
ar
X

iv
:q

ua
nt

-p
h/

05
03

23
6v

1
 3

1
M

ar
 2

00
5

The Selmer Center
Department of Informatics
University of Bergen
Norway

Master of Science Thesis

On Self-Dual Quantum Codes, Graphs,

and Boolean Functions

Lars Eirik Danielsen

March 2005

http://arXiv.org/abs/quant-ph/0503236v1

Abstract

A short introduction to quantum error correction is given, and it is shown that
zero-dimensional quantum codes can be represented as self-dual additive codes
over GF(4) and also as graphs. We show that graphs representing several such
codes with high minimum distance can be described as nested regular graphs
having minimum regular vertex degree and containing long cycles. Two graphs
correspond to equivalent quantum codes if they are related by a sequence of
local complementations. We use this operation to generate orbits of graphs,
and thus classify all inequivalent self-dual additive codes over GF(4) of length
up to 12, where previously only all codes of length up to 9 were known. We
show that these codes can be interpreted as quadratic Boolean functions, and
we define non-quadratic quantum codes, corresponding to Boolean functions of
higher degree. We look at various cryptographic properties of Boolean func-
tions, in particular the propagation criteria. The new aperiodic propagation
criterion (APC) and the APC distance are then defined. We show that the dis-
tance of a zero-dimensional quantum code is equal to the APC distance of the
corresponding Boolean function. Orbits of Boolean functions with respect to
the {I,H,N}n transform set are generated. We also study the peak-to-average
power ratio with respect to the {I,H,N}n transform set (PARIHN), and prove
that PARIHN of a quadratic Boolean function is related to the size of the max-
imum independent set over the corresponding orbit of graphs. A construction
technique for non-quadratic Boolean functions with low PARIHN is proposed.
It is finally shown that both PARIHN and APC distance can be interpreted as
partial entanglement measures.

i

Acknowledgements

I would like to thank my supervisor, Matthew G. Parker, for all his helpful
advice and good ideas. I also thank Tor Helleseth and the Selmer Center for
financial support enabling me to attend the conference “Sequences and Their
Applications”, SETA’04, in Seoul, South Korea, where some of the results in
this thesis were presented. Most of the contributions in this thesis are also
found in the two papers referenced below.

Danielsen, L. E. and Parker, M. G.: “Spectral orbits and peak-to-average
power ratio of Boolean functions with respect to the {I,H,N}n transform”,
January 2005. To appear in the proceedings of Sequences and Their Applica-
tions, SETA’04, Lecture Notes in Computer Science, Springer-Verlag.
http://www.ii.uib.no/~larsed/papers/seta04-parihn.pdf

Danielsen, L. E., Gulliver, T. A., and Parker, M. G.: “Aperiodic prop-
agation criteria for Boolean functions”, October 2004. Submitted to Information
and Computation.
http://www.ii.uib.no/~larsed/papers/apc.pdf

Lars Eirik Danielsen
Bergen, March 2005

iii

http://www.ii.uib.no/~larsed/papers/seta04-parihn.pdf
http://www.ii.uib.no/~larsed/papers/apc.pdf

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 2

2 Quantum Computing and Quantum Codes 5

2.1 Quantum Computing . 5

2.1.1 Introduction . 5

2.1.2 Quantum Superposition 5

2.1.3 Bra/Ket Notation . 6

2.1.4 Quantum Bits . 7

2.1.5 The Tensor Product . 8

2.1.6 Quantum Entanglement 8

2.1.7 Quantum Transformations 9

2.1.8 Quantum Computers . 10

2.2 Classical Error Correction . 11

2.3 Quantum Error Correction . 13

2.3.1 Introduction . 13

2.3.2 Stabilizer Codes . 15

2.3.3 Quantum Codes over GF(4) 16

2.3.4 Self-Dual Quantum Codes 16

3 Quantum Codes and Graphs 19

3.1 Introduction to Graph Theory . 19

3.2 Graph Isomorphism with nauty 20

3.3 Graph Codes . 21

3.4 Efficient Algorithms for Graph Codes 23

3.5 Quadratic Residue Codes . 24

4 Nested Regular Graph Codes 29

4.1 The Hexacode and the Dodecacode 29

4.2 Graph Codes with Minimum Regular Vertex Degree 30

4.3 Other Nested Regular Graph Codes 32

4.4 Long Cycles in Nested Regular Graph Codes 36

v

Contents

5 Orbits of Self-Dual Quantum Codes 39

5.1 Local Transformations and Local Complementations 39
5.2 Enumerating LC Orbits . 41
5.3 The LC Orbits of Some Strong Codes 48

6 Quantum Codes and Boolean Functions 51
6.1 Introduction to Boolean Functions 51
6.2 Propagation Criteria for Boolean Functions 55
6.3 Quantum Codes as Boolean Functions 58
6.4 The {I,H,N}n Transform Set 60
6.5 Orbits of Boolean Functions . 64

7 Peak-to-Average Power Ratio 71

7.1 Peaks and Independent Sets . 71
7.2 Constructions for Low PAR . 75
7.3 Quantum Interpretations of Spectral Measures 79

8 Conclusions and Open Problems 83

Bibliography 87

vi

List of Tables

2.1 Bounds on the Distance of Self-Dual Quantum Codes 18

3.1 Distance (d) of Quadratic Residue Codes of Length m and Bor-
dered Quadratic Residue Codes of Length m+ 1 28

4.1 Nested Regular Graphs with Degree δ Corresponding to Circu-
lant Graph Codes of Length n and Distance d 33

5.1 Sizes of Different Sets of Graphs 43
5.2 Number of Self-Dual Quantum Codes of Length n 47
5.3 Number of Indecomposable Self-Dual Quantum Codes of Length n

and Distance d . 47
5.4 Number of Indecomposable Type II Self-Dual Quantum Codes

of Length n and Distance d . 47
5.5 Numbers of Decomposable Self-Dual Quantum Codes 49

6.1 Number of Orbits of Boolean Functions of n Variables 65
6.2 Number of Orbits in O1,5 with APC Distance d and Degree δ . . 69
6.3 Number of Orbits in O2,5 with APC Distance d and Degree δ . . 69
6.4 Number of Orbits in O1,6 with APC Distance d and Degree δ . . 69
6.5 Number of Orbits in O2,6 with APC Distance d and Degree δ . . 69
6.6 Boolean Functions of n Variables with Degree δ, APC Distance d,

and PARIHN p . 70

7.1 Number of LC Orbits with Length n and PARIHN p 72
7.2 Range of λ for Codes of Length n and Distance d 72
7.3 Values of Λn for n ≤ 14 and Bounds on Λn for n ≤ 21 73
7.4 Sampled Range of PARIHN for Length (n) from 6 to 10 76

vii

List of Figures

2.1 Demonstrating Quantum Effects With Polarisation Filters 6

3.1 The Strongly Regular Petersen Graph 20
3.2 Two Graph Representations of the [[6,0,4]] Hexacode 22
3.3 Graphs of the QR and BQR Codes for m = 5 27

4.1 Nested Clique Graphs . 31
4.2 Nested Regular Graphs . 34
4.3 Two K2[C4] Graphs Corresponding to [[8, 0, 4]] Codes 35
4.4 Two K2[C5] Graphs Corresponding to [[10, 0, 4]] Codes 36

5.1 Example of Local Complementation 40
5.2 The Two LC Orbits for n = 4 . 42

6.1 Iterations of Algorithm for Tensor-Decomposable Transformations 52
6.2 A Hypergraph Corresponding to a [[6, 0, 3]] Quantum Code . . . 60

7.1 The “Double 5-Cycle” Graph . 74
7.2 Example of Construction for PARHN ≤ 8 76
7.3 Example of Construction for Low PARIHN 78
7.4 Example of Construction for Low PARIHN 78

ix

List of Algorithms

3.1 Finding the Distance of a Graph Code 25
3.2 Finding the Number of Codewords of a Given Weight 25

5.1 Generating the LC Orbit of a Graph 42
5.2 Finding LC Orbits By Canonisation 44
5.3 Finding LC Orbits Quickly . 44
5.4 Finding LC Orbits Quickly Using Less Memory 46

6.1 Algorithm for Tensor-Decomposable Transformations 52
6.2 Finding the APC Distance of a Boolean Function 60
6.3 Generating an {I, σx}n{I,H,N}n Orbit 68

xi

Chapter 1
Introduction

1.1 Motivation

In this thesis we will look at a set of objects that can, under suitable interpre-
tations, be represented as

• zero-dimensional quantum codes,

• quantum states,

• self-dual additive codes over GF(4),

• isotropic systems,

• simple undirected graphs,

• and quadratic Boolean functions.

Each interpretation reveals different properties about the underlying objects
and suggests different generalisations.

There has been a lot of interest in quantum computing since the discovery
of Shor’s algorithm, which can factor an integer in polynomial time. Practical
quantum computers have not yet been built, but it is clear that quantum er-
ror correction must be a crucial part of any implementation. Zero-dimensional
quantum codes only represent single quantum states, but are still of interest to
physicists since codes of high distance represent highly entangled states which
could be used for testing the decoherence properties of a quantum computer.
It has also been shown that a special type of quantum computer can be imple-
mented by performing measurements on a particular class of entangled states.

Zero-dimensional quantum stabilizer codes can be represented as self-dual
additive codes over GF(4). These codes are of interest to coding theorists, and
several construction techniques and classifications have been published. A code
of this type can be represented by an isotropic system, a combinatorical object
that has been the subject of much research. A self-dual additive code over
GF(4) can also be represented by a simple undirected graph. This allows us
to use concepts and algorithms from graph theory to characterise the graphs
corresponding to strong codes. A generalisation to hypergraphs is also suggested
by this interpretation.

The same objects are also equivalent to quadratic Boolean functions, and the
generalisation to Boolean functions of higher degree is natural. Boolean func-
tions are of great interest to cryptographers, since they can be used, for instance,

1

1 Introduction

to analyse and construct S-boxes in block ciphers and nonlinear combiners in
stream ciphers. Many criteria for the cryptographic strength of Boolean func-
tions exist, and it turns out that zero-dimensional quantum codes with high
minimum distance correspond to Boolean functions that satisfy such a crite-
rion. This suggests that highly entangled quantum states may correspond to
cryptographically strong Boolean functions. Conversely, various properties de-
rived from transformations of Boolean functions can be interpreted as partial
entanglement measures of the corresponding quantum states.

1.2 Overview

The second chapter of this thesis gives a very short introduction to the the-
ory of quantum computing and quantum error correction. The properties of
superposition and entanglement are explained, and we we show how computer
algorithms can be implemented by using transformations and measurements of
quantum states. Some of the important discoveries in the theory of quantum
computing are also mentioned. A few basic concepts from classical coding the-
ory are presented before we see that error correction is also possible in quantum
computers. Although an infinite number of different errors can affect a quantum
state, we show that quantum codes only need to consider a small set of basis
errors. Quantum codes can be expressed in the stabilizer formalism, but have
an equivalent representation as additive codes over GF(4). We finally introduce
the type of codes that will be studied in this thesis, namely quantum codes of
dimension zero, called self-dual quantum codes, which represent single quantum
states. Some bounds on the distance of such codes are presented.

Chapter 3 starts with an introduction to graph theory and defines the nota-
tion that we will use. It is then shown that the computer program nauty can
detect graph isomorphisms. By using a simple mapping from hypergraphs to
ordinary graphs, nauty can also detect isomorphism of hypergraphs. A special
type of self-dual quantum codes are the graph codes which can be represented by
undirected graphs. It can be shown that any self-dual quantum code is equiv-
alent to a graph code, and therefore that there is a one-to-one correspondence
between the set of simple undirected graphs and the set of self-dual quantum
codes. A method for converting any self-dual quantum code into a graph code
is described. By exploiting the special form of the generator matrix of a graph
code, the distance and partial weight distribution of the code can be found by
efficient algorithms. The well-known Quadratic residue construction can be
used to find self-dual quantum codes of high distance. These codes can be
represented by a class of strongly regular graphs, called Paley graphs. A small
modification of such a code produces a bordered quadratic residue code. We
construct quadratic residue codes, and their bordered versions, for all possible
lengths up to 30. For length 18, the quadratic residue construction does not
give an optimal code, but there is a modified technique that does.

In chapter 4, we look at the graphs corresponding to two well-known self-
dual quantum codes, the Hexacode and the Dodecacode. Both codes can be
represented by graphs with a special nested structure, which we define as nested
clique graphs. We show that there is a lower bound on the vertex degree in
graphs representing self-dual quantum codes, and that graphs with minimum
regular vertex degree satisfy this bound with equality. We perform an exhaustive
search of all graph codes with circulant generator matrices, for lengths up to
30. Many codes with optimal distance and minimum regular vertex degree are
identified, and their nested structures are described. The more general nested

2

1.2 Overview

regular graphs are also defined. We finally discuss the observation that nested
regular graphs corresponding to codes of high distance also contain long cycles.

Chapter 5 deals with the equivalence of self-dual quantum codes. We first
see that the quantum states represented by equivalent self-dual quantum codes
are related by a simple transformation. This transformation corresponds to a
simple operation, known as local complementation, on the graph representations
of the codes. In addition to local complementations, graph isomorphism must
be considered, since isomorphic graphs also correspond to equivalent quantum
codes. We give three different algorithms for generating LC orbits, the equiva-
lence classes of self-dual quantum codes with respect to local complementation
and graph isomorphism. By implementing these algorithms, using various op-
timisation techniques and a cluster computer, we are able to generate all LC
orbits of codes of length up to 12. This gives a complete classification of all
self-dual additive codes over GF(4) of length up to 12, where previously only all
codes of length up to 9 had been classified. A database containing a represen-
tative of each LC orbit is also available. We next look at the LC orbits of some
strong codes, and search for regular graph structures. The non-existence of any
regular graph representation is established for some codes. Finally, we prove
that a single LC operation on the graph corresponding to a bordered quadratic
residue code produces a regular graph.

Boolean functions are introduced in chapter 6. The algebraic normal form
transformation and the Walsh-Hadamard transformation are defined, and an
efficient algorithm for these and other transformations is described. After defin-
ing the periodic autocorrelation, we see how Boolean functions are used in cryp-
tography. The properties of correlation immunity, resilience, and perfect non-
linearity are of particular interest in this context. We also study the more
general propagation criteria, and define the new aperiodic propagation criterion
(APC), which is related to the aperiodic autocorrelation. We also define the
APC distance of a Boolean function. It is explained that Boolean functions can
be interpreted as quantum states, and that quadratic Boolean functions corre-
spond to the self-dual quantum codes studied in the previous chapters. Boolean
functions of higher degree can be represented by hypergraphs and correspond
to a new type of zero-dimensional quantum codes, the non-quadratic quantum
codes. We see how errors on a quantum state can be expressed as operations
on the corresponding Boolean function, and show that the distance of a zero-
dimensional quantum code is equal to the APC distance of the corresponding
Boolean function. The transform set {I,H,N}n is introduced, and it is shown
that the LC orbits of equivalent self-dual quantum codes can be generated by
this transform set. Finally, we define two types of orbits of Boolean functions
and enumerate all inequivalent functions of up to 5 variables, and all functions
of 6 variables with degree up to 3. We also give examples of non-quadratic
quantum codes with high APC distance.

In chapter 7, we study another property of Boolean functions and their cor-
responding graphs and quantum states, namely the peak-to-average power ratio
with respect to the {I,H,N}n transform (PARIHN). We calculate the PARIHN

of all quadratic Boolean functions with up to 12 variables, and we prove that
the PARIHN of a quadratic Boolean function equals 2λ, where λ is the size of
the largest independent set in the corresponding LC orbit of graphs. We also
define Λn, the minimum value of λ over all LC orbits of graphs on n vertices.
The values of Λn for n up to 14 are given, and bounds on Λn are provided for
n up to 21. A construction technique for non-quadratic Boolean functions with
low PARIHN is proposed, using good quadratic functions as building blocks.
We also look at PAR with respect to other transform sets, in particular PARIH

3

1 Introduction

and PARU , and show that PARU = PARIH for quadratic Boolean functions
corresponding to bipartite graphs. We show that APC distance and PARIHN

tell something about the degree of entanglement in a quantum state and briefly
mention other measures derived from the {I,H,N}n spectrum. We also show
that PARIHN is related to an entanglement measure known as the Schmidt
measure.

We give some final conclusions and present some open problems and ideas
for future research in chapter 8.

While chapter 2 and chapter 3 of this thesis mostly contain previously known
results, the later chapters contain many new contributions, and most of these
are listed here.

• An exhaustive search of all circulant graph codes of length up to 30 is
performed.

• It is shown that many self-dual quantum codes of high distance can be
represented by nested clique graphs or nested regular graphs, and that
these graphs also contain long cycles.

• Minimum regular vertex degree is defined, and many graphs with this
property are identified, corresponding to self-dual quantum codes of high
distance.

• All self-dual additive codes over GF(4) of length up to 12 are classified
and made available in a database [14]. Previously only all codes of length
up to 9 were known. The new numbers of inequivalent codes have been
added to The On-Line Encyclopedia of Integer Sequences [56].

• It is shown that there are no regular graphs corresponding to [[11,0,5]] or
[[18,0,8]] codes, but that bordered quadratic residue codes can be trans-
formed into regular graphs by a simple graph operation.

• The aperiodic propagation criterion and the APC distance of a Boolean
function are defined. It is shown that Boolean functions with APC dis-
tance d can be interpreted as zero-dimensional quantum codes with dis-
tance d.

• We define non-quadratic quantum codes, corresponding to hypergraphs
and Boolean functions of degree higher than two. Several non-quadratic
quantum codes with high distance are found.

• We define two types of orbits of Boolean functions and enumerate all
inequivalent functions of up to 5 variables, and all functions of 6 variables
with degree up to 3.

• The peak-to-average power ratio with respect to the {I,H,N}n transform
(PARIHN) is studied, and it is shown that the PARIHN of a quadratic
Boolean function equals 2λ, where λ is the size of the largest independent
set in the corresponding LC orbit of graphs.

• We define Λn, the minimum value of λ over all LC orbits of graphs on
n vertices, and give the values of Λn for n up to 14. Bounds on Λn are
provided for n up to 21.

• A construction technique for non-quadratic Boolean functions with low
PARIHN is proposed.

4

http://www.ii.uib.no/~larsed/vncorbits/

Chapter 2
Quantum Computing and Quantum Codes

2.1 Quantum Computing

2.1.1 Introduction

We will only give a brief presentation of quantum computing. For more de-
tails, we refer to some of the many good introductions to the topic [33, 36, 50].
Quantum mechanics is a physical theory that describes the behaviour of ele-
mentary particles, such as atoms or photons. The laws of quantum mechanics
predicts effects which are very different from the physical reality that we or-
dinarily observe. Of particular interest are the properties of superposition and
entanglement.

2.1.2 Quantum Superposition

A simple experiment demonstrating quantum effects uses the polarisation of
light. The light from an ordinary light source consists of photons with a random
polarisation. If we put filter A, which has horizontal (0◦) polarisation, between
the light source and a screen, as shown in Figure 2.1.2, the intensity of the light
reflected from the screen will be half of the original, and all photons that pass
the filter will now have horizontal polarisation. This can be verified by adding
filter B, which has vertical (90◦) polarisation, between filter A and the screen.
This time, no light reaches the screen at all, as seen in Figure 2.1.2. A most
confusing fact is that after adding another filter between A and B, some of
the photons do reach the screen. The filter C, with 45◦ polarisation, is added
between filters A and B, and as shown in Figure 2.1.2, we will observe light
with 1

8 of the original intensity reflected from the screen.
What happens is that the randomly polarised photons are “measured” when

they hit filter A. Half of them get a horizontal polarisation and pass through,
and the other half get a vertical polarisation and are stopped. If the horizontally
polarised photons then hit filter B, they will all be stopped. But if they hit
filter C they will again be “measured”, but now with respect to another basis.
Half of them will receive a 45◦ polarisation and pass through. The other half get
an orthogonal (135◦) polarisation and are stopped. One fourth of the original
photons will pass through both filter A and C. If these photons, which now
have a 45◦ polarisation, then hit filter B, they will again be “measured”, and
half of them, 1

8 of the initial amount, will pass through.
The results observed in this experiment are due the property of quantum

superposition. An object which is in a superposition can be viewed as having

5

2 Quantum Computing and Quantum Codes

Filter A

Polarisation:

Intensity:

|→〉Random

100% 50%

(a) Setup With Only Filter A

Filter A Filter B

Polarisation:

Intensity: 0%

|→〉

100% 50%

Random

(b) Setup With Filters A and B

Filter A Filter BFilter C

Polarisation: Random

Intensity: 100%

|→〉 |ր〉 |↑〉

12.5%50% 25%

(c) Setup With Filters A, C, and B

Figure 2.1: Demonstrating Quantum Effects With Polarisation Filters

two or more values for an observable quantity at the same time. Once the
quantity is measured, the superposition will randomly collapse into one of the
values, according to probabilities associated with each possible outcome. A
photon could, for instance, have horizontal polarisation with probability a and
at the same time vertical polarisation with probability b. When this photon is
“measured” by a horizontal polarisation filter, it will with probability a receive
horizontal polarisation and pass through the filter, and with probability b receive
vertical polarisation and be stopped by the filter.

2.1.3 Bra/Ket Notation

The bra/ket -notation invented by Dirac is much used in quantum mechanics.
〈φ| is a bra (the left side of a bracket), and |φ〉 is a ket (the right side of a
bracket). Kets are used to describe states. The state of horizontal polarisation
could be described by |→〉, and vertical polarisation by |↑〉. A photon which is
in a superposition of these states could be described by α |→〉+ β |↑〉, where α
and β are complex numbers. |α|2 is then the probability of the state collapsing
to |→〉 upon measurement, and |β|2 is the probability of measuring |↑〉. We
must have that |α|2 + |β|2 = 1.

Measurement of a quantum state must be done with respect to a specific basis.
In the experiment with photons we used the bases {|→〉 , |↑〉} and {|ր〉 , |տ〉}.
Since |↑〉 = 1√

2
|ր〉 + 1√

2
|տ〉 and |→〉 = 1√

2
|ր〉 − 1√

2
|տ〉, vertically and hor-

izontally polarised photons will have probability 1
2 of getting through a filter

with 45◦ polarisation, which is what we observed in the experiment. The nega-

6

2.1 Quantum Computing

tive sign in the expression |→〉 = 1√
2
|ր〉 − 1√

2
|տ〉 denotes phase. Information

about the phase is lost once the superposition collapses, and in this example
it can be ignored. With the basis states of a measurement basis we associate
orthonormal basis vectors. For example, |→〉 =

(
1
0

)
and |↑〉 =

(
0
1

)
. The state

α |→〉 + β |↑〉 can then be described by the vector
(
α
β

)
. Each ket has a cor-

responding bra, 〈φ| = |φ〉†, where the operator † first conjugates and then

transposes a vector, e.g.,
(
α
β

)†
= (α, β). The inner product, 〈φ| |ψ〉 (also written

〈φ|ψ〉), is a scalar, and is equal to zero if the vectors associated with |φ〉 and
|ψ〉 are orthogonal. The outer product, |φ〉 〈ψ|, is a matrix which can be used
to express transformations on quantum states.

2.1.4 Quantum Bits

A quantum bit, or qubit, has two possible states, labelled |0〉 and |1〉. All
measurements will be done with respect to the basis {|0〉 , |1〉}. A qubit can be
represented by any two-level quantum system. Using vertical and horizontal
polarisation of a photon, we could assign |0〉 = |→〉 and |1〉 = |↑〉, or |0〉 = |ր〉
and |1〉 = |տ〉. Other possible implementations are the up/down spin of an
electron or two energy levels of an atom.

Unlike a classical bit, a qubit can be in a superposition of |0〉 and |1〉. The
state of a general qubit can be denoted α |0〉+β |1〉, with |α|2 being the probabil-
ity of getting the result |0〉 when measuring the qubit, and |β|2 the probability
of getting a |1〉. Several qubits can be combined to form a quantum register.
The state of a two-qubit register can be denoted α |00〉+β |01〉+γ |10〉+ δ |11〉,
or equivalently by the vector (α, β, γ, δ)T , where |α|2 is the probability of mea-
suring both qubits as zero, and so on. It is also possible to measure only one
of the two qubits. If we measure the first qubit, the probability of getting |0〉 is
|α|2 + |β|2, and the probability of getting |1〉 is |γ|2 + |δ|2. Upon measurement,
the state will collapse, so later measurements of the same qubit will always
yield the same value as the first time. If the first qubit is measured as |0〉, the
remaining state is

α√
|α|2 + |β|2

|00〉+ β√
|α|2 + |β|2

|01〉 .

If the first qubit is measured as |1〉, the remaining state is

γ√
|γ|2 + |δ|2

|10〉+ δ√
|γ|2 + |δ|2

|11〉 .

If α, β, γ and δ are all equal to 1
2 , the first qubit we measure will be |0〉

or |1〉 with probability 1
2 , and the second qubit we measure will also be |0〉 or

|1〉 with probability 1
2 . But this is not the general case. Consider the state

1√
2
|00〉+ 1√

2
|11〉. If we measure the first qubit to be |0〉, the state will collapse

to |00〉, and if we measure the first qubit to be |1〉, the state will collapse
to |11〉. We see that the value of the second qubit is determined when we
measure the first, and that the two qubits will always have the same value. We
have observed another fundamental property of quantum mechanics, namely
quantum entanglement.

7

2 Quantum Computing and Quantum Codes

2.1.5 The Tensor Product

Definition 2.1. The tensor product (also known as the Kronecker product) of
the n×m matrix A, and the k × l matrix B, gives the nk ×ml matrix

A⊗B =

AB0,0 AB0,1 · · · AB0,l−1

AB1,0 AB1,1 · · · AB0,l−1

...
...

. . .
...

ABk−1,0 ABk−1,1 · · · ABk−1,l−1

 , (2.1)

where Bi,j is the value in row i and column j of B.

The tensor product of u, a column vector of length n, and v, a column vector
of length k, is a column vector of length nk,

u⊗ v =

uv1
uv2
...

uvk

 . (2.2)

When we write |01〉, it is in fact shorthand notation for |0〉⊗ |1〉, where we take
the tensor product of the basis vectors associated with the quantum states,

|01〉 = |0〉 ⊗ |1〉 =
(

0
1

)
⊗
(

1
0

)
=

(
0
1

)
1

(
0
1

)
0

 =

0
1
0
0

 .

2.1.6 Quantum Entanglement

An entangled quantum state is a multi-qubit state where the values of the qubits
are not independent. There is no classical counterpart to this situation. Qubits
that are not entangled can be separated and described independently, using the
tensor product. For example, 1

2 (|00〉 + |01〉 + |10〉 + |11〉) = 1√
2
(|0〉 + |1)〉 ⊗

1√
2
(|0〉+ |1)〉. Measuring one of these qubits will not affect the outcome of the

other. The state 1√
2
|00〉+ 1√

2
|11〉, however, can not be factorised in this way,

and we have already seen that this is an entangled state.
Classical computers only use the tensor-factorisable space, and a register of

n classical bits will at any time be in one of 2n possible states. A register of n
qubits in a quantum computer, however, has a state space defined by 2n basis
vectors, which is an exponentially larger space than in the classical case. The
state space also grows exponentially with the number of qubits. It is these
properties that give quantum computers their advantage.

A fascinating fact is that one can generate two maximally entangled qubits,
1√
2
(|00〉 + |11〉), (called an EPR pair), and then separate the two particles by

an arbitrary distance. When we then measure one of the qubits, the combined
state changes instantaneously, and a later measurement of the second qubit will
always give the same value as the that of the first qubit. This effect of quantum
mechanics was thought to be a paradox, but it has been proved that it is not
possible to use entangled particles to communicate faster than the speed of
light, so there is no violation of the fundamental laws of physics.

In addition to being entangled with each other, it is possible that qubits in a
quantum register could be entangled with the environment, i.e., any particles
outside the register. Quantum states that are entangled with the environment

8

2.1 Quantum Computing

are called mixed states, and can be described by density operators. We will,
however, only consider pure states, i.e., quantum states that are not entangled
with the environment.

2.1.7 Quantum Transformations

Definition 2.2. A matrix U is a unitary matrix if UU † = I, where † means
conjugate transpose and I is the identity matrix.

Definition 2.3. A matrix that can be written as a tensor product of 2 × 2
unitary matrices is a local unitary matrix.

In addition to measurements, we can perform transformations on quantum
states. A quantum transformation must be reversible, and it can be shown
that it must therefore be defined by a unitary transformation matrix. Transfor-
mations given by local unitary matrices operate independently on each qubit,
and therefore do not change the overall entanglement properties of the quan-
tum state. We can think of local unitary transformations as “rotations” which
enables us to look at the same quantum state “from another angle”, without
changing its properties. In the bra/ket notation, transformations can be de-
scribed by outer products. For instance,

|0〉 〈1|+ |1〉 〈0| =
(

0

1

)
(1, 0) +

(
1

0

)
(0, 1) =

(
0 0
1 0

)
+

(
0 1
0 0

)
=

(
0 1
1 0

)
(2.3)

is the transformation that maps |0〉 to |1〉 and |1〉 to |0〉,

(|0〉 〈1|+ |1〉 〈0|)(α |0〉+ β |1〉) =

(
0 1
1 0

)(
α

β

)
=

(
β

α

)
= α |1〉+ β |0〉 . (2.4)

This is called the bit-flip or “not” transformation. It is easy to verify that it is
unitary and self-inverse.

A local unitary transformation on an n-qubit quantum state is given by a
tensor product of n 2× 2 unitary matrices,

U = U0 ⊗ U1 ⊗ · · · ⊗ Un−1. (2.5)

To express that the transform U0 should be applied to qubit number i, we can

write U
(i)
0 . The transformation that applies U0 to the ith qubit and U1 to all

other qubits is then

U = U
(i)
0

⊗

j 6=i

U
(j)
1 . (2.6)

Note the factors must be placed in the correct order before this tensor multi-
plication can be carried out.

Definition 2.4. We define the Pauli matrices,

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
, I =

(
1 0
0 1

)
.

The Pauli matrices is a useful set of quantum transformations. σx represents
a bit-flip, σz is a phase-flip, and σy is a combination of both, since σy = iσxσz.
The factor i in the definition of σy makes some manipulations easier, but in
most cases the overall phase factor of a quantum state can be ignored. We also
include the identity matrix, I, which makes no change to the qubit it is applied
to. We will later see that Pauli matrices can be used to represent errors on
quantum states.

9

2 Quantum Computing and Quantum Codes

Definition 2.5. The Hadamard transformation is defined by the matrix

H =
1√
2

(
1 1
1 −1

)
.

Observe that by applyingH , we transform the state |0〉 into the superposition
1√
2
(|0〉+ |1〉), while the state |1〉 is transformed into 1√

2
(|0〉 − |1〉). The Walsh-

Hadamard transformation applies H to every qubit of a state. If we apply the
Walsh-Hadamard transformation to an n-qubit all-zero state, |00 · · · 0〉, we get
a superposition of all the 2n basis states, each with the same probability.

We have already seen that measurements of quantum states destroy much of
the information the states contain. It is also easy to show that it is impossible
to make perfect copies of a quantum state, since there is no unitary, and thus
non-destructive, transformation which performs this copying.

Theorem 2.6 (Dieks, and Wootters and Zurek). A quantum state can not
be cloned, i.e., there is no operation that takes |φ〉 to |φφ〉, where |φ〉 is any
quantum state.

Proof. Assume that such an operation exists, and let |φ〉 and |ψ〉 be two distinct
quantum states. Then the cloning operation gives

|φ〉 → |φφ〉 , (2.7)

|ψ〉 → |ψψ〉 , (2.8)

|φ〉+ |ψ〉 → (|φ〉+ |ψ〉)⊗ (|φ〉+ |ψ〉) = |φφ〉+ |ψψ〉+ |φψ〉 + |ψφ〉 . (2.9)

But, since all quantum operations must be linear, it follows from (2.7) and (2.8)
that

|φ〉+ |ψ〉 → |φφ〉 + |ψψ〉 , (2.10)

which is a contradiction of (2.9).

2.1.8 Quantum Computers

The idea of using quantum mechanical effects to perform computations was
first introduced by Feynman in the 1980s, when he discovered that classical
computers could not simulate all aspects of quantum physics efficiently. In
1985, Deutsch showed that it is possible to implement any function which is
computable by a classical computer using registers of entangled qubits and
arrays of quantum gates, each performing a unitary quantum transformation.

The advantage of quantum computers, compared to classical computers, is
the property of quantum parallelism. We have seen that an n-qubit quantum
register can be in a superposition of all its 2n basis states. A function of n
variables, implemented by an array of quantum gates, can therefore be applied
to all the basis states simultaneously, and the result will be a superposition
of the function’s 2n possible outputs. If we try to measure the result directly,
the superposition will collapse, and we will only observe one random value of
the function, which is not very useful. The advantage of quantum computers
comes from the discovery that appropriate transformations on a superposition
of states enables us to observe a common property of all the states. This makes
it possible, for instance, to find the period of a function by applying the function
once to a superposition of all possible input values. Another way to make use
of quantum parallelism is to use transformations that amplify the probability
of desired results.

10

2.2 Classical Error Correction

Shor’s algorithm, discovered in 1994, can factor an integer in polynomial
time. For classical computers, all known algorithms require a running time
that grows exponentially with the number of bits in the integer to be factored.
Interest in quantum computing increased with the discovery of Shor’s algorithm,
since the security of many popular public-key cryptography schemes is based
on the assumed infeasibility of factoring large integers. The factoring problem
can be reduced to the problem of finding the period of a function. In Shor’s
algorithm, this is accomplished by applying the quantum Fourier transform to
a superposition of all values of the function.

Grover’s algorithm, discovered in 1996, can be used to search for an element
in an unsorted list in running time of order O(

√
n). Classical computers can

not do better than O(n). This is another example of the advantages of quan-
tum computing, although not as impressive as the exponential gain of Shor’s
algorithm. Grover’s algorithm finds a value for which a given statement is true.
This is done by evaluating the statement for a superposition of all possible val-
ues, and then repeatedly using a transformation that increases the probability
of the state that satisfies the statement. When we finally read the value of the
quantum register, we will with very high probability observe the desired state.

Many different techniques for the construction of quantum computers are
being researched, but the best implementations so far only operate on 2 or 3
qubits. Although there are many interesting theoretical results about quantum
computers, a practical and scalable implementation is not possible with the
technology available today.

Quantum computing should not be confused with the concept of quantum
key distribution, although both exploit the property of quantum superposition.
In quantum key distribution, a sequence of qubits, typically represented by
the polarisation of photons, is sent over an insecure quantum channel. Only
the sender knows which basis each qubit is encoded with. It is impossible
for an eavesdropper to clone the qubits, and if he tries to measure one using
the wrong basis, its state will change. Eavesdropping can later be detected,
when the choices of encoding bases are made public. Quantum key distribution
requires much simpler technology than quantum computing. Working systems
for quantum key distribution, using up to 150 kilometres of optical cables, have
been successfully implemented.

2.2 Classical Error Correction

We here give a short introduction to some basic concepts of error correcting
codes that will be useful when we later discuss quantum error correction.

Definition 2.7. Let A be an alphabet, and let An be the set of all n-tuples of
elements from A. A code, C, over A of length n is a subset of An, C ⊂ An.

A code maps a vector v of k symbols to a vector u of n symbols, called a
codeword, where n > k. Any alphabet of symbols may be chosen, but the
binary alphabet {0, 1}, where the symbols are called bits, is often used. The
n− k extra symbols added by the encoding process provides redundancy. If a
codeword is changed by a transmission error, this redundancy may enable us to
determine the original codeword, or at least to detect that an error occurred.
An error in this context is an operation that change one or more symbols of a
codeword into other symbols. If the binary alphabet is used, an error flips the
value of one or more bits, 0 7→ 1 or 1 7→ 0.

11

2 Quantum Computing and Quantum Codes

Definition 2.8. The code C can be defined by a k × n matrix G, called a
generator matrix, where C = {vG | v ∈ Ak}.

Encoding is a simple process once we know G, the generator matrix of a code
C, since the codeword corresponding to v is u = vG. The rows of G are called
the basis codewords of C, since any codeword is a linear combination of these
rows.

Definition 2.9. Let C be a code over the alphabet A, where A = GF(q) is a
finite field, and let G be the generator matrix of C. If all linear combinations of
the rows of G are codewords in C, then C is a vector space and a k-dimensional
subspace of GF(q)n. A code that fulfils these criteria is called a linear code.

Definition 2.10. Let C be a code over a finite field with generator matrix G.
If any sum of the rows of G, i.e., any GF(2)-linear combination, is a codeword
in C, and all codewords in C are GF(2)-linear combinations of the rows of G,
then C is an additive code. If the binary alphabet is used, all additive codes are
linear codes, but this is not true for the general case.

Definition 2.11. The code C can also be defined by an (n− k)× n matrix H ,
called the parity check matrix of C. C = {u ∈ An | uHT = 0}, where 0 is the
all-zero vector.

Given the parity check matrix H of a code C, it is easy to check whether a
vector u is codeword by checking if uHT = 0. If we receive a vector that does
not satisfy this criteria, we know that an error has occurred. If the codeword u

is transmitted and u′ is the received vector, then we can write u′ = u+e, where
e is the transmission error. It is easy to verify that u′HT = uHT + eHT =
0 + eHT = eHT . We see that the value of u′HT only depends on the error e,
and we therefore call this value the syndrome of e. Given a set of errors with
distinct syndromes, we can determine which of the errors has occurred by using
the syndrome calculated from the received vector.

Definition 2.12. The Hamming weight of a vector a of length n, denoted
wH(a), is the number of non-zero coordinates of a, i.e., wH(a) = |{ai 6= 0 | i ∈
Zn}|, where ai is the ith coordinate of a.

Definition 2.13. The Hamming distance between two vectors a and b, both
of length n, denoted d(a, b), is the number of coordinates where the two vectors
have different values, i.e., d(a, b) = |{ai 6= bi | i ∈ Zn}|.

Definition 2.14. The minimum distance of a code C, denoted d(C), is the
smallest number of symbol errors needed to change one codeword into another,
i.e., d(C) = min{d(a, b) | a, b ∈ C,a 6= b}.

Proposition 2.15. A code can detect s errors if d(C) ≥ s + 1. A code can
correct t errors if d(C) ≥ 2t+ 1.

Definition 2.16. A code of length n containing M codewords and having
minimum distance d is called an (n,M, d) code. For linear codes, the notation
[n, k, d] may also be used, where k is the dimension of the code. The number
of codewords in a linear code over GF(q) is then qk.

Proposition 2.17. The distance of a linear code C can easily be found as
d(C) = min{wH(u) | u ∈ C\{0}}, i.e., the weight of the minimum weight
non-zero codeword in C.

12

2.3 Quantum Error Correction

Definition 2.18. Every code C over GF(q) has a dual code, C⊥ = {u ∈ GF(q) |
u · c = 0, ∀c ∈ C}. If C ⊆ C⊥, then C is a self-orthogonal code. If C = C⊥, then
C is a self-dual code.

If C has generator matrix G and parity check matrix H , then the dual code,
C⊥, has generator matrix H and parity check matrix G.

2.3 Quantum Error Correction

2.3.1 Introduction

For more detailed information about quantum error correction, we refer to some
of the many introductions to the subject [25, 32, 36].

A major problem for the implementation of quantum computers is that it is
impossible to totally isolate a few qubits from the rest of the world. The qubits
will rapidly interact with the environment, and entanglement will be destroyed
in a process known as decoherence. Because of decoherence, the state of a
quantum register will not remain stable for long enough time to do any useful
computations. We have seen that we can not observe a quantum state without
destroying entanglement, and that we can not make copies of it. Surprisingly, it
was shown by Steane and Shor that quantum error correction is still possible. It
can even be shown that it is possible to process quantum information arbitrarily
accurately, given that the effects of decoherence can be kept under a certain
threshold for each step of the computation.

A classical bit can only have one of two values, 0 or 1, and the only possible
error is a bit-flip. A qubit has a continuous state space, since α and β in the
expression α |0〉 + β |1〉 can take any complex values. Since any 2 × 2 unitary
matrix describes a possible transformation, an infinite number of different errors
may affect a single qubit.

Proposition 2.19. The set of Pauli matrices, introduced in Definition 2.4,
span the space of 2 × 2 unitary matrices. Any error on a single qubit, |φ〉 →
E |φ〉, may therefore be expressed as a linear combination of the Pauli matrices,

|φ〉 → (aI + bσx + cσy + dσz) |φ〉 = a |φ〉+ bσx |φ〉+ cσy |φ〉+ dσz |φ〉 . (2.11)

We will see that the error correction process causes the superposition in (2.11)
to collapse into one of four states, so that we observe no error with probability
|a|2, a bit-flip error with probability |b|2, a phase-flip error with probability |c|2,
and a combined bit-flip and phase-flip error with probability |d|2. The process
will also determine which Pauli error has occurred. We can then recover the
state |φ〉 by applying the same Pauli transformation, since all the Pauli matrices
are self-inverse. This procedure is performed without observing the state |φ〉
directly, but by comparing the values of several qubits. A comparison of two
qubits can be done without learning the value of either qubit, and therefore
without collapsing their superpositions.

As in the classical case, quantum error correction is done by adding redundant
qubits which are used to detect or correct errors. A quantum code encodes k
qubits using n qubits. It has 2k basis codewords, but any linear combination
of those is also a valid codeword, since the code must be able to encode all
superpositions of the basis states. We assume that errors affect each qubit
independently, which may in reality not be the case. We describe the errors by
error operators, which are tensor products of Pauli matrices. The weight of an
error operator is the number of positions in which it is different from identity.

13

2 Quantum Computing and Quantum Codes

For instance, the error operator I ⊗ σx ⊗ σz ⊗ I ⊗ I has weight 2. Note in
particular that a combined bit-flip and phase-flip error only count as one error.
If the errors described by all Pauli error operators of weight up to t can be
corrected by a code, then the code can correct an arbitrary error affecting up
to t qubits. If a code should be able to correct the two errors Ea and Eb, then
the code must be able to tell the difference between Ea |φi〉 and Eb |φj〉, the
two errors operating on two different basis codewords. To guarantee that this
is possible, the vectors corresponding to the states Ea |φi〉 and Eb |φj〉 must be
orthogonal.

Example 2.20. The repetition code is a simple classical code that encodes a
bit by making a number of copies of it. Decoding is achieved by a majority
rule. Quantum coding is not that easy, since qubits can not be copied, but it is
possible to encode, for instance, one qubit using three qubits by mapping the
basis states |0〉 to |000〉 and |1〉 to |111〉. The state |φ〉 = α |0〉+ β |1〉 would in
that case be encoded into |ψ〉 = α |000〉+ β |111〉. Note that these three qubits
are highly entangled, and not three independent copies of |φ〉. This code can
correct any single bit-flip, but does not correct phase-flips. Consider the error
(σx⊗ I ⊗ I) |ψ〉 = α |100〉+β |011〉. We can not observe the value of any qubit,
but it is possible to compare two qubits and learn if they have the same value.
Comparing the first and second qubit tells us that they are different, so one
of them must be wrong. When we find that the second and third qubits are
equal, we know that the error is in the first qubit, assuming only one error has
occurred. We bit-flip the first qubit to correct the error. This code is also able
to correct any linear combination of single bit-flip error operators. Consider,
for instance, the error

(
3

5
σx ⊗ I ⊗ I +

4

5
I ⊗ σx ⊗ I) |ψ〉 =

3

5
(α |100〉+ β |011〉) +

4

5
(α |010〉+ β |101〉).

When we compare the values of the qubits, this superposition will collapse into
α |100〉+ β |011〉 with probability 9

25 and α |010〉+ β |101〉 with probability 16
25 .

The results of the comparisons will be according to the chosen state, and the
error correction proceeds as in the previous case.

In order to learn what error we must correct, a number of extra qubits, known
as an ancilla, are added temporarily. After appropriate transformations, we may
read a syndrome, which tells us what error has occurred, from these qubits. It
is in fact the act of measuring the syndrome that collapses the superposition of
errors into a single error.

Example 2.21. A code that can correct both bit-flips and phase-flips is Shor’s
“nine-qubit repetition code”. This code maps |0〉 to (|000〉 + |111〉)(|000〉 +
|111〉)(|000〉+ |111〉) and |1〉 to (|000〉−|111〉)(|000〉−|111〉)(|000〉−|111〉). Bit-
flips are corrected by the inner layer of this code, by exactly the same procedure
as in Example 2.20. By comparing the signs of the three outer blocks, we may
correct any single phase-flip. The two steps are actually independent, so both
one phase-flip and one bit-flip can always be corrected. Note that a phase-flip
on the first qubit followed by a phase-flip on the second qubit, i.e., the error
operator σz ⊗ σz ⊗ I ⊗ · · · ⊗ I, leaves a codeword unchanged. The code need
not be able to correct this error, nor to tell which qubit in each block of three
has been affected in case of a phase-flip. Codes where any error operator has
this property are called degenerate codes.

Definition 2.22. The minimum distance, d, of a quantum code, is the min-
imum weight error operator that gives an errored state not orthogonal to the
original state, and therefore not guaranteed to be detectable.

14

2.3 Quantum Error Correction

It follows from Proposition 2.15 that a quantum code with d ≥ s + 1 can
detect s errors, and that a quantum code with d ≥ 2t+ 1 can correct t errors.

Definition 2.23. A quantum code that encodes k qubits using n qubits and
have distance d is called an [[n, k, d]] code.

The double brackets helps us distinguish a quantum code from a classical
code. The nine-qubit code described in Example 2.21 is a [[9, 1, 3]] code.

2.3.2 Stabilizer Codes

An [[n, k, d]] quantum code can be described by a stabilizer given by a set of
n− k error operators. Such codes are called stabilizer codes [24, 25].

Consider the nine-qubit code from Example 2.21. When we compare the two
first qubits to detect a possible bit-flip in one of them, what we really do is
to measure the eigenvalue of the operator M1 = σz ⊗ σz ⊗ I ⊗ · · · ⊗ I, i.e.,
we find the value m in M1 |φ〉 = m |φ〉. If the qubits have the same value,
then the result is +1, and otherwise it is −1. To compare the first two three-
qubit blocks to detect a phase-flip in one of them, we measure the eigenvalue
of σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ I ⊗ I ⊗ I. The complete stabilizer for Shor’s
nine-qubit code is given by the 8 operators,

M1 = σz ⊗ σz ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I,
M2 = I ⊗ σz ⊗ σz ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I,
M3 = I ⊗ I ⊗ I ⊗ σz ⊗ σz ⊗ I ⊗ I ⊗ I ⊗ I,
M4 = I ⊗ I ⊗ I ⊗ I ⊗ σz ⊗ σz ⊗ I ⊗ I ⊗ I,
M5 = I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ σz ⊗ σz ⊗ I,
M6 = I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ σz ⊗ σz,

M7 = σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ I ⊗ I ⊗ I,
M8 = I ⊗ I ⊗ I ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx.

The error we want to detect anticommutes with the operator we actually
measure, since the Pauli operators anticommute, i.e., AB = −BA, where
A,B ∈ {σx, σy , σz} and A 6= B. For a valid codeword, it must be true for
all i that Mi |φ〉 = |φ〉, i.e., that the eigenvalue of all operators is +1. If a
correctable error has occurred, the set of operators that give eigenvalues −1
will identify the error. Consider, for instance, the error E = σx ⊗ I ⊗ · · · ⊗ I,
a bit-flip error on the first qubit, which takes |φ〉 to E |φ〉. E will anticommute
with M1, so M1E |φ〉 = −EM1 |φ〉 = −E |φ〉, and the resulting eigenvalue is
−1. Likewise, E will anticommute with M2, but will commute with the other
six operators. This gives us a set of eigenvalues uniquely identifying the error
E.

The stabilizer, S, is an Abelian group generated by the set of n−k operators.
(An Abelian group is a group where all elements commute.) S consists of all
operators M for which M |φ〉 = |φ〉 for all codewords |φ〉. Two given errors
can be corrected if there exists an operator in S that can distinguish them,
i.e., measuring the eigenvalue of the operator gives different values for the two
errors. Let the centraliser of S, C(S), be the set of errors that commute with
all the n − k generators of S. C(S)\S is then the set of errors that are not
detectable. Hence, the distance, d, of a stabilizer code is the minimum weight
of any operator in C(S)\S.

In Example 2.21, we studied a [[9, 1, 3]] stabilizer code. This code does not
represent an optimal way of encoding one qubit with the possibility of correcting

15

2 Quantum Computing and Quantum Codes

any single error. In fact, there exists a [[5, 1, 3]] code. The 4 operators generating
its stabilizer are given by the following matrix, each row corresponding to one
operator.

S =

σx σz σz σx I
I σx σz σz σx

σx I σx σz σz

σz σx I σx σz

An alternate representation of the stabilizer S uses two binary matrices, the
bit-flip matrix X and the phase-flip matrix Z. Let Xi,j = 1 when Si,j = σx or
Si,j = σy , and Xi,j = 0 otherwise. Let Zi,j = 1 when Si,j = σz or Si,j = σy ,
and Zi,j = 0 otherwise. We combine the two matrices to make the n×2n binary
stabilizer matrix Sb = (Z | X). For the [[5, 1, 3]] code, we get

Sb =

0 1 1 0 0 1 0 0 1 0
0 0 1 1 0 0 1 0 0 1
0 0 0 1 1 1 0 1 0 0
1 0 0 0 1 0 1 0 1 0

 .

2.3.3 Quantum Codes over GF(4)

Proposition 2.24 (Calderbank et al. [10]). We can consider a quantum er-
ror correcting code as an additive code over the finite field GF(4), by identify-
ing the four Pauli matrices with the elements of GF(4). We denote GF(4) =
{0, 1, ω, ω2}, where ω2 = ω+1. The mappings used are I 7→ 0, σz 7→ 1, σx 7→ ω,
and σy 7→ ω2.

As an example, the [[5, 1, 3]] code previously described can be represented by
the additive code over GF(4) generated by the matrix

C =

ω 1 1 ω 0
0 ω 1 1 ω
ω 0 ω 1 1
1 ω 0 ω 1

 .

Definition 2.25. Conjugation in GF(4) is defined by x = x2. The trace map,
tr : GF(4) 7→ GF(2), is defined by tr(x) = x + x. The trace inner product of
two vectors of length n over GF(4), u and v, is given by u ∗ v =

∑n

i=1 tr(uivi).

In addition to replacing the symbols we use, we must make sure that the
properties of a stabilizer code are preserved in a code over GF(4). A stabilizer
is a group generated by n−k operators. This corresponds to an additive subset
of GF (4)n, generated by n−k vectors. The stabilizer is an Abelian group, which
means that any two operators in the stabilizer commute. The corresponding
property of an additive code over GF(4), C, is that any two codewords, u,v ∈ C,
must have trace inner product u ∗ v = 0. This is equivalent to saying that the
code must be self-orthogonal with respect to the trace inner product, or that
C ⊆ C⊥, where C⊥ = {u ∈ GF(4)n | u ∗ c = 0, ∀c ∈ C}. If the stabilizer S
corresponds to C, then the centraliser C(S), the set of errors that commute with
all generators of S, corresponds to C⊥. The set of undetectable errors, C(S)\S,
corresponds to C⊥\C. Hence, the weight of the minimum weight non-zero vector
in C⊥\C is the distance of a quantum code over GF(4).

2.3.4 Self-Dual Quantum Codes

The codes studied in this thesis will be of the special case where the dimension
k = 0. A zero-dimensional stabilizer code with high distance represents a single

16

2.3 Quantum Error Correction

quantum state which is robust to error, sometimes called a stabilizer state.
Codes of higher dimension can be constructed from zero-dimensional quantum
codes, but identifying stabilizer states is also an interesting application in itself,
since the states corresponding to codes of high distance will be highly entangled.
Highly entangled quantum states could be used for testing the decoherence
properties of a quantum computer, and it has also been shown that a one-
way quantum computer can be implemented by performing measurements on
a particular class of entangled states, known as cluster states [8, 48, 49]. An
[[n, 0, d]] code is nondegenerate by definition, and is generated by an n × n
generator matrix, corresponding to an (n, 2n, d) classical code. The GF(4)-
representation of such codes will be self-dual, i.e., C = C⊥, and we therefore
call zero-dimensional quantum codes of this type self-dual quantum codes. The
distance of a self-dual quantum code is simply the minimum distance of C, i.e.,
the weight of the minimum weight codeword in C.

Example 2.26. As an example, consider the self-dual quantum code with
generator matrix

C =

ω 0 0 1 1 1
0 ω 0 ω2 1 ω
0 0 ω ω2 ω 1
0 1 0 ω ω2 1
0 0 1 ω 1 ω2

1 ω2 0 ω 0 0

.

There are 64 GF(2)-linear combinations of the 6 rows of C. In addition to the
all-zero codeword, we have 45 codewords of weight 4 and 18 of weight 6. This
is therefore a [[6, 0, 4]] code.

Definition 2.27. We distinguish between two types of self-dual quantum codes.
A code is of type II if all codewords have even weight, otherwise it is of type I.
It can be shown that a type II code must have even length.

Theorem 2.28 (Rains and Sloane [47]). Let dI be the minimum distance of a
type I code of length n. Then dI is upper-bounded by

dI ≤

2
⌊

n
6

⌋
+ 1, if n ≡ 0 (mod 6)

2
⌊

n
6

⌋
+ 3, if n ≡ 5 (mod 6)

2
⌊

n
6

⌋
+ 2, otherwise.

(2.12)

There is a similar bound on dII , the distance of a type II code of length n,

dII ≤ 2
⌊n

6

⌋
+ 2. (2.13)

A code that meets the appropriate bound is called extremal. Calderbank
et al. also use a linear programming bound [10] on the distance of self-dual
quantum codes and give a table of the best bounds. This table has later been
extended by Grassl [27]. For some lengths, no code meeting the best upper
bound on distance has been discovered, so it remains uncertain whether such a
code exists. In particular, for n = 24, the best known self-dual quantum code
has distance 8, while the upper bound is 10. Let dm be the highest attainable
distance for self-dual additive codes over GF(4). (Non-additive codes [46] with
higher distance may exist.) Table 2.1 shows, for lengths up to 30, the values of
dI , dII and dm. Note that type II codes where the length is a multiple of 6,
i.e., 6, 12, 18, 24 and 30, are particularly strong codes.

17

2 Quantum Computing and Quantum Codes

Table 2.1: Bounds on the Distance of Self-Dual Quantum Codes

n dI dII dm

2 2 2 2
3 2 2
4 2 2 2
5 3 3
6 3 4 4
7 4 3
8 4 4 4
9 4 4
10 4 4 4
11 5 5
12 5 6 6
13 6 5
14 6 6 6
15 6 6
16 6 6 6
17 7 7
18 7 8 8
19 8 7
20 8 8 8
21 8 8
22 8 8 8
23 9 8–9
24 9 10 8–10
25 10 8–9
26 10 10 8–10
27 10 9–10
28 10 10 10
29 11 11
30 11 12 12

18

Chapter 3
Quantum Codes and Graphs

3.1 Introduction to Graph Theory

A graph is a pair G = (V,E), where V = {v0, v1, . . . , vn−1} is a set of n
vertices (or nodes), and E is a set of distinct pairs of elements from V , i.e.,
E ⊆ V × V . A pair {vi, vj} ∈ E is called an edge. We will only consider
undirected graphs, which are graphs where E is a set of distinct unordered
pairs of elements from V . Furthermore, the graphs we will look at will all be
simple graphs, which are graphs with no self-loops, {vi, vi} 6∈ E. A graph
G′ = (V ′, E′) that satisfies V ′ ⊆ V and E′ ⊆ E is a subgraph of G, denoted
G′ ⊆ G. Given a subset of vertices A ⊆ V , the induced subgraph G(A) ⊆ G
has vertices A and edges {{vi, vj} ∈ E | vi, vj ∈ A}, i.e., all edges from E whose
endpoints are both in A. The complement graph G has vertices V = V and
edges E = V × V − E, i.e., the edges in E are changed to non-edges, and the
non-edges to edges.

Two isomorphic graphs are structurally equal, but the labelling of the ver-
tices may differ. More formally, two graphs G = (V,E) and G′ = (V,E′) are
isomorphic iff there exists a permutation π of V such that {vi, vj} ∈ E ⇐⇒
{π(vi), π(vj)} ∈ E′.

A graph may be represented by an adjacency matrix Γ. This is a |V |× |V |
matrix where Γi,j = 1 if {vi, vj} ∈ E, and Γi,j = 0 otherwise. For simple
graphs, the adjacency matrix must have 0s on the diagonal, i.e., Γi,i = 0. The
adjacency matrix of an undirected graph will be symmetric, i.e., Γi,j = Γj,i.

Two vertices are called adjacent (or neighbours) if they are joined by an
edge. The neighbourhood of a vertex v, denoted Nv, is the set of vertices that
are adjacent to v. The vertex degree (or valency) of a vertex is the number
of neighbours it has. A regular graph is a graph where all vertices have the
same degree. A regular graph where all vertices have degree k is called a k-

regular graph. We will also denote any k -regular graph on n verticesRk
n. Note

that Rk
n does not uniquely define a graph; there may be several non-isomorphic

graphs Rk
n for the same value of k and n. A strongly regular graph [11] with

parameters (n, k, λ, µ) is a k-regular graph on n vertices, with the additional
property that any two adjacent vertices have λ common neighbours, and any
two non-adjacent vertices have µ common neighbours. An example of a strongly
regular graph with parameters (10, 3, 0, 1) is the well-known Petersen graph,
shown in Figure 3.1.

A complete graph is a graph where all pairs of vertices are connected by an
edge. The complete graph on n vertices has

(
n
2

)
undirected edges. A clique is

19

3 Quantum Codes and Graphs

Figure 3.1: The Strongly Regular Petersen Graph

a complete subgraph. A k-clique is a clique consisting of k vertices. We will use
the notationKn for both complete graphs on n vertices and n-cliques. Note that
Kn = Rn−1

n and that Kn does define a unique graph, up to isomorphism. An
independent set is the complement of a clique, i.e., a subgraph with no edges.
The independence number, α(G), is the size of the largest independent set
in G. A bipartite graph is a graph where the vertices can be partitioned into
two independent sets, i.e., V = A ∪ B where the induced subgraphs G(A) and
G(B) both contain no edges.

A path is a sequence of vertices (u0, u1, . . . , uk−1) where {u0, u1}, {u1, u2},
. . . , {uk−2, uk−1} ∈ E. A connected graph is a graph where there is path
from every vertex to all other vertices. A simple path never visits the same
vertex more than once. A cycle (or circuit) is a path (u0, u1, . . . , uk−1, u0),
i.e., a path that starts and ends at the same vertex. A simple cycle never
visits the same vertex more than once, except the first vertex, which is also
visited last. Let Cn denote the graph consisting of only a simple cycle on n
vertices. Note that Cn = R2

n and that Cn does define a unique graph, up to
isomorphism. A Hamiltonian path is a simple path that visits every vertex
of the graph once. If there is also an edge between the first and the last vertex
of a Hamiltonian path, we have a Hamiltonian cycle.

A hypergraph, G = (V,E), is a generalised graph where an edge may
connect more than two vertices. An edge, e ∈ E, of a hypergraph is given by
a set of at least two vertices, e = {u0, u1, . . . , uk−1}. Edges on more than two
vertices are called hyperedges.

3.2 Graph Isomorphism with nauty

Determining whether two graphs are isomorphic is considered to be a hard prob-
lem, but an efficient algorithm has been developed by McKay and implemented
in the program nauty [35]. nauty can also produce a canonical representative
of a graph. The canonical representative is isomorphic to the original graph,
but may have a different vertex labelling. This labelling is arbitrary with no
special properties, but it is chosen in a consistent way such that all isomorphic
graphs will have the same canonical representative. nauty also includes a utility
called geng which can generate all non-isomorphic graphs on a given number
of vertices.

20

3.3 Graph Codes

Checking for hypergraph isomorphism is not directly supported by nauty, but
nauty can detect isomorphism of graphs where the vertices have been divided
into a set of disjoint partitions, V = P1 ∪ P2 ∪ · · · ∪ Pk. Two such partitioned
graphs are isomorphic if their partitions are of the same sizes, and if a relabelling
of the vertices of one of the graphs produces the other, with the restriction that
labels can only be exchanged within partitions. There is one-to-one mapping
between a hypergraph, G = (V,E), on n vertices with m hyperedges and an
ordinary graph, G′ = (V ′, E′), on n+m vertices with partitions of size n and
m. We first add all vertices in V to V ′ and all simple graph edges in E to E′.
For each hyperedge, ei ∈ E, 0 ≤ i < m, we add an extra vertex, vn+i, to V ′. If
ei = {u0, u1, . . . , uk−1}, we add the k edges {u0, vn+i}, . . . , {uk−1, vn+i} to E′.
The canonical representative of G′ is found by nauty, and the result is mapped
back to a hypergraph, which is the canonical representative of G.

Example 3.1. We have the hypergraph G = (V,E) with V = {v0, v1, v2, v3}
and E = {{v0, v1, v2}, {v1, v2, v3}, {v1, v2}, {v1, v3}}. We map this hypergraph
to the graph G′ on 6 vertices with edges E′ = {{v1, v2}, {v1, v3}, {v0, v4},
{v1, v4}, {v2, v4}, {v1, v5}, {v2, v5}, {v3, v5}}, where the vertices are partitioned
into the sets {v0, v1, v2, v3} and {v4, v5}. We use nauty to find the canonical
labelling of this partitioned graph, and we then map the resulting graph to
the hypergraph G′′ = (V,E′′), where E′′ = {{v0, v2, v3}, {v1, v2, v3}, {v1, v3},
{v2, v3}}. Any hypergraph isomorphic to G will also have canonical represen-
tative G′′.

3.3 Graph Codes

Definition 3.2. A graph code is a self-dual additive code over GF(4) with
generator matrix C = Γ + ωI, where I is the identity matrix and Γ is the
adjacency matrix of a simple undirected graph, which must be symmetric with
0s along the diagonal.

Example 3.3. Consider the graph shown in Figure 3.2a. This graph has ad-
jacency matrix

Γ =

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

.

The corresponding self-dual additive code over GF(4) is generated by the matrix

C = Γ + ωI =

ω 1 1 1 0 0
1 ω 1 0 1 0
1 1 ω 0 0 1
1 0 0 ω 1 1
0 1 0 1 ω 1
0 0 1 1 1 ω

.

The same code can also be described using stabilizer formalism. The stabilizer

21

3 Quantum Codes and Graphs

(a) The “2-clique of 3-cliques” (b) The “Wheel Graph”

Figure 3.2: Two Graph Representations of the [[6,0,4]] Hexacode

code is generated by operators given by the rows of the matrix

S =

σx σz σz σz I I
σz σx σz I σz I
σz σz σx I I σz

σz I I σx σz σz

I σz I σz σx σz

I I σz σz σz σx

.

Stabilizer codes of this type are known as graph codes, and the single quantum
states they encode are called graph states.

Schlingemann and Werner [54] studied quantum codes associated with graphs,
and first proved the following theorem. Briegel and Raussendorf [8] had previ-
ously studied arrays of entangled particles, which can be modelled by graphs.

Theorem 3.4 (Schlingemann and Werner [54], Grassl et al. [28], Glynn [22],
and Van den Nest et al. [59]). For any self-dual quantum code, there is an
equivalent graph code. This means that there is a one-to-one correspondence
between the set of simple undirected graphs and the set of self-dual additive
codes over GF(4).

It follows from Theorem 3.4 that, without loss of generality, we can restrict
our study of self-dual additive codes over GF(4) to those with generator matrices
of the form Γ + ωI.

Van den Nest et al. [59] describe the following algorithm for transforming
any stabilizer code into a graph code. We will operate on the transpose of

the binary stabilizer matrix, T = ST
b =

(
ZT

XT

)
=
(

A
B

)
. It is easy to see that a

graph code given by the adjacency matrix Γ corresponds to the binary stabilizer
Sb = (Γ | I), and to the transpose binary stabilizer T =

(
Γ
I

)
. Our goal is to

convert T =
(

A
B

)
, the transpose binary stabilizer of a given code, into T ′ =

(
A′

I

)
,

the transpose binary stabilizer of an equivalent graph code. A′ will then be the
adjacency matrix of the corresponding graph. Right-multiplying T with an
invertible n × n matrix will perform a basis change, an operation that gives
us an equivalent stabilizer code. If B is an invertible matrix, we can simply

multiply T by the inverse of B and get TB−1 =
(

AB−1

I

)
. AB−1 will then be

the resulting adjacency matrix. If this matrix has elements on the diagonal
that are not 0, those elements may simply be changed to 0. In some cases B
may not be invertible. It has been proved by Van den Nest et al. [59] that T

22

3.4 Efficient Algorithms for Graph Codes

can then always be transformed into an equivalent code T ′ =
(

A′

B′

)
, where B′ is

invertible. They also show how the appropriate transformation is found.

Example 3.5. We are given the following generator matrix of a [[6, 0, 4]] sta-
bilizer code.

S =

σx I I σz σz σz

I σx I σy σz σx

I I σx σy σx σz

I σz I σx σy σz

I σz σz I σx σx

σz σz I σz I σx

The corresponding binary stabilizer is

Sb = (Z | X) =

0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 1 0 1 0 1
0 0 0 1 0 1 0 0 1 1 1 0
0 1 0 0 1 1 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0 0 1 1
1 1 0 1 0 0 0 0 0 0 0 1

.

Let A = ZT and B = XT . The transpose binary stabilizer is then T =
(

A
B

)
.

Since B is invertible,

TB−1 =

(
AB−1

I

)
=

0 0 0 1 1 1
0 0 1 1 0 1
0 1 0 1 1 0
1 1 1 1 1 1
1 0 1 1 0 0
1 1 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

We set the nonzero diagonal element in AB−1 to 0 and get the adjacency matrix
of the simple undirected graph shown in Figure 3.2b.

3.4 Efficient Algorithms for Graph Codes

We have seen that a graph code, C, is a self-dual additive code over GF(4) whose
generator matrix is of the form Γ +ωI. It can be shown that the additive code
over Z4 given by 2Γ+I has the same weight distribution as C. For graph codes,
but not in the general case, we may therefore replace the elements from GF(4)
with elements from Z4 by the mappings 0 7→ 0, 1 7→ 2, ω 7→ 1, ω2 7→ 3.

Example 3.6. A self-dual additive code over GF(4) generated by

ω 0 1 0 1
0 ω 0 1 0
1 0 ω 0 1
0 1 0 ω 0
1 0 1 0 ω

,

23

3 Quantum Codes and Graphs

has the same weight distribution as the additive code over Z4 generated by

1 0 2 0 2
0 1 0 2 0
2 0 1 0 2
0 2 0 1 0
2 0 2 0 1

.

The interpretation as a code over Z4 is an advantage when we write computer
programs to operate on such codes, since Z4 arithmetic may be faster and
simpler to implement.

Proposition 3.7. Let C be a self-dual additive code over GF(4) with generator
matrix C = Γ +ωI. Let s ∈ C be a codeword formed by adding k different rows
of C. Then it must be true that wH(s) ≥ k.
Proof. Each row of C has an element ω, and this element is in a different
position in each row. All other elements in C are 0 or 1. Let row number i of C
be one of the rows we added to get s. Element si will then be a0 +a1 + · · ·+ak,
where ai = ω and aj ∈ {0, 1}, ∀j 6= i. It follows that si ∈ {ω, ω + 1}. s will
have k elements of the same form and therefore wH(s) ≥ k.

The special form of the generator matrix of a graph code makes it easier
to find the distance of the code. An [[n, 0, d]] code has 2n codewords, but if
the generator matrix is given in graph form, it is not necessary to check all the
codewords to find the distance of the code. If we have found a codeword s, where
wH(s) ≤ e, we know that no codeword formed by adding e or more rows of
the generator matrix can have lower weight. This fact is used in Algorithm 3.1.
A similar technique can also be used to find the weight distribution of a code.
To find wp, the number of codewords of weight p, only codewords formed by
adding p or fewer rows of the generator matrix needs to be considered. This
approach is used by Algorithm 3.2. To find the complete weight distribution,
w = {w0, w1, . . . , wn}, we must generate all codewords, but a partial weight
distribution, wp = {w0, w1, . . . , wp}, where p < n, can be found more efficiently.
We will later use the partial weight distribution to distinguish inequivalent
codes.

3.5 Quadratic Residue Codes

Definition 3.8. A Paley graph, G = (V,E), is constructed as follows. Given
a prime power m, such that m ≡ 1 (mod 4), let the elements of the finite field
GF(m) be the set of vertices, V . Let two vertices, i and j, be joined by an edge,
{i, j} ∈ E, iff their difference is a quadratic residue (square) in GF(m)\{0}, i.e.,
there exists an x ∈ GF(m)\{0} such that x2 ≡ i− j.
Proposition 3.9. A Paley graph is a strongly regular graph [11] with param-
eters (4t + 1, 2t, t − 1, t), i.e., it has 4t + 1 vertices, each with degree 2t, and
the properties that any two adjacent vertices have t−1 common neighbours and
any two non-adjacent vertices have t common neighbours.

We will study graph codes based on Paley graphs. Some bounds on the
distance of self-dual quantum codes constructed from strongly regular graphs
in general have been given by Tonchev [57].

Definition 3.10. A self-dual additive code over GF(4) with generator matrix
Γ+ωI, where Γ is the adjacency matrix of a Paley graph, is a type of quadratic
residue code [23, 43].

24

3.5 Quadratic Residue Codes

Algorithm 3.1 Finding the Distance of a Graph Code

Input C: a generator matrix in graph form
Output d: the distance of the code generated by C

procedure FindDistance(C)
d←∞
i← 1
while i < d do

for all codewords s, such that s is a sum of i rows do

if wH(s) < d then

d← wH(s)
if d = i then

return d
end if

end if

end for

i← i+ 1
end while

return d
end procedure

Algorithm 3.2 Finding the Number of Codewords of a Given Weight

Input C: a generator matrix in graph form
p: weight of the codewords we want to count

Output wp: the number of codewords of weight p

procedure CountWeight(C, p)
wp ← 0
for i ← 0 to p do

for all codewords s, such that s is a sum of i rows do

if wH(s) = p then

wp ← wp + 1
end if

end for

end for

return wp

end procedure

25

3 Quantum Codes and Graphs

When p is a prime, the adjacency matrix of the Paley graph on GF(p) will be
circulant, with each row being the cyclic shift of a Legendre sequence. Let QR
be the set of all quadratic residues modulo p. a is a quadratic residue modulo
p iff a 6≡ 0 (mod p) and the congruence y2 ≡ a (mod p) has a solution y ∈ Zp.
The Legendre sequence of length p, lp = (l0, l1, . . . , lp−1), is a binary sequence
with li = 1 if i ∈ QR, and li = 0 otherwise. Let lp ≫ s be a Legendre sequence
cyclically shifted s times to the right. Form the p× p matrix Γ by letting row
i be lp ≫ i, for 0 ≤ i < p. It can be shown that p must be a prime of the form
4k + 1 for Γ to be symmetric, which is a requirement for the adjacency matrix
of an undirected graph.

Definition 3.11. To get a bordered quadratic residue code [23, 43] of length
m + 1, first construct the quadratic residue code of length m. Then add a
top row of m 1s, (1, 1, . . . , 1), to the generator matrix. Finally, add a leftmost
column with an ω followed by m 1s, (ω, 1, 1, 1, . . . , 1)T , to the generator matrix.

Example 3.12. We will construct the quadratic residue code of length 5 and
bordered quadratic residue code of length 6. The quadratic residues modulo
5 are QR = {1, 4}, and the Legendre sequence of length 5 is l = (0, 1, 0, 0, 1).
From this sequence we construct the matrix

Γ =

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

.

This is the adjacency matrix of the Paley graph on 5 vertices, which is the
graph C5, shown in Figure 3.3a. Γ + ωI is the generator matrix of a [[5, 0, 3]]
quantum code. We border the matrix and get

Γ′ =

0 1 1 1 1 1
1 0 1 0 0 1
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 1 0 0 1 0

,

the adjacency matrix of the “wheel graph”, shown in Figure 3.3b, which repre-
sents the extremal [[6, 0, 4]] code, also known as the Hexacode.

The integers m ≤ 30 where m is a prime of the form 4k+1 are 5, 13, 17, and
29. The quadratic residue codes for m = 5, 13 and 29, and their bordered exten-
sions, achieve the highest possible distance, as given by Table 2.1 on page 18.
For m = 17 the construction gives a [[17, 0, 5]] code, but there exists a code
with distance 7. The bordered extension is a [[18, 0, 6]] code, when distance 8 is
achievable. It can be shown (under some constraints) that there exists a unique
[[18, 0, 8]] code [4]. This code was constructed by MacWilliams et al. [34] using
a construction similar to bordered quadratic residue codes. Glynn et al. [23]
present the following technique for constructing the [[18, 0, 8]] quantum code.
For a prime p = 4k + 1, generate a set, K, of all powers of 4 modulo p. For
instance, for p = 5, K = {40 = 1, 41 = 4}, which is also the set of quadratic
residues modulo 5. In general, if 2 is a primitive root modulo p, we will con-
struct a quadratic residue code. This is the case for p = 5, 13 and 29, but for
p = 17 we get K = {40 = 1, 41 = 4, 42 = 16, 43 = 13}. We then find a partition
of Z17\{0} into sets that are multiples of K, Z17\{0} = K ∪ 2K ∪ 3K ∪ 6K,

26

3.5 Quadratic Residue Codes

(a) The C5 Graph (b) The “Wheel Graph”

Figure 3.3: Graphs of the QR and BQR Codes for m = 5

where 2K = {2, 8, 15, 9}, 3K = {3, 12, 14, 5}, and 6K = {6, 7, 11, 10}. We
must combine two of these sets to make the set H , which must satisfy 2H +
H = Z17\{0}. The valid combinations are H = K ∪ 3K and H = K ∪ 6K.
Note that the quadratic residue set, K ∪ 2K is not valid. The two valid
combinations generate the sequences (0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1) and
(0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1). We make two circulant adjacency ma-
trices by cyclically shifting the sequences, in exactly the same way as we did
with Legendre sequences. The two matrices correspond to two [[17, 0, 7]] codes,
which can be shown to be equivalent. Bordering either of the matrices will
generate the [[18, 0, 8]] code.

Paley graphs and quadratic residue codes can be constructed for any prime
power m = pn where m ≡ 1 (mod 4). The only possible non-prime lengths
below 30 are 9 and 25. The generator matrices of these codes are not circulant,
but they are composed of circulant submatrices. When n = 2, there will be p2

p× p circulant matrices. For m = 9, we generate the adjacency matrix

0 1 1 0 0 1 0 1 0
1 0 1 1 0 0 0 0 1
1 1 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 1
0 0 1 1 0 1 1 0 0
1 0 0 1 1 0 0 1 0
0 0 1 0 1 0 0 1 1
1 0 0 0 0 1 1 0 1
0 1 0 1 0 0 1 1 0

.

This corresponds to a [[9, 0, 3]] code. The optimal distance for length 9 is 4.
The bordered [[10, 0, 4]] code is, however, extremal. We have also generated the
quadratic residue code for m = 25. It is a [[25, 0, 5]] code, and the bordered
extension is a [[26, 0, 6]] code. In both cases the best achievable distance is at
least 8. This suggests that quadratic residue codes of non-prime lengths are not
as strong as for prime lengths. Table 3.1 summarises the distance of quadratic
residue and bordered quadratic residue codes for lengths up to 30.

27

3 Quantum Codes and Graphs

Table 3.1: Distance (d) of Quadratic Residue Codes of Length m and Bordered
Quadratic Residue Codes of Length m + 1

QR codes BQR codes

m d m+ 1 d

5 3 6 4
9 3 10 4
13 5 14 6
17 5 18 6
25 5 26 6
29 11 30 12

28

Chapter 4
Nested Regular Graph Codes

4.1 The Hexacode and the Dodecacode

The unique extremal [[6, 0, 4]] quantum code is also known as the Hexacode. As
all self-dual quantum codes, it can be represented by a graph with adjacency
matrix Γ, such that Γ + ωI is the generator matrix of a self-dual additive
[[6, 0, 4]] code over GF(4). One such representation of the Hexacode is given by
the generator matrix

C =

ω 0 1 1 1 0
0 ω 0 1 1 1
1 0 ω 0 1 1
1 1 0 ω 0 1
1 1 1 0 ω 0
0 1 1 1 0 ω

.

The corresponding graph is shown in Figure 4.1a. The figure emphasises the
fact that the graph consists of two instances of the complete graph K3, or
equivalently, that there are two 3-cliques in the graph that partition all six
vertices into two disjoint sets. We also see that each vertex in each 3-clique
is connected to exactly one vertex in the other 3-clique. We will view these
connections as an “outer” 2-clique; the rationale behind this will become clear.
We call the whole graph a “2-clique of 3-cliques”, or K2[K3] for short. We also
note that C is a circulant matrix, and that all vertices have vertex degree 3.

Another well-known unique extremal quantum code is the [[12, 0, 6]] Dode-
cacode. It can be represented as a graph code with a circulant generator ma-
trix whose first row is (ω00101110100). The corresponding graph is shown in
Figure 4.1c. We see how this graph can be called a “3-clique of 4-cliques”, or
K3[K4].

Definition 4.1. A general nested clique graph, G = (V,E), can be described
as an “n1-clique of n2-cliques of · · · of nl-cliques”, denoted Kn1

[Kn2
[· · · [Knl

]]].
The number of vertices in the graph is n = n1n2 · · ·nl. It must be possible to
partition the vertices into n

nl
disjoint subsets of size nl, V = V1 ∪V2 ∪ · · · ∪V n

nl

,

such that the induced subgraph on each subset is the complete graph Knl
. Let

Ei be the edges of the induced subgraph on Vi. Let Eij be the set of edges
{u, v} where u ∈ Vi and v ∈ Vj . |Eij | must be either 0 or nl. If |Eij | is nl, every
vertex in Vi must be connected to one vertex in Vj , and every vertex in Vj must
be connected to one vertex in Vi. If this is the case, we say that the sets Vi

29

4 Nested Regular Graph Codes

and Vj are connected. All edges in E must be part of a clique or a connection
between cliques, i.e,

⋃
iEi

⋃
i,j Eij = E. We then form the graph G′ = (V ′, E′)

on n
nl

vertices, each vertex v′i ∈ V ′ corresponding to a subset Vi ⊂ V . Let there

be an edge between v′i and v′j iff Vi and Vj are connected. G′ must be the nested
clique graph Kn1

[Kn2
[· · · [Knl−1

]]], or, if l = 2, G′ must be the complete graph
Kn1

.

There may be many non-isomorphicKn1
[Kn2

[· · · [Knl
]]] graphs, so the nested

clique characterisation does not uniquely identify a graph, but only partially
describes its structure. In particular, the connections between the inner cliques
of a nested clique graph are not defined. For instance, in the K3[K4] graph
shown in Figure 4.1c, the 12 edges that are not part of an inner 4-clique form a
Hamiltonian cycle. Another K3[K4] graph, where these 12 edges form four dis-
joint cycles of length three (or four 3-cliques), corresponds to a [[12, 0, 4]] code.
This means that a highly regular nested structure is not enough to guarantee
optimal distance.

4.2 Graph Codes with Minimum Regular Vertex Degree

Proposition 4.2. All vertices of a graph corresponding to an [[n, 0, d]] quantum
code have a vertex degree of at least d− 1.

Proof. If a graph has a vertex vi of degree δ, then the ith row of the adjacency
matrix, Γ, will have weight δ. The ith row of the generator matrix, Γ+ωI, of the
corresponding self-dual additive code over GF(4), will then define a codeword
of weight δ+1. A vertex with degree less than d−1 would therefore correspond
to a codeword of weight less than d, which is impossible.

Proposition 4.3. In a k-regular graph with an odd number of vertices, k must
be even.

Proof. Let ∆ be the sum of the vertex degrees of all vertices in a graph. Since
each edge of a graph is incident on two vertices, ∆ = 2|E|, i.e., twice the number
of edges. It follows that ∆ must always be an even number. In a k-regular graph
on n vertices, ∆ = kn, and thus either k or n must be an even number.

Definition 4.4. If a graph corresponding to an [[n, 0, d]] quantum code has a
regular vertex degree of d − 1, then it has minimum regular vertex degree. By
Proposition 4.3, if n is odd and d is even, a regular vertex degree of d − 1 is
impossible. In this case, a regular vertex degree of d is the minimum regular
vertex degree.

The graph representation of the Hexacode shown in Figure 4.1a is 3-regular,
and the graph representation of the Dodecacode shown in Figure 4.1c is 5-
regular. With the distances of the two codes being 4 and 6, respectively, we
conclude that the graph representations of both codes have minimum regular
vertex degree. This also implies that no other graph representation of these
two codes can have a smaller number of edges. When n is odd and d is even,
a graph representation with minimum regular vertex degree is not necessarily
the graph representation with the fewest edges.

Proposition 4.5. The nested clique graph Kn1
[Kn2

[· · · [Knl
]]] is a k-regular

graph, where k = (n1 − 1) + (n2 − 1) + · · ·+ (nl − 1).

30

4.2 Graph Codes with Minimum Regular Vertex Degree

(a) K2[K3] Graph of the [[6, 0, 4]] Code (b) K3[K3] Graph of a [[9, 0, 4]] Code

(c) K3[K4] Graph of the [[12, 0, 6]] Code (d) K2[K3[K3]] Graph of a [[18, 0, 6]] Code

(e) K5[K4] Graph of a [[20, 0, 8]] Code (f) K5[K5]] Graph of a [[25, 0, 8]] Code

Figure 4.1: Nested Clique Graphs

31

4 Nested Regular Graph Codes

Proof. Every vertex of the graph has nl − 1 neighbours as part of an nl-clique.
Each vertex must also be connected to one vertex in nl−1 − 1 other nl-cliques,
which contributes nl−1 − 1 to its degree. The same must be true for the other
layers of nesting.

4.3 Other Nested Regular Graph Codes

We have observed that the extremal [[6, 0, 4]] code corresponds to a K2[K3]
graph, and that the extremal [[12, 0, 6]] code corresponds to a K3[K4] graph.
The intuitive next step is to search for an extremal [[20, 0, 8]] code amongK4[K5]
graphs. An exhaustive computer search of all K4[K5] graphs did, however,
not find such a code. The best result was a [[20, 0, 6]] code, but with only 3
codewords of weight 6 and none of weight 7.

Searching through all 2(n

2) undirected graphs on n vertices is infeasible for
graphs with more than a few vertices. We have seen that the Hexacode and
the Dodecacode have graph representations with circulant adjacency matrices,
and this is also true for all quadratic residue codes of prime length. It there-

fore seems reasonable to restrict our search to the 2⌈n−1

2 ⌉ circulant symmetric
adjacency matrices of graphs on n vertices. We have performed an exhaustive
search of these graphs for n ≤ 30. The most important parameter to optimise is
the distance of the quantum code. For each length n, we identify the circulant
adjacency matrices corresponding to [[n, 0, d]] codes with optimal distance, as
listed in Table 2.1 on page 18, or highest possible distance if no codes with op-
timal distance are found. We next want to minimise the regular vertex degree.
Among the graphs corresponding to codes with highest possible distance and
with lowest possible regular vertex degree, we try to identify structures similar
to the nested clique representations of the Hexacode and the Dodecacode. Al-
gorithms for finding all cliques in a graph have a running time that increases
exponentially with the number of vertices. But we will only consider graphs
of up to 30 vertices, and finding all cliques in such graphs can be done quickly
with a suitable algorithm [9]. Table 4.1 summarises the results of the search by
showing data about one code of each length. Distances and degrees marked ∗
in the table are not optimal. Degrees marked † are equal to d, but still optimal
according to Proposition 4.3. Some of the nested regular structures identified
can be seen in Figure 4.1 and Figure 4.2.

Proposition 4.6. A graph, G, with no isolated vertex, i.e., no vertex with
degree 0, corresponds to a self-dual [[n, 0, d]] quantum code, C, with minimum
distance d ≥ 2.

Proof. It follows from Proposition 3.7 that any codeword with non-zero weight
formed by adding 2 or more rows of the generator matrix of C will have weight
higher than 2. A codeword of weight less than 2 must therefore be a row of the
generator matrix. A vertex in G with degree δ ≥ 1 corresponds to a row in the
generator matrix of C, and hence a codeword, of weight δ + 1 ≥ 2.

n = 2, 3, and 4 are not particularly interesting cases, since any graph with
no isolated vertex will correspond to a code with d = 2. Graphs with minimum
regular vertex degree representing extremal self-dual quantum codes of length 2,
3, and 4 can be described as K2, K3, and K2 +K2 (two unconnected 2-cliques),
respectively. For lengths 5 and 7, the extremal distance is 3. The minimum
regular vertex degree is 2, and the only 2-regular graph structure is the cycle
graph. C5 and C7 correspond to [[5, 0, 3]] and [[7, 0, 3]] codes. For n = 8, a

32

4.3 Other Nested Regular Graph Codes

Table 4.1: Nested Regular Graphs with Degree δ Corresponding to Circulant Graph
Codes of Length n and Distance d

n d δ Graph First row of generator matrix

2 2 1 K2 ω1
3 2 2† K3 ω11
4 2 1 K2 +K2 ω010
5 3 2 C5 ω0110
6 4 3 K2[K3] ω01110
7 3 2 C7 ω001100
8 4 3 K2[C4] ω0011100
9 4 4† K3[K3] ω00111100
10 4 3 K2[C5] ω000111000
11 4∗ 4† ω0001111000
12 6 5 K3[K4] ω00101110100
13 5 4 ω000101101000
14 6 5 ω0001011101000
15 6 8∗ ω01110011001110
16 6 5 C4[K4] ω000100111001000
17 7 8∗ ω0100011111100010
18 6∗ 5 K2[K3[K3]] ω00000101110100000
19 7 6 ω000101001100101000
20 8 7 K5[K4] ω0000100111110010000
21 7∗ 6 ω00001000111100010000
22 8 7 ω000001001111100100000
23 8∗ 10∗ ω0000011101111011100000
24 8∗ 7 R4

6[K4] ω00000100011111000100000
25 8∗ 8† K5[K5] ω000010001101101100010000
26 8∗ 7 ω0000000100111110010000000
27 8∗ 8† R6

9[K3] ω00000001100111100110000000
28 10 11∗ ω000001110100111001011100000
29 11 14∗ ω0110000101110110111010000110
30 12 17∗ ω01100001101111111110110000110

33

4 Nested Regular Graph Codes

(a) C4[K4] Graph of a [[16, 0, 6]] Code (b) R4
6
[K4] Graph of a [[24, 0, 8]] Code

(c) R6
9
[K3] Graph of a [[27, 0, 8]] Code

Figure 4.2: Nested Regular Graphs

34

4.3 Other Nested Regular Graph Codes

(a) K2[C4] Graph (b) Cubical K2[C4] Graph

Figure 4.3: Two K2[C4] Graphs Corresponding to [[8, 0, 4]] Codes

graph with minimum regular vertex degree and extremal distance consists of
two 4-cycles which are connected in an “outer” 2-clique. This graph is depicted
in Figure 4.3a. We see that we need to extend our definition of nested clique
graphs to nested regular graphs. Recall that Rk

n denotes a k-regular graph on n
vertices, Rn−1

n = Kn, and R2
n = Cn.

Definition 4.7. For a general nested regular graph, G = (V,E), we use the
notation Rk1

n1
[Rk2

n2
[· · · [Rkl

nl
]]]. The number of vertices in the graph is n =

n1n2 · · ·nl. It must be possible to partition the vertices into n
nl

disjoint subsets
of size nl, V = V1 ∪ V2 ∪ · · · ∪ V n

nl

, such that the induced subgraph on each

subset is a kl-regular graph, Rkl
nl

. Let Ei be the edges of the induced subgraph
on Vi. Let Eij be the set of edges {u, v} where u ∈ Vi and v ∈ Vj . |Eij | must be
either 0 or nl. If |Eij | is nl, every vertex in Vi must be connected to one vertex
in Vj , and every vertex in Vj must be connected to one vertex in Vi. If this is
the case, we say that the sets Vi and Vj are connected. All edges in E must be
part of a subset or a connection between subsets, i.e,

⋃
iEi

⋃
i,j Eij = E. We

form the graph G′ = (V ′, E′) on n
nl

vertices, where each vertex v′i ∈ V ′ corre-

sponds to a subset Vi ⊂ V . Let there be an edge between v′i and v′j iff Vi and

Vj are connected. G′ must be the nested regular graph Rk1
n1

[Rk2
n2

[· · · [Rkl−1

nl−1
]]] or,

if l = 2, G′ must be the regular graph Rk1
n1

.

Proposition 4.8. Rk1
n1

[Rk2
n2

[· · · [Rkl
nl

]]] is a regular graph with vertex degree k1 +
k2 + · · ·+ kl.

Proof. Every vertex of the graph has kl neighbours as part of a kl-regular
subgraph. Each vertex must also be connected to one vertex in kl−1 of the
nl−1 − 1 other kl-regular graphs, which contributes kl−1 to its degree. The
same must be true for the other layers of nesting.

The cubical graph shown in Figure 4.3b is another K2[C4] graph which also
corresponds to an [[8, 0, 4]] code. This graph is not isomorphic to the one shown
in Figure 4.3a, and it does not have a circulant generator matrix. For n = 9,
our search reveals a K3[K3] graph, as shown in Figure 4.1b. For n = 10, we find
the K2[C5] graph shown in Figure 4.4a. The famous strongly regular Petersen
graph, seen in Figure 4.4b, can also be described as K2[C5]. It also corresponds
to a [[10, 0, 4]] code, but does not have a circulant adjacency matrix, and is not
isomorphic to the K2[C5] graph in Figure 4.4a. A K2[K5] graph corresponding
to a [[10, 0, 4]] code also exists, with a suboptimal regular degree of 4. For
n = 11, we did not find any circulant code with extremal distance d = 5. Since

35

4 Nested Regular Graph Codes

(a) K2[C5] Graph (b) K2[C5] Petersen Graph

Figure 4.4: Two K2[C5] Graphs Corresponding to [[10, 0, 4]] Codes

11 and 13 are primes, there can be no nested regular graphs corresponding to
codes of these lengths. Were we not able to find a nested clique description of
any graph on 14 or 15 vertices corresponding to an extremal code, and no graph
with minimum regular vertex degree corresponding to a [[15, 0, 6]] code was
found. For n = 16, we found the C4[K4] graph shown in Figure 4.2a. No nested
regular graphs exist for the prime lengths 17 and 19. For n = 18, the optimal
distance is d = 8, but the best code corresponding to a circulant adjacency
matrix is an [[18, 0, 6]] code. This code can be described as a K2[K3[K3]] graph
with minimum regular vertex degree. In addition, there also exists a K3[K6]
graph corresponding to an [[18, 0, 6]] code. For n = 20, we discovered a [[20, 0, 8]]
code corresponding to a K5[K4] graph, shown in Figure 4.1e. There is no
circulant extremal code of length 21, and we did not find any nested regular
graph corresponding to a [[21, 0, 7]] code. Neither did we find such a graph
description for any circulant [[22, 0, 8]] code. For lengths from 23 to 27, the
best codes we found all have distance 8. According to Table 2.1, this distance
is not extremal, but no codes of higher distance are known, except for length
27, where a code of distance 9 exists. We did not find nested regular graphs for
n = 23 or 26, but for n = 24 we found a R4

6[K4] graph, as seen in Figure 4.2b.
For n = 25 we found the K5[K5] graph seen in Figure 4.1f, and for n = 27 we
found the R6

9[K3] graph seen Figure 4.2c. We have also found circulant graph
codes of extremal distance for lengths 28, 29 and 30, but these graphs do not
have minimal regular vertex degree and can not be described as nested regular
graphs.

Gulliver and Kim [29] have studied the more general case of self-dual additive
codes over GF(4) with circulant generator matrices. As for all self-dual quantum
codes, there will be a graph code equivalent to any such code, but the graph
code will not necessarily be circulant. Gulliver and Kim [29] also classified some
other types of circulant based codes for lengths up to 30, but did not find any
codes with higher distance than we found in our search of circulant graph codes.

4.4 Long Cycles in Nested Regular Graph Codes

The nested regular description of a graph does not specify the manner in which
the regular subgraphs are connected. It turns out that these connections are
highly structured in nested regular graphs corresponding to strong self-dual
quantum codes. We have already mentioned that the K3[K4] graph represen-
tation of the Dodecacode has a Hamiltonian cycle. The K5[K5] graph, shown

36

4.4 Long Cycles in Nested Regular Graph Codes

in Figure 4.1f, corresponding to a [[25, 0, 8]] code, contains two edge-disjoint
Hamiltonian cycles. We can then account for all the 100 edges of this graph, 50
being part of inner 5-cliques and 25 of the remaining edges in each Hamiltonian
cycle. But this is still not a description of a unique graph, as the following
example shows.

Example 4.9. Let G = (V,E) be a K5[K5] graph. Let the five inner 5-cliques
be on the vertex sets V1 = {v0, v1, v2, v3, v4}, V2 = {v5, v6, v7, v8, v9},
V3 = {v10, v11, v12, v13, v14}, V4 = {v15, v16, v17, v18, v19}, and V5 = {v20, v21,
v22, v23, v24}. Let the remaining 50 edges form two Hamiltonian cycles given
by the sequences of vertices, H1 = (v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,
v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v0) and H2 = (v0, v7,
v14, v21, v3, v10, v17, v24, v6, v13, v20, v2, v9, v16, v23, v5, v12, v19, v1, v8, v15,
v22, v4, v11, v18, v0). This graph corresponds to a [[25, 0, 8]] self-dual quantum
code. But if we replace the Hamiltonian cycle H2 with H ′

2 = (v0, v8, v16, v24,
v7, v15, v23, v6, v14, v22, v5, v13, v21, v4, v12, v20, v3, v11, v19, v2, v10, v18, v1,
v9, v17, v0), we get a [[25, 0, 6]] code.

The K5[K4] graph corresponding to a [[20, 0, 8]] code, shown in Figure 4.1e,
contains one Hamiltonian cycle, in addition to two vertex-disjoint cycles, each
visiting half the vertices of the graph. We generated the codes corresponding to
all K5[K4] graphs with two Hamiltonian cycles, and the highest distance found
was 6. Other nested regular graphs listed in Table 4.1 also contain Hamiltonian
cycles or long cycles. Both the nested regular structure and the presence of long
cycles seem to be important characteristics of the graphs corresponding to self-
dual quantum codes of high distance.

Although we have not found a construction technique for nested graph codes
giving a predictable distance, initial results suggest that the set of nested regular
graphs give a small search space in which strong codes are likely to be found.
Randomly generated nested regular graphs with long disjoint cycles typically
give codes of higher distance than totally random graphs. It seems like the
long cycles should be arranged in such a way that no smaller cycles are induced
in the graph. The results shown in Table 4.1 suggest that for codes of length
above 25 and distance higher than 8, graph structures get more complicated.
To describe these structures, a further generalisation of nested regular graphs
may be necessary.

37

Chapter 5
Orbits of Self-Dual Quantum Codes

5.1 Local Transformations and Local Complementations

We have seen that an [[n, 0, d]] quantum stabilizer code represents a single
quantum state, and that all such codes can be transformed into equivalent graph
codes. The quantum state corresponding to a graph code is known as a graph
state, and in section 6.3 we will see how a state |G〉 corresponding to a graph
G can be found. In section 2.1 we saw that local unitary transformations are
reversible transformations that act independently on each qubit in a quantum
state. If there exists a local unitary transformation U , such that U |G〉 = |G′〉,
the states |G〉 and |G′〉 will have the same entanglement properties. If |G〉 and
|G′〉 are graph states, we say that their corresponding graphs, G and G′, are
LU-equivalent. G and G′ will then represent equivalent quantum codes, with
the same distance, weight distribution, and other properties.

Determining whether two graphs are LU-equivalent seems like a difficult task,
but a sufficient condition for equivalence was given by Hein et al. [30]. Let the
graphs G = (V,E) and G′ = (V,E′) on n vertices correspond to the n-qubit
graph states |G〉 and |G′〉.

Definition 5.1. We define the two 2× 2 unitary matrices,

τx =
√
−iσx =

1√
2

(
−1 i
i −1

)
, τz =

√
iσz =

(
w 0
0 w3

)
,

where w4 = i2 = −1, and σx and σz are Pauli matrices.

Definition 5.2. Given a graph G = (V = {0, 1, . . . , n− 1}, E), corresponding
to the graph state |G〉, we define a local unitary transformation,

Ua =
⊗

i∈Na

τ (i)
x

⊗

i6∈Na

τ (i)
z , (5.1)

where a ∈ V is any vertex, Na ⊂ V is the neighbourhood of a, and τ
(i)
x means

that the transform τx should be applied to the qubit corresponding to vertex i.

Given a graphG, if there exists a finite sequence of vertices (u0, u1, . . . , uk−1),
such that Uuk−1

· · ·Uu1
Uu0
|G〉 = |G′〉, then G and G′ are LU-equivalent. It

was discovered by Hein et al. [30], and by Van den Nest et al. [59], that the
sequence of transformations taking |G〉 to |G′〉 can equivalently be expressed as
a sequence of simple graph operations taking G to G′. Exactly the same graph

39

5 Orbits of Self-Dual Quantum Codes

0 1

3 2
(a) The Graph G

0 1

3 2
(b) The LC Image G0

Figure 5.1: Example of Local Complementation

operation, called vertex neighbourhood complementation (VNC), was described
by Glynn et al. [22, 23] as an operation that maps equivalent self-dual additive
codes over GF(4) to each other. VNC is another name for local complementation
(LC), referred to in the context of isotropic systems by Bouchet [5, 7].

Definition 5.3. Given a graph G = (V,E) and a vertex v ∈ V , let Nv ⊂ V
be the neighbourhood of v. The subgraph induced by Nv is complemented
to obtain the LC image Gv, i.e., Gv(Nv) = G(Nv). It is easy to verify that
(Gv)v = G.

Example 5.4. We will perform local complementation on vertex 0 of the graph
G, shown in Figure 5.1a. We see that the neighbourhood of 0 is N0 = {1, 2, 3},
and that the induced subgraph on the neighbourhood, G(N0), has edges {1, 2}
and {1, 3}. The complement of this subgraph, G(N0), contains the single edge
{2, 3}. The resulting LC image, G0, is seen in Figure 5.1b.

Theorem 5.5 (Glynn et al. [22, 23], Hein et al. [30], and Van den Nest
et al. [59]). The graphs G and G′ are LC-equivalent, i.e., they correspond
to equivalent self-dual quantum codes, if there is a finite sequence of vertices
u0, u1, . . . , uk−1, such that (((Gu0)u1)···)uk−1 = G′.

LC operations on the graph G = (V,E), represented by the adjacency matrix
Γ, can also be described in terms of operations on C = Γ + ωI, the generator
matrix of a self-dual additive code over GF (4). We can then verify that none
of the matrix operations will change the properties of the code. LC on a vertex
a ∈ V corresponds to the following sequence of operations on C.

• For all vertices i ∈ Na, add row a to row i in C. This operation, which
does not change the properties of an additive code, implements the neigh-
bourhood complementation of the corresponding graph, but also leaves us
with a code that is not a graph code. The two following steps are needed
to restore the code to graph form.

• Scale column a of C by ω, i.e., multiply coordinate a in all rows of C by
ω. Scaling the same coordinate in all codewords by some nonzero value
gives an equivalent code.

• For all vertices i ∈ Na ∪ {a}, conjugate column i of C. Conjugating
coordinates does not change the properties of the code. We now have a
generator matrix of the form C′ = Γ′ + ωI.

40

5.2 Enumerating LC Orbits

5.2 Enumerating LC Orbits

Van den Nest et al. [58] report on an efficient algorithm, first described by
Bouchet [6], which determines whether two graphs are LC-equivalent by solv-
ing a set of equations. This algorithm has complexity O(n2), where n is the
number of vertices in the input graphs. Note that we can also consider codes
corresponding to isomorphic graphs to be equivalent, since permuting coordi-
nates of a self-dual additive code over GF(4) gives an equivalent code. We
therefore want to detect LC-equivalence of graphs up to isomorphism, which
means that a permutation of vertex labels is allowed before each LC operation.
Permuting the vertex labels of a graph causes the qubits in the corresponding
graph state to be reordered. Reordering the qubits in a quantum state does not
change the overall entanglement properties, but can not be performed by any
local unitary transformation. The above-mentioned algorithm only considers
equivalence via local unitary transformations, and can therefore not be used to
detect LC-equivalence up to isomorphism.

Definition 5.6. The LC orbit L = [G], of a graph G, is the set of all non-
isomorphic graphs, including G itself, that can be transformed into G by any
sequence of local complementations and vertex permutations.

Example 5.7. We consider the “2-cliques of 3-cliques” representation of the
[[6, 0, 4]] Hexacode shown in Figure 3.2a on page 22. An LC operation on any
vertex of this graph will produce a graph isomorphic to the “wheel graph”
shown in Figure 3.2b. An LC operation on the “centre” of the “wheel” will
again produce a graph isomorphic to the “wheel graph”, while an LC operation
on any of the 5 other vertices gives a graph isomorphic to the “2-clique of 3-
cliques”. These two graphs therefore make up the complete LC orbit of the
Hexacode.

Let Gn be the set of all non-isomorphic simple undirected connected graphs on
n vertices. (We will later consider a set where unconnected graphs are included.)
Let Ln = {L1,L2, . . . ,Lk} be the set of all distinct LC orbits of graphs in Gn.
All L ∈ Ln are disjoint, and Ln is a partitioning of Gn, i.e.,

⋃
i Li = Gn. Two

graphs, G and K, are equivalent with respect to local complementations and
vertex permutations if one of the graphs is in the LC orbit of the other, for
instance, K ∈ [G]. We will need Algorithm 5.1, a recursive algorithm that
generates the LC orbit of a given graph. The package nauty, described in
section 3.2, is used to implement the procedure NautyCanonise(G), which
returns a canonical representative of the graph G. Every isomorphic graph has
the same canonical representative. In our algorithms, we will also require data
structures for storage of graphs. Let T be such a data structure. The exact
implementation of T may vary, but we assume that there is a procedure Add(T ,
G) that causes the graph G to be added to T .

Example 5.8. As an example, we will generate L4, the set of all LC orbits

on 4 vertices. There are 2(4

2) = 64 undirected simple graphs on 4 vertices,
but the number of non-isomorphic connected graphs is only |G4| = 6. We use
Algorithm 5.1 on these graphs and find that there are |L4| = 2 distinct LC
orbits on 4 vertices. The orbits, L4 = {L1,L2}, are shown in Figure 5.2.

We would like to partition Gn into a set of LC orbits, Ln, for n as high as
possible. In particular, we want to count the number of LC orbits, |Ln|, which is
also the number of inequivalent self-dual additive codes over GF(4) of length n.
If we can also find one representative of each LC orbit, we can characterise the

41

5 Orbits of Self-Dual Quantum Codes

Algorithm 5.1 Generating the LC Orbit of a Graph

Input G: a graph, G = (V,E)
Output L: data structure containing all graphs in [G]

procedure GenerateOrbit(G)
initialise L

RecursiveGenerateOrbit(G, L)
return L

end procedure

procedure RecursiveGenerateOrbit(G, L)
if G 6∈ L then

for all v ∈ V do

K ← NautyCanonise(Gv)
Add(L, K)
RecursiveGenerateOrbit(K, L)

end for

end if

end procedure

L1

L2

Figure 5.2: The Two LC Orbits for n = 4

properties of all such codes. Self-dual additive codes over GF(4) of length n have
previously been enumerated by Calderbank et al. [10] for n ≤ 5, by Höhn [31]
for n ≤ 7, by Hein et al. [30] for n ≤ 7, and by Glynn et al. [23] for n ≤ 9. Glynn
has also posted his results as sequence A090899 in The On-Line Encyclopedia
of Integer Sequences [56]. For higher n, only partial classifications of extremal
codes have been performed [4, 20, 21].

Algorithm 5.2, our first attempt at an algorithm for generating all LC orbits,
is inspired by the concept of canonical representatives, as used by nauty. We
define a procedure LCcanonise, which returns the same canonical representa-
tive for every member of the same LC orbit. The procedure FindOrbits1 with
Gn as input will canonise every graph in Gn and remove all duplicates in the
resulting set. We would then have one representative of every LC orbit in Ln.
Generating the set Gn can be done by the utility geng from the nauty package.
It is not important how the canonical representative of an LC orbit is chosen,
as long as it is done consistently. Algorithm 5.2 gives an implementation of
LCcanonise(G) that first generates the complete orbit L = [G]. The proce-
dure First(L) then picks the “first” graph in the set L by some lexicographical
ordering. The exact implementation of this ordering is not important.

Finding all LC orbits in Ln by Algorithm 5.2 is clearly not efficient. We
are doing much redundant work by going through the whole LC orbit of every

42

http://www.research.att.com/projects/OEIS?Anum=A090899

5.2 Enumerating LC Orbits

Table 5.1: Sizes of Different Sets of Graphs

n |Gn| |E ′n| |En|
1 1 - -
2 1 1 1
3 2 3 2
4 6 7 5
5 21 30 14
6 112 124 48
7 853 693 228
8 11,117 3,302 1,338
9 261,080 25,755 11,309
10 11,716,571 224,840 123,899
11 1,006,700,565 3,204,036 2,138,482
12 164,059,830,476 82,815,479 66,150,188
13 50,335,907,869,219 5,217,308,460 ?

graph in Gn, since many orbits will then be generated several times. A great
improvement in running time is achieved by storing all LC orbits in memory at
the same time. Algorithm 5.3 guarantees that all distinct LC orbits will only be
generated once, at the cost of extra memory requirement. The procedure will
store all members of every LC orbit it generates in the temporary set T . If a
graph is already in T , its orbit is not generated again. If we call the procedure
FindOrbits2 with Gn as input, T will contain all graphs in Gn at the time the
procedure terminates.

A straightforward implementation of Algorithm 5.3 will work when n ≤ 8.

The total number of undirected graphs on 8 vertices is 2(82) = 268,435,456.
Since we have more than 300 MB of memory available, we can simply make T

a binary array with one bit representing each graph. All bits are initialised to
zero, and will be set to one once the corresponding graph has been discovered.
This is clearly a waste of memory, since all the graphs we need to store are
the |G8| = 11,117 non-isomorphic connected graphs on 8 vertices. When n = 9,
such an array would require about 10 GB of memory, so a more clever approach
is needed. We therefore use a binary search tree as T. Every time we discover a
graph not isomorphic to any graph in T, we add a new node to the tree. Since
our graphs are undirected, only the lower or upper triangle of the adjacency
matrix needs to be stored. This means that

(
n
2

)
bits of memory are needed

to store each graph. These bits are easily interpreted as a numerical value for
comparisons in the binary search tree. With this method, only non-isomorphic
graphs will be stored in T, so the memory requirement is proportional to |Gn|.
Values of |Gn| are listed in Table 5.1, and is also sequence A001349 in The
On-Line Encyclopedia of Integer Sequences [56].

While the orbits for n = 9 are easily computed with the binary search tree
implementation of Algorithm 5.3, n = 10 takes about one hour of running time
and uses more than 100 MB of memory. The memory requirement is the biggest
obstacle, and for n = 11 it becomes infeasible. To solve this problem, we tried
to find an invariant, i.e., some property that has the same value for all graphs
in the same LC orbit, and that can be calculated quickly. One such property is
the weight distribution of the codes corresponding to the graphs, since we can
with certainty say that two codes with different weight distributions are not in
the same LC orbit. (The converse is however not true, since many LC orbits will

43

http://www.research.att.com/projects/OEIS?Anum=A001349

5 Orbits of Self-Dual Quantum Codes

Algorithm 5.2 Finding LC Orbits By Canonisation

Input F : a set of graphs
Output O: a set with one representative of each LC orbit present in F

procedure FindOrbits1(F)
initialise O

for all G ∈ F do

K ← LCcanonise(G)
if K 6∈ O then

add(O, K)
end if

end for

return O

end procedure

procedure LCcanonise(G)
L← GenerateOrbit(G)
K ← First(L)
return K

end procedure

Algorithm 5.3 Finding LC Orbits Quickly

Input F : a set of graphs
Output O: a set with one representative of each LC orbit present in F

procedure FindOrbits2(F)
initialise O and T

for all G ∈ F do

K ← NautyCanonise(G)
if K 6∈ T then

add(O, K)
L← GenerateOrbit(K)
for all I ∈ L do

add(T , I)
end for

end if

end for

return O

end procedure

44

5.2 Enumerating LC Orbits

have exactly the same weight distribution.) To reduce the memory requirement
of our algorithm, we calculate the weight distribution of the codes correspond-
ing to graphs in Gn and store the graphs in k different sets, F1,F2, . . . ,Fk, with
the only restriction that codes with the same weight distribution must be in the
same set. We do not necessarily have to compute the complete weight distribu-
tions, since the partial weight distribution wp, i.e., the numbers of codewords
of weights up to p, is also an invariant over the LC orbit. wp can be calculated
efficiently by the method described in Algorithm 3.2 on page 25. We choose a
p that is high enough to give a good separation of the codes, while still being
computable for all graphs in Gn in reasonable time. The distribution of codes
will not be uniform, so the resulting sets will be of various sizes. When the
sets F1,F2, . . . ,Fk are generated, we call the procedure FindOrbits2 k times,
once with each set as input. The sets are processed independently, and the data
structure T in procedure FindOrbits2 can be reset for each set, reducing the
amount of memory needed. This method also allows us to process the k sets
in parallel. The outputs returned by the k procedure calls are concatenated
to form a complete set of representatives of Ln. This approach was used to
classify all inequivalent [[11, 0, d]] codes. Generating all non-isomorphic graphs
and splitting them into 1,000 files according to partial weight distribution took
about 3 days on an ordinary desktop computer. Many of the resulting files were
empty or nearly empty, whereas the largest were several 100 MB. The total size
of all the files after compression was about 6 GB. The processing of the files
was done in parallel on a cluster computer in a matter of hours, and 40,457
inequivalent codes were found. Processing the largest file required more than
1 GB of memory, so using this method for n = 12 was not feasible with the
available resources.

We have seen that the procedure FindOrbits1 is too slow, and that the pro-
cedure FindOrbits2 requires too much memory. In Algorithm 5.4 we define
FindOrbits3 which, like FindOrbits1, only stores a single LC orbit in mem-
ory at any time. It does not, however, generate the LC orbit of every graph
in the input set, and is therefore faster than FindOrbits1. FindOrbits3

also benefits from splitting up the input set using partial weight distribution.
Algorithm 5.4 uses the procedure Remove(T , G) which removes the graph
G from T , and the procedure RemoveNext(T), which removes some graph
from T and returns it. The order in which graphs are removed from T is not
important here.

Definition 5.9. The 2n − 1 extensions of a graph on n vertices is formed by
adding a new vertex and joining it to all possible combinations of at least one of
the old vertices. The set E ′n, containing |Ln−1| ×

(
2n−1 − 1

)
graphs, is formed

by making all possible extensions of one representative from each LC orbit in
Ln−1. Let En contain the same graphs as E ′n, except that all isomorphisms are
removed.

Proposition 5.10 (Glynn et al. [23]). The set E ′n will contain at least one
representative from each LC orbit in Ln.

Proof. Let G = (V,E) be any graph on n vertices. Choose any subset W ⊂ V
of n− 1 vertices. By doing LC operations on vertices in W , we can transform
the subgraph G(W) into any member of the LC orbit [G(W)]. One of these
members was extended when the set E ′n was constructed. It follows that for all
G ∈ Gn, some G′ ∈ [G] must be part of E ′n.

Table 5.1 gives the values of |E ′n| and |En|, which are much smaller than the
values of |Gn|. It will therefore be more efficient to use En instead of Gn as input

45

5 Orbits of Self-Dual Quantum Codes

Algorithm 5.4 Finding LC Orbits Quickly Using Less Memory

Input F : a set of graphs
Output O: a set with one representative of each LC orbit present in F

procedure FindOrbits3(F)
initialise O

while F is not empty do

G← RemoveNext(F)
K ← NautyCanonise(G)
add(O, K)
L← GenerateOrbit(K)
for all I ∈ F do

if I ∈ L then

remove(F , I)
end if

end for

end while

return O

end procedure

to our algorithms, and, by Proposition 5.10, we will still find one representative
of every LC orbit in Ln. We managed to find all inequivalent self-dual quantum
codes of length n = 12 by using the set E12 as input to FindOrbits3. The
set of 66,150,188 graphs in E12 was first divided into 1,000 files by the partial
weight distribution w7, a process that took a few hours. The files were then
processed in parallel on a cluster computer. A hash table was used as the data
structure L in the algorithm, to allow for fast look-up. The processing took a
little more than a week to finish, using a total of more than 4,000 CPU-hours,
and 1,274,068 LC orbits were found.

Table 5.2 shows the value of |Ln|, which is also the number of inequivalent
self-dual additive codes over GF(4), for n up to 12. A database of orbit repre-
sentatives with information about orbit size, distance, and weight distribution
is also available [14]. The numbers of inequivalent codes have been added to se-
quence A090899 in The On-Line Encyclopedia of Integer Sequences [56], which
previously only had values for n up to 9. The numbers of codes of various dis-
tances are shown in Table 5.3. Table 5.4 gives the number of self-dual quantum
codes of type II, i.e., codes where all codewords have even weight.

Definition 5.11. Let“a”, where a ∈ N, denote a connected graph on a vertices.
Let “ab1

1 a
b2
2 · · ·abk

k ”, where ai, bi ∈ N, denote an unconnected graph composed
of b0 connected components with a0 vertices, b1 connected components with a1

vertices, and so on.

Recall that Ln only contains LC orbits of connected graphs. Codes corre-
sponding to connected graphs are called indecomposable. Let the set L′n ⊂ Ln

also include all LC orbits of unconnected graphs. An unconnected graph on
n vertices is composed of a set of connected components with less than n ver-
tices. Likewise, codes corresponding to unconnected graphs, called decompos-
able codes, can always be expressed as a combination of indecomposable codes
of shorter length. Table 5.5, which is an extended version of a table given by
Glynn et al. [23], counts the number of non-isomorphic graphs for all possible
such combinations. The values of |L′n| for n up to 12 are also shown in Table 5.2,
and is a new sequence, A094927, in The On-Line Encyclopedia of Integer Se-

46

http://www.ii.uib.no/~larsed/vncorbits/
http://www.research.att.com/projects/OEIS?Anum=A090899
http://www.research.att.com/projects/OEIS?Anum=A094927

5.2 Enumerating LC Orbits

Table 5.2: Number of Self-Dual Quantum Codes of Length n

n |Ln| |L′n|
1 1 1
2 1 2
3 1 3
4 2 6
5 4 11
6 11 26
7 26 59
8 101 182
9 440 675
10 3,132 3,990
11 40,457 45,144
12 1,274,068 1,323,363

Table 5.3: Number of Indecomposable Self-Dual Quantum Codes of Length n and
Distance d

n

d 2 3 4 5 6 7 8 9 10 11 12

2 1 1 2 3 9 22 85 363 2,436 26,750 611,036
3 1 1 4 11 69 576 11,200 467,513
4 1 5 8 120 2,506 195,455
5 1 63
6 1

All 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068

Table 5.4: Number of Indecomposable Type II Self-Dual Quantum Codes of Length n

and Distance d

n

d 2 4 6 8 10 12

2 1 1 3 11 84 2,133
4 1 3 19 792
6 1

All 1 1 4 14 103 2,926

47

5 Orbits of Self-Dual Quantum Codes

quences [56]. Note that the number of non-isomorphic graphs of type “42” is
only 3, and not 4. Likewise, the number of “52” graphs is 10, the number of “43”
graphs is 4, and the number of “62” graphs is 66. For all other combinations
used in Table 5.5, the number of non-isomorphic unconnected graphs is simply
found by multiplying the numbers of non-isomorphic connected graphs for each
connected component, e.g., the number of “6412” graphs is 11× 2× 1× 1 = 22.

Example 5.12. We will count the number of LC orbits in L′4. The unconnected
graphs of type “22”, i.e., graphs formed by combining 2 connected graphs on 2
vertices, must be included. There is only one orbit in L2, and therefore only
one inequivalent decomposable code of type “22”. Another way to construct
unconnected graphs on 4 vertices is to combine a connected graph on 3 vertices
with an isolated vertex. This combination is denoted “31”. Since L3 = L1 = 1,
there is only one LC orbit of type “31”. The other combinations that make
unconnected graphs on 4 vertices, “212” and “14”, also give one orbit each. L′4
also contains the 2 orbits of connected graphs in L4. (This combination is
simply denoted “4”.) Thus, when we add all the combinations, |L′4| = 6.

5.3 The LC Orbits of Some Strong Codes

In chapter 4, we studied graph codes with circulant generator matrices. For
some lengths we found that the best circulant graph codes had lower distance
than the best known self-dual quantum codes. In particular, we did not find
any [[11, 0, 5]], [[18, 0, 8]], [[21, 0, 8]] or [[27, 0, 9]] codes. Generator matrices for
the best known quantum codes are listed by Grassl [26]. We have transformed
some of these codes into graph codes and generated their LC orbits.

Remark. There are no regular graphs corresponding to [[11, 0, 5]] or [[18, 0, 8]]
quantum codes.

The unique [[11, 0, 5]] code is already known from our complete classification
of all self-dual quantum codes of length up to 12. This code has 4,742 non-
isomorphic graphs in its LC orbit, and none of these graphs are regular. The
[[18, 0, 8]] code has been shown (under some constraints) to be unique [4], and
it can be generated as shown in section 3.5. There is no regular graph among
the 3,828 non-isomorphic graphs in the LC orbit of this code, but the graph
representation with the fewest edges contains only one vertex of degree 9, with
the rest of the vertices having degree 7. This is the closest to minimum regular
vertex degree we can get without achieving it, since the code is of type II, and
all its graph representations must therefore have only odd vertex degrees. We
also generate the LC orbit of the [[21, 0, 8]] code listed by Grassl [26]. It has
77,394 members in its LC orbit, and again no regular graph is found. Note that
neither did Gulliver and Kim [29] find any [[21, 0, 8]] code with a circulant based
generator matrix. We also tried to generate the LC orbit of a [[27, 0, 9]] code,
but after finding about 10 million non-isomorphic graphs, the memory resources
of the computer were exhausted. None of the graphs found were regular. The
[[30, 0, 12]] code we discovered in our search of circulant graph codes had a
regular vertex degree of 17. We could only generate about 10 million members
of its LC orbit, but this sufficed to find a graph with regular vertex degree
15. This graph can not be described as a nested regular graph, however, and
the degree is still far from the minimal 11. The graph representation with the
fewest edges found had 171 edges, an “average vertex degree” of 11.4.

In section 3.5 we showed how the [[30, 0, 12]] code can be constructed as a
bordered quadratic residue code. The graph corresponding to the [[29, 0, 11]]

48

5.3 The LC Orbits of Some Strong Codes

Table 5.5: Numbers of Decomposable Self-Dual Quantum Codes

1 2 3 4 5 6 7 8 9 10 11 12

1 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 110 1 111 1 112 1
2 1 21 1 212 1 213 1 214 1 215 1 216 1 217 1 218 1 219 1 2110 1

3 1 31 1 312 1 313 1 314 1 315 1 316 1 317 1 318 1 319 1
22 1 221 1 2212 1 2213 1 2214 1 2215 1 2216 1 2217 1 2218 1
4 2 41 2 412 2 413 2 414 2 415 2 416 2 417 2 418 2

32 1 321 1 3212 1 3213 1 3214 1 3215 1 3216 1 3217 1
5 4 51 4 512 4 513 4 514 4 515 4 516 4 517 4

23 1 231 1 2312 1 2313 1 2314 1 2315 1 2316 1
42 2 421 2 4212 2 4213 2 4214 2 4215 2 4216 2
32 1 321 1 3212 1 3213 1 3214 1 3215 1 3216 1
6 11 61 11 612 11 613 11 614 11 615 11 616 11

322 1 3221 1 32212 1 32213 1 32214 1 32215 1
52 4 521 4 5212 4 5213 4 5214 4 5215 4
43 2 431 2 4312 2 4313 2 4314 2 4315 2
7 26 71 26 712 26 713 26 714 26 715 26

24 1 241 1 2412 1 2413 1 2414 1
422 2 4221 2 42212 2 42213 2 42214 2
322 1 3221 1 32212 1 32213 1 32214 1
62 11 621 11 6212 11 6213 11 6214 11
53 4 531 4 5312 4 5313 4 5314 4
42 3 421 3 4212 3 4213 3 4214 3
8 101 81 101 812 101 813 101 814 101

323 1 3231 1 32312 1 32313 1
522 4 5221 4 52212 4 52213 4
432 2 4321 2 43212 2 43213 2
72 26 721 26 7212 26 7213 26
33 1 331 1 3312 1 3313 1
63 11 631 11 6312 11 6313 11
54 8 541 8 5412 8 5413 8
9 440 91 440 912 440 913 440

25 1 251 1 2512 1
423 2 4231 2 42312 2
3222 1 32221 1 322212 1
622 11 6221 11 62212 11
532 4 5321 4 53212 4
422 3 4221 3 42212 3
82 101 821 101 8212 101
432 2 4321 2 43212 2
73 26 731 26 7312 26
64 22 641 22 6412 22
52 10 521 10 5212 10
(10) 3,132 (10)1 3,132 (10)12 3,132

324 1 3241 1
523 4 5231 4
4322 2 43221 2
722 26 7221 26
332 1 3321 1
632 11 6321 11
542 8 5421 8
92 440 921 440
532 4 5321 4
423 3 4231 3
83 101 831 101
74 52 741 52
65 44 651 44
(11) 40,457 (11)1 40,457

26 1
424 2
3223 1
623 11
5322 4
4222 3
822 101
4322 2
732 26
642 22
522 10
(10)2 3,132
34 1
632 11
543 8
93 440
43 4
84 202
75 104
62 66
(12) 1,274,068

1 2 3 6 11 26 59 182 675 3,990 45,144 1,323,363

49

5 Orbits of Self-Dual Quantum Codes

quadratic residue code will have a regular vertex degree of 14. Bordering this
code adds a vertex of degree 29 and increases the degree of all other vertices
to 15. It turns out that, by using only a single LC operation, this graph can
be transformed into one with regular vertex degree 15. Furthermore, this LC
operation may be performed on any vertex, except the vertex of degree 29. The
“wheel graph” representation of the [[6, 0, 4]] Hexacode, as shown in Figure 3.2b
on page 22, is also a bordered quadratic residue code, and is also turned into
a regular graph by a single LC operation on any vertex except the “centre” of
the “wheel”.

Theorem 5.13. Let G = (V = {v0, v1, . . . , vm−1}, E), be a Paley graph on
m = 4t+ 1 vertices. Form the graph K = (V ∪ {vm}, E ∪ {{u, vm} | u ∈ V }),
i.e., add a vertex vm and connect it to all existing vertices. K is a graph where
the vertices u ∈ V have degree 2t+1 and vertex vm has degree 4t+1. Ku, where
local complementation is performed on any vertex u ∈ V , will be a 2t+1-regular
graph.

Proof. The neighbourhood of u is Nu = vm ∪ N ′
u, where N ′

u consists of 2t
vertices. Since the vertex vm has degree 4t+1 in K and degree 2t in K(Nu), its
degree in Ku will be 2t+ 1. Since G is a Paley graph, and therefore a strongly
regular graph with parameters (4t+ 1, 2t, t− 1, t), any vertex w ∈ N ′

u will have
t−1 neighbours in N ′

u. Since w is also connected to vm in K, it is connected to
t of the 2t vertices in K(Nu). The degree of w in K(Nu) will therefore remain
t, and thus its degree in Ku will remain 2t+ 1.

Corollary 5.14. The graph corresponding to a bordered quadratic residue code
of length n can be transformed into an n

2 -regular graph by a single LC operation
on any vertex, except the one added by the bordering.

Note that Theorem 5.13 holds for Paley graphs over both prime and non-
prime fields, and could also be extended to other strongly regular graphs. The
result does, however, not hold for the [[18, 0, 8]] code constructed by a technique
similar to bordered quadratic residue, since it does not contain a strongly regular
graph on 17 vertices. Even though quadratic residue and bordered quadratic
residue codes achieve high distance and have regular graph representations,
their vertex degree of n/2 is far from optimal for high n.

50

Chapter 6
Quantum Codes and Boolean Functions

6.1 Introduction to Boolean Functions

A Boolean function of n variables is a function f : Zn
2 → Z2. There are 2n vec-

tors x = (x0, x1, . . . , xn−1) ∈ Zn
2 , and each x can be interpreted as an integer

2n−1xn−1 + · · ·+2x1+x0 ∈ Z2n . If we evaluate f(x) for each x ∈ Zn
2 in increas-

ing order of the corresponding integers, we get a column vector t, known as the
truth table of f . A Boolean function can also be represented by the algebraic
normal form (ANF) which is a sum of monomials of n variables. Let the 2n

monomials of n variables be ordered 1, x0, x1, x0x1, x2, x0x2, . . . , x0x1 · · ·xn−1,
i.e., monomial number k = 2n−1kn−1 + · · ·+ 2k1 + k0 is x(k) =

∏
ki=1 xi. Note

that we will sometimes use an abbreviated ANF notation for some many-term
Boolean functions, e.g., 012, 12, 0 is short for x0x1x2 + x1x2 + x0. The ANF of
a Boolean function may be represented by the column vector a with 2n binary
coefficients, such that f(x) =

∑
i∈Z2n

aix
(i). To transform an ANF representa-

tion of a Boolean function into a truth table, we could perform 2n evaluations
of the function, but there is a more efficient method. This method also enables
us to do the reverse transformation from truth table to ANF. The algebraic
normal form transformation (ANFT) can be expressed as a multiplication of
the vector t or a by a 2n × 2n matrix An, such that Ant = a and Ana = t.

Definition 6.1. The algebraic normal form transformation (ANFT) can be
performed using the matrix An, which can be decomposed as an n-fold tensor
product,

An =

n−1⊗

i=0

(
1 0
1 1

)
. (6.1)

The straight-forward way to perform ANFT is to generate the 2n×2n matrix
An and then calculate the product Ant or Ana. This operation has complexity
O(N2), where N = 2n. A much more efficient algorithm, with complexity
O(N logN), can be used for any transformation T that can be decomposed
into 2× 2 matrices, T = T0 ⊗ T1 ⊗ · · · ⊗ Tn−1, where

Ti =

(
t
(0,0)
i t

(0,1)
i

t
(1,0)
i t

(1,1)
i

)
. (6.2)

Algorithm 6.1 is a simple version of this efficient algorithm. Different opti-
misation techniques, as described by Fuller et al. [19], can give faster imple-
mentations, but with the same order of complexity. Figure 6.1 illustrates the
iterations of the algorithm.

51

6 Quantum Codes and Boolean Functions

Algorithm 6.1 Algorithm for Tensor-Decomposable Transformations

Input n: an integer
x: a vector of length 2n

{T0, T1, . . . , Tn−1}: n 2× 2 matrices, decomposition of T
Output y: the vector Tx

procedure Transform(n, x, {T0, T1, . . . , Tn−1})
for i ← 0 to n− 1 do

for j ← 0 to 2n − 1 do

if ((j ≫ i) mod 2) = 0 then ⊲ “≫ i” means i right bit shifts

yj ← t
(0,0)
i xj + t

(0,1)
i xj+2i

else

yj ← t
(1,0)
i xj−2i + t

(1,1)
i xj

end if

end for

for j ← 0 to 2n − 1 do

xj ← yj

end for

end for

return y

end procedure

x′0

x′1

x′2

x′3

x′4

x′6

x′7

x′5

y1

y2

y3

y4

y6

y5

y7

y0
T1

T1

T1

T1

x′′1

x′′2

x′′3

x′′4

x′′6

x′′5

x′′7

x′′0
T2

T2

T2

T2

x0

x1

x2

x3

x4

x6

x7

x5

T0

T0

T0

T0

Figure 6.1: Iterations of Algorithm for Tensor-Decomposable Transformations

52

6.1 Introduction to Boolean Functions

The degree of a Boolean function is the degree of the highest order term in
its algebraic normal form. A function of degree 2 is called a quadratic function,
and corresponds to an undirected graph. Functions of higher degree corre-
spond to undirected hypergraphs. We will only consider simple graphs, i.e.,
graphs with no self-loops, as we will later see that linear and constant terms
in Boolean functions can be ignored for our applications. The Boolean func-
tion f(x) of n variables, x0, x1, . . . , xn−1, corresponds to a hypergraph on n
vertices, v0, v1, . . . , vn−1, where the edge {vi1 , vi2 , . . . , vik

} ∈ E iff the mono-
mial xi1xi2 · · ·xik

occurs in the algebraic normal form of f . In particular, the
quadratic function f can be represented by the adjacency matrix Γ, where
Γi,j = Γj,i = 1 if xixj occurs in f , and Γi,j = Γj,i = 0 otherwise. Local com-
plementation on a graph can then be described in terms of the corresponding
quadratic Boolean function.

Definition 6.2. Let f be a quadratic Boolean function corresponding to the
graph G = (V,E). Let xa be a variable of f corresponding to the vertex va ∈ V .
An LC operation on the variable xa produces the function

f ′(x) = f(x) +
∑

vj ,vk∈Nva

j<k

xjxk (mod 2), (6.3)

where Nva
comprises the neighbours of va in G.

Definition 6.3. The Walsh-Hadamard transform (WHT) of a function f :

Zn
2 → R is given by the function f̂ : Zn

2 → R defined as

f̂(b) = 2−
n
2

∑

x∈Z
n
2

f(x) · (−1)b·x, (6.4)

where b · x = b0x0 + b1x1 + · · · + bn−1xn−1 (mod 2). WHT can be performed
using the transformation matrix Hn, defined by the n-fold tensor product

Hn =

n−1⊗

i=0

1√
2

(
1 1
1 −1

)
. (6.5)

The WHT of a function can be calculated by Algorithm 6.1. Reverse WHT
is performed by the same transformation, since Hn = H−1

n .

Definition 6.4. Sometimes we prefer to work with the bipolar representation,
χf : Zn

2 → {−1, 1}, of a Boolean function f . We therefore define

χf (x) = (−1)f(x). (6.6)

Definition 6.5. The WHT of χf is known as the Walsh spectrum of f , and is
given by the function

χ̂f (b) = 2−
n
2

∑

x∈Z
n
2

χf (x) · (−1)b·x = 2−
n
2

∑

x∈Z
n
2

(−1)f(x)+b·x. (6.7)

Note that the addition in the exponent of −1 in (6.7) is modulo 2, and that
all additions of binary values will be modulo 2, unless otherwise stated.

Theorem 6.6 (Parseval’s Theorem). For any function, f : Z
n
2 → R, the fol-

lowing relationship holds

∑

b∈Z
n
2

f̂
2
(b) =

∑

x∈Z
n
2

f2(x). (6.8)

53

6 Quantum Codes and Boolean Functions

Definition 6.7. The correlation of two Boolean functions, f and g, is

κ(f, g) =
∑

x∈Z
n
2

χf (x) · χg(x) =
∑

x∈Z
n
2

(−1)f(x)+g(x). (6.9)

The Hamming distance between f and g, d(f, g), which is the number of
positions where their truth tables have different values, can be derived from
their correlation, since

d(f, g) = 2n−1 − κ(f, g)

2
. (6.10)

High positive correlation of two functions implies that the distance between
them is low, and therefore that they closely resemble each other, i.e., that they
will often give the same output for the same input. It is easy to verify that
κ(f, g) = −κ(f, g+ 1), so if f has high negative correlation with g, it will have
equally high positive correlation with g + 1, the complement of g.

Definition 6.8. The periodic autocorrelation of the Boolean function f is given
by the function r : Zn

2 → R defined as

r(a) =
∑

x∈Z
n
2

χf (x) · χf (x + a) =
∑

x∈Z
n
2

(−1)f(x)+f(x+a), (6.11)

where x + a = (x0 + a0, x1 + a1, . . . , xn−1 + an−1).

The autocorrelation coefficient r(a), for some a ∈ Z
n
2 , is the correlation of the

functions f(x) and f(x + a). The periodic autocorrelation function therefore
gives the correlation of a function and all its periodic shifts, i.e., all possible
combinations of variable inversions.

Theorem 6.9 (The Wiener-Khintchine Theorem). The periodic autocorrela-
tion and the Walsh spectrum of the Boolean function f are related, since

r(a) = 2
n
2
̂̂
χf

2
(a). (6.12)

Example 6.10. Consider the graph shown below.

0 1

2

The graph has edges E = {{0, 1}, {0, 2}, {1, 2}} and corresponds to the Boolean
function f(x) = x0x1 + x0x2 + x1x2. The truth table and ANF of f is given

by the following table, and so are the truth tables of f̂ , χf and χ̂f . The table
also gives the periodic autocorrelation, r, of f .

k2 k1 k0 ANF f(k) f̂(k) χf (k) χ̂f (k) r(k)

0 0 0 0 0 2
1
2 1 0 8

0 0 1 0 0 −2−
1
2 1 2

1
2 0

0 1 0 0 0 −2−
1
2 1 2

1
2 0

0 1 1 1 1 0 -1 0 0

1 0 0 0 0 −2−
1
2 1 2

1
2 0

1 0 1 1 1 0 -1 0 0
1 1 0 1 1 0 -1 0 0

1 1 1 0 1 2−
1
2 -1 −2

1
2 -8

54

6.2 Propagation Criteria for Boolean Functions

6.2 Propagation Criteria for Boolean Functions

Definition 6.11. A Boolean function, f , is balanced if the Hamming weight of
its truth table is 2n−1, or, equivalently, if

∑

x∈Z
n
2

(−1)f(x) = 0. (6.13)

Definition 6.12. The bipolar truth tables, χf and χg, of the Boolean functions
f and g are orthogonal vectors if

∑

x∈Z
n
2

χf (x) · χg(x) =
∑

x∈Z
n
2

(−1)f(x)+g(x) = 0, (6.14)

which implies that the correlation κ(f, g) = 0 and that f(x)+g(x) is a balanced
function.

Definition 6.13. A linear Boolean function is a function of degree less than
two that can be written x · b for some b ∈ Zn

2 . The set of affine functions
consists of the linear functions and their complements, i.e., functions of the
form x · b + c, where b ∈ Zn

2 and c ∈ Z2.

Boolean functions have important applications in cryptography. Mappings
from n bits to k bits, known as S-boxes, are important components in block
ciphers. Such mappings can be viewed as k mappings from n bits to 1 bit, which
can each be expressed as a Boolean function. These functions, and all their
linear combinations, must satisfy certain criteria for the cipher to be secure.
Common requirements are high algebraic degree and that the functions are
balanced. We also want functions with a high degree of nonlinearity, which
means that no affine functions closely resemble them, since the cipher could
otherwise have been approximated by affine functions in an attack known as
linear cryptanalysis. The nonlinearity of the Boolean function f can be derived
from the Walsh spectrum χ̂f , since

2
n
2 χ̂f (b) = κ(f(x), b · x), (6.15)

i.e., the Walsh spectrum gives the correlation of f with all possible linear func-
tions, x · b for all b ∈ Z

n
2 . The coefficient of the Walsh spectrum with highest

magnitude corresponds to the affine function closest to f .

Definition 6.14. A Boolean function is correlation immune of order m if
χ̂f (b) = 0 for all b where 1 ≤ wH(b) ≤ m. If the function is also balanced, i.e.,
χ̂f (b) = 0 for all b where 0 ≤ wH(b) ≤ m, then it is called m-resilient. The
function obtained by fixing the value of m or fewer variables of an m-resilient
function will still be a balanced function.

Boolean functions are also critical components in stream ciphers, where they
can be used to represent nonlinear combiners. In this context, the correlation
immunity or resilience of a Boolean function is important, since they give the
number of linear feedback shift registers required to realise a correlation attack
on the stream cipher.

Definition 6.15. A vector s of length 2n is flat if |si| = |sj| for all i, j ∈ Z2n ,
where sk denotes the kth coordinate of s.

It follows from Theorem 6.6 that
∑

b∈Z
n
2

χ̂f
2
(b) =

∑

x∈Z
n
2

χ2
f (x) = 2n. (6.16)

55

6 Quantum Codes and Boolean Functions

If the Walsh spectrum of a Boolean function is flat, all coefficients of the Walsh
spectrum must therefore be 1 or −1. Such functions have the highest possible
minimum distance to any affine function.

Definition 6.16. A Boolean function with a flat Walsh spectrum is called
perfect nonlinear or bent.

A vector of length 2n with entries 1 and −1 is the bipolar truth table of
a Boolean function. The Walsh spectrum of a bent function therefore gives
its dual function, which will also be bent. It follows from Theorem 6.9 that
the condition for a function to be bent can also be expressed in terms of the
periodic autocorrelation. The function f is bent if r(a) = 0 for all a where
1 ≤ wH(a) ≤ n, which means that the bipolar truth tables of f(x) and f(x+a)
must be orthogonal vectors. It can be shown that only Boolean functions of
an even number of variables can be bent, and that bent functions can never be
balanced. In general, it is not possible to optimise all desired properties of a
Boolean function, so some compromise must be made. As a generalisation of
the bent criterion, the propagation criterion of Boolean functions was defined
by Preneel et al. [44] and later studied by Carlet [12].

Definition 6.17. A Boolean function satisfies PC(l), the propagation criterion
of degree l, if r(a) = 0 for all a where 1 ≤ wH(a) ≤ l.

Bent functions satisfy PC(n), but functions satisfying PC(l) for l < n can in
addition be balanced and are therefore better suited for cryptographic purposes.
Boolean functions used in cryptography should also have good properties when
subsets of their variables are set to fixed values.

Definition 6.18. The Boolean function f satisfies the propagation criterion of
degree l and order m if any function obtained by setting m or fewer variables
of f to any fixed values satisfies PC(l). It is required that the set of fixed bits
and the set of modified bits are disjoint, and therefore that l +m ≤ n.

A function satisfying PC(l) of order m is resistant against attacks where
the attacker knows the value of up to m input bits for a large number of plain-
text/ciphertext pairs. The attacker is further able to modify up to l of the other
input bits and compare the modified output with the original. This technique
is known as differential cryptanalysis. In a more general scenario, the sets of m
known bits and l modified bits need not be disjoint. Preneel et al. [44] define the
extended propagation criterion, where this restriction is removed. Carlet [12]
reformulated this criterion as follows.

Proposition 6.19 (Carlet [12]). The Boolean function f satisfies EPC(l) of
order m, the extended propagation criterion of degree l and order m, if f(x) +
f(x + a) is m-resilient for any a where 1 ≤ wH(a) ≤ l. An equivalent require-
ment is that ∑

x∈Z
n
2

(−1)f(x)+f(x+a)+b·x = 0, (6.17)

or that the bipolar truth tables of f(x) and f(x+ a)+ b ·x must be orthogonal,
for any a and b where wH(a) ≤ l, wH(b) ≤ m, and wH(a) and wH(b) are not
both zero. The same criterion can be used for PC, if we add the restriction that
a and b have disjoint supports, i.e., that they never both have the value 1 in the
same coordinate.

Definition 6.20. Given two vectors u,v ∈ Zn
2 , we say that u is covered by v,

denoted u � v, if ui ≤ vi for all i ∈ Zn. We define the negation of u ∈ Zn
2

56

6.2 Propagation Criteria for Boolean Functions

as u = (u0 + 1, u1 + 1, . . . , un−1 + 1). Given a vector u ∈ Zn
2 , let Vu ⊆ Zn

2 be
the set Vu = {v ∈ Zn

2 | v � u}. Given a vector u ∈ Zn
2 and a subset V ⊆ Zn

2 ,
u + V = {u + v | v ∈ V } is a coset of V .

Definition 6.21. Let the fixed-periodic autocorrelation of a Boolean function
f be defined as

r(a,µ,k) =
∑

x∈k+Vµ

(−1)f(x)+f(x+a), (6.18)

where k � µ and a � µ. The vector µ indicates a subset of the variables of f
which are fixed to the values given by k, while the vector a indicates a subset
of the remaining variables which are periodically shifted (flipped).

Proposition 6.22. It can be shown [15] that a Boolean function satisfies PC(l)
of order m if r(a,µ,k) = 0 for all a,µ,k ∈ Zn

2 where k � µ, a � µ, 1 ≤
wH(a) ≤ l, and 0 ≤ wH(µ) ≤ m.

Definition 6.23. Let the aperiodic autocorrelation of a Boolean function f be
defined as

s(a,k) =
∑

x∈k+Va

(−1)f(x)+f(x+a), (6.19)

where k � a. Variables indicated by a are shifted aperiodically, and are there-
fore assigned the fixed values given by k.

Definition 6.24. Let the fixed-aperiodic autocorrelation of a Boolean function
f be defined as

s(a,µ,k) =
∑

x∈k+Vµ

(−1)f(x)+f(x+a), (6.20)

where a,k � µ. The vector µ indicates a subset of the variables of f which
are fixed to the values given by k, including those that are aperiodically shifted
as indicated by a. Let θ = µ + a indicate the variables that are fixed but not
shifted. The supports of θ and a are disjoint by definition.

Just as PC can be expressed in terms of fixed-periodic autocorrelation, as de-
scribed in Proposition 6.22, the fixed-aperiodic autocorrelation also corresponds
to a propagation criterion which we call the aperiodic propagation criterion
(APC) [15].

Definition 6.25. A Boolean function satisfies APC(l) of orderm, the aperiodic
propagation criterion of degree l and order m, if s(a,µ,k) = 0 for all a,µ,k ∈
Zn

2 where a,k � µ, θ = µ + a, 1 ≤ wH(a) ≤ l, 0 ≤ wH(θ) ≤ m, and a and θ

have disjoint supports.

In a cryptographic scenario, a Boolean function satisfying APC(l) of order m
is resistant against attacks where the attacker knows up to m + l of the input
bits, and is further allowed to change up to l of these known bits.

Definition 6.26. A Boolean function f has APC distance d if it satisfies
APC(l) of order m for all positive integers l and m such that l +m < d.

Definition 6.27. We define the weight operator wH(a, b) = wH(a)+wH(b)−
wH(a ∧ b), where a ∧ b = (a0b0, a1b1, . . . , an−1bn−1).

Proposition 6.28. It can be shown [15] that the APC distance of the Boolean
function f is equal to the smallest nonzero wH(a, b) where

∑

x∈Z
n
2

(−1)f(x)+f(x+a)+b·x 6= 0. (6.21)

Proposition 6.29. If the Boolean function f has APC distance d, then f(x)+
f(x + a) must be (d− wH(a)− 1)-resilient, for all a where wH(a) < d.

57

6 Quantum Codes and Boolean Functions

6.3 Quantum Codes as Boolean Functions

Definition 6.30. The Boolean function f(x) corresponds to the vector s =
2−

n
2 (−1)f(x), which can be interpreted as the probability distribution vector of

the quantum state

|ψf 〉 = 2−
n
2

∑

x∈Z
n
2

(−1)f(x) |x〉 . (6.22)

We can find the single quantum state represented by a self-dual quantum
code once we know the Boolean function corresponding to an equivalent graph
code. We interpret the Boolean function as a quantum state as described in
Definition 6.30. (See section 2.1 for the definition of a quantum state.) The
normalisation factor 2−

n
2 ensures that the sum of all probabilities is 1, but in

many cases it can be ignored, and the bipolar truth table of f can then be
interpreted directly as a quantum state.

Example 6.31. The function f(x) = x0x1 + x0x2 + x1x2 corresponds to the

bipolar vector s = 2−
3
2 (1, 1, 1,−1, 1,−1,−1,−1)T . This is the probability dis-

tribution vector of the quantum state |ψf 〉 = 2−
3
2 (|000〉+ |001〉+ |010〉−|011〉+

|100〉 − |101〉 − |110〉 − |111〉).

We will only consider bipolar quantum states, i.e., states where all coefficients
of the probability distribution vectors are either 1 or−1. Parker and Rijmen [40]
define the more general algebraic polar form, s = m(x)(−1)p(x), where the two
Boolean functions m(x) and p(x) describes magnitude and phase, respectively.
All vectors with coefficients from the set {−1, 0, 1} are covered by this definition.
We will only study the case where m(x) = 1.

The self-dual quantum codes studied in the previous chapters have all cor-
responded to quadratic Boolean functions. A bipolar quantum state may cor-
respond to a Boolean function of any degree, but unlike quadratic functions,
functions of degree higher than two do not correspond to stabilizer codes or
additive codes over GF(4). By going back to the original definition of quantum
error correcting codes, as described in section 2.3, it is possible to extend the
definition of zero-dimensional quantum codes to what might be called “hyper-
graph codes”, corresponding to non-quadratic Boolean functions. To guarantee
that an error on a single quantum state can be detected, the errored state must
be orthogonal to the original state. The distance of a zero-dimensional quan-
tum code is therefore the weight of the minimum weight quantum error operator
that gives an errored state not orthogonal to the original state. In quantum
error correction we only need to consider the three errors described by the Pauli
matrices σx, σz and σy , corresponding, respectively, to bit-flip, phase-flip and
combined bit-flip and phase-flip. A Pauli error operating on the hypergraph
state |ψf 〉 corresponds to an operation on the corresponding Boolean function
f(x). Let the binary vector a indicate which qubits have been bit-flipped, i.e.,
qubit number k has been bit-flipped iff ak = 1. These bit-flips correspond to a
transformation on |ψf 〉,

|ψf 〉 →
(⊗

ak=1

σ(k)
x

⊗

ak=0

I(k)

)
|ψf 〉 . (6.23)

The corresponding bit-flip operation on the Boolean function f(x) is

f(x)→ f(x + a). (6.24)

58

6.3 Quantum Codes as Boolean Functions

Similarly, let the binary vector b indicate the qubits which have been phase-
flipped. We get the error operation

|ψf 〉 →
(⊗

bk=1

σ(k)
z

⊗

bk=0

I(k)

)
|ψf 〉 , (6.25)

and we can express the same phase-flips in terms of a Boolean function,

f(x)→ f(x) + b · x. (6.26)

The third error we must consider is the combined bit-flip and phase-flip. We
have used the definition σy = iσxσz , but the overall phase factor i has no sig-
nificance and can be ignored. Neither is the order of the operations important,
since σzσx = −σxσz , and this phase factor can also be ignored.

|ψf 〉 →

⊗

ak=1
bk=1

σ(k)
y

⊗

ak=0

I(k)
⊗

bk=0

I(k)

 |ψf 〉 (6.27)

corresponds, up to a global phase factor, to an operation on a Boolean function,

f(x)→ f(x + a) + b · x + b · a. (6.28)

The linear term b · a can safely be ignored, because, as a and b are fixed, it
reduces to a constant and therefore contributes another global phase factor. We
can finally consider a general Pauli error,

|ψf 〉 →

⊗

ak=1
bk=0

σ(k)
x

⊗

ak=0
bk=1

σ(k)
z

⊗

ak=1
bk=1

σ(k)
y

⊗

ak=0
bk=0

I(k)

 |ψf 〉 , (6.29)

which can also be expressed in terms of a Boolean function,

f(x)→ f(x + a) + b · x. (6.30)

Note that the error operator σy , although composed of two errors, only counts
as one error. The weight of a quantum error operator in terms of the vec-
tors a and b is therefore given by the weight function wH(a, b), as defined
in Definition 6.27. We can then define the distance of the zero-dimensional
quantum code corresponding to the state |ψf 〉 as the smallest nonzero wH(a, b)
such that the bipolar truth tables of f(x) and f(x + a) + b · x are orthogo-
nal vectors. By comparing this criterion to the definition of APC distance in
Proposition 6.28, we see that they are equal.

Theorem 6.32. Let |ψf 〉 be a bipolar quantum state with probability distribu-
tion vector 2−

n
2 (−1)f(x), where f is a Boolean function. Then |ψf 〉 corresponds

to an [[n, 0, d]] quantum code where d is the APC distance of f . Conversely,
any Boolean function with APC distance d corresponds to an [[n, 0, d]] quantum
code.

A Boolean function of degree higher than two corresponds to a non-quadratic
quantum code which is not equivalent to any stabilizer code or additive code
over GF(4). While we can quickly find the APC distance of a quadratic Boolean
function as the distance of the corresponding additive code over GF(4) using
Algorithm 3.1, no such shortcut is known for higher degree functions. We must
therefore check the condition (6.21) for all errors of increasing weight, until an
error not satisfying the condition is found, as described in Algorithm 6.2.

59

6 Quantum Codes and Boolean Functions

Algorithm 6.2 Finding the APC Distance of a Boolean Function

Input f : a Boolean function
n: the number of variables of f

Output d: the APC distance of f

procedure FindAPCdistance(f , n)
s← χf , the bipolar truth table of f(x)
for all a ∈ Zn

2 and b ∈ Zn
2 in increasing order of wH(a, b) do

s′ ← the bipolar truth table of f(x + a) + b · x
if s · s′ 6= 0 then

return wH(a, b)
end if

end for

end procedure

Figure 6.2: A Hypergraph Corresponding to a [[6, 0, 3]] Quantum Code

Example 6.33. The hypergraph shown in Figure 6.2 corresponds to the cubic
Boolean function f(x) = 012, 03, 04, 13, 15, 24, 25. It can be verified that no
error with wH(a, b) ≤ 2 satisfies (6.21). There are, however, vectors a and
b with wH(a, b) = 3 such that (6.21) is satisfied. One such error is given by
a = (0, 0, 0, 0, 0, 1) and b = (0, 1, 1, 0, 0, 0), and it produces the errored state
f(x+a)+b · x = 012, 03, 04, 12, 13, 15, 24, 25. We verify that f(x)+f(x+a)+
b · x = x1x2 is not a balanced function. This means that the APC distance of
f is 3, and that f corresponds to a [[6, 0, 3]] non-quadratic quantum code.

Note that Proposition 4.6 does not hold for hypergraphs. Connected hy-
pergraphs where all vertices have high degree may still correspond to Boolean
functions with APC distance 1.

6.4 The {I, H, N }n
Transform Set

As described in section 5.1, Hein et al. [30] showed that local complementation
on a graph corresponds to a transformation defined by the tensor product of
the matrices τx =

√
−iσx and τz =

√
iσz. The LC orbit can then be generated

by repeated transformations of this form.

Definition 6.34. Let T = {T1, T2, . . . , Tk} be a set of k 2×2 unitary matrices.
The transform set T n is then the set of kn 2n × 2n transformation matrices
of the form U = U0 ⊗ U1 ⊗ · · · ⊗ Un−1, where Ui ∈ T . Given a vector s of

60

6.4 The {I,H,N}n Transform Set

length 2n, the kn transforms S = Us, for all possible choices of U ∈ T n, is a
multispectra with (2k)n spectral points. We refer to this multispectra as the
spectrum with respect to the T n transform.

Definition 6.35. Let D be the infinite set of all 2×2 diagonal and anti-diagonal
unitary matrices, i.e, matrices of the form

(
a 0
0 b

)
and

(
0 a
b 0

)
,

where a, b ∈ R. A transform F ∈ Dn is then a tensor product of any n matrices
from D.

Proposition 6.36 (Riera and Parker [51]). Applying a transformation from
Dn to a vector s will not change the magnitudes of the coefficients of s. If two
2 × 2 unitary matrices, A and B, satisfy FA = B where F ∈ D, they can be
considered equivalent, A ≃ B.

Theorem 6.37 (Riera and Parker [51]). To within a subsequent transformation
from Dn, all members of the LC orbit of the Boolean function f can be found
as a subset of the finite set of 3n {I, τx, τxτz}n transforms of f .

Example 6.38. For a Boolean function f(x) of n = 2 variables, we find the
corresponding vector s = 2−

n
2 (−1)f(x). We then find the 9 vectors S = Us,

for all U ∈ {I ⊗ I, I ⊗ τx, I ⊗ τxτz, τx ⊗ I, τx ⊗ τx, τx ⊗ τxτz, τxτz ⊗ I,
τxτz ⊗ τx, τxτz ⊗ τxτz}. By using appropriate transformations from Dn, some
of the vectors S may be transformed into bipolar vectors which correspond to
truth tables of Boolean functions. We use ANFT to recover all such functions,
and this set will comprise all members of the LC orbit of f .

Definition 6.39. Let

I =

(
1 0
0 1

)
, H =

1√
2

(
1 1
1 −1

)
, N =

1√
2

(
1 i
1 −i

)
,

where i2 = −1, be the Identity, Hadamard, and Negahadamard transformations,
respectively.

Let f be a Boolean function on n variables and s = 2−
n
2 (−1)f(x) be a vector

of length 2n. The spectrum with respect to the {I,H,N}n transform is the set
of 3n transforms S = Us, for all U ∈ {I,H,N}n.

Theorem 6.40 (Riera and Parker [51]). It can be shown that N ≃ τx and
H ≃ τxτz. It follows that the LC orbit of a Boolean function can be generated
by the transform set {I,H,N}n.

There is a good reason for choosing the transform set {I,H,N}n instead if
{I, τx, τxτz}n. We have already seen that the Hadamard transformation is used
in both the theory of quantum computing and in the analysis of Boolean func-
tions. The {H}n transform, which is simply the Walsh-Hadamard transform
as defined in (6.5), is an n-dimensional 2-point discrete Fourier transform. We
know from Theorem 6.9 that the {H}n spectrum is the “dual” of the periodic
autocorrelation, defined in Definition 6.8. The {I,H}n spectrum can be shown
to be the “dual”of the fixed-periodic autocorrelation, defined in Definition 6.21.
The Hadamard and Negahadamard transformations together define a two times
oversampled discrete Fourier transform, and the {H,N}n spectrum is therefore
the “dual” of the aperiodic autocorrelation, defined in Definition 6.23. Finally,
the {I,H,N}n spectrum is the“dual”of the fixed-aperiodic autocorrelation, de-
fined in Definition 6.24, which is related to the aperiodic propagation criterion,
as shown in Definition 6.25.

61

6 Quantum Codes and Boolean Functions

Definition 6.41. Let f be a function, f : Zn
2 → Zm, where m ∈ 2N, i.e., m

is some even positive integer. Let u = e
2πi
m , i.e., u is a complex mth root of 1.

The vector s = uf(x) is Boolean flat if it is flat and there exists some F ∈ Dn

such that Fs = u
m
2

f ′(x) = (−1)f ′(x), where f ′ is a Boolean function. It follows
that f and f ′ may be interpreted as equivalent functions.

Definition 6.42. For k ∈ N, we define the “Zk-phase-flip” matrix

ρk =

(
1 0

0 e
2πi
k

)
,

Proposition 6.43. Let s = uf(x) where u = e
2πi
m , f : Z

n
2 → Zm, and m ∈ 2N.

The vector s is Boolean flat if we can write s = u
m
2

f ′(x)+h(x), where f ′ is a
Boolean function and h is an affine function from Zn

2 to Zm.

Proof. Let s′ be the transform

s′ =

(ρb

m)(k)
⊗

l 6=k

I(l)

 s,

where b ∈ Zm. It can then be verified that s′ = uf(x)+bxk . Let s′′ = ucs, where
u = e

2πi
m and c ∈ Zm. It can be verified that s′′ = uf(x)+c. Thus all linear

and constant terms of h(x) can be removed by a transformation F ∈ Dn of the
form

F = uc

n−1⊗

k=0

ρbk
m , (6.31)

where u = e
2πi
m and bk, c ∈ Zm.

Proposition 6.44 (Riera and Parker [51]). We can perform local complemen-
tation on the variable xk of the Boolean function f with the transformation

Uk = N (k)
⊗

l 6=k

I(l). (6.32)

If s = 2−
n
2 (−1)f(x), then S = Uks will be Boolean flat with coefficients from

the set {wa | w4 = −1, a ∈ Z8}. Furthermore, S can always be expressed as
S = w4f ′(x)+2h(x)+c, where f ′ is a Boolean function, h is an affine function
from Zn

2 to Z4, and c ∈ Z8.

It follows from Proposition 6.43 that the vector S = Ums, where Um is of the
form given by (6.32), can be turned into a bipolar vector by some transformation
of the form

F = wa

n−1⊗

k=0

ρbk

4 , (6.33)

where w4 = −1, a ∈ Z8, and bk ∈ Z4. We can then implement a sequence of LC
operations by transformations Um of the form given by (6.32), with appropriate
transformations F of the form given by (6.33) performed after each Um.

Lemma 6.45. Define the product U = UkUk−1 · · ·U1, where k ∈ N and Ui ∈
{I,H,N, σx, ρ4}. Then U = U ′

3U
′
2U

′
1, where U ′

1 ∈ {I,H,N}, U ′
2 ∈ {I, σx}, and

U ′
3 = waρb

4, where w4 = −1, a ∈ Z8, and b ∈ Z4.

62

6.4 The {I,H,N}n Transform Set

Proof. The result follows from the identities,

HH = I,

HN = ρ4,

Hρ4 = N,

Hσx = σzH = ρ2
4H,

NH = wρ3
4σxN,

NN = wρ3
4H,

Nρ4 = σxH,

Nσx = −σyN = iρ2
4σxN,

σxρ4 = iρ3
4σx,

σxσx = I.

(6.34)

Theorem 6.46. Given any sequence of transformations U = UkUk−1 · · ·U1,
where k ∈ N and Ui ∈ {I,H,N, σx, ρ4}n. Then U = U ′

3U
′
2U

′
1, where U ′

1 ∈
{I,H,N}n, U ′

2 ∈ {I, σx}n, and U ′
3 = wa

⊗n−1
k=0 ρ

bk

4 , where w4 = −1, a ∈ Z8,
and bk ∈ Z4.

Proof. This result is a simple generalisation of Lemma 6.45 to a transformation
on n qubits.

Corollary 6.47. Any sequence of LC operations is equivalent to a single trans-
formation from {I,H,N}n followed by some transformation from Dn of the
form

F = wa

(
n−1⊗

k=0

ρbk

4

)(
n−1⊗

l=0

σcl
x

)
, (6.35)

where w4 = −1, a ∈ Z8, bk ∈ Z4, and cl ∈ Z2.

Definition 6.48. A function f : Zn
2 → Zm, where m ∈ N, can be described

by the truth table t or the algebraic normal form a, both being vectors of
length 2n with coefficients from Zm. The generalised algebraic normal form
transformation, ANFTm, can be used to transform t into a and vice versa. To
transform a truth table into ANF, we use

a =

(
n−1⊗

k=0

(
1 0

m− 1 1

))
t (mod m). (6.36)

Transformation from ANF to truth table is performed by

t =

(
n−1⊗

k=0

(
1 0
1 1

))
a (mod m). (6.37)

If s = 2−
n
2 (−1)f(x) and S = Us is flat for some choice of U ∈ {I,H,N}n,

then we can recover the function S = wg(x) by using ANFT8. By separating
the monomials of g(x) that are divisible by 4 and those that are not, we can
write S = w4f ′(x)+h(x), where f ′ is a Boolean function, h is any function from
Z

n
2 to Z8, and w4 = −1. If h(x) is an affine function, it can be shown that

the coefficients of all its linear terms must be divisible by two. We can then
eliminate h(x) by post-multiplication with a transformation F of the form given
by (6.33), and get FS = (−1)f ′(x).

63

6 Quantum Codes and Boolean Functions

Definition 6.49. Given a Boolean function f , find the set of all Boolean flat
{I,H,N}n transforms of f , and recover the corresponding Boolean functions.
The set of all distinct Boolean functions recovered from the set of all {I,H,N}n
transforms of f , including f itself, is called the {I,H,N}n orbit of f .

Corollary 6.50. By Theorem 6.40, if f is quadratic then the {I,H,N}n orbit
is the LC orbit.

Theorem 6.51. It can be shown [15] that if two Boolean functions are in the
same {I,H,N}n orbit, then they will have the same APC distance.

Example 6.52. Consider the Boolean function f(x) = x0x1 + x0x2. The
bipolar vector describing the corresponding quantum state, if we ignore the
normalisation factor 2−

3
2 , is

s = (−1)f(x) = (1, 1, 1,−1, 1,−1, 1, 1)T .

We apply the transformation U = N ⊗ I ⊗ I and get the result

S = Us = (w,w7, w7, w, w7, w, w,w7)T ,

where w4 = −1. We observe that |Sk| = 1 for all k, which means that S is
flat and can be expressed as wg(x), where the function g : Z3

2 → Z8 has truth
table (1, 7, 7, 1, 7, 1, 1, 7)T . Using ANFT8, as described by (6.36), we find that
the ANF of g is (1, 6, 6, 4, 6, 4, 4, 0)T , and we can therefore write

S = w4(x0x1+x0x2+x1x2)+(6x0+6x1+6x2+1).

We observe that S is Boolean flat, since the terms that are not divisible by 4
are all linear or constant. We also see that all linear terms are divisible by 2,
which, by Proposition 6.44, we should expect. We can eliminate all linear and
constant terms by applying a transformation as described by (6.33), in this case
we must use the transformation

F = w7

(
1 0
0 i

)
⊗
(

1 0
0 i

)
⊗
(

1 0
0 i

)
.

We get the result
FS = (−1)x0x1+x0x2+x1x2 .

We can conclude that f(x) = x0x1 + x0x2 and f ′(x) = x0x1 + x0x2 + x1x2

are in the same {I,H,N}n orbit, and since they are quadratic functions, the
same LC orbit. This can be verified by applying the LC operation to the vertex
corresponding to the variable x0 in the graph representation of either function.

6.5 Orbits of Boolean Functions

For quadratic Boolean functions, LC operations on the associated graphs gen-
erate the orbits of equivalent functions. It is unknown whether there exists a
similar operation on hypergraphs that generates the orbits of equivalent non-
quadratic functions, but the {I,H,N}n orbit can be generated for Boolean
functions of any degree. For non-quadratic functions, there are also other sym-
metries that must be considered.

We have already seen that permuting the variables of a Boolean function
gives an equivalent function,

f(x0, x1, . . . , xn−1) ≃ f(xπ(0), xπ(1), . . . , xπ(n−1)). (6.38)

64

6.5 Orbits of Boolean Functions

Table 6.1: Number of Orbits of Boolean Functions of n Variables

n Degrees |O1,n| |O2,n|
3 All 3 2
4 All 33 29
5 All 22,400 22,014
6 ≤ 3 850,705 746,326

We can determine whether two functions are equivalent via the permutation
symmetry by checking if their corresponding graphs are isomorphic. For non-
quadratic functions we must check for hypergraph isomorphism. The package
nauty can be used in both cases, as described in section 3.2.

Adding an affine offset to a Boolean function, i.e., adding any linear or con-
stant terms, will not change the APC distance of the associated quantum state.
We call this the affine symmetry,

f(x) ≃ f(x) + b · x + c, b ∈ Z
n
2 , c ∈ Z2. (6.39)

Note that the addition of linear terms corresponds to the phase-flip operation
defined in (6.26). Similarly, all bit-flips on a Boolean function will produce an
equivalent function. This is the bit-flip symmetry,

f(x) ≃ f(x + a), a ∈ Z
n
2 . (6.40)

The affine symmetry may be taken into consideration by simply deleting any
linear or constant terms from a Boolean function. We have implicitly done this
for quadratic functions by only considering simple graphs.

Remark. A bit-flip on a Boolean function of degreem can change the coefficients
of terms with degree at most m− 1.

Bit-flips on quadratic functions can only produce linear terms, which is also
what phase-flips do. Therefore the affine symmetry and bit-flip symmetry coin-
cide for quadratic functions. For non-quadratic functions, bit-flips can produce
nonlinear terms, and the bit-flip symmetry may therefore generate non-trivial
orbits of functions.

Definition 6.53. Let Bn be the set of all non-isomorphic connected Boolean
functions of n variables with no linear or constant terms. (Two Boolean func-
tions are isomorphic or connected if their corresponding hypergraphs are iso-
morphic or connected.) Given a Boolean function f ∈ Bn, then the set of all
distinct non-isomorphic Boolean functions recovered from the set of {I, σx}n
transforms of f , with linear and constant terms removed, is called the {I, σx}n
orbit of f . Bn can be partitioned into a set of disjoint {I, σx}n orbits, called
O1,n. |O1,n| is then the number of inequivalent connected Boolean functions of
n variables with respect to the permutation, affine, and bit-flip symmetries.

We have generated all orbits in O1,n for n ≤ 5. For 6 variables, we could
only generate orbits for all functions of degree up to 3. For these values of n,
Table 6.1 gives the number of orbits, while Table 6.2 and Table 6.4 show the
number of orbits by APC distance and degree for n = 5 and n = 6. A database
containing one representative of each orbit is also available [13].

Orbits of non-quadratic functions with respect to {I,H,N}n can not be gen-
erated without also considering bit-flips, since it follows from the identities
in (6.34) that a sequence of transformations from the set {I,H,N} may induce

65

http://www.ii.uib.no/~larsed/nonquad/

6 Quantum Codes and Boolean Functions

bit-flips. For instance, applying first H and then N to one variable is equiva-
lent to performing a bit-flip on the variable. The set M of Boolean functions
found within the set of {I,H,N}n transforms of the non-quadratic Boolean
function f will therefore contain some members of the {I, σx}n orbit of f . If
f ′ is found in M , then {I,H,N}n transforms of f ′ may induce bit-flips that
produce functions not found in M .

Definition 6.54. Given a non-quadratic Boolean function f , it follows from
Theorem 6.46 that a closed orbit of functions may be generated by first finding
the setM of all distinct Boolean functions recovered from {I,H,N}n transforms
of f . We then generate M ′, containing all functions in the {I, σx}n orbits of
every function in M . The set of non-isomorphic functions in M ′, with linear
and constant terms removed, is the {I, σx}n{I,H,N}n orbit of f . Bn can be
partitioned into a set of disjoint {I, σx}n{I,H,N}n orbits, called O2,n. |O2,n|
is then the number of inequivalent connected Boolean functions of n variables
with respect to the permutation, affine, bit-flip, and {I,H,N} symmetries.

Algorithm 6.3 can be used to generate all members of the {I, σx}n{I,H,N}n
orbit of the Boolean function f . It first finds all inequivalent Boolean functions
corresponding to {I,H,N}n transforms of f , and then generates the {I, σx}n
orbits of all these functions. When we only want to generate the {I, σx}n orbit
of a function, we use the same algorithm but skip the first loop. When we want
to count the orbits in O1,n or O2,n, or find a member of each orbit, we use
an approach similar to the one used in Algorithm 5.2. By picking a canonical
representative of each orbit, we canonise all Boolean functions in Bn and re-
move all duplicates. This can be done much faster by using a generalisation of
Definition 5.9, i.e., by generating a set of functions of n variables by extending
one member from each orbit of functions of n − 1 variables, and then using
this set of functions as input to the above-mentioned canonisation algorithm.
A function is extended by adding a variable and all combinations of monomials
including this variable.

We use Algorithm 6.1 to find {I,H,N}n transforms or {I, σx}n transforms of
a Boolean function. Note that we can skip iterations of Algorithm 6.1 where the
identity transformation is applied. It is possible to order any set of transforma-
tions, T n, such that only one factor of each n-fold tensor product changes from
one transformation to the next. By using some additional temporary transfor-
mation matrices, it is then possible to find all T n transforms of a function by
only using |T |n single iterations of Algorithm 6.1. A Gray code sequence gives
an ordering of transformations that makes this possible.

Definition 6.55. Given a sequence s of length n, let s′ = rev(s) be the se-
quence s in reversed order, i.e., s′i = sn−1−i. We also define s′ = pre(c, s),
where c ∈ Zn. If c is even, then s′ consists of all elements from s with the pre-
fix c added, e.g., pre(0, (0, 1, 2)) = (00, 01, 02). If c is odd, then s′ consists of all
elements from rev(s) with the prefix c added, e.g., pre(1, (0, 1, 2)) = (12, 11, 10).
Let conc({s1, s2, . . . , sm}) be the concatenation of all sequences si to a single
sequence.

Definition 6.56. The n-ary Gray code sequence of order r, denoted qn,r, con-
tains all nr elements from Zr

n. The sequence has the property that any two
consecutive elements have the same symbol in r− 1 positions, so that only one
symbol needs to be changed to jump from one element of qn,r to the next. A
Gray code sequence can be constructed recursively,

qn,1 = (0, 1, . . . , n− 1) (6.41)

qn,r = conc
(
{pre(c, qn,r−1) | c ∈ Zn}

)
. (6.42)

66

6.5 Orbits of Boolean Functions

Example 6.57. We want to find the 9 {I,H,N}2 transforms of some Boolean
function f of 2 variables. We generate the Gray code sequence q3,2 = (00, 01,
02, 12, 11, 10, 20, 21, 22). By the mapping 0 7→ I, 1 7→ H , and 2 7→ N , we get
the following sequence of transformations, (I⊗ I, I⊗H , I⊗N , H⊗N , H⊗H ,
H ⊗ I, N ⊗ I, N ⊗ H , N ⊗ N). To jump from H to N , N to H , and N to
I, we need the temporary transform matrices NH−1, HN−1, and N−1. (Note
that H−1 = H .) The sequence of transformations we will use is then (I ⊗ I,
I ⊗ H , I ⊗ NH−1, H ⊗ I, I ⊗ H , I ⊗ H , N ⊗ I, I ⊗ H , I ⊗ NH−1), where
only the first transformation is applied to the function f , and the subsequent
transformations are applied to the transform from the previous step, so that
the cumulative effect gives the desired result.

Using Algorithm 6.3, we have generated all orbits in O2,n for n ≤ 5, and
also the orbits of functions of 6 variables with degree up to 3. For these values
of n, Table 6.1 gives the number of orbits, while Table 6.3 and Table 6.5 show
the number of orbits by APC distance and degree. A database containing one
representative of each orbit is also available [13]. The numbers of inequiva-
lent functions are not reduced considerably when the {I,H,N} symmetry is
considered in addition to bit-flips, but the difference in orbit size is larger for
functions with low degree and high APC distance. Recall that for quadratic
functions, bit-flips only generate affine offsets. For functions of high degree,
bit-flips account for almost all symmetries.

Remark. There are no non-quadratic functions of 5 or less variables with APC
distance higher than 2, but there are 11 functions of 6 variables, belonging to
different orbits in O2,6, with degree 3 and APC distance 3.

A representative of each of the 11 inequivalent non-quadratic [[6, 0, 3]] quan-
tum codes is listed in Table 6.6. The first function in this table corresponds to
the hypergraph shown in Figure 6.2. The table also gives examples of codes
of higher length found by non-exhaustive searches of functions with a lim-
ited number of non-quadratic terms, or by adding several higher degree terms
to strong quadratic codes. The functions in Table 6.6 all belong to different
{I, σx}n{I,H,N}n orbits, and the representative from each orbit with fewest
monomials is listed. The table also gives the value of PARIHN of each function.
PARIHN will be introduced in the next chapter.

67

http://www.ii.uib.no/~larsed/nonquad/

6 Quantum Codes and Boolean Functions

Algorithm 6.3 Generating an {I, σx}n{I,H,N}n Orbit

Input f : a Boolean function
n: the number of variables of f

Output L: the set of all Boolean functions in the orbit of f

procedure GenerateOrbit(f , n)
s← bipolar truth table of f
for all transformations U ∈ {I,H,N}n do ⊲ use Gray code ordering

s′ ← Us ⊲ use single iteration of Algorithm 6.1
s′′ ← Z8-ANF corresponding to s′ ⊲ use ANFT8

if s′′ is Boolean flat then

f ′ ← Boolean function corresponding to s′′

Remove all linear and constant terms from f ′

f ′′ ← NautyCanonise(f ′) ⊲ use hypergraph canonisation
if f ′′ 6∈ L then

Add(L, f ′′)
end if

end if

end for

for all functions g ∈ L do

s← bipolar truth table of g
for all transformations U ∈ {I, σx}n do ⊲ use Gray code ordering

s′ ← Us ⊲ use single iteration of Algorithm 6.1
g′ ← ANF corresponding to s′

Remove all linear and constant terms from g′

g′′ ← NautyCanonise(g′) ⊲ use hypergraph canonisation
if g′′ 6∈ L then

Add(L, g′′)
end if

end for

end for

return L

end procedure

68

6.5 Orbits of Boolean Functions

Table 6.2: Number of Orbits in O1,5 with APC Distance d and Degree δ

δ

d 2 3 4 5 All

1 625 10,756 10,688 22,069
2 18 109 201 328
3 3 3

All 21 734 10,957 10,688 22,400

Table 6.3: Number of Orbits in O2,5 with APC Distance d and Degree δ

δ

d 2 3 4 5 All

1 505 10,570 10,688 21,763
2 3 61 186 250
3 1 1

All 4 566 10,756 10,688 22,014

Table 6.4: Number of Orbits in O1,6 with APC Distance d and Degree δ

δ

d 2 3 4 5 6 2 and 3

1 804,326 ? ? ? 804,326
2 94 46,243 ? ? ? 46,337
3 16 24 ? ? ? 40
4 2 ? ? ? 2

All 112 850,593 ? ? ? 850,705

Table 6.5: Number of Orbits in O2,6 with APC Distance d and Degree δ

δ

d 2 3 4 5 6 2 and 3

1 717,741 ? ? ? 717,741
2 9 28,563 ? ? ? 28,572
3 1 11 ? ? ? 12
4 1 ? ? ? 1

All 11 746,315 ? ? ? 746,326

69

6 Quantum Codes and Boolean Functions

Table 6.6: Boolean Functions of n Variables with Degree δ, APC Distance d, and
PARIHN p

n δ d p Function

6 3 3 8 012, 03, 04, 13, 15, 24, 25
6 3 3 4.5 012, 03, 05, 14, 15, 23, 24, 25, 34
6 3 3 4.5 023, 012, 04, 05, 13, 15, 23, 24, 25, 34
6 3 3 8 123, 124, 125, 01, 02, 14, 25, 34, 35, 45
6 3 3 4.5 012, 013, 03, 04, 13, 15, 24, 25, 34, 35, 45
6 3 3 4.5 012, 013, 014, 03, 05, 14, 15, 23, 24, 25, 34
6 3 3 4.5 012, 014, 024, 123, 134, 234, 03, 13, 15, 24, 25, 34, 45
6 3 3 8 015, 012, 013, 014, 03, 05, 14, 15, 23, 24, 25, 34, 35, 45
6 3 3 8 025, 245, 012, 124, 023, 234, 04, 05, 13, 15, 23, 24, 35, 45
6 3 3 4.5 245, 235, 145, 135, 024, 023, 014, 013, 02, 05, 14, 15, 23, 34, 35, 45
6 3 3 8 125, 145, 135, 245, 235, 012, 014, 013, 024, 023, 05, 13, 15, 24, 25, 34

7 3 3 8 012, 03, 05, 14, 16, 25, 26, 34
7 3 3 8 014, 02, 05, 13, 15, 26, 36, 45, 46
7 3 3 8 014, 02, 05, 13, 16, 26, 35, 45, 46
7 3 3 8 015, 02, 06, 13, 16, 25, 35, 45, 46
7 3 3 8 012, 03, 06, 14, 16, 25, 26, 34, 35, 45
7 3 3 9 012, 04, 05, 14, 16, 25, 26, 34, 35, 36
7 3 3 8 013, 04, 06, 15, 16, 23, 26, 34, 35, 45
7 3 3 9 013, 04, 06, 15, 16, 24, 25, 34, 35, 36
7 3 3 16 456, 04, 05, 14, 16, 25, 26, 34, 35, 36
7 3 3 8 024, 045, 01, 03, 12, 26, 35, 45, 46, 56
7 3 3 8 012, 03, 06, 14, 15, 24, 25, 26, 35, 36, 46
7 3 3 9 012, 05, 06, 13, 15, 23, 26, 34, 45, 46, 56
7 3 3 8 012, 05, 06, 13, 15, 24, 26, 34, 35, 46, 56
7 3 3 8 016, 02, 03, 14, 15, 24, 26, 35, 36, 46, 56
7 3 3 8 012, 03, 05, 14, 15, 23, 24, 26, 36, 46, 56
7 3 3 8 035, 025, 023, 06, 13, 15, 16, 24, 25, 26, 34, 36, 45
7 3 3 8 013, 023, 123, 012, 04, 05, 14, 16, 25, 26, 34, 35, 36
7 4 3 12.25 0123, 04, 05, 14, 16, 25, 26, 34, 35, 36
7 4 3 8 0126, 03, 05, 14, 15, 23, 24, 26, 36, 46, 56

8 3 4 16 012, 04, 05, 07, 14, 16, 17, 25, 26, 27, 34, 35, 36
8 3 4 16 016, 02, 03, 04, 12, 13, 15, 27, 36, 46, 47, 56, 57, 67
8 3 4 8 067, 01, 02, 03, 14, 16, 25, 27, 36, 37, 46, 47, 56, 57
8 3 4 9 234, 02, 03, 05, 12, 13, 14, 26, 37, 46, 47, 56, 57, 67
8 3 4 8 024, 046, 01, 03, 05, 12, 14, 25, 27, 34, 36, 46, 47, 56, 57, 67
8 3 4 8 127, 126, 067, 01, 02, 03, 14, 16, 25, 27, 36, 37, 46, 47, 56, 57
8 3 4 8 456, 056, 246, 026, 245, 025, 04, 07, 15, 16, 17, 23, 26, 27, 35, 36, 45, 46, 47, 57
8 4 4 16 0123, 04, 05, 06, 14, 15, 17, 24, 26, 27, 35, 36, 37
8 4 4 16 0167, 02, 03, 04, 12, 13, 15, 26, 37, 46, 47, 56, 57, 67

9 3 4 8 016, 02, 04, 07, 13, 15, 18, 23, 26, 36, 45, 47, 58, 67, 68, 78
9 3 4 9 235, 234, 02, 04, 06, 13, 15, 16, 26, 28, 36, 37, 47, 48, 57, 58, 78
9 3 4 8 037, 137, 034, 134, 01, 07, 08, 14, 18, 23, 25, 28, 36, 37, 45, 46, 57, 58, 67, 68
9 3 4 16 024, 124, 047, 147, 02, 05, 08, 15, 17, 18, 23, 26, 34, 37, 38, 46, 47, 48, 56, 58, 67
9 3 4 16 234, 023, 124, 012, 03, 06, 08, 14, 17, 18, 23, 24, 25, 37, 38, 46, 48, 56, 57, 58, 67

10 3 4 16 016, 02, 03, 08, 12, 13, 17, 26, 39, 45, 46, 48, 57, 59, 67, 68, 79, 89

70

Chapter 7
Peak-to-Average Power Ratio

7.1 Peaks and Independent Sets

Definition 7.1. The peak-to-average power ratio of the vector s with respect
to the T n transform, for some transform set T = {T1, T2, . . . , Tm}, is defined
as

PART (s) = 2n max
U∈T n

k∈Z2n

|Sk|2, (7.1)

where S = Us. In other words, the PART of s is the highest squared magnitude
of the (2m)n coefficients in the T n spectrum of s.

The PART of s can alternatively be expressed in terms of the generalised
nonlinearity [37],

γ(f) = 2
n
2
−1
(
2

n
2 −

√
PART (s)

)
, (7.2)

but we will use the PART measure. We will in particular study PARIHN , the
peak-to-average power ratio with respect to the {I,H,N}n transform [16]. If a
vector, s, has a completely flat {I,H,N}n spectrum, which is impossible [51],
then PARIHN (s) = 1. If s = 2−

n
2 (1, 1, . . . , 1, 1)T then PARIHN (s) = 2n. A

typical vector, s, will have a PARIHN (s) somewhere between these extremes.
For quadratic functions, PARIHN will always be a power of 2 [52].

Let s = 2−
n
2 (−1)f(x), as before. When we talk about the PARIHN of f ,

or its associated graph G, we mean PARIHN (s). For cryptographic purposes,
it is desirable to find Boolean functions with high generalised nonlinearity and
therefore low PARIHN . PARIHN is an invariant of the {I, σx}n{I,H,N}n
orbit and, for quadratic functions, the LC orbit. We observe that Boolean
functions from LC orbits associated with self-dual additive codes over GF(4)
with high distance typically have low PARIHN . This is not surprising, since
the distance of a self-dual quantum code is equal to the APC distance of the
associated quadratic Boolean function, and APC is derived from the fixed-
aperiodic autocorrelation which is, in turn, the autocorrelation “dual” of the
spectra with respect to {I,H,N}n. Table 7.1 shows the value of PARIHN for
every LC orbit of codes with length n ≤ 12.

Definition 7.2. Let α(G) be the independence number of a graph G, i.e., the
size of the maximum independent set in G. Let [G] be the set of all graphs in
the LC orbit of G. We then define

λ(G) = max
K∈[G]

α(K), (7.3)

71

7 Peak-to-Average Power Ratio

Table 7.1: Number of LC Orbits with Length n and PARIHN p

n

p 1 2 3 4 5 6 7 8 9 10 11 12

2 1 1
4 1 1 1 1
8 1 2 5 6 9 2 1

16 1 4 14 52 156 624 3,184 12,323
32 1 5 32 212 1,753 25,018 834,256
64 1 7 60 639 10,500 380,722

128 1 9 103 1,578 43,013
256 1 11 163 3,488
512 1 13 249

1024 1 16
2048 1

Table 7.2: Range of λ for Codes of Length n and Distance d

n

d 2 3 4 5 6 7 8 9 10 11 12

2 1 2 2,3 3,4 3–5 3–6 3–7 4–8 4–9 4–10 4–11
3 2 3 3,4 3,4 3–5 4–6 4–7 4–8
4 2 3,4 3,4 3–5 4–6 4–7
5 4 4
6 4

i.e., λ is the size of the maximum independent set over all graphs in the LC
orbit of G.

Consider as an example the Hexacode which has two non-isomorphic graphs
in its orbit, as seen in Figure 3.2 on page 22. It is evident that the independence
number of each graph is 2, so λ = 2. The values of λ for all LC orbits for n ≤ 12
clearly show that λ and d, the distance of the associated self-dual additive
code over GF(4), are related. LC orbits associated with codes of high distance
typically have small values for λ. Table 7.2 summarises this observation by
listing the ranges of λ observed for all LC orbits associated with codes of given
lengths and distances. For instance, [[12, 0, 2]] codes exist with any value of λ
between 4 and 11, while [[12, 0, 5]] and [[12, 0, 6]] codes only exist with λ = 4.

Definition 7.3. Let Λn be the minimum value of λ over all LC orbits of graphs
on n vertices, i.e,

Λn = min
[G]∈Ln

λ(G). (7.4)

From Table 7.2 we observe that Λn = 2 for n from 3 to 6, Λn = 3 for n from
7 to 10, and Λn = 4 when n is 11 or 12.

Proposition 7.4. Λn+1 ≥ Λn, i.e., Λn is monotonically nondecreasing when
n is increasing.

Proof. Consider a graph G = (V,E) with n+ 1 vertices. Select a vertex v and
let G′ be the induced subgraph on the n vertices V \{v}. We generate the LC
orbit of G′. The LC operations may add or remove edges between G′ and v,

72

7.1 Peaks and Independent Sets

Table 7.3: Values of Λn for n ≤ 14 and Bounds on Λn for n ≤ 21

n Λn

2 1
3 2
4 2
5 2
6 2
7 3
8 3
9 3
10 3
11 4
12 4
13 4
14 4
15 4–5
16 4–5
17 4–5
18 4–6
19 4–6
20 4–6
21 4–9

but the presence of v does not affect the LC orbit of G′. The size of the largest
independent set in the LC orbit of G′ is at least Λn. This is also an independent
set in the LC orbit of G, so Λn+1 ≥ Λn.

Definition 7.5. There is a number r = R(m,n), called a Ramsey number [45],
such that it is guaranteed that all simple undirected graphs on at least r vertices
will have either an independent set of size m or a clique of size n.

Proposition 7.6. If r is the Ramsey number R(k, k + 1), then Λn ≥ k for
n ≥ r.
Proof. Consider a graph containing a clique of size m. An LC operation on any
vertex in the clique will produce an independent set of size m − 1. Thus the
maximum clique in an LC orbit, where the largest independent set has size λ,
can not be larger than λ+1. Since r = R(k, k+1), it follows that all graphs on
at least r vertices must have λ ≥ k, and therefore that Λn ≥ k for n ≥ r.

For instance, the Ramsey number R(3, 4) is 9, so by Proposition 7.6, Λn ≥ 3
for n ≥ 9, which means that no LC orbit with at least 9 vertices can have λ
smaller than 3. Similarly, R(4, 5) = 25, so Λn ≥ 4 for n ≥ 25. For n from 13 to
21, we have computed the values of λ for some graphs corresponding to self-dual
additive codes over GF(4) with high distance. This gives upper bounds on the
value of Λn, as shown in Table 7.3. The bounds on Λ13 and Λ14 are tight, since
Λ12 = 4 and Λn+1 ≥ Λn. The bounds on Λn given by Proposition 7.6 are very
loose, since we can see from Table 7.3 that Λn ≥ 3 for n ≥ 7 and that Λn ≥ 4
for n ≥ 11. The connection to Ramsey theory is still interesting, and it may be
possible to improve the bound.

Remark. For n = 10, there is a unique LC orbit that satisfies, optimally, λ = 3,
PARIHN = 8 and d = 4. One of the graphs in this orbit is the graph complement
of the “double 5-cycle” graph, shown in Figure 7.1.

73

7 Peak-to-Average Power Ratio

Figure 7.1: The “Double 5-Cycle” Graph

Proposition 7.7 (Parker and Rijmen [40]). Given a graph G = (V,E) with a
maximum independent set A ⊂ V , |A| = α(G). Let s = (−1)f(x), where f is
the Boolean function representation of G. Let U =

⊗
k∈A H

(k)
⊗

k 6∈A I
(k), i.e.,

the transformation applying H to variables corresponding to vertices k ∈ A and
I to all other variables. Let S = Us. Then

max
m∈Z2n

|Sm|2 = 2α(G). (7.5)

Arratia et al. [2, 3] introduced the interlace polynomial q(G, z) of a graph G.
Aigner and van der Holst [1] later introduced the interlace polynomial Q(G, z).
Riera and Parker [52] showed that q(G, z) is related to the {I,H}n spectra of
the quadratic Boolean function corresponding to G, and that Q(G, z) is related
to the {I,H,N}n spectra.

Proposition 7.8 (Aigner and van der Holst [1]). The interlace polynomial
Q(G, z) can be defined recursively as

Q(G, z) = Q(G\u, z) + P (Gu\u, z) + P (((Gu)v)u\u, z), (7.6)

where Gu denotes the LC operation on vertex u of G, and G\u is the graph
obtained by removing vertex u and all edges incident on u from G.

Proposition 7.9 (Riera and Parker [52]). Let f be a quadratic Boolean function
and G its associated graph. Then PARIHN of f is equal to 2deg Q(G,z), where
degQ(G, z) is the degree of the interlace polynomial Q(G, z).

Aigner and van der Holst [1] proved that the degree of q(G, z) is equal to
the size of the maximum independent set in the switch-class of G, which is the
same as the {I,H}n orbit of G. This proof can be extended to show that the
degree of Q(G, z) equals λ, the size of the maximum independent set in the
{I,H,N}n orbit of G.

Theorem 7.10. If the maximum independent set over all graphs in the LC
orbit [G] has size λ(G), then all functions corresponding to graphs in the orbit
will have PARIHN = 2λ(G).

Proof. Let us for brevity define P (G) = PARIHN (s), where s = 2−
n
2 (−1)f(x),

and f(x) is the Boolean function representation of G. From Proposition 7.7
it follows that P (G) ≥ 2λ(G). Choose K = (V,E) ∈ [G] with α(K) = λ(G).
If |V | = 1 or 2, the theorem is true. We will prove the theorem for n > 2
by induction on |V |. We will show that P (K) ≤ 2α(K), which is equivalent to
saying that P (G) ≤ 2λ(G). It follows from Proposition 7.8 and Proposition 7.9
that P (K) = max{P (K\u), P (Ku\u), P (((Ku)v)u\u)}. Assume, by induction
hypothesis, that P (K\u) = 2λ(K\u). Therefore, P (K\u) = 2α(K\u) for some

74

7.2 Constructions for Low PAR

K\u ∈ [K\u]. Note that K\u ∈ [K\u] implies K ∈ [K]. It must then be true
that α(K\u) ≤ α(K) ≤ α(K), and it follows that P (K\u) ≤ 2α(K). Similar
arguments hold for P (Ku\u) and P (((Ku)v)u\u), so P (K) ≤ 2α(K).

As an example, the Hexacode has λ = 2 and therefore PARIHN = 22 = 4.
The vector containing the highest peak can be found by taking either of the
two graphs in the LC orbit, since both have independence number λ, and then
by applying the H transformation to all variables corresponding to vertices in
an independent set of size λ and the I transformation to all other variables.

Corollary 7.11. Any quadratic Boolean function on n or more variables must
have PARIHN ≥ 2Λn .

Definition 7.12. PARU is the peak-to-average power ratio with respect to the
infinite transform set Un, where U consists of matrices of the form

U =

(
cos θ sin θeiφ

sin θ − cos θeiφ

)
,

where i2 = −1, and θ and φ can take any real values. U comprises all 2 × 2
unitary transforms to within a post-multiplication by a matrix from D, the set
of 2 × 2 diagonal and anti-diagonal unitary matrices. (Note that Parker and
Rijmen [40] refer to PARU as PARl.)

Theorem 7.13 (Parker and Rijmen [40]). If s corresponds to a bipartite graph,
then PARU(s) = PARIH(s), where PARIH is the peak-to-average power ratio
with respect to the transform set {I,H}n.

It is obvious that {I,H}n ⊂ {I,H,N}n ⊂ Un, and it follows that PARIH ≤
PARIHN ≤ PARU . We then get the following corollary of Theorem 7.10 and
Theorem 7.13.

Corollary 7.14. If an LC orbit, [G], contains a bipartite graph, then all func-
tions corresponding to graphs in the orbit will have PARU = 2λ(G).

All LC orbits with a bipartite member have PARIHN = PARU , but note

that these orbits will always have PARU ≥ 2⌈n
2 ⌉ [40], and that the fraction of

LC orbits which have a bipartite member appears to decrease exponentially as
the number of vertices increases. In the general case, PARIHN is only a lower
bound on PARU . For example, the Hexacode has PARIHN = 4, but a tighter
lower bound on PARU is 4.486 [40]. (This bound has later been improved to
5.103 [39].)

7.2 Constructions for Low PAR

So far we have only considered the PARIHN of quadratic Boolean functions. For
cryptographic purposes, we are interested in Boolean functions of degree higher
than 2. As shown in section 6.3, such functions correspond to hypergraphs and
non-quadratic quantum codes. Table 6.6 on page 70 gives the value of PARIHN

for some non-quadratic Boolean functions with high APC distance. Many of
these functions have the same PARIHN as the best quadratic functions, but no
non-quadratic function with lower PARIHN than the best quadratic functions
has yet been found. Exhaustive searching for non-quadratic Boolean functions
with low PARIHN becomes infeasible for more than a few variables. We there-
fore propose a construction technique using the best quadratic functions as

75

7 Peak-to-Average Power Ratio

Table 7.4: Sampled Range of PARIHN for Length (n) from 6 to 10

n Samples Range of PARIHN

6 50,000 6.5–25.0
7 20,000 9.0–28.125
8 5,000 12.25–28.125
9 2,000 14.0625–30.25
10 1,000 18.0–34.03

γ2

θ2

x5

x4

x0 x3

x6

γ1θ0

γ0 θ1

x1

x2

Figure 7.2: Example of Construction for PARHN ≤ 8

building blocks [16]. Before we describe our construction we must first state
what we mean by “low PARIHN”. For n = 6 to n = 10 we computed PARIHN

for samples from the space Z2n

2 , to determine the range of PARIHN we can
expect just by guessing. Table 7.4 summarises these results. If we can con-
struct Boolean functions with PARIHN lower than the sampled minimum, we
can consider our construction to be somewhat successful.

Parker and Tellambura [41, 42] proposed a generalisation of the Maiorana-
McFarland construction for Boolean functions that satisfies a tight upper bound
on PAR with respect to the {H,N}n transform (and other transform sets), this
being a form of Golay Complementary Set construction and a generalisation of
the construction of Rudin and Shapiro and of Davis and Jedwab [17].

Construction 7.15. Let p(x) be a Boolean function on n =
∑L−1

j=0 tj variables,
where T = {t0, t1, . . . , tL−1} is a set of positive integers and x ∈ Zn

2 . Let

yj ∈ Z
tj

2 , 0 ≤ j < L, such that x = y0 × y1 × · · · × yL−1. Construct p(x) as
follows.

p(x) =
L−2∑

j=0

θj(yj)γj(yj+1) +
L−1∑

j=0

gj(yj), (7.7)

where θj is a permutation: Z
tj

2 → Z
tj+1

2 , γj is a permutation: Z
tj+1

2 → Z
tj

2 ,
and gj is any Boolean function of tj variables. It has been shown [42] that the
function p(x) will have PARHN ≤ 2tmax , where tmax is the largest integer in
T . It is helpful to visualise this construction graphically, as in Figure 7.2. In
this example, the size of the largest partition is 3, so PARHN ≤ 8, regardless
of what choices we make for θj , γj , and gj.

Observe that if we set L = 2, t = t0 = t1, let θ0 be the identity permutation,
and g0 = 0, Construction 7.15 reduces to the Maiorana-McFarland construction
over 2t variables. Construction 7.15 can also be viewed as a generalisation of
the path graph, f(x) = x0x1 + x1x2 + · · ·+ xn−2xn−1, which has optimal PAR
with respect to {H,N}n. Unfortunately, the path graph is not a particularly
good construction for low PARIHN . But as we have seen, graphs corresponding
to self-dual additive codes over GF(4) with high distance do give us Boolean
functions with low PARIHN .

76

7.2 Constructions for Low PAR

Construction 7.16. We propose the generalised construction,

p(x) =

L−1∑

i=0

L−1∑

j=i+1

Γi,j(yi)Γj,i(yj) +

L−1∑

j=0

gj(yj), (7.8)

where Γi,j is either a permutation: Z
ti

2 → Z
tj

2 , or Γi,j = 0, and gj is any Boolean
function on tj variables.

It is evident that Γ can be thought of as a “generalised adjacency matrix”,
where the entries, Γi,j , are no longer 0 or 1 but, instead, 0 or permutations from

Z
ti

2 to Z
tj

2 . Construction 7.15 then becomes a special case where Γi,j = 0 except
for when j = i+ 1, i.e., a “generalised adjacency matrix” of the path graph. In
order to minimise PARIHN we choose the form of the matrix Γ according to the
adjacency matrix of a self-dual additive code over GF(4) with high distance.
We also choose the “offset” functions, gj , to be Boolean functions correspond-
ing to self-dual additive codes over GF(4) with high distance. Finally for the
non-zero Γi,j entries, we choose selected permutations, preferably nonlinear to
increase the overall degree. Here are some initial results which demonstrate
that, using Construction 7.16, we can construct Boolean functions of algebraic
degree greater than 2 with low PARIHN .

Example 7.17 (n = 8). Use the Hexacode graph f = 01, 02, 03, 04, 05, 12,
23, 34, 45, 51 as a template. Let t0 = 3, t1 = t2 = t3 = t4 = t5 = 1. (See
Figure 7.3.) We use the following matrix Γ.

Γ =

0 02, 1 02, 1 02, 1 02, 1 02, 1
3 0 3 0 0 3
4 4 0 4 0 0
5 0 5 0 5 0
6 0 0 6 0 6
7 7 0 0 7 0

Let g0(y0) = 01, 02, 12 and all other gj any arbitrary affine functions. Then,
using Construction 7.16 to construct p(x) we get p(x) = 023, 024, 025, 026,
027, 01, 02, 12, 13, 14, 15, 16, 17, 34, 37, 45, 56, 67. It can be verified that p(x)
has PARIHN = 9.0.

Example 7.18 (n = 8). Use the Hexacode graph f = 01, 02, 03, 04, 05, 12,
23, 34, 45, 51 as a template. Let t0 = 3, t1 = t2 = t3 = t4 = t5 = 1. (See
Figure 7.3.) We use the following matrix Γ.

Γ =

0 02, 1 12, 0, 1, 2 01, 02, 12, 1, 2 01, 02, 12 02, 12, 1, 2
3 0 3 0 0 3
4 4 0 4 0 0
5 0 5 0 5 0
6 0 0 6 0 6
7 7 0 0 7 0

Let g0(y0) = 01, 12 and all other gj any arbitrary affine functions. Then, using
Construction 7.16 to construct p(x) we get p(x) = 015, 016, 023, 025, 026, 027,
124, 125, 126, 127, 01, 04, 12, 13, 14, 15, 17, 24, 25, 27, 34, 37, 45, 56, 67, where
p(x) has PARIHN = 9.0.

77

7 Peak-to-Average Power Ratio

x7 x4

x3

x5x6

x0

x2

x1

Γ0,1

Γ0,2

Γ2,0

Γ4,3 Γ3,4

Γ3,2

Γ2,3

Γ1,5

Γ5,4

Γ4,5

Γ1,2

Γ2,1Γ5,1

Γ4,0

Γ0,4

Γ1,0

Γ0,3

Γ3,0

Γ5,0 Γ0,5

Figure 7.3: Example of Construction for Low PARIHN

x0

x2

x1

x3

x4

x5

x6

x7

x8

Γ0,2

Γ2,0 Γ2,1

Γ1,2

Γ0,1 Γ1,0

Figure 7.4: Example of Construction for Low PARIHN

Example 7.19 (n = 9). Use the triangle graph f = 01, 02, 12 as a template.
Let t0 = t1 = t2 = 3. (See Figure 7.4.) Assign the permutations

Γ0,1 = Γ0,2 = (12, 0, 1, 2)(01, 2)(02, 1, 2),

Γ1,0 = (34, 5)(35, 4, 5)(45, 3, 4, 5),

Γ1,2 = (45, 3, 4, 5)(34, 5)(35, 4, 5),

Γ2,0 = (68, 7, 8)(78, 6, 7, 8)(67, 8),

Γ2,1 = (78, 6, 7, 8)(67, 8)(68, 7, 8).

Let g0(y0) = 01, 02, 12, g1(y1) = 34, 35, 45, and g2(y2) = 67, 68, 78. Then,
using Construction 7.16 to construct p(x) we get, p(x) = 0135, 0178, 0245,
0267, 1234, 1268, 3467, 3568, 4578, 014, 015, 016, 017, 018, 023, 024, 025, 028,
034, 068, 125, 127, 128, 134, 145, 167, 168, 234, 235, 245, 267, 268, 278, 348,
357, 358, 378, 456, 457, 458, 468, 478, 567, 568, 578, 05, 07, 08, 13, 14, 17, 23,
25, 26, 28, 36, 37, 38, 46, 56, 58, 01, 02, 12, 34, 35, 45, 67, 68, 78, where p(x)
has PARIHN = 10.25.

The examples of our construction satisfy a low PARIHN . Further work should
ascertain the proper choice of permutations. Finally, there is an even more

78

7.3 Quantum Interpretations of Spectral Measures

obvious variation of Construction 7.16, suggested by the graphs of Figure 4.1,
where the functions gj are chosen either to be quadratic cliques or to be further
“nested” versions of Construction 7.16.

7.3 Quantum Interpretations of Spectral Measures

A quantum code with good error correcting capability must produce encoded
states that are highly entangled. The single quantum state corresponding to
a zero-dimensional quantum code of high distance must also be a highly en-
tangled state [30]. The distance of self-dual quantum codes, or more generally,
the APC distance of Boolean functions, may therefore be interpreted as en-
tanglement measures of the corresponding quantum states. No entanglement
measure is known that completely quantifies the degree of entanglement in a
pure multipartite quantum state of more than 3 qubits, and APC distance is
also only a partial measure.

The PARU of a vector s also gives information about the quantum state
with probability distribution vector s. We recall from section 2.1 that the
values |si|2, where i ∈ Z2n , are the probabilities of observing each of 2n basis
states in a particular measurement basis associated with s. The maximum
value of |si|2 over all i ∈ Z2n gives the probability of the most likely outcome
of a measurement in this particular measurement basis, and can therefore be
interpreted as a partial measure of the uncertainty of the quantum state. If
this value is high, the state has low uncertainty in this measurement basis. A
local unitary transformation corresponds to a change of measurement basis.
Local unitary transformations of the vector s are reversible and do not change
the overall entanglement properties of the corresponding quantum state, but
the measurement basis is changed, and the magnitudes of the coefficients of
s, and therefore the uncertainty, may also change. If we can apply any local
unitary transformation to s, i.e., use any measurement basis, what is the lowest
uncertainty, i.e., the highest probability of any basis state, we can achieve?
The answer to this question is simply the value of PARU(s), as defined in
Definition 7.12. Since PARIHN is a lower bound on PARU , it is also a lower
bound on the uncertainty of a quantum state, where uncertainty means the
highest probability of observing any basis state in any measurement basis.

Definition 7.20. Given an n-qubit quantum state |ψ〉, we can write

|ψ〉 =
R∑

i=1

ci |φi〉 , (7.9)

where ci ∈ C and |φi〉, for 1 ≤ i ≤ R, are R of the 2n basis states in a
particular measurement basis. Let r be the smallest possible value of R for any
measurement basis. The Schmidt measure of |ψ〉 is then given by

ES(|ψ〉) = log2(r). (7.10)

The Schmidt measure was defined by Eisert and Briegel [18] and later stud-
ied in the context of graph states by Hein, Eisert, and Briegel [30]. We can
also define the Schmidt measure in terms of the probability distribution vector
associated with a quantum state.

Definition 7.21. Let s be a complex-valued vector of length 2n corresponding
to the quantum state |ψ〉. Given a local unitary transform S = Us, where
U ∈ Un, we define R = |{Si 6= 0 | 0 ≤ i < n}|, i.e., the number of non-zero

79

7 Peak-to-Average Power Ratio

coefficients of S. Let r be the smallest possible value ofR for any transformation
U ∈ Un. The Schmidt measure of |ψ〉 is then ES(|ψ〉) = log2(r).

Proposition 7.22. Let |ψf 〉 be a bipolar quantum state described by the vector
s = 2−

n
2 (−1)f(x), where f is a quadratic Boolean function. We can then give

an upper bound on the Schmidt measure of |ψf 〉,

ES(|ψf 〉) ≤ n− log2(PARIHN (s)). (7.11)

Proof. It can be shown that the coefficients of any {I,H,N}n transform of a
quadratic Boolean function have only two different magnitudes [52]. It follows
that in the {I,H,N}n transform containing the highest spectral peak, all co-
efficients must either be zero or have the same magnitude as the peak, and
therefore that there must be 2n

PARIHN (s) non-zero coefficients.

By Theorem 7.10, (7.11) can also be expressed in terms of λ,

ES(|ψf 〉) ≤ n− λ(G), (7.12)

where G is the graph corresponding to s and λ(G) is the size of the maximum
independent set over the LC orbit of G. The size of the minimum vertex cover
of a graph G, denoted ν(G), is given by ν(G) = n − α(G), where α(G) is the
size of the maximum independent set of G. It was shown by Hein et al. [30]
that

ES(|ψf 〉) ≤ ν(G). (7.13)

Proposition 7.23. Let |ψf 〉 be a bipolar quantum state described by the vector
s = 2−

n
2 (−1)f(x), where f is any Boolean function. The Schmidt measure of

|ψf 〉 is then lower bounded by

ES(|ψf 〉) ≥ n− log2(PARU (s)). (7.14)

Proof. In this case, the transforms may have more than two different magni-
tudes. We do therefore not know how many non-zero coefficients the transform
with the highest peak has, but we know that no transform can have any co-
efficient with higher magnitude than PARU , and therefore that all transforms

must have at least
⌈

2n

PARU(s)

⌉
non-zero coefficients.

Corollary 7.24. It follows from Theorem 7.13 that if s = 2−
n
2 (−1)f(x) corre-

sponds to a bipartite graph G, then

ES(|ψf 〉) = n− log2(PARU (s)) = n− log2(PARIH(s)). (7.15)

When we look at non-quadratic Boolean functions, or when we use other
transform sets than {I,H,N}, the transforms may have more than two different
magnitudes. The connection between PAR and Schmidt measure in these cases
is not clear.

We recall that a Boolean function is called bent if its {H}n transform is
flat. Riera, Petrides, and Parker [51, 53] have proposed that this criteria can
be generalised by counting how many of the 6n {I,H,N}n transforms of a
Boolean function are flat. A high number of flat spectra indicates maximal
distance to a large subset of generalised affine functions, and a high number of
maximum uncertainty measurement bases within the complete set of {I,H,N}n
measurement bases. Other entanglement measures can also be derived from the
{I,H,N}n spectrum.

80

7.3 Quantum Interpretations of Spectral Measures

Definition 7.25. Given a vector s, let a be the sum of the fourth powers of
all 6n spectral magnitudes in the {I,H,N}n spectrum, i.e.,

a =
∑

U∈{I,H,N}n

k∈Z2n

|Sk|4, (7.16)

where S = Us. The Clifford merit factor (CMF) [38] of s is then given by

CMF(s) =
6n

a− 6n
. (7.17)

High APC distance, low PARIHN , and high CMF are clearly correlated prop-
erties, and the best self-dual quantum codes optimise all of them. Non-quadratic
Boolean functions with equally good properties as the best quadratic functions
have also been found. The CMF is an entanglement measure, and it can be
shown that CMF remains invariant under any local unitary transformation,
i.e., CMF(s) = CMF(Us), where U ∈ Un. Since the overall entanglement of a
quantum state does not change under local unitary transformations, all entan-
glement measures should have this property. The Schmidt measure and PARU
are also invariant under local unitary transformations. It may be possible to
generalise CMF by extending the transform set while increasing the power of
the spectral magnitudes. This could give an infinite sequence of entanglement
measures, all invariant under local unitary transformations, which converges
towards PARU .

81

Chapter 8
Conclusions and Open Problems

In this thesis we have studied zero-dimensional quantum codes and their inter-
pretations as quantum states, self-dual additive codes over GF(4), graphs, and
Boolean functions. We have looked at different properties and generalisations
under each interpretation. For reasons of computational complexity, we have
restricted our study to self-dual quantum codes of length up to 30. But even
for codes of such short length, there are many interesting problems.

Problem 8.1. As seen in Table 2.1, the best achievable distances for codes of
length from 23 to 27 are not known. What are the optimal distances for these
lengths? In particular, does there exist a [[24, 0, 10]] quantum code?

Many examples have been shown of self-dual quantum codes of high minimum
distance with highly structured and regular graph representations. In particu-
lar, we have searched all circulant graph codes with length up to 30 for nested
regular graphs. The nested regular description does not completely characterise
the structure of a graph, but we have also shown that nested regular graph rep-
resentations of strong codes contain long cycles. Initial results further suggest
that the long cycles should be arranged in such a way that no smaller cycles are
induced. We have also identified graph representations with minimum regular
vertex degree for many self-dual quantum codes. Graphs with minimum regular
vertex degree have the lowest possible number of edges, and the corresponding
generator matrices are therefore as sparse as possible. In many applications of
classical coding theory, sparsity of the generator matrix is a desired property.

Problem 8.2. Identify other regular graph structures than those listed in
Table 4.1, in particular for codes of length 28 and above.

Problem 8.3. Is it possible to further generalise and extend the description of
highly regular graphs corresponding to strong self-dual quantum codes?

Problem 8.4. Devise a construction technique for nested regular graphs, giving
self-dual quantum codes with a predictable minimum distance.

Problem 8.5. Find graphs with minimum regular vertex degree corresponding
to self-dual quantum codes of length above 27 and distance higher than 8. Of
particular interest is the existence of a graph with regular vertex degree 11
corresponding to a [[30, 0, 12]] code.

We investigated all self-dual quantum codes of length up to 30 corresponding
to graphs with circulant adjacency matrices, and found codes of equally high
distance to those of Gulliver and Kim [29] in their more general search of all
self-dual additive codes over GF(4) with circulant generator matrices.

83

8 Conclusions and Open Problems

Problem 8.6. How many GF(4)-circulant codes also have circulant graph rep-
resentations, and are codes with circulant graph representations stronger than
general codes?

We have seen that the quadratic residue construction produces codes corre-
sponding to strongly regular Paley graphs. The largest clique in a Paley graph
is known to be very small, compared to the number of vertices in the graph [55].
Since it can also be shown that all Paley graphs are isomorphic to their com-
plements, their independence numbers must be equally low. We have seen that
graphs corresponding to strong self-dual quantum codes have small independent
sets over their whole LC orbit, and this implies that the largest independent set
of a Paley graph remains small when any sequence of local complementations
is applied.

Problem 8.7. Give bounds on the size of the largest independent set over the
LC orbit of a Paley graph.

Problem 8.8. Can other families of strongly regular graphs, or families of
graphs known to have small independence numbers, be used to construct self-
dual quantum codes of high distance?

We showed that some self-dual quantum codes, in particular the [[11, 0, 5]]
and [[18, 0, 8]] codes, have no regular graph representation. Glynn et al. [23]
have used finite geometry to construct and characterise the [[18, 0, 8]] code.

Problem 8.9. Do strong self-dual quantum codes with no regular graph rep-
resentation correspond to graphs that are highly structured in some other way,
and can this structure be generalised?

We have classified all self-dual additive codes over GF(4) of length up to 12.
Enumerating all codes of higher length, with a reasonable amount of computa-
tional resources, is not possible using the algorithms in section 5.2.

Problem 8.10. Devise an algorithm for canonising a graph, like Algorithm 5.2,
but without requiring that the whole LC orbit of the graph is generated. This
could give a much faster method for enumerating LC orbits.

Problem 8.11. Devise an efficient algorithm for determining whether two
graphs are LC-equivalent, like the one described by Van den Nest et al. [58]
and Bouchet [6], but that also considers equivalence via graph isomorphism.

We have seen that the APC distance of a Boolean function is equal to the
distance of the corresponding zero-dimensional quantum code. For quadratic
Boolean functions, which correspond to self-dual additive codes over GF(4), we
can use the efficient Algorithm 3.1 to find the APC distance. Boolean functions
of higher degree correspond to non-quadratic quantum codes, and we have used
the much more complex Algorithm 6.2 to find their distance. We have found
several non-quadratic Boolean functions, listed in Table 6.6, with exactly the
same APC distance and PARIHN as the best quadratic functions.

Problem 8.12. Are there better algorithms for finding the APC distance of a
non-quadratic Boolean function? For instance, do cubic Boolean functions cor-
respond to some generalisation of additive codes over GF(4) where the distance
can be found efficiently?

Problem 8.13. Improve Algorithm 6.3 and classify all orbits in O1,n and O2,n

for n > 5.

84

Problem 8.14. Do there exist non-quadratic Boolean functions with higher
APC distance or lower PARIHN than the best quadratic functions?

We have defined λ, the size of the largest independent set over an LC orbit,
and Λn, the minimum value of λ over all LC orbits of graphs on n vertices. It
has also been shown that PARIHN = 2λ for quadratic Boolean functions, and
we have given bounds on Λn. The bounds on Λn are also bounds on PARIHN

and PARU .

Problem 8.15. Improve the bounds on Λn, or find exact values of Λn for
n ≥ 15.

Problem 8.16. Can other symmetries of non-quadratic Boolean functions be
found by adding other matrices to the set {I,H,N}?

Problem 8.17. Is there an operation, similar to local complementation, that
generates orbits of equivalent hypergraphs?

Problem 8.18. Is there a relationship between the maximum independent set
in the orbit of a hypergraph and the PARIHN of the corresponding Boolean
function? Maybe we need to consider PAR with respect to a larger transform
set than {I,H,N} in order to find such a relationship.

We have seen that Construction 7.15 gives Boolean functions of high degree
with predictable PARHN , and we have proposed the more general Construc-
tion 7.16 for Boolean functions of high degree with low PARIHN .

Problem 8.19. What is the best choice of permutations in Construction 7.16?

Problem 8.20. Find bounds on the PARIHN of functions generated by Con-
struction 7.16 when specific permutations are used.

Construction 7.15 is a generalisation of the path graph, which have optimal
PARHN but high PARIHN . It can be shown that complete graphs (cliques)
have optimal PARIH , but that they also have high PARIHN . Functions that
optimise PARIHN should do well for both PARHN and PARIH , and should
perhaps be some compromise between clique graphs and path graphs. We
have seen that some of the quadratic Boolean functions with lowest PARIHN

correspond to nested clique graphs, which contain both cliques and long disjoint
paths.

Zero-dimensional quantum codes of high distance correspond to highly en-
tangled quantum states, and also to Boolean functions that satisfy the aperiodic
propagation criterion of high order or degree. APC is related to several other
criteria which measure the cryptographic strength of a Boolean function. This
suggests that a highly entangled quantum state may correspond to a crypto-
graphically strong Boolean function. We have shown that spectral properties
of Boolean functions, such as APC distance, PARU , and PARIHN can be used
to measure the degree of entanglement in a quantum state, as can the Schmidt
measure and the Clifford Merit Factor [38]. In this thesis, we have studied
quantum states with coefficients from the set {−1, 1}, represented by the bipo-
lar truth table of a Boolean function. This is, of course, only a subset of all
possible quantum states.

Problem 8.21. Classify spectral measures of quantum states using other trans-
form sets than {I,H,N}n.

Problem 8.22. Find efficient techniques for approximating PARU .

85

8 Conclusions and Open Problems

Problem 8.23. Study the properties of zero-dimensional quantum codes cor-
responding to non-bipolar quantum states, for instance quantum states with
coefficients from the sets {0, 1} or {−1, 0, 1}.

86

Bibliography

[1] Aigner, M. and van der Holst, H.: “Interlace polynomials”. Linear
Algebra and its Applications , 377, pp. 11–30, January 2004.

[2] Arratia, R., Bollobás, B., and Sorkin, G. B.: “The interlace poly-
nomial: a new graph polynomial”. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 237–245, Society for
Industrial and Applied Mathematics, 2000.

[3] Arratia, R., Bollobás, B., and Sorkin, G. B.: “The interlace poly-
nomial of a graph”. Journal of Combinatorial Theory, Series B , 92(2), pp.
199–233, November 2004.
http://arxiv.org/pdf/math/0209045

[4] Bachoc, C. and Gaborit, P.: “On extremal additive F4 codes of length
10 to 18”. Journal de Théorie des Nombres de Bordeaux , 12(2), pp. 255–
271, 2000.
http://almira.math.u-bordeaux.fr/jtnb/2000-2/Bachoc.ps

[5] Bouchet, A.: “Isotropic systems”. European Journal of Combinatorics,
8(3), pp. 231–244, 1987.

[6] Bouchet, A.: “An efficient algorithm to recognize locally equivalent
graphs”. Combinatorica, 11(4), pp. 315–329, 1991.

[7] Bouchet, A.: “Recognizing locally equivalent graphs”. Discrete Mathe-
matics , 114(1–3), pp. 75–86, April 1993.

[8] Briegel, H. J. and Raussendorf, R.: “Persistent entanglement in
arrays of interacting particles”. Physical Review Letters , 86(5), pp. 910–
913, January 2001.
http://arxiv.org/pdf/quant-ph/0004051

[9] Bron, C. and Kerbosch, J.: “Algorithm 457: Finding all cliques of
an undirected graph”. Communications of the ACM , 16(9), pp. 575–577,
September 1973.

[10] Calderbank, A. R., Rains, E. M., Shor, P. M., and Sloane, N.

J. A.: “Quantum error correction via codes over GF(4)”. IEEE Transac-
tions on Information Theory, 44(4), pp. 1369–1387, July 1998.
http://www.research.att.com/~njas/doc/qc2.pdf

87

http://arxiv.org/pdf/math/0209045
http://almira.math.u-bordeaux.fr/jtnb/2000-2/Bachoc.ps
http://arxiv.org/pdf/quant-ph/0004051
http://www.research.att.com/~njas/doc/qc2.pdf

Bibliography

[11] Cameron, P. J.: “Strongly regular graphs”. In Topics in Algebraic Graph
Theory, edited by L. W. Beineke and R. J. Wilson, Encyclopedia of Math-
ematics and its Applications , volume 102, chapter 8, pp. 203–221, Cam-
bridge University Press, December 2004.
http://www.maths.qmw.ac.uk/~pjc/preprints/bw_srg.ps

[12] Carlet, C.: “On cryptographic propagation criteria for Boolean func-
tions”. Information and Computation, 151(1–2), pp. 32–56, May 1999.

[13] Danielsen, L. E.: “Database of nonquadratic Boolean functions”. Web
page, February 2005.
http://www.ii.uib.no/~larsed/nonquad/

[14] Danielsen, L. E.: “Database of self-dual quantum codes”. Web page,
February 2005.
http://www.ii.uib.no/~larsed/vncorbits/

[15] Danielsen, L. E., Gulliver, T. A., and Parker, M. G.: “Aperiodic
propagation criteria for Boolean functions”, October 2004. Submitted to
Information and Computation.
http://www.ii.uib.no/~larsed/papers/apc.pdf

[16] Danielsen, L. E. and Parker, M. G.: “Spectral orbits and peak-to-
average power ratio of Boolean functions with respect to the {I,H,N}n
transform”, January 2005. To appear in the proceedings of Sequences
and Their Applications, SETA’04, Lecture Notes in Computer Science,
Springer-Verlag.
http://www.ii.uib.no/~larsed/papers/seta04-parihn.pdf

[17] Davis, J. A. and Jedwab, J.: “Peak-to-mean power control in OFDM,
Golay complementary sequences and Reed-Muller codes”. IEEE Transac-
tions on Information Theory, 45(7), pp. 2397–2417, November 1999.

[18] Eisert, J. and Briegel, H. J.: “Schmidt measure as a tool for quanti-
fying multiparticle entanglement”. Physical Review A, 64(022306), August
2001.
http://arxiv.org/pdf/quant-ph/0007081

[19] Fuller, J., Millan, W., and Dawson, E. P.: “Efficient algorithms
for analysis of cryptographic Boolean functions”. In Proceedings of the
Thirteenth Australasian Workshop on Combinatorial Algorithms (AWOCA
2002), edited by E. Billington, D. Donovan, and A. Khodkar, pp. 133–150,
May 2002.
http://www.isrc.qut.edu.au/people/fuller/efficient.ps

[20] Gaborit, P., Huffman, W. C., Kim, J.-L., and Pless, V.: “On the
classification of extremal additive codes over GF(4)”. In Proceedings of the
37th Allerton Conference on Communication, Control, and Computing,
pp. 535–544, September 1999.
http://www2.math.uic.edu/~jlkim/all_final.ps

[21] Gaborit, P., Huffman, W. C., Kim, J.-L., and Pless, V.: “On addi-
tive GF(4) codes”. In Codes and Association Schemes , edited by A. Barg
and S. Litsyn, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, volume 56, pp. 135–149, American Mathematical Soci-
ety, 2001.
http://www.math.unl.edu/~jlkim/dimacs4.ps

88

http://www.maths.qmw.ac.uk/~pjc/preprints/bw_srg.ps
http://www.ii.uib.no/~larsed/nonquad/
http://www.ii.uib.no/~larsed/vncorbits/
http://www.ii.uib.no/~larsed/papers/apc.pdf
http://www.ii.uib.no/~larsed/papers/seta04-parihn.pdf
http://arxiv.org/pdf/quant-ph/0007081
http://www.isrc.qut.edu.au/people/fuller/efficient.ps
http://www2.math.uic.edu/~jlkim/all_final.ps
http://www.math.unl.edu/~jlkim/dimacs4.ps

Bibliography

[22] Glynn, D. G.: “On self-dual quantum codes and graphs”, April 2002.
Submitted to the Electronic Journal of Combinatorics.
http://homepage.mac.com/dglynn/.cv/dglynn/Public/SD-G3.pdf-link.pdf

[23] Glynn, D. G., Gulliver, T. A., Maks, J. G., and Gupta, M. K.:
“The geometry of additive quantum codes”, April 2004. Submitted to
Springer-Verlag.

[24] Gottesman, D.: Stabilizer Codes and Quantum Error Correction. Ph.D.
thesis, California Institute of Technology, May 1997.
http://arxiv.org/pdf/quant-ph/9705052

[25] Gottesman, D.: “An introduction to quantum error correction”. In Quan-
tum Computation: A Grand Mathematical Challenge for the Twenty-First
Century and the Millennium, edited by S. J. Lomonaco, Jr., Proceedings
of Symposia in Applied Mathematics , volume 58, American Mathematical
Society, April 2002.
http://arxiv.org/pdf/quant-ph/0004072

[26] Grassl, M.: “Encoding circuits for quantum error-correcting codes”. Web
page, February 2002.
http://iaks-www.ira.uka.de/home/grassl/QECC/circuits/

[27] Grassl, M.: “Bounds on dmin for additive [[n, k, d]] QECC”. Web page,
February 2003.
http://iaks-www.ira.uka.de/home/grassl/QECC/TableIII.html

[28] Grassl, M., Klappenecker, A., and Rötteler, M.: “Graphs,
quadratic forms, and quantum codes”. In Proceedings of the 2002 IEEE
International Symposium on Information Theory, p. 45, 2002.
http://faculty.cs.tamu.edu/klappi/papers/ISIT2002.pdf

[29] Gulliver, T. A. and Kim, J.-L.: “Circulant based extremal additive
self-dual codes over GF(4)”. IEEE Transactions on Information Theory,
50(2), pp. 359–366, February 2004.
http://www.math.unl.edu/~jlkim/quandcc_final.ps

[30] Hein, M., Eisert, J., and Briegel, H. J.: “Multi-party entanglement
in graph states”. Physical Review A, 69(062311), June 2004.
http://arxiv.org/pdf/quant-ph/0307130

[31] Höhn, G.: “Self-dual codes over the Kleinian four group”. Mathematische
Annalen, 327, pp. 227–255, October 2003.
http://arxiv.org/pdf/math/0005266

[32] Knill, E., Laflamme, R., Ashikhmin, A., Barnum, H. N., Viola,

L., and Zurek, W. H.: “Introduction to quantum error correction”. Los
Alamos Science, 27, pp. 188–225, 2002.
http://lib-www.lanl.gov/cgi-bin/getfile?00783364.pdf

[33] Knill, E., Laflamme, R., Barnum, H. N., Dalvit, D. A., Dziar-

maga, J. J., Gubernatis, J. E., Gurvits, L., Ortiz, G., Viola,

L., and Zurek, W. H.: “Quantum information processing: A hands-on
primer”. Los Alamos Science, 27, pp. 2–37, 2002.
http://lib-www.lanl.gov/cgi-bin/getfile?00783350.pdf

89

http://homepage.mac.com/dglynn/.cv/dglynn/Public/SD-G3.pdf-link.pdf
http://arxiv.org/pdf/quant-ph/9705052
http://arxiv.org/pdf/quant-ph/0004072
http://iaks-www.ira.uka.de/home/grassl/QECC/circuits/
http://iaks-www.ira.uka.de/home/grassl/QECC/TableIII.html
http://faculty.cs.tamu.edu/klappi/papers/ISIT2002.pdf
http://www.math.unl.edu/~jlkim/quandcc_final.ps
http://arxiv.org/pdf/quant-ph/0307130
http://arxiv.org/pdf/math/0005266
http://lib-www.lanl.gov/cgi-bin/getfile?00783364.pdf
http://lib-www.lanl.gov/cgi-bin/getfile?00783350.pdf

Bibliography

[34] MacWilliams, F. J., Odlyzko, A. M., Sloane, N. J. A., and Ward,

H. N.: “Self-dual codes over GF(4)”. Journal of Combinatorial Theory,
Series A, 25, pp. 288–318, 1978.

[35] McKay, B. D.: nauty User’s Guide. 2003.
http://cs.anu.edu.au/~bdm/nauty/nug.pdf

[36] Nielsen, M. A. and Chuang, I. L.: Quantum Computation and Quan-
tum Information. Cambridge University Press, 2000.

[37] Parker, M. G.: “Generalised S-box nonlinearity”. Public Document
NES/DOC/UIB/WP5/020/A, NESSIE, February 2003.
http://www.ii.uib.no/~matthew/SBoxLin.pdf

[38] Parker, M. G.: “Univariate and multivariate merit factors”, January
2005. To appear in the proceedings of Sequences and Their Applications,
SETA’04, Lecture Notes in Computer Science, Springer-Verlag.
http://www.ii.uib.no/~matthew/seta04-mf.pdf

[39] Parker, M. G. and Gulliver, T. A.: “On graph symmetries and equiv-
alence of the six variable double-clique and wheel”, July 2003. Unpublished.

[40] Parker, M. G. and Rijmen, V.: “The quantum entanglement of binary
and bipolar sequences”. In Sequences and Their Applications, Proceedings
of SETA’01 , edited by T. Helleseth, P. V. Kumar, and K. Yang, Discrete
Mathematics and Theoretical Computer Science Series, Springer-Verlag,
London, 2002.
http://arxiv.org/pdf/quant-ph/0107106

[41] Parker, M. G. and Tellambura, C.: “A construction for binary se-
quence sets with low peak-to-average power ratio”. In Proceedings of the
2002 IEEE International Symposium on Information Theory, p. 239, 2002.
http://www.ii.uib.no/~matthew/634isit02.pdf

[42] Parker, M. G. and Tellambura, C.: “A construction for binary se-
quence sets with low peak-to-average power ratio”. Technical Report 242,
Department of Informatics, University of Bergen, Bergen, Norway, Febru-
ary 2003.
http://www.ii.uib.no/publikasjoner/texrap/pdf/2003-242.pdf

[43] Pless, V. S. and Huffman, W. C. (editors): Handbook of Coding The-
ory. Elsevier, Amsterdam, 1998.

[44] Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts,

R., and Vandewalle, J.: “Propagation characteristics of Boolean
functions”. In Advances in Cryptology - EUROCRYPT ’90 , edited by I. B.
Damg̊ard, Lecture Notes in Computer Science, volume 473, pp. 161–173,
Springer-Verlag, 1991.
http://www.cosic.esat.kuleuven.ac.be/publications/article-42.pdf

[45] Radziszowski, S. P.: “Small Ramsey numbers”. The Electronic Journal
of Combinatorics , July 2004. Dynamical Survey DS1.
http://www.combinatorics.org/Surveys/ds1.pdf

[46] Rains, E. M., Hardin, R. H., Shor, P. W., and Sloane, N. J. A.:
“A nonadditive quantum code”. Physical Review Letters , 79(5), pp. 953–
954, August 1997.
http://arxiv.org/pdf/quant-ph/9703002

90

http://cs.anu.edu.au/~bdm/nauty/nug.pdf
http://www.ii.uib.no/~matthew/SBoxLin.pdf
http://www.ii.uib.no/~matthew/seta04-mf.pdf
http://arxiv.org/pdf/quant-ph/0107106
http://www.ii.uib.no/~matthew/634isit02.pdf
http://www.ii.uib.no/publikasjoner/texrap/pdf/2003-242.pdf
http://www.cosic.esat.kuleuven.ac.be/publications/article-42.pdf
http://www.combinatorics.org/Surveys/ds1.pdf
http://arxiv.org/pdf/quant-ph/9703002

Bibliography

[47] Rains, E. M. and Sloane, N. J. A.: “Self-dual codes”. In Handbook of
Coding Theory, edited by V. S. Pless and W. C. Huffman, volume 1, pp.
177–294, Elsevier, Amsterdam, 1998.
http://arxiv.org/pdf/math.CO/0208001

[48] Raussendorf, R. and Briegel, H. J.: “A one-way quantum computer”.
Physical Review Letters , 86(22), pp. 5188–5191, May 2001.
http://arxiv.org/pdf/quant-ph/0010033

[49] Raussendorf, R., Browne, D. E., and Briegel, H. J.:
“Measurement-based quantum computation on cluster states”. Physical Re-
view A, 68(022312), August 2003.
http://arxiv.org/pdf/quant-ph/0301052

[50] Rieffel, E. G. and Polak, W.: “An introduction to quantum com-
puting for non-physicists”. ACM Computing Surveys, 32(3), pp. 300–335,
September 2000.
http://arxiv.org/pdf/quant-ph/9809016

[51] Riera, C. and Parker, M. G.: “Generalised bent criteria for Boolean
functions (I)”, December 2004. Submitted to IEEE Transactions on Infor-
mation Theory.
http://arxiv.org/pdf/cs.IT/0502049

[52] Riera, C. and Parker, M. G.: “Spectral interpretations of the interlace
polynomial”, March 2005. Accepted for WCC 2005.
http://www.ii.uib.no/~matthew/WCC7.pdf

[53] Riera, C., Petrides, G., and Parker, M. G.: “Generalised bent crite-
ria for Boolean functions (II)”, December 2004. Submitted to IEEE Trans-
actions on Information Theory.
http://arxiv.org/pdf/cs.IT/0502050

[54] Schlingemann, D. and Werner, R. F.: “Quantum error-correcting
codes associated with graphs”. Physical Review A, 65(012308), January
2002.
http://arxiv.org/pdf/quant-ph/0012111

[55] Shearer, J. B.: “Lower bounds for small diagonal Ramsey numbers”.
Journal of Combinatorial Theory, Series A, 42(2), pp. 302–304, July 1986.

[56] Sloane, N. J. A.: “The On-Line Encyclopedia of Integer Sequences”. Web
page, 2005.
http://www.research.att.com/~njas/sequences/

[57] Tonchev, V. D.: “Error-correcting codes from graphs”. Discrete Mathe-
matics , 257(2–3), pp. 549–557, November 2002.

[58] Van den Nest, M., Dehaene, J., and De Moor, B.: “An efficient
algorithm to recognize local Clifford equivalence of graph states”. Physical
Review A, 70(034302), September 2004.
http://arxiv.org/pdf/quant-ph/0405023

[59] Van den Nest, M., Dehaene, J., and De Moor, B.: “Graphical
description of the action of local Clifford transformations on graph states”.
Physical Review A, 69(022316), February 2004.
http://arxiv.org/pdf/quant-ph/0308151

91

http://arxiv.org/pdf/math.CO/0208001
http://arxiv.org/pdf/quant-ph/0010033
http://arxiv.org/pdf/quant-ph/0301052
http://arxiv.org/pdf/quant-ph/9809016
http://arxiv.org/pdf/cs.IT/0502049
http://www.ii.uib.no/~matthew/WCC7.pdf
http://arxiv.org/pdf/cs.IT/0502050
http://arxiv.org/pdf/quant-ph/0012111
http://www.research.att.com/~njas/sequences/
http://arxiv.org/pdf/quant-ph/0405023
http://arxiv.org/pdf/quant-ph/0308151

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Quantum Computing and Quantum Codes
	2.1 Quantum Computing
	2.1.1 Introduction
	2.1.2 Quantum Superposition
	2.1.3 Bra/Ket Notation
	2.1.4 Quantum Bits
	2.1.5 The Tensor Product
	2.1.6 Quantum Entanglement
	2.1.7 Quantum Transformations
	2.1.8 Quantum Computers

	2.2 Classical Error Correction
	2.3 Quantum Error Correction
	2.3.1 Introduction
	2.3.2 Stabilizer Codes
	2.3.3 Quantum Codes over GF(4)
	2.3.4 Self-Dual Quantum Codes

	3 Quantum Codes and Graphs
	3.1 Introduction to Graph Theory
	3.2 Graph Isomorphism with nauty
	3.3 Graph Codes
	3.4 Efficient Algorithms for Graph Codes
	3.5 Quadratic Residue Codes

	4 Nested Regular Graph Codes
	4.1 The Hexacode and the Dodecacode
	4.2 Graph Codes with Minimum Regular Vertex Degree
	4.3 Other Nested Regular Graph Codes
	4.4 Long Cycles in Nested Regular Graph Codes

	5 Orbits of Self-Dual Quantum Codes
	5.1 Local Transformations and Local Complementations
	5.2 Enumerating LC Orbits
	5.3 The LC Orbits of Some Strong Codes

	6 Quantum Codes and Boolean Functions
	6.1 Introduction to Boolean Functions
	6.2 Propagation Criteria for Boolean Functions
	6.3 Quantum Codes as Boolean Functions
	6.4 The {I,H,N} ^n Transform Set
	6.5 Orbits of Boolean Functions

	7 Peak-to-Average Power Ratio
	7.1 Peaks and Independent Sets
	7.2 Constructions for Low PAR
	7.3 Quantum Interpretations of Spectral Measures

	8 Conclusions and Open Problems
	Bibliography

