
Efficient Mesh Licensing

Stephen Toub
toub@fas.harvard.edu

Alexander Healy
ahealy@fas.harvard.edu

May 24, 2001

Abstract

We present an efficient mesh watermarking scheme
whereby a vendor can embed purchaser-specific in-
formation (i.e. a user license) into a mesh upon
the sale of the mesh. This watermark is robust to
translation, rotation, uniform scaling, cropping and
random perturbation of vertices (up to a threshold).
Furthermore, since this method imposes only minor
changes to the geometry of the model, it can be used
in conjunction with ownership watermarks such as
the technique presented in [2].

Introduction

The practice of watermarking geometric models in-
volves a trade-off between several important prop-
erties: robustness (whether the model retains the
watermark even after having been modified), in-
formation (how many bits can be encoded in the
model), non-malleability (how secure the watermark
is against forgery) and efficiency (how much pre-
processing is required to embed the watermark and
how much processing is required to recover it). In
this work, we focus on the last two properties, non-
malleability and efficiency, while still providing a
modicum of robustness. We present an efficient mesh
watermarking scheme whereby a vendor can embed
purchaser-specific information (i.e. a user license)
into a mesh upon the sale of the mesh. This water-
mark is robust to translation, rotation, uniform scal-
ing, cropping and random perturbation of vertices
(up to a threshold). The security of this watermark
against forgery is grounded in the (conjectured) dif-
ficulty of computing discrete logarithms in a finite
group, and, more generally, we illustrate a technique
for representing a cryptographic/algebraic structure
within the framework of polygonal meshes.

Previous Work and Motivation

Steganography (information-hiding) is of great inter-
est to many content providers including those who
provide digital audio and digital images. The water-
marking techniques from these areas have been ex-
tended and modified so that polygonal meshes can
be watermarked. We focus on two noteworthy ex-
amples:

In [5], Wagner presents a robust watermarking
scheme that uses the lengths of edges in the mesh
to hide a message. The watermark is preserved even
after affine-transformations and cropping. However,
the process of embedding the watermark is quite
costly and can necessitate solving very large lin-
ear systems. This is impractical if we want to em-
bed a different watermark each time a mesh is sold
(e.g. if the watermark is to include the name of the
purchaser). Hence, we would like a watermarking
scheme which is allows the purchaser-specific infor-
mation to be embedded very efficiently.

In [2], the authors present a watermarking scheme
in which the message is hidden in the geometry (as
opposed to the connectivity) of the mesh. This
scheme is robust to arbitrary affine transformations
and re-meshing. In order to ensure that the water-
mark non-invertible (i.e. to prevent false ownership
claims), the authors suggest using a cryptographic
hash of the ownership information to seed a random
number generator that produces the watermark that
will be embedded. This works if a given owner wants
to show that he owns the mesh; however, if we are
embedding purchaser-specific information into the
mesh, this can be problematic. Consider the fol-
lowing simple scenario:

Alice sells a mesh to Bob with a watermark that
says “This is Alice’s mesh and Bob is licensed to use
this copy.” Now Bob gives the mesh to Carol. Alice

1

recognizes Carol’s mesh, but she cannot determine
that it was Bob that gave the mesh to Carol (ille-
gally), unless she guesses that the watermark was
“This is Alice’s mesh and Bob is licensed to use this
copy,” and not “This is Alice’s mesh and (anyone’s
name) is licensed to use this copy.”

Hence, we would like a scheme in which we can
guarantee that the watermark cannot be forged, but
where we can recover the watermark text rather than
just verifying it, i.e. where we do not have to know
the watermarked information before it is recovered.

Encoding Information

In this section we are concerned with the problem
of encoding a string of n bits into a mesh. In the
next section we will address the issues of encrypting
that string before it is embedded into the mesh. Let
the original mesh be denoted by O. From this mesh
we will construct two meshes, A and B, which have
the same connectivity as O, but where the vertices
have been perturbed. In particular, for each vertex
v ∈ O, we compute the tangent plane at v, and we
project the star of v onto the tangent plane. Let
ε denote the length of the shortest edge incident to
v in this projection. Next we randomly choose an
angle θ ∈ [0, 2π), and a length ` ∈ (0, ε

λ], where λ is
a constant parameter (λ = 8 works well in practice).
In mesh A, the vertex corresponding to v is moved
a distance ` in the direction θ on the tangent plane;
in mesh B, the vertex corresponding to v is moved a
distance ` in the opposite direction.

Recall that n denotes the number of bits we wish
to encode in the mesh. Now, we partition the ver-
tices V of O into n sets, Si, of size

⌊
|V |
n

⌋
or

⌈
|V |
n

⌉
.

To create a watermarked mesh, W, with an n-bit
text T = b1b2 . . . bn embedded into it, we do the fol-
lowing: For each Si, we choose the positions of the
vertices in W from A if bi = 0 and from B if b = 1.
We can now interpret the effect of such an encoding
in a more conventional setting: While we cannot as-
sume that the Si’s will remain secret, we know that
each vertex in A and B was produced by the ex-
act same random process (recall that one vertex was
perturbed by ` where as the other was perturbed by
−`); therefore, to a third party who does not know
the text T which is encoded in the mesh, there is no
way for them to determine whether a given vertex

(and hence a set of vertices) came from A or B. In
this way, this encoding is information-theoretically
secure, provided that A and B are kept secret. In
particular, it is analogous to encoding T as T ⊕ S
for some randomly-generated secret key S.

To recover a message from such a watermarked
mesh, W, we need to realign the mesh and compare
the locations of the vertices in each set Si ofW to the
locations of the vertices in A and B. If a majority
of the vertices in a given set Si are closer to the
corresponding vertices in mesh A, then bit i is taken
to be a 0. Otherwise, bit i is taken to be a 1. The
topic of realigning (or registering) the watermarked
mesh is discussed in [2].

Finally, a note about efficiency: If we assume that
the meshes A and B have been created as a prepro-
cess, then the process of creating a mesh with an
n-bit text T encoded into it simply involves choos-
ing the positions for the vertices from either A or
B. Hence, this encoding process is O(|V |), where V
denotes the set of vertices of the mesh.

Encryption

In the above scheme, if the encoded message is
known and the Si’s are known (this may be possi-
ble by comparing many encoded meshes) then such
a watermark can be forged. In order to thwart such
an attack, we will not encode the message M , but
rather E(M), where E is a private-key encryption
function.

Since the messages we encode into the mesh are
simply elements of {0, 1}n, it is natural to con-
sider a message M as an element of F2n , realized
as F2[x]/f(x) where f(x) is an irreducible polyno-
mial of degree n (since each polynomial in this quo-
tient is easily represented a n-tuple of 0’s and 1’s,
namely the coefficients of the polynomial). Further-
more, we choose n so that 2n − 1 is prime, i.e. a
Mersenne prime. This ensures that the multiplica-
tive group F×

2n , which has order 2n − 1, is cyclic of
prime order, and hence every message is a multi-
plicative generator, except for the messages 0 . . . 00
and 0 . . . 01, which we assume will never be used.
Although Mersenne primes are relatively rare, there
are several reasonable values of n for this application,
namely n = 521, 607 or 1279 (see sequence A000043
in [4]).

2

Now, we can use the following private-key encryp-
tion function, with secret key s ∈ {1, 2, . . . , 2n − 1}.
Given a message M ∈ F×

2n , the encryption, of M is
defined by E(M) = M s.

Such a private-key encryption function is desirable
because its security can be shown to be equivalent to
solving the Diffie-Hellman problem and, in this case,
also the discrete logarithm problem.

Problem 1 (Diffie-Hellman Problem). Given a
cyclic group, G, a generator g ∈ G, ga and gb for
some unknown integers a and b, compute gab.

Problem 2 (Discrete Logarithm Problem).
Given a cyclic group, G, a generator g ∈ G, and
ga, for some unknown integer a, compute a.

It is conjectured that there is no efficient (i.e.
polynomial-time) algorithm to solve these problems
over various groups G, including G = F×

2n . Clearly,
if one can solve the Discrete Logarithm Problem ef-
ficiently, then one can also solve the Diffie-Hellman
problem efficiently, but the converse is not known to
be true in general. Even so, in [1], Maurer shows
that these two problems are computationally equiv-
alent if p− 1 or p + 1 is sufficiently smooth for each
prime factor p of |G|. Since we have chosen G to
have prime order equal to 2n−1, the only prime fac-
tor of |G| is 2n−1 and (2n−1)+1 = 2n is 2-smooth;
hence, the hypotheses of Maurer’s result are met and
the two problems are computationally equivalent.

This is of interest to us, since the following result
relates the difficulty of forging an encryption E(M)
(given M , and without knowing the secret key s) to
the difficulty of solving the Diffie-Hellman Problem.

Proposition 1. Suppose an adversary has a
polynomially-bounded number of pairs (Mi, E(Mi)),
where the known plaintexts Mi, are randomly dis-
tributed over all possible messages in F2n. Then,
if the adversary can efficiently compute E(M ′) for
some known message M ′, then she can efficiently
solve the Diffie-Hellman Problem in F×

2n.

Proof. First we show that only one pair (M0, E(M0))
is necessary. This is simply because given such a
pair, we can construct random pairs (Mi, E(Mi)),
by computing (M r

0 , E(M0)r) for a random r ∈
[1, 2, . . . , 2n − 1]. Clearly, E(M0)r = (M s

0)r =
(M r

0)s = E(M r
0), and since any message M0 is a gen-

erator, M r
0 is different for every r; hence a random

choice of r yields a random pair (M,E(M)) where
M = M r

0 . Thus, if the adversary can efficiently com-
pute the ciphertext E(M ′), given a polynomial num-
ber of random pairs (Mi, E(Mi)), then she can can
efficiently compute E(M ′) = M ′s given a single pair
(M0, E(M0)). However, M ′ = M t

0 for some t, since
M0 is a generator. Therefore, the adversary is able
to efficiently compute M ′s = (M t

0)
s = (M0)st given

a generator M0, M s
0 = E(M0) and M t

0 = M ′. This
is exactly the statement of the Diffie-Hellman Prob-
lem, and the result follows.

Corollary 1. Suppose an adversary has a
polynomially-bounded number of pairs (Mi, E(Mi)),
where the known plaintexts Mi, are randomly
distributed over all possible messages in F2n. Then,
if the adversary can efficiently compute E(M ′) for
some known message M ′, then she can efficiently
solve the Discrete Logarithm Problem in F×

2n.

Proof. By the previous proposition, we know that
the adversary can efficiently solve the Diffie-Hellman
Problem in F×

2n . By Maurer’s result in [1], we know
that the existence of an efficient algorithm to solve
the Diffie-Hellman Problem in F×

2n implies that there
is an efficient algorithm for solving the Discrete Log-
arithm Problem in F×

2n .

Unfortunately, this result depends on the known
plaintexts, Mi, being random. It is possible, how-
ever, that an adversary would choose the Mi’s deter-
ministically in order to improve his chance of forging
messages. To thwart such an attack, we recommend
padding the messages with random bits before en-
coding them, i.e. given M = m1m2 . . .mk, with
mi ∈ {0, 1} let M ′ = m1m2 . . .mkrk+1rk+2 . . . rn

where the ri are random bits, and compute E(M ′).
This will serve to randomize the plaintexts before
they are encoded. The size of k, relative to n will
determine the security of this encoding (and con-
versely how much information is encoded).

Application

As we have noted before, this scheme only makes
minor changes to the geometry of the model. For
this reason, it could be used in conjunction with the
watermarking scheme proposed in [2], as in the fol-
lowing example:

3

Meshmart licenses meshes that it owns to its cus-
tomers. All of Meshmart’s meshes are watermarked
using Praun et al.’s scheme from [2]. Furthermore,
each time a mesh is licensed to a customer, that cus-
tomer’s information is embedded using the scheme
presented above. This way, Meshmart’s meshes are
always provided with both an ownership watermark
and a license watermark, and so if Alice is found to
have a mesh containing Meshmart’s ownership wa-
termark, but without a valid license watermark, she
is culpable for mesh-fraud. Additionally, our method
allows for the possibility that Alice’s mesh will also
retain its license watermark, revealing that Bob in
fact purchased the mesh from Meshmart, and gave
it (illegally) to Alice.

Implementation

The accompanying implementation demonstrates
the functionality of our proposed licensing scheme
with triangular meshes. The application was written
in C++, using OpenGL and our own mesh represen-
tation/manipulation library. Meshes are read and
stored as .GEOM files. For simplicity, this applica-
tion does not actually perform the encryption steps
described above. Even so, exponentiation in F2n can
be performed very quickly and so the difference in
performance is negligible. The following screen-shots
demonstrate the functionality of the system:

As a preprocess, a .MAB (Mesh A, B) file is
created which stores the displacement information

of the vertices and any key information:

Using this .MAB file, a license/watermark can be
embedded into the mesh:

4

Then the watermark can be recovered, using the
.MAB file:

Conclusions and Future Work

We have presented an efficient watermarking scheme
that incorporates algebraic cryptography in order
to guarantee that the watermark cannot be forged.
There are undoubtedly many cryptographic schemes
that could be used in secure watermarking/licensing;
however, the challenge lies in finding algebraic struc-
tures that are well-suited for embedding in meshes.
For our purposes, F2n worked well, but there may
be other encoding schemes which lend themselves to
encoding elements of ZN where N is the product of
two primes as in the RSA and Rabin cryptosystems,
or other useful algebraic structures.

Also, as it is presented here, our watermarks

are robust to translation, rotation, uniform scaling,
cropping, and random perturbations of vertices. It
would be of interest to extend this encoding tech-
nique so that the watermarks are also robust to
arbitrary affine transformations, or even projective
transformations. However, this would almost cer-
tainly come at the expense of performance.

We have focused on the issues of efficiency and
non-malleability in polygonal mesh watermarking.
We have exhibited an efficient licensing scheme that
is secure against forgery and which allows the li-
censing information to be recovered, and not just
verified. This is particularly important when em-
bedding purchaser-specific information into meshes
if we want to find out which party broke the con-
ditions of the license. Furthermore, this scheme can
be used in conjunction with the robust watermarking
technique in [2] in order to generate meshes with ro-
bust ownership watermarks and efficient user-license
watermarks.

References

[1] Ueli M. Maurer. Towards the equivalence of
breaking the Diffie-Hellman protocol and com-
puting discrete algorithms. In Yvo G. Desmedt,
editor, Proc. CRYPTO 95, pages 271–281.
Springer, 1994.

[2] Emil Praun, Hugues Hoppe, and Adam Finkel-
stein. Robust mesh watermarking. In Alyn Rock-
wood, editor, Siggraph 1999, Computer Graphics
Proceedings, pages 49–56, Los Angeles, 1999. Ad-
dison Wesley Longman.

[3] Masaki Aono Ryutarou Ohbuchi, Hiroshi Ma-
suda. Watermarking three-dimensional polygo-
nal models. In ACM Multimedia 97, pages 261–
272, 1997.

[4] N. J. A. Sloane. The online en-
cyclopedia of integer sequences. In
http://www.research.att.com/ njas/sequences/,
2001.

[5] M. Wagner. Robust watermarking of polygonal
meshes. pages 201–208.

5

