)

11



We assume a; b, and c are such that a + b
x+c is de�ned and positive whenever

x > 0. In the homogeneous case (d = 0) the real analytic solutions of (1) can be
found explicitly (they are rational functions in nontrivial cases) with the aid of
the following theorem.

Theorem 1. Let D be an open connected subset of C (the complex numbers)
and let g : D ! D be analytic and have a �xed point z0 such thnt 0 < jg0(z0)j < 1
and gk(z) �! z0 as k �! +1 for every z 2 D. Also let f : D ! C be anatytic
with f(z0) = 1, let � 2 C and suppose that � : D ! C is analytic and such that

��(z) = f(z)�(g(z)); z 2 D: (2)

Then there exist analytic functions F;G : D ! C such that

(i) if � 6= (g0(z0))k for all k = 0; 1; 2; : : : , then � � 0 and

(ii) if � = (g0(z0))k for some k = 0; 1; 2; : : : then there exists  2 Csuch that
�(z) = F (z)[G(z)(z � z0)]k, z 2 D.

If we let �k(z) = F (z)[G(z)(z � z0)]k, for z 2 D; k = 0; 1; 2; : : : , then we can
prove:

Theorem 2. Given h : D ! R analytic, there exist � > 0 and a complex
sequence fckg+1k=0 such that

h(z) =
+1X
k=0

ck�k(z)

for jz�z0j < �. Moreover the convergence is almost uniform on fz 2 D : jz�z0j <
�g.

Using Theorem 2, one can determine the real analytic solutions of (1) in the
nonhomogeneous case.

J. A. Baker

23. Remark. A function f , holomorphic in D = fz : jzj < 1g, is said to be
annular in case there is a sequence fJng � D of Jordan curves about 0 such that

lim
n!1minfjf(z)j : z 2 Jng =1:

One can base a prooi for the annuiarim of

f(z) =
1X
n=0

acnza
n

(1)

(where c > 0; a = a(c), a su�iciently large integer), on known methods and the
fact that f satis�es the functional equation

f(z)� acf(az) = z:

Hardy and Littlewood in 1916 related (1) via a functinonal equation to

F (�) =
1X
n=1

n��e�n logn�n (2)

12



(� > 0; � > 0 certain constants), and thereby one can show that (2) is also
annular. Fatou showed that for certain rational functions, for example

R(z) =
z(z � s)
1� sz

c complex. 0 < jsj < 1, the nontrivial analytic solutions of the Schr�oder equation

f(R(z)) = �sf(z)

are annular.
I would appreciate hearing of othter connections between functional equations

and annular functions.

F. Carroll

24. Problem. Let (F;+; �) be a system with the following properties:

I. (F;+) is a toop (with identity 0).

II. (F � f0g; �) is a group.

III. (a+ b) � c = a � c+ b � c and c � 0 = 0, for all a; b; c 2 F .

IV. (Limited associativity) (x+ a) + b is equal to x+ (a+ b) if b+ a = 0, and
is equal to x(b+ a)�1(a+ b) + (a+ b) otherw��se.

Question. Do the conditions I-IV imply that (F;+) is an abelian group?

The answer is known to be a�rmative in case F has �nite cardinality, or un-
der some other additional assumptions, such as a(1+1) = a+a; or 1+1+1 = 0.

W. Leissner

25. Remark. Solution of Problem 17 (2) (of these Proceedings).
In answer to a problem of J. Acz�el, we have proved the following:

Theorem. Ler � 2 R be �xed. D0 = f(x; y) 2 R2 : x; y; x + y 2]0; 1[g. The
functions F;G;H;K :]0; 1[! R satisfy

F (x) + (1� x)�G
�

y
1� x

�
= H(y) + (1� y)�K

�
x

1� y
�

for all (x; y) 2 D0 if and only if, for all x 2]0; 1[,

F (x) =

8>><>>:
�(x) + �(1� x) + a1x+ a2(1� x) + a3 if � = 1
l1(1� x) + l2(x) + a1 if � = 0
d(x) + a1x2 + a2(1� x)2 + a3 if � = 2
a1x� + a2(1� x)� + a3 otherwise

G(x) =

8>>>>>><>>>>>>:
�(x) + �(1� x) + a01x

+(a1 � b1 + a3 � b3 � b01 + a01 + b02)(1� x)
+b1 � a2 � a3 + b3 � a01 if � = 1

l1(1� x) + l3(x)� l3(1� x) + b1 � a1 + b01 if � = 0
�d(x) + b1x2 + a02(1� x)2 � a2 if � = 2

b1x� + a02(1� x)� � a2 otherwise

13



H(x) =

8>><>>:
�(x) + �(1� x) + b1x+ b2(1� x) + b3 if � = 1
l1(1� x) + l2(1� x) + l3(x)� l3(1� x) + b1 � a1 + b01 if � = 0
�d(x) + b1x2 + b2(1� x)2 + a3 if � = 2

b1x� + b2(1� x)� + a3 otherwise

K(x) =

8>>>><>>>>:
�(x) + �(1� x) + b01x+ b02(1� x)

+a1 + a3 � b2 � b3 � b01 if � = 1
l1(1� x) + l2(x)� l3(1� x) + b01 if � = 0
d(x) + a1x2 + a02(1� x)2 � b2 if � = 2
a1x� + a02(1� x)� � b2 otherwise

where � :]0;1[! R satis�es

�(xy) = x�(y) + y�(x);

for all x; y 2]0;1[; lj :]0;1[! R satis�es

li(xy) = li(x) + li(y)

for all x; y 2]0;1[ and i = 1; 2; 3, the function d is a real derivation and
ai; bi; a0k; b0k (i = 1; 2; 3; k = 1; 2) are arbitrary real constants.

Gy. Maksa

26. Remark Solution of Problem 17 (1) (of these Proceedings).
ln view of Gy. Maksa's solution (see Remark 25 above) to Problem 17 (2),

the equation

f(x; u) + (1� x)f
�

y
1� x;

v
1� u

�
= f(y; v) + (1� y)f

�
x

1� y ;
u

1� v
�

(1)

for all (x; y) 2 D0; (u; v) 2 D0, where

D0 = f(s; t) : s; t; s+ t 2]0; 1[g:
can be solved as follows.

Keeping u; v constant, (1) goes over into

F (x) + (1� x)�G
�

y
1� x

�
= H(y) + (1� y)�K

�
x

1� y
�

for all (x; y) 2 D0.
From Maksa's solution of this equation (� = 1).

f(s; u) = F (s) = �(s) + �(1� s) + a1s+ b1;
f(s; y) = H(s) = �(s) + �(1� s) + a2s+ b2;

that is, letting u vary again,

f(x; u) = �(x) + �(1� x) +A(u)x+B(u): (2)

Here

�(xy) = x�(y) + y�(x) (3)

(for x; y 2]0; 1[) and in consequence,

�
�s
t

�
=
t�(s)� s�(t)

t2
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(where s; t; st 2]0; 1[).
By substituting (2) into (1), we get

�(x) + �(1� x) +A(u)x+B(u) + �(y)� �(1� x) + �(1� x� y)

+A
�

v
1� u

�
y +B

�
v

1� u
�

(1� x)

= �(y) + �(1� y) +A(v)y +B(v) + �(x)� �(1� y) + �(1� x� y)

+A
�

u
1� v

�
x+B

�
u

1� v
�

(1� y):

After cancellations and comparing the coe�cients of x and the terms independent
of x and y on both sides we get

A(u) = A
�

u
1� v

�
+B

�
v

1� u
�

and
B(u)�B

�
v

1� u
�

= B(v) +B
�

u
1� v

�
for all (u; v) 2 D0. By adding these two equations and writing C = A + B; p =
u

1�v ; q = v
1�u , (p; q 2]0; 1[, but otherwise arbitrary), we get

C(pq) = C(p) +B(1� q) (p; q 2]0; 1[):

This is a Pexider type equation with the general solution (cf. [1]) B(1 � q) =
l(q); C(u) = l(u) + c. So

B(u) = l(1� u); A(u) = l(u)� l(1� u) + c

where l is an arbitrary solution of

l(uv) = l(u) + l(v) (u; v 2]0; 1[); (4)

(cf [2],[3]). Since the converse part is obvious, we have proved the following.

Theorem. The general solution of (1) is given by

f(x; u) = �(x) + �(1� x) + xl(u) + (1� x)l(1� u) + cx;

where c is an arbitrary constant and � and l are arbitrary solutions of (3) and
(4) respectively.

Note. By interchanging (x; y) and (u; v), we can also use Maksa's � = 0 result
for the same purpose.
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