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We establish bounds to the necessary resource consumption when building up cluster states for one-way
computing using probabilistic gates. Emphasis is put on state preparation with linear optical gates, as the
probabilistic character is unavoidable here. We identify rigorous general bounds to the necessary consumption of
initially available maximally entangled pairs when building up one-dimensional cluster states with individually
acting linear optical quantum gates, entangled pairs and vacuum modes. As the known linear optics gates have
a limited maximum success probability, as we show, this amounts to finding the optimal classical strategy of
fusing pieces of linear cluster states. A formal notion of classical configurations and strategies is introduced for
probabilistic non-faulty gates. We study the asymptotic performance of strategies that can be simply described,
and prove ultimate bounds to the performance of the globallyoptimal strategy. The arguments employ methods
of random walks and convex optimization. This optimal strategy is also the one that requires the shortest storage
time, and necessitates the fewest invocations of probabilistic gates. For two-dimensional cluster states, we find,
for any elementary success probability, an essentially deterministic preparation of a cluster state with quadratic,
hence optimal, asymptotic scaling in the use of entangled pairs. We also identify a percolation effect in state
preparation, in that from a threshold probability on, almost all preparations will be either successful or fail. We
outline the implications on linear optical architectures and fault-tolerant computations.

PACS numbers:

I. INTRODUCTION

Optical quantum systems offer a number of advantages that
render them suitable for attempting to employ them in archi-
tectures for a universal quantum computer: decoherence is
less of an issue for photons compared to other physical sys-
tems, and many of the tools necessary for quantum state ma-
nipulation are readily available [1, 2, 3, 4, 5, 6, 7]. Also, the
possibility of distributed computation is an essentially built-in
feature [7, 8, 9]. Needless to say, any realization of a medium-
scale linear optical quantum computer still constitutes an
enormous challenge [10]. In addition to the usual require-
ment of near-perfect hardware components – here, sources of
single photons or entangled pairs, linear optical networks, and
photon detectors – one has to live with a further difficulty in-
herent in this kind of architecture: due to the small success
probability of elementary gates, a very significantoverhead in
optical elements and additional photonsis required to render
the overall protocol near-deterministic.

Indeed, as there are no photon-photon interactions present
in coherent linear optics, all non-linearities have to be induced
by means of measurements. Hence, the probabilistic character
is at the core of such schemes. It was the very point of the cele-
brated work of Ref. [1] that near-deterministic quantum com-
putation is indeed possible using quantum gates (here: non-
linear sign shift gates) that operate with a very low probability
of success: only one quarter. Ironically, it turned out later that
this value cannot be improved at all within the setting of lin-
ear optics without feed-forward [11]. Essentially due to this
small probability, an enormous overhead in resources in the
full scheme involving feed-forward is needed.

There is, fortunately, nevertheless room for a reduction of
this overhead, based on this seminal work. Recent years saw
a development reminiscent of a “Moore’s law”, in that each
year, a new scheme was suggested that reduced the necessary

resources by a large factor. In particular, the most promising
results have been achieved [3, 4, 5] by abandoning the stan-
dard gate model of quantum computation [10] in favor of the
measurement-basedone-way computer[12]. Taking resource
consumption as a benchmark, the most recent schemes range
more than two orders of magnitude below the original pro-
posal. It is thus meaningful to ask:How long can this devel-
opment be sustained? What are the ultimate limits to overhead
reduction for linear optics quantum computation?The latter
question was one of the main motivations for our work.

The reader is urged to recall that a computation in the one-
way model proceeds in two steps. Firstly, a highly entan-
gledcluster state[12, 13, 14, 15] is built up. Secondly, local
measurements are performed on this state, the outcomes of
which encode the result of the computation. As the ability to
perform local measurements is part of the linear optical tool-
box, the challenge lies solely in realizing the first step. More
specifically, one- and two-dimensional cluster states can be
built from EPR pairs [16] using probabilistic so-calledfusion
gates. In the light of this framework, the question posed at the
end of the last paragraph takes on the form:measured in the
number of required entangled pairs, how efficiently can one
prepare cluster states using probabilistic fusion gates?There
have been several proposals along these lines in recent years
[3, 4, 5, 17, 18, 19, 20].

It will be shown that the success probability of these gates
can not be pushed beyond the currently known value of one
half. Therefore, the only degree of freedom left in optimizing
the process lies inadopting an optimal classical control strat-
egy, which decides how the fusion gates are to be employed.
This endeavor is greatly impeded by the gates’ probabilistic
nature: the number of possible patterns of failure and success
scales exponentially (see Fig. 3) and hence deciding how to
optimally react to any of these situations constitutes a very
hard problem indeed.
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Maybe surprisingly, we find that classical control has
tremendous implications concerning resource consumption
(which seems particularly relevant when building up struc-
tures that render a scheme eventually fault-tolerant [21, 22]):
even when aiming for moderate sized cluster states, one can
easily reduce the required amount of entangled pairs by an
order of magnitude when adopting the appropriate strategy.
For the case of one-dimensional clusters, we identify a limit
to the improvement of resource consumption by very tightly
bounding from above the performance of any scheme which
makes use of EPR pairs, vacuum modes and two-qubit quan-
tum gates. In the two-dimensional setup, we establish that
cluster states of sizen×n can be prepared usingO(n2) input
pairs.

We aim at providing a comprehensive study of the potential
and limits to resource consumption for one-way computing,
when the elementary gates operate in anon-faulty, but proba-
bilistic fashion. As the work is phrased in terms of classical
control strategies, it applies equally to the linear optical setting
as to other architectures [17, 19, 23], such as those involving
matter qubits and light as an entangling bus[17, 24]. This
work extends an earlier report (Ref. [20]) where most ideas
have already been sketched.

II. SUMMARY OF RESULTS

Although the topic and results have very practical implica-
tions on the feasibility of linear optical one-way computing,
we will have to establish a rather formal and mathematical set-
ting in order to obtain rigorous results. To make these more
accessible, we provide a short summary:

• We introduce a formal framework ofclassical strategies
for building up linear cluster states. Linear cluster states
can be pictured aschainsof qubits, characterized by
their lengthl given in the number of edges. Maximally
entangled qubit pairs correspond to chains with a single
edge. By aconfigurationwe mean a set of chains of spe-
cific individual lengths. Type-I fusion [5] allows for op-
erations involving end qubits of two pieces (lengthsl1
andl2), resulting on success in a single piece of length
l1 + l2 or on failure in two pieces of lengthl1 − 1 and
l2 − 1. The process starts with a collection ofN EPR
pairs and ends when only a single piece is left. Astrat-
egydecides which chains to fuse given a configuration.
It is assessed by theexpected length, or quality Q̃(N)
of the final cluster. The vast majority of strategies allow
for no simple description and can be specified solely
by a “lookup table” listing all configurations with the
respective proposed action. Since the number of con-
figurations scales exponentially as a function of the to-
tal number of edgesN , a single strategy is already an
extremely complex object and any form of brute force
optimization is completely out of reach.

• After discussing the optimality of the primitiveelemen-
tary physical gates, operating with a success probability
of ps = 1/2, we start by studying the performance of

severalsimple strategies. In particular, we study strate-
gies which we refer to as MODESTY and GREED:

GREED : Always fuse the largest available

linear cluster chains.

MODESTY : Always fuse the smallest available

linear cluster chains

in a configuration. Also, we investigate the strategy
STATIC with a linear yield that minimizes the amount
of sorting and feed-forward.

• We find that the choice of the classical strategy has a
major impacton the resource consumption in the prepa-
ration of linear cluster states. When preparing clus-
ter chains with an expected length of40, the number
of required EPR pairs already differs by an order of
magnitude when resorting to MODESTY as compared
to GREED.

• We provide an algorithm that symbolically identifies the
globally optimal strategy, which yields the longest av-
erage chain with a given numberN of initially available
EPR pairs. This globally optimal strategy can be found
with an effort ofO(|C(N)|(log |C(N)|)5). Here,|C(N)|
is the number of all configurations with up a total num-
ber of up toN edges.

• We find that MODESTY is almost globally optimal. For
N ≤ 46, the relative difference in the quality of the
globally optimal strategy and MODESTY is less than
1.1 × 10−3.

• Requiring significantly more formal effort, we provide
fully rigorous proofsof tight analytical upper bounds
concerning the quality of the globally optimal strategy.
In particular, we find

Q̃(N) ≤ N/5 + 2.

That is, frankly, within the setting of linear optics, in the
sense made precise below, one has to invest at leastfive
EPR pairs per average gain of one edge in the cluster
state.

• A key step in the proof is the passage to a radically
simplified model – dubbedrazor model. Here, clus-
ter pieces are cut down to a maximal length of two.
While this step reduces the size of the configuration
space tremendously, it retains – surprisingly – essential
features of the problem. The whole problem can then be
related to arandom walk in a plane[25], and finally, to
a convex optimization problem [26]. This bound con-
stitutes the central technical result.

• Therazor modelalso provides tools to get good numer-
ical upper bounds withpolynomial effortin N .

• Similarly, we find tightlower boundsfor the quality,
based on the symbolically available data for small val-
ues ofN .
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• We show that the questions (i) “given some fixed num-
ber of input pairs, how long a single chain can be ob-
tained on average?” and (ii ) “how many input pairs are
needed to produce a chain of some fixed length with (al-
most) unity probability of success?” are asymptotically
equivalent.

• For two-dimensional structures, we prove that one can
build up cluster states with the optimal, quadratic use
in resources, even when resorting to probabilistic gates:
for any success probabilityps ∈ (0, 1] of the physical
primitive quantum gate, one can prepare an×n cluster
state consumingO(n2) EPR pairs. Previously known
schemes have operated with a more costly scaling. This
is possible in a way that the overall success probability
Ps(n) → 1 asn→ ∞. That is, even for quantum gates
operating with a very small probability of successps,
one can asymptoticallydeterministicallybuild up two-
dimensional cluster states usingquadratically scaling
resources.

• For this preparation, we observe an intriguingperco-
lation effectwhen preparing cluster states using proba-
bilistic gates: from a certainthreshold probability

ps > pth

on,almost allpreparations of an × n cluster will suc-
ceed, for largen. In turn, forps < pth, almost noprepa-
ration will succeed asymptotically.

• Also, cluster structures can be used forloss tolerantor
fully fault tolerantquantum computing using linear op-
tics. The required resources for the letter are tremen-
dous, so the ideas presented here should give rise to a
very significant reduction in the number of EPR pairs
required.

In deriving the bounds, we assumed dealing with a linear op-
tical scheme

• based on thecomputational model of one-way comput-
ing on cluster states in dual-rail encoding.

• usingEPR pairs from sourcesas resource to build up
cluster states, and allowing for any number of additional
vacuum modesthat could assist the quantum gates,

• such that onesequentiallybuilds up the cluster state
from elementary fusionquantum gates.

Sequential means that we do not consider the possible multi-
port devices – as, e. g., in Ref. [23] – involving a large number
of systems at a time (where the meaning of the asymptotic
scaling of resources is not necessarily well-defined). In this
sense, we identify the final limit of performance of such a
linear optical architecture for quantum computing.

Structurally, we first discuss the physical setting. After
introducing a few concepts necessary for what follows, we
discuss on a more phenomenological level the impact of the
classical strategy on the resource consumption [21, 22]. The

Success (ps = 1/2) Failure (pf = 1/2)

FIG. 1: Action of a fusion gate on the end qubits of two linear cluster
states.

longest part of the paper is then concerned with the rigor-
ous formal arguments. Finally, we summarize what has been
achieved, and present possible scopes for further work in this
direction.

III. PREPARING LINEAR CLUSTER STATES WITH
PROBABILISTIC QUANTUM GATES

A. Cluster states and fusion gates

A linear cluster state[12] is an instance of agraph state
[13, 14] of a simple graph corresponding to a line segment.
Any suchgraph stateis associated with an undirected graph,
so withn verticesand a setE of edges, so of pairs(a, b) of
connected vertices. Graph states can be defined as those states
whose state vector is of the form

|G〉 =
∏

(a,b)∈E

U (a,b)
(

(|0〉 + |1〉)/21/2
)⊗n

whereU (a,b) := |0〉〈0|(a) ⊗1(b) + |1〉〈1|(a) ⊗σ
(b)
z , σz denot-

ing the familiar Pauli operator. In this basis, a linear cluster
state vector of some lengthl is hence just a sum of all binary
words onn qubits with appropriate phases. AnEPR pair is
consequently conceived as a linear cluster state with a single
edge,l = 1 [27]. A two-dimensional cluster stateis the graph
state corresponding to a two-dimensional cubic lattice. Only
the describing graphs will be relevant in the sections to come;
the quantum nature of graph states does not enter our consid-
erations.

As stated before, we call a quantum mechanical gate a
(type-I)fusion gate[5] if it can “fuse together” two linear clus-
ter state “chains” withl1 andl2 edges respectively to yield a
single chain ofl1 + l2 edges (see Fig. 1). The process is sup-
posed to succeed with some probabilityps. In case of failure
both chains loose one edge each:li 7→ li − 1. Unless stated
otherwise, we will assume thatps = 1/2, in accordance with
the results of the next section.

This kind of quantum gate is, yet, insufficient to build up
two-dimensional cluster states. For this to be possible, an-
other kind of fusion gate is required:type-II fusion[5] to be
discussed in Section X.

B. Linear optical fusion gates

We use the usual convention for encoding a qubit into pho-
tons: In the so-calleddual-rail encoding the basis vectors of
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FIG. 2: Diagram representing how parity check gate can be em-
ployed to realize a Bell state discriminating device.

the computational Hilbert space are represented by

|0〉 := a†0|vac〉
|1〉 := a†1|vac〉,

wherea†0,1 denote the creation operators in two orthogonal
modes, and|vac〉 is the state vector of the vacuum. The canon-
ical choice are two modes that only differ in the polarization
degree of freedom, e. g. horizontal and vertical with respect
to some reference, giving rise to the notation|H〉 := |0〉 and
|V 〉 := |1〉.

Type-I fusion gates were introduced in Ref. [5], where it
was realized that theparity check gate[7] has exactly the de-
sired effect. The gate’s probability of success isps = 1/2 and
the following theorem states that this cannot be increased in
the setting of dual rail coded linear optical quantum computa-
tion.

Theorem 1(Maximum probability of success of fusion). The
optimal probability of successps of a type-I fusion quantum
gate isps = 1/2. More specifically, the maximalp = p1 + p2

such that

A1 = p
1/2
1 (|H〉〈H,H | − |V 〉〈V, V |)/

√
2,

A2 = p
1/2
2 (|H〉〈H,H | + |V 〉〈V, V |)/

√
2

are two Kraus operators of a channel that can be realized with
making use of (i) any number of auxiliary modes prepared in
the vacuum, (ii) linear optical networks acting on all modes,
and (iii) photon counting detectors is given byp = ps := 1/2.

Proof. Given the setup in Fig. 2, we notice a parity check de-
scribed by these Kraus operators can be used to realize a mea-
surement, distinguishing with certainty two from four binary
Bell states: The following Hadamard gate and measurement
in the computational basis give rise to the Kraus operators

B± = 〈±| = 2−1/2(〈H | ± 〈V |).

On input of the symmetric Bell states with state vectors,
|φ±〉 = 2−1/2(|H,H〉 ± |V, V 〉), the measurement results
(A1, B−) and (A2, B+) indicate a|φ+〉 and (A1, B+) and
(A2, B−) a |φ−〉, respectively. These two states can be iden-
tified with certainty. The anti-symmetric Bell states with state
vectors|ψ±〉 = 2−1/2(|H,V 〉 ± |V,H〉), will in turn result in
a failure outcome.

Applying a bit-flip (a Pauliσx) on the second input qubit
(therefore implementing the map|φ±〉 7→ |ψ±〉, |ψ±〉 7→

s

ss

s

s

f

ff

f

f

FIG. 3: An example of a tree of successive configurations under
application of a strategy. Light boxes group configurations. We start
with N = 4. Dark boxes indicate where the strategy decided to apply
a fusion gate. Possible outcomes are success (to the left) orfailure (to
the right), resulting in different possible future choices. The expected
length of the final chain is̃QM (4) = Q(4) = 13/8.

|φ±〉) at random, a discrimination between the four Bell states
with uniform a priori probabilities is possible, succeeding in
50% of all cases. Following Ref. [28] this is already the op-
timal success probability when only allowing for (i) auxiliary
vacuum modes, (ii) networks of beam splitter and phase shifts
and (iii) photon number resolving detectors. Thus, a more re-
liable parity check is not possible within the presented frame-
work.

In turn, it is straightforward to see that a failure necessar-
ily leads to a loss of one edge each. Note that one could in
principle use additional single-photons from sources or EPR
pairs to attempt to increase the success probabilityps of the
individual gate. These additional resources would yet haveto
be included in the resource count. Such a generalized scenario
will not be considered.

IV. CONCEPTS: CONFIGURATIONS AND STRATEGIES

The current section will set up a rigorous framework for the
description and assessment of control strategies. All consid-
erations concern the case of one-dimensional cluster states;
the two dimensional case will be deferred to Section X. Note
that, having described the action of the elementary gate on the
level of graphs, we may abstract from the quantum nature of
the involved cluster states altogether.

A. Configurations

A configuration(in the identity picture) I is a list of num-
bersIk, k ∈ N. We think of Ik as specifying the length of
the k-th chain that is available to the experimenter at some
instance of time. For most of the statements to come a more
coarse-grained point of view is sufficient: in general we do
not have to distinguish different chains of equal length. Itis
hence expedient to introduce theanonymous representation
of a configurationC as a list of numbersCi, i ∈ N with Ci
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specifying the numbers of chains of lengthi. We will always
use the latter description unless stated otherwise. Trailing ze-
roes will be suppressed, i. e. we abbreviateC = 1, 2, 0, . . .
asC = (1, 2). Define thetotal number of edges(total length)
to beL(C) =

∑

i i Ci. The space of all configurations is de-
noted byC. By C(N) we mean the set of configurationsC hav-
ing a total length less or equal toN . Lastly, letei be the con-
figuration consisting of exactly one chain of lengthi. This def-
inition allows us to expand configurations asC =

∑∞
i=1 Ci ei.

B. Elementary rule

Let us re-formulate the action of the fusion gate in this lan-
guage. An attempted fusion of two chains of lengthk and l
gives rise to a mapC =

∑∞
i=1 Ciei 7→ C′ =

∑∞
i=1 C

′
iei with

C′ = C − ek − el + ek+l

in case of success with probabilityps = 1/2 (leading to a
single chain of lengthl + k) and

C′ = C − ek + ek−1 − el + el−1

in case of failure, meaning that one edge each is lost for the
chains of lengthk and l. All other elements ofC are left
unchanged.

C. Strategies

A strategy(in the anonymous picture) defines whataction
to take when faced with a specific configuration. Actions can
be either “try to fuse a chain of lengthk with one of lengthl”
or “do nothing”. Formally, we will represent these choices by
the tuple〈k, l〉 and the symbol∅, respectively. It is easy to see
that, in trying to build up a single long chain, it never pays off
not to use all available resources. We hence require a strategy
to choose a non-trivial action as long as there is more than one
chain in the configuration. Formally, a strategy is said to be
valid if it fulfills

1. (No null fusions):S(C) = 〈k, l〉 ⇒ Cl, Ck 6= 0

2. (No premature stops):S(C) = ∅ ⇔ C contains at most
one chain.

We will implicitly assume that all strategies that appear are
valid. Strategies in the identity picture are defined completely
analogously.

An eventE is a string of elements of{S, F}, denoting suc-
cess and failure, respectively. Thei-th component ofE is
denoted byEi and its length by|E|. Now fix an initial con-
figurationC∅ and some strategyS. We writeCE for the con-
figuration which will be created byS out ofC∅ in the event
E. Here, as in several definitions to come, the strategyS is
not explicitly mentioned in the notation. It is easy to see that
any strategy acting on some initial configuration will, in any
event, terminate after a finite number of stepsnT(C).

Recall that the outcome of each action is probabilistic anda
priori we do not know whichCE with |E| = n will have been
obtained in then-th step. It is therefore natural to introduce a
probability distribution onC, by setting

pn(C) := 2−n |{E : |E| = n,CE = C}|.

In words: pc(C) equals2−n times the number of events that
lead toC being created. The fact thatS terminates after a fi-
nite number of steps translates topnT+k = pnT for all positive
integersk. Expectation values of functionsf onC now can be
written as

〈f〉pn :=
∑

C

pn(C)f(C).

Theexpected total lengthis

〈L〉pn :=
∑

C,i

pn(C)i Ci.

In particular, theexpected final lengthis given byQ̃(C∅) :=
〈L〉pnT

. Of central importance will be the best possible ex-
pected final length that can be achieved by means of any strat-
egy:

Q(C∅) := sup
S
Q̃S(C∅).

This number will be called thequality of C∅. For conve-
nience we will use the abbreviations̃Q(N) := Q̃(Ne1) and
Q(N) := Q(Ne1).

V. SIMPLE STRATEGIES

A priori, a strategy does not allow for a more economic de-
scription other than a ’look-up table’, specifying what action
to take when faced with a given configuration. If one restricts
attention to the set of configurationsC(N) that can be reached
starting fromN EPR pairs,|C(N)| values have to be fixed.

The cardinality|C(N)|, in turn, can be derived from the ac-
cumulated number of integer partitions ofk ≤ N . The asymp-
totic behavior [29] can be identified to be

|C(N)| =
1 +O(N−1/6)

(8π2N)1/2
eπ(2N/3)1/2

,

which is exponential in the numberN of initially available
EPR pairs [30].

However, there are of course strategies which do allow for
a simpler description in terms of basic general rules that ap-
ply similarly to all possibly configurations. It might be sur-
mised that close-to-optimal strategies can be found among
them. Also, these simple strategies are potentially accessi-
ble to analytical and numerical treatment. Subsequently, we
will discuss three such reasonable strategies, referred toas
GREED, MODESTY, and STATIC.
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FIG. 4: The process of fusion of the largest can be represented as a
tree similar to a random walk. Reflection occurs at the dashedline
(the largest string is lost and replaced with an EPR pair. Time evolves
from top to bottom, thus decreasing the number of EPR resources.
The horizontal dimension represents the length of the largest string.

A. GREED

This is one of the most intuitive strategies. It can be de-
scribed as follows: “Given any configuration, try to fuse the
largest two available chains”. This is nothing but

SG(C) =







∅ if
∑

iCi ≤ 1

〈k, l〉 k = max{i : Ci > 0}
l = max{i : Ci − δi,k > 0}

.

Alternatively, one may think of GREED as fusing the first two
chains after sorting the configuration in descending order.The
rationale behind choosing this strategy is the following: fus-
ing is a probabilistic process which destroys entanglementon
average. Hence it should be advantageous to quickly build
up as long a chain as possible. Clearly, the strategy’s name
stems from its pursuit of short-term success. From a theo-
retical point of view, GREED is interesting, as its asymptotic
performance can easily be assessed (see Fig. 5):

Lemma 2 (Asymptotic performance of GREED). The ex-
pected length of the final chain after applyingGREED to N
EPR pairs scales asymptotically as

Q̃G(N) = (2N/π)1/2 + o(1).

Proof. It is easy to see that an application of GREED to
C∅ = Ne1 only generates configurations in

{

me1 + el,m =

0, . . . , N ; l = 0, . . . , N ; l+m ≤ N
}

. This set is parametrized
by m (the number of EPR resources) andl giving rise to the
notationC = (l,m). By definition ofSG, wheneverl ≥ 1,
the next fusion attempt is made on this longer chain and one
of the other EPR pairs. As for the casel = 0 we identify
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FIG. 5: Expected length for the globally optimal strategy, for MOD-
ESTY (in this plot indistinguishable from the former), for GREED, its
asymptotic performance, and the lower bound for STATIC, as func-
tions of even numberN of initial EPR pairs. The inset shows GREED

and MODESTY for small N , revealing the parity-induced step-like
behavior.

(0,m) with (1,m− 1) (when encountering(0,m) we distin-
guish one of them pairs). Therefore, in this slightly mod-
ified notation we have withCE = (l,m), l > 0 in case
of successCES = (l + 1,m − 1) and in case of failure
CEF = (l − 1,m− 1), respectively.

The tree in Fig. 4 can be obtained by reflecting the negative
half of a standard random walk tree atl = 0 and identifying
the vertices with samem but oppositel. One can readily read
off the expectation value of final chain’s length. The form is
especially simple in the balanced case (ps = 1/2),

Q̃G(N) = 2

⌊(N−1)/2⌋
∑

k=0

pk
s (1 − ps)

N−k

(

N

k

)

(N − 2k) .

The probabilities are twice the probabilities of the standard
random walk tree, and the length-0 term has been omitted.

Using an estimate using a Gaussian distribution we easily
find the asymptotic behavior for largeN (settingµ = pN and
σ2 = ps(1 − ps)N with ps = 1/2),

Q̃G(N) =

(

8

Nπ

)1/2 ∞
∫

0

2x exp

(

−2x2

N

)

dx+ r(N)

=

(

2N

π

)1/2

Γ(1) + r(N)

with approximation errorr(N) = o(1).

The behavior of GREED changes qualitatively upon varia-
tion of ps: Forps > 1/2, Q̃G(N) shows linear asymptotics in
N , while in case ofps < 1/2 the qualityQ̃G(N) is not even
unbounded as a function ofN .

There is a phenomenon present in the performance of many
strategies, which can be understood particularly easily when
considering GREED: Q̃ displays a “smooth” behavior when
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FIG. 6: Expected length for MODESTY, the optimal strategy (where
known) a lower bound to the quality as in Theorem 6, but withN0 =
46 (for better visualization), and the upper bound attained with the
razor model as functions of the number of initial EPR pairsN .

regarded as a function on either onlyevenor only oddvalues
of N . However, the respective graphs appear to be slightly
displaced with respect to each other. For simplicity, we will
in general restrict our attention to even values and explorethe
reasons for this behavior in the following lemma.

Lemma 3 (Parity andQ̃G). LetN be even. TheñQG(N) =

Q̃G(N + 1).

Proof. Let C∅ = Ne1, C
′
∅ = (N + 1)e1, for N even. Now

let E be such thatS(CE) = ∅ but S(CE1,...,|E|−1
) 6= ∅. As

GREED does not touch thei-th chain before thei-th step, it
holds thatC′

E = CE + e1. Further, since type-I fusion pre-
serves the parity of the total number of edges,C′

E 6= 0. Hence
C′

E is of the formC′
E = e1 + ek and one computes:

Q̃G(C′
E) = 1/2(k + 1) + 1/2(k − 1) = k = Q̃G(CE).

From here, the assertion is easily established by re-writing
Q̃G(C′

∅) as a suitable average over terms of the form
QG(C′

E), whereE fulfills the assumptions made above.

As a corollary to the above proof, note that fusing an EPR
pair to another chain does not, on average, increase its length.
Hence the fact that̃QG(N) grows at all as a function ofN is
solely due to the asymmetric situation at length zero.

Lemma 3 explains the steps apparent in Fig. 5. Such steps
are present also in the performance of MODESTY, to be dis-
cussed now, and several other strategies – albeit not in sucha
distinct manner.

B. MODESTY

There is a very natural alternative to the previously studied
strategy. Instead of trying to fuse always the largest existing
linear cluster states in a configuration, one could try the op-
posite: “Given any configuration, try to fuse the smallest two

available chains”. In contrast to GREED this strategy intends
to build up chains of intermediate length, making use of the
whole EPR reservoir before trying to generate larger chains.
Even though no long chains will be available at early stages,
the strategy might nevertheless perform reasonably. Quitenat-
urally, this strategy we will call MODESTY.

Formally, this amounts to replacingmax by min, i. e. re-
placing descending order by ascending order:

SM (C) =







∅ if
∑

iCi ≤ 1

〈k, l〉 k = min{i : Ci > 0}
l = min{i : Ci − δi,k > 0}

.

Maybe surprisingly, MODESTY will not only turn out to give
better results than GREED, but is actually close to being glob-
ally optimal, as can be seen in Figures 5 and 6. See Section
VI B for a closer discussion.

C. STATIC

Another strategy of particular interest is called STATIC, SS .
To describe its action, we need to define the notion of anin-
sistent strategy. The term is only meaningful in the identity
picture, which we will employ for the course of this section.
Now, a strategy is called insistent if, whenever it decides to
fuse two specific chains, it will keep on trying to glue these
two together until either successful or at least one of the chains
is completely destroyed. Formally:

S(CE) = 〈k, l〉∧ (CEF )k(CEF )l 6= 0 ⇒ S(CEF ) = S(CE)

STATIC acts by insistingly fuse the first chain to the second
one; the third to the fourth and so on. After this first level,
the resulting chains will be renumbered in the way that the
outcome of thek-th pair is now thek-th chain. At this point,
STATIC starts over again, using the configuration just obtained
as the new input. This procedure is iterated until at most one
chain of nonzero length has survived.

The proceeding ofSS is somehow related to MODESTY

and GREED, just without sorting the chains between fusion at-
tempts. This results in much less requirements on the routing
of the photons actually carrying the cluster states. From anex-
perimentalist’s point of view, STATIC is a meaningful choice
as it only requires a minimal amount of classical feed-forward
that is only present at the level of fusion gates, not on the level
of routing the chains. It performs, however, asymptotically
already better than GREED (see Fig. 5).

It turns out that STATIC performes rather poorly when act-
ing on a configuration consisting only of EPR pairs. To cure
this deficit, we will proceed in two stages. Firstly, the input is
partitioned into blocks of eight EPR pairs each. Then MOD-
ESTY is used to transform each block into a single chain. The
results of this first stage are subsequently used as the input
to STATIC proper, as described before. Slightly overloading
the term, we will call this combined strategy STATIC as well.
Note that, even when understood in this wider sense, STATIC

still reduces the need for physically re-routing chains: the
blocks can be chosen to consist of neighboring qubits and no
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fusion processes between chains of different blocks are nec-
essary during the first stage. The following theorem bounds
STATIC’s performance. For technical reasons, it is stated only
for suitableN .

Theorem 4(Linear performance of STATIC). For anym ∈ N,
givenN = 23+m EPR pairs,STATIC will produce a single
chain of expected length

Q̃(N) ≥ (137/1024)N + 2.

The proof of the above theorem utilizes the following
lemma which quantifies the quality one expects when com-
bining several configurations.

Lemma 5 (Combined configurations). The following holds.

1. LetC be a configuration consisting of single chains of
respective lengthl1, l2. Then [31]

Q(C) = l1 + l2 − 2 + 21−min(l1,l2) ≥ l1 + l2 − 2. (1)

2. LetC(1), . . . , C(k) be configurations. LetS be a strat-
egy that acts on

∑

i C(i) by first acting withS′ on each
of theC(i) and then acting insistently on the resulting
chains. Then [32],

Q̃S

(

∑

i

C(i)

)

≥
∑

i

Q̃S′(C(i)) − 2(k − 1).

3. When substituting all occurences ofQ̃ byQ, the above
estimate remains valid.

Proof. Firstly, any strategy will try to fuse the only two chains
in the configuration together until it either succeeds or the
shorter one of the two is destroyed (aftermin(l1, l2) unsuc-
cessful attempts). In other word: in case of these special con-
figurations any strategy is insistent. By Lemma 7:

Q(l1, l2) = l1 + l2 − 〈T 〉

= l1 + l2 −
min(l1,l2)−1
∑

i=0

2−i

= l1 + l2 − 2 + 21−min(l1,l2).

For the second part, we runS′ on eachC(i), resulting ink
single chain configurationsC′

(i) = eli with probability distri-

butionspi on C obeyingQ̃S′(C′
(i)) = 〈li〉pi . The joint distri-

bution onCk is given byp =
∏

i pi. Now we fuse the chains
together. IfC′

(i) andC′
(j) are such thatpi(C

′
(i))pj(C(j)) 6= 0,

we unite them into one configurationC := C(i) + C(j).
Clearly,C contains at most two chains which we fuse together
as described in the first part of the Lemma. As Eq. (1) is lin-
ear in the respective lengths of the chains inC, the distribution
p′ = pipj fulfills on the one hand

〈Q̃〉p′ = 〈L〉p′ ≥ 〈L〉pi + 〈L〉pj − 2

and on the other hand

Q̃((〈li〉pi , 〈lj〉pj )) ≥ 〈L〉pi + 〈L〉pj − 2.

for any insistent strategy. Because these two quantities are
bounded by the same value we will use this bound and replace
averages over̃Q with Q̃ of configurations of average lengths.

We now iterate this scheme to obtain a single chain. A mo-
ment of thought reveals that – as a result of our neglecting the
21−min(l1,l2)-term – the order in which chains are fused to-
gether does not enter the estimate forQ̃S. The claim follows.

As for the third point: It follows by settingS′ to the optimal
strategy.

Proof. (of Theorem 4)Consider a configuration consisting of
n = 2m chains of lengthx each. Using Lemma 5 one sees
that the second stage of STATIC will convert it into a single
chain of expected length̃Q(2mex) ≥ (x− 2)n+ 2.

According to Section VI, MODESTY fulfils Q̃M (8) =
Q(8) = 649/256. Applying Lemma 5 again we find with
x = Q̃M (23) andN = 23+m

Q̃S(N) ≥ 649/256− 2

8
N + 2 =

137

2048
N + 2

≈ 6.69 10−2N + 2.

In case ofps 6= 1/2,

Q̃′
S(nex) ≥ n(x− linitial) + linitial

can be obtained in the same way, wherelinitial = 2(1 − ps)/ps

(similar tonc in [19]). Initial chains of length≥ linitial can be
produced by employing for example GREED, but disregarding
the outcome in case of a fusion failure and aborting the pro-
cess when2(1 − ps)/ps is reached. Although large chains are
produced with only a small overall success probability, this
does not effect the linear asymptotics as this process only de-
pends onps, rather thanN .

VI. COMPUTER-ASSISTED RESULTS

A. Algorithm for finding the optimal strategy

Before passing from the concrete examples considered so
far to the more abstract results of the next sections, it would be
instructive to explicitly construct an optimal strategy for small
N . Is that a feasible task for a desktop computer? Naively,
one might expect it not to be. Since the number of strategies
grows super-exponentially as a function of the total numberof
edgesN of the initial configuration, a direct comparison of the
strategies’ performances is quickly out of reach. Fortunately,
a somewhat smarter, recursive algorithm can be derived which
will be described in the following paragraph.

The number of verticesin a configuration is given by
V (C) :=

∑

i Ci(ni + 1). An attempted fusion willdecrease
V (C) regardless of whether it succeeds or not. Now fix a
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V0 and assume that we know the value ofQ for all config-
urations comprised of up toV0 vertices. LetC be such that
V (C) = V0 + 1. It is immediate that

Q(C) = maxi,j (Q(Si,j C) +Q(Fi,j C))/2,

where Si,j C denotes the configuration resulting from suc-
cessfully fusing chains of lengthsli andlj. Fi,jC is defined
likewise. As the r. .h. s. involves only the quality of configura-
tions possessing less than or equal toV0 vertices, we know its
value by assumption and we can hence perform the maximiza-
tion inO(c2) steps. One thus obtains the quality ofC and the
pair of chains that need to be fused by an optimal strategy.

The algorithm now works by building alookup tablecon-
taining the value ofQ for all configurations up to a spe-
cific Vmax. It starts assessing the set of configurations with
V (C) = 1 and works its way up, making at each step use of
the previously found values. One needs to supply an anchor
for the recursion by settingQ(ei) = i. Clearly, the memory
consumption is proportional to|C(N)|, which is exponential
in N and will limit the practical applicability of the algorithm
before time issues do.

We have implemented this algorithm using the computer al-
gebra systemMathematicaand employed it to derive in closed
form an optimal strategy for all configurations inC(46), the
quality of which is shown in Figures 5 and 6. A desktop com-
puter is capable of performing the derivation in a few hours
[33].

From the discussion above, it is clear that the leading
term in the computational complexityof the algorithm is
given by |C(N)|: every configuration needs to be looked
at at least once. A straight-forward analysis reveals a
poly-log correction; the described program terminates after
O
(

|C(N)| (log |C(N)|)5
)

steps.

B. Data, intuitive interpretation, and competing tendencies

Starting withC∅ = Ne1, MODESTY turns out to be the
optimal strategy forN ≤ 10. For configurations contain-
ing more edges, slight deviations from MODESTY can be ad-
vantageous. The difference relative toQ(N) is smaller than
1.1 × 10−3 for N ≤ 46. More generally, two heuristic rules
seem to hold:

1. It is favorable to fuse small chains (this is the dominant
rule).

2. It is favorable to create chains of equal length.

Is there an intuitive model which can explain these findings?
Several steps are required to find one. Firstly, note that every
fusion attempt entails a1/2 probability of failure, in which
case two edges are destroyed. So “on average” the total length
L(C) decreases by one in each step and it is natural to assume
that the qualityQ(C) equalsL(C) minus the expected num-
ber of fusion attemptsa specific strategy will employ acting
on C. Hence a good strategy aims toreach a single-chain
configuration as quickly as possible, so as to reduce the ex-
pected number of fusions (this reasoning will be made precise

in Section VIII). Now, if there arek chains present inC, then
a priorik − 1 successful fusions are needed before a strategy
can terminate. If, however, in the course of the process one
chain is completely destroyed, thenk − 2 successes would
already be sufficient. Therefore – paradoxically – within the
given frameworkit pays off to destroy chains. Since shorter
chains are more likely to become completely consumed due
to failures, they should be subject to fusion attempts when-
ever possible. This explains the first rule.

There is one single scenario in whichtwochains can be de-
stroyed in a single step; that is when one selects two EPR pairs
to be fused together. Now consider the case where there are
two chains of equal length in a configuration. If we keep on
trying to fuse these two chains, then – in the event of repeated
failures – we will eventually be left with two EPR pairs, which
are favorable to obtain as argued before. Hence the second
rule.

We have thereby identified twocompeting tendenciesof
the optimal strategy. Obtaining a quantitative understanding
of their interplay seems extremely difficult: deviating from
MODESTYat some point of time might open up the possibility
of creating two chains of equal lengths many steps down the
line. We hence feel it is sensible to conjecture thatthe glob-
ally optimal strategy allows not even for a tractable closed
description. A proof of its optimality seems therefore beyond
any reasonable effort. One is left with the hope of obtaining
appropriately tight analytical bounds – and indeed, the sec-
tions to come pursue this programme with perhaps surprising
success.

VII. LOWER BOUND

We will now turn to establishing rigorous upper and lower
bounds toQ, so the quality of the optimal strategy. These
bounds, in turn, give rise to bounds to the resource consump-
tion any linear optical scheme will have to face. Lower bounds
are in turn less technically involved than upper bounds. In
fact, rigorous lower bounds can be based on known bounds
for given strategies: For not too-large configurations, theper-
formance of various strategies can be calculated explicitly on
a computer (see Section VI). Any such computation in turn
gives a lower bound toQ. The following theorem is based on
a construction which utilizes the computer results to builda
strategy valid for inputs of arbitrary size. This strategy is sim-
ple enough to allow for an analytic analysis of its performance
while at the same time being sufficiently sophisticated to yield
a very tight lower bound for the quality, shown in Fig. 6. No-
tably, the resulting statement isnota numerical estimate valid
for smallN , but a proven bound valid for allN :

Theorem 6 (Lower bound for globally optimal strategy).
Starting withN EPR pairs and using fusion gates, the glob-
ally optimal strategy yields a cluster state of expected length

Q(N) ≥ Q̃(N0) + α(N −N0), (2)
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for all N ≥ N0. The constants are

N0 = 92, Q̃(N0) = 16.1069,

α = (Q̃(N0) − 2)/N0 = 0.153336.

Rational expression are known and can be accessed at Ref.
[33].

Proof. Denote byQ̃(N) the expected final length of some
strategy acting onN EPR pairs. FixN0 such thatQ̃(N) is
known for allN ≤ 2N0 andQ̃ satisfies forN0 ≤ N ≤ 2N0

(Q̃(N) − 2)/N ≥ (Q̃(N0) − 2)/N0 (3)

and that Eqn. (2) holds for allN ≤ 2N0.
Now assume we are givenN > 2N0 EPR pairs. Clearly,

there are positive integersk ≥ 2 andM ≤ N0 such thatN =
kN0+M . Setni = N0 for i = 1, . . . , k−1 andnk = N0+M .
Theni fulfill

∑

i ni = N andN0 ≤ ni ≤ 2N0. We partition
the input into blocks of lengthni each and compute

Q

(

∑

i

ni

)

≥
k
∑

i=1

Q(ni) − 2(k − 1)

≥
k
∑

i=1

Q̃(ni) − 2(k − 1)

= Q̃(N0) +

k
∑

i=2

ni
Q̃(ni) − 2

ni

≥ Q̃(N0) +

k
∑

i=2

ni
Q̃(N0) − 2

N0

= Q̃(N0) + α

k
∑

i=2

ni

= Q̃(N0) + α(N −N0),

where we made use of Lemma 5 and the assumptions men-
tioned above.

In the case of MODESTY the functionQ̃M (N) can be ex-
plicitly computed for not too large values ofN . Indeed, the
results for allN ≤ 2N0 = 184 can be found at [33]. They
obey the condition in Eqn. (3) and the statement follows with
Q̃M (N0) = 16.1069.

VIII. UPPER BOUNDS

While the performance of any strategy delivers a lower
bound for the optimal one, giving an upper bound is consid-
erably harder. We will tackle the problem by passing to a
family of simplified models. For every integerR ≥ 2, the
razor model with parameterR is defined by introducing the
following new rule: after every fusion step all chains will be
cut down to a maximum length ofR. Obviously, the full prob-
lem may be recovered withR ≥ N . Given the complexity of
the problem, it comes as a surprise that even for parameters as
small asR = 2 the essential features of the full setup seem to
be retained by the simplification, in the sense that understand-
ing the razor model yields extraordinary good bounds forQ.
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FIG. 7: Performance of the optimal strategy in the razor model (R =
2 andR = 3), the full model (R = N ) and the upper bound attained
with theR = 2 razor model. The inset shows the convergence of the
upper bound to the quality (based on the razor model with parameter
R) vs. the razor parameterR = 2, . . . , 10 for N = 30 together with
the optimal valueQ(30).

A. The razor model – outline

In the spirit of Section IV, a configuration in the razor
model is specified by a vector inNR. Thus, the number
of configurations with a maximum total number ofN edges
is certainly smaller thanNR, which is a polynomial inN .
Adapting the techniques presented in Section VI, we can ob-
tain the optimal strategy with polynomially scaling effort. We
have thus identified a family of simplified problems which, in
the limit of largeR, tend to become exact, and where each
instance is solvable in polynomial time.

How do the results of the razor model relate to the original
problem? Clearly, for small values ofR, Qrazor(C) will be
a very crude lower bound toQ(C). However, as indicated in
Section VI, the quality of a configurationC can be assessed in
terms of the optimal strategy’s expected number of fusion at-
tempts〈T (C)〉 when acting onC. It is intuitive to assume
that 〈T 〉 ≤ 〈T 〉razor, as the “cutting process” increases the
probability of early termination. We will thus employ the fol-
lowing argument: for a given configurationC, derive a lower
bound for〈T (C)〉razor, which is in particular a lower bound
for 〈T (C)〉, which in turn gives rise to the upper bound

Q(C) ≤ L(C) − 〈T (C)〉

forQ.
The results of this ansatz are extremely satisfactory. Fig.7

shows the performance of the optimal quality for variousR,
and the convergence when increasingR.

The intuitive explanation for the success of the model is the
observation that the chance that a chain of lengthR is built up,
and eventually again disappears, is exponentially suppressed
as a function ofR. That is, the crucial observation is that the
error made by this radical modification is surprisingly small.
A rigorous justification for this reasoning is supplied by the



11

following two propositions which will be proved in the next
section.

Lemma 7 (Quality and attemped fusions). The expected final
length〈L〉 equals the initial number of edgesL(C∅) minus the
expected number of attempted fusions〈T 〉.

Theorem 8 (Bound to the full model from the razor model).
Let C∅ ∈ C be a configuration. The optimal strategy in the
setting of the razor model will use fewer fusion attempts on
average to reach a final configuration starting fromC∅ than
will the optimal strategy of the full setup.

B. The razor model – proofs

For the present section, it will prove advantageous to intro-
duce some alternative points of view on the concepts used so
far. Recall that a strategy is a function fromconfigurations
to actions. However, once we have fixed some initial config-
urationC∅, we can alternatively specify a strategy as a map
from eventsto actions. Indeed, the configuration present af-
tern steps is completely fixed by the knowledge of the initial
configuration, the past decisions of the strategy and the suc-
cession of failures and successes. We will call the resulting
mapping thedecision functionDS,C∅

and will suppress the
indices whenever no danger of confusion can arise. In the
same spirit, we are free to conceiverandom variablesonC as
real functionsf : {S, F}n → R. Expectation values are then
computed as

〈f〉 := 〈f〉(pnT)
∑

E,|E|=nT

2−|E|f(E).

Quantities of the form〈f〉(C) for some configurationC refer
expectation values〈f〉 given the initial configurationC∅ = C.

An interesting class of random variables can be written in
the form

f(E) =

|E|
∑

i=1

φf (E1,...,i) (4)

whereφf is some function of events andE1,...,i denotes the
restriction ofE to its firsti elements. A simple example is the
amount of lost edgesM(E) that was suffered as a result ofE.
Here,

φM (E1,...,i) =

{

2, Ei = F ∧D(E1,...,i−1) 6= ∅,
0, else. (5)

Let us refer to observables as in Eq. (4) asadditive random
variables. The following lemma states that when evaluating
expectation values of additive variables, only theirstep-wise
mean

φ̄(E1...i) :=
(

φ(E1,...,i−1, S) + φ(E1,...,i−1, F )
)

/2

enters the calculation.

Lemma 9 (Expectation values of additive random variables).
Letf be an additive random variable. Set

f̄(E) :=

|E|
∑

i=1

φ̄(E1...i).

Then〈f〉 = 〈f̄〉.

Proof. Setn = nT. We then have, by definition,

〈f〉 = 2−n
∑

E,|E|=n

n
∑

i=1

φ(E1,...,i)

=
n
∑

i=1

2−i
∑

E,|E|=i

φ(E)

=

n
∑

i=1

2−i
∑

E,|E|=i

φ̄(E) = 〈f̄〉.

Note that

φ̄M (E1,...,i) =

{

1, D(E1,...,i−1) 6= ∅,
0, else,

in other words,φ̄M counts thenumber of attempted fusions
T . Using Lemma 9, we see that the expected number of lost
edges equals the expected number of fusion attempts:〈M〉 =
〈T 〉. This proves Lemma 7.

In the following proof of Theorem 8, we will employ the
identity picture introduced in Section IV. The argument is
broken down into a series of lemmas.

Lemma 10 (More is better than less). Let I be a configura-
tion. Then, for alli,Q(I + ei) ≥ Q(I).

Proof. The proof is by induction on two parameters: on the
number of chains|C| and on the total lengthL(C). To base
the induction in both variables, we note that the claim is trivial
if either |C| ≤ 1 orL ≤ 2.

Now consider any configurationC. Let S be the optimal
strategy and denote byCS andCF the configurations created
by S(C) in case of success and failure respectively. It is sim-
ple to check thatS(C) acting onC + ei yieldsCS + ei or
CF + ei. Hence

Q(C + ei) ≥ 1/2
(

Q(CS + ei) +Q(CF + ei)
)

.

But unless|C| ≤ 1 we have that in any eventE ∈ {S, F}
either |CE | < |C| or L(CE) < L(C) and thus the claim
follows by induction.

Lemma 11(Winning is better than losing). LetC ∈ C, letCS

be the configuration resulting from the action of the optimal
strategy onC in the case of success, letCF be the obvious
analogue. ThenQ(CS) ≥ Q(CF ).
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Proof. Let 〈k, l〉 be the action defined above. Clearly,CF =
C − ek − el. By the last lemma,Q(CF ) ≤ Q(C). ButQ(C)
is the average ofQ(CF ) andQ(CS); hence

Q(CS) ≥ Q(C) ≥ Q(CF ).

Lemma 12(No catalysis). LetC ∈ C. Then, for alli,Q(C +
ei) ≤ Q(C) + 1.

Proof. We show the equivalent statement: forC and i s. t.
Ci 6= 0 it holds thatQ(C − ei) ≥ Q(C) − 1. Once more, the
proof is by induction on|C|, L and the validity of the claim
for |C| ≤ 1 orL ≤ 2 is readily verified.

Let C, S,CS , CF be as in the proof of Lemma 10. If the
application ofS(C) and the subtraction ofei commute, we
can proceed as we did in Lemma 10. A moment of thought
reveals that this is always the case if notCi = 1 andS(C) =
〈i, k〉 (or, equivalently,〈k, i〉) for somek. In fact, in this case
we have

CS = (. . . , li + lk, . . . )

CF = (. . . , li − 1, . . . , lk − 1, . . . ),

so thatCF − ei would take on a negative value at thei-th
position. Note, however, thatC− ei = CS − ei. By induction
it holds thatQ(CS −ei) ≥ Q(CS)−1 and further, by Lemma
11,Q(CS) − 1 ≥ Q(C) − 1 which concludes the proof.

Lemma 13 (Fewer edges – fewer fusions). LetC ∈ C, i be
such thatCi 6= 0. Then

〈T 〉(C − ei) ≤ 〈T 〉(C),

where the expectation values are taken with respect to the re-
spective optimal strategies.

Proof. We will show that, for everyC ∈ C, the optimal strat-
egy acting onC′ := C − ei will content itself with a lower
number of average fusion attempts〈T 〉(C′) than will the op-
timal strategy acting onC. Recall that Lemma 7 states

Q(C) = L(C) − 〈T 〉(C).

Combining this and Lemma 12 we find

Q(C′) ≥ Q(C) − 1

⇔ L(C) − 1 − 〈T 〉(C′) ≥ L(C) − 〈T 〉(C) − 1

⇔ 〈T 〉(C′) ≤ 〈T 〉(C).

We are finally in a position to tackle the original problem.

Proof. (of Theorem 8)Let C∅ be some configuration. We
will build a strategy which is valid onC∅ in the razor model
and uses a fewer number of expected fusions than the opti-
mal strategy in the full setup. Define the shaving operator
R̂ : C → C which sets the length of each chain of lengthi
in the configuration it acts on tomax(i, R). By a repeated
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af
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bf
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final configurations

FIG. 8: The configuration space of theR = 2 razor model isN0 ×N0. Only the three actionsa, b andc are available to reach the final
configurations (exactly one EPR pair or GHZ state, or no chainat
all), starting from the initial configuration that consistsof N EPR
pairs.

application of the relation stated in Lemma 13, we see that
〈T 〉(R̂C) ≤ 〈T 〉(C).

We build the razor model strategy’s decision functionD′

inductively for all events inEi, for increasingi. Consider an
eventE ∈ Ei. Denote byC′

E the configuration resulting from
C∅ under the action ofD′ in the event ofE. C′

E is well-
defined as only the values ofD′ for events with length smaller
thani enter its definition. SetD′(E) to the action taken by the
optimal strategy for̂RC′

E .
It is simple to verify thatD′ defines a valid strategy for the

razor model. By the results of the first paragraph, the expected
number of fusions decreased in every step of the construction
of D′. The claim follows.

C. An analytical bound – random walk

Finally, we are in a position to prove an analytic upper
bound on the yield of any strategy building one-dimensional
cluster chains. Quite surprisingly, the description givenby the
razor model with a rather radical parameter ofR = 2 is still
faithful enough to deliver a good bound as will be explained
now.

In theR = 2-model configurations are fully specified by
giving the number of EPR pairsn1 and of chains of length two
n2 they contain. Hence the configuration space isN0×N0 and
we can picture it as the positive quadrant of a two-dimensional
lattice. In each step a strategy can choose only among three
non-trivial actions:

(a) Try to fuse two EPR pairs. We call this actiona for
brevity. LetCS be the configuration resulting from a
successful application ofa on C. Define the vector
aS ∈ Z × Z asaS := CS − C. An analogous defi-
nition for aF and some seconds of thought yield

aS := (−2, 1),

aF := (−2, 0).
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(b) Try to fuse two chains of length one and two, respec-
tively. In the same manner as above we have

bS := (−1, 0),

bF := (0,−1).

(c) Try to fuse two chains of length two.

cS := (0,−1),

cF := (2,−2).

The objective is to bound from below the minimum number
of non-trivial actions taken on average. Initially, we start with
N EPR pairs, soC∅ = (N, 0). As configuration space is
a subspace ofN0 × N0, we can describe the situation by a
random walk in a plane.

Any strategy will apply the rulesa, b, c until one of the
points (0, 0), (1, 0), (0, 1) is reached (illustrated in Fig. 8).
Our proof will be lead by the following idea: by applying one
of the three non-trivial actions to a configurationC, we will
move “on average” by

ā := (aS + aF )/2 = (−2, 1/2),

b̄ := (−1/2,−1/2) or

c̄ := (1,−3/2),

respectively. The minimum number of expected fusion steps
should then be given by the minimum number of vectors from
{ā, b̄, c̄} one has to combine to reach the origin starting from
(N, 0). This procedure amounts to an interchange of two av-
erages. The aim is to reach the origin or a point with distance
one to it on average as quickly as possible.

To make this intuition precise, set

φδ(E1,...,i) := D(E1,...,i−1)Ei .

Recall thatD(E1,...,i−1) is one of{a, b, c, ∅}. Given the event
E, φδ(E) is the last action applied to the configuration. For
any eventE = {S, F}n we require that

δ(E) :=
∑

i

φδ(E1,...,i) ≤ (−N + 1, 1), (6)

which implies in particular that the same bound holds for〈δ〉.
Definea(E) to be the number of times the strategy will have
decided to apply rule “a” in the chain of events{E1,...,i | i =
1, . . . , |E|} leading up toE. Formally

φa(E1,...,i) =

{

1, D(E1,...,i−1) = a,
0, else,

anda(E) =
∑|E|

i=1 φa(E1,...,i). Further,

φ̄δ(E1,...,i) = φa(E1,...,i)ā+ · · · + φc(E1,...,i)c̄,

whereφb, φc are defined in the obvious way. It follows that

〈δ〉 = 〈δ̄〉 = 〈a〉ā+ 〈b〉b̄ + 〈c〉c̄ ≤ (−N + 1, 1), (7)

〈T 〉 = 〈a〉 + 〈b〉 + 〈c〉. (8)

D. An analytical bound – convex optimization program

Therefore, if〈T 〉 originates from a valid strategy it is neces-
sarily subject to the constraints put forward in Eqs. (7,8).For
eachN ∈ N, a lower bound for the minimum expected num-
ber of losses is thus given by a linear program, so a certain
convex optimization problem: We define

B :=





−2 1/2
−1/2 −1/2

1 −3/2



 .

Then, this lower bounds can be derived from the optimal so-
lution of the linear program given by

minimize (1, 1, 1)xT

subject to xB ≤ (−N + 1, 1),

x ≥ 0,

where the latter inequality is meant as a component-wise pos-
itivity. This is a minimization over a vectorx ∈ R3. In this
way, the performance of the razor model is reduced to solv-
ing a family of convex optimization problems. According to
Lemma 14, the solution of this linear program delivers the op-
timal objective value satisfying

〈T 〉 = 4N/5 − 2

forN ≥ 6.

Lemma 14 (Duality for linear program). The optimal objec-
tive values of the family of linear programs

minimize (1, 1, 1)xT

subject to xB ≤ (−N + 1, 1),

x ≥ 0,

are given by

(1, 1, 1)xT
opt =







0, N = 1,
(N − 1)/2, N = 2, ..., 5,
(4(N − 1) − 6)/5, N ≥ 6.

Proof. This can be shown making use of Lagrange duality for
linear programs. The dual to the above problem, referred to as
primal problem, is found to be

maximize (N − 1,−1)yT

subject to −yBT ≤ (1, 1, 1),

y ≥ 0.

This is a maximization problem iny ∈ R2, again a linear
program (moreover, a duality gap can never appear, i. e., the
objective values of the optimal solutions of the primal and the
dual problems are identical). By finding – for eachN – a
solution of the dual problem, which is assumed by the primal
problem, we have hence proven optimality of the respective
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solution. For allN , this family of solutions can be determined
to be

y =







(0, 0), N = 1,
(1/2, 0), N = 2, ..., 5,
(4/5, 6/5), N ≥ 6.

It is straightforward to show that these are solutions of thedual
problem, and that the respective objective values are attained
by appropriate solutions of the primal problem, e. g.

x =







(0, 0, 0), N = 1,
((N − 1)/2, 0, 0), N = 2, ..., 5,
(2N/5, 2(N/5− 1), 0), N ≥ 6.

The solutions yield the objective values stated in the lemma.

We subsequently highlight the consequence of this proof:
we find the bound to the quality of the globally optimal strat-
egy: this shows that asymptotically (forps = 1/2) at least five
EPR pairs have to be invested on average (see also the subse-
quent section) per single gain of an edge in the linear cluster
state.

Corollary 15 (Upper bound to globally optimal strategy). The
quality of the optimal strategy forN ≥ 6 is bounded from
above by

Q(N) ≤ N/5 + 2.

This is one of the main results of this work.

IX. AN INVERSE QUESTION

Recall that so far we treated the problem “given some fixed
number of input pairs, how long a single chain can be obtained
on average?”. It is also legitimate to ask “how many input
pairs are needed to produce a chain of some fixed length with
(almost) unity probability of success?”. After all, we might
need just a specific length for a given task. In the present
section we establish that both questions areasymptotically
equivalent, in the sense that bounds for either problem imply
bounds for the other one.

Theorem 16 (Resources for given resulting length, upper
bounds). LetS be some strategy, let

Q̃S(N) ≥ αN + β

be a lower bound to its yield for someα, β ∈ R and allN ≥
N0. Choose anε > 0. Then there exists a strategyS′ such
that, ifS′ acts on(1/α+ε)LEPR pairs, it will output a single
chain not shorter thanL with probability approaching unity
asL→ ∞.

Proof. Choose a numberb ∈ N. SetN = (1/α + ε)L.
There are arbitrary largeL such thatb dividesN and we will
presently assume thatL has this property. We comment on the
general case in the end.

The strategyS′ proceeds in two stages, labeled I and II, to
be analyzed in turn. Firstly, we divide theN input pairs into
B = N/b blocks of sizeb and letS run on each of these
blocks.

Denote byNi the random variable describing the final out-
put length of thei-th block, i = 1, ..., B. TheNi are in-
dependent, identically distributed variables satisfying〈Ni〉 ≥
αN + β. SetNI =

∑B
i=1Ni (the roman I signifies that we

are dealing with the expected total length after thefirst stage
of S′). As theNi are independent, the variance ofNI equals
Bσ2, whereσ2 < ∞ is the variance of any of theNi. By
Chebychev’s inequality we have

P
[

|NI − 〈NI〉| ≥ B3/4
]

≤ Var(NI)B
−3/2

= σ2 B−1/2.

In other words, the relation|NI − 〈NI〉| < B3/4 holds almost
certainly if we letL (and henceB) go to infinity for any fixed
b. The same is true in particular for the weaker statement

NI ≥ 〈NI〉 −B3/4 ≥ B(αb+ β) −B3/4.

In the second stage II,S′ builds up a single chain out of the
B ones obtained before. Irrespective of howS′ goes about
in detail, the process will stop after exactlyB − 1 successful
fusions. Now choose anyδ > 0. We claim that asymptotically
no more than(1+δ)(B−1) failures will have occurred before
the strategy terminates. Indeed, consider an eventE of length
2(1+δ/2)(B−1). By the law of large numbers,E contains no
fewer thanB− 1 successes and not more than(1+ δ)(B− 1)
failures, almost certainly asB → ∞. Hence the final output
lengthNII fulfills

P
[

NII > B(αb+ β) −B3/4 − 2(1 + δ)B
]

→ 1

asB → ∞. Plugging in the definitions ofB,N , the r. h. s. of
the estimate takes on the form

L+ L
(

εα+
1

b
f1(α, β, δ, ε)

)

−
(L

b
f2(α, ε)

)3/4
,

wheref1, f2 are some (not necessarily positive) functions of
the constants. By choosing the block lengthb large enough,
we can always make the second summand positive. For large
enoughL, the positive second term dominates the negative
third one and henceNII > L almost certainly asL→ ∞.

Lastly consider the case whereL is such thatb does not
divideN . ChooseL ≥ b/ε. We can decomposeN = kb+ r
wherer < b and hencer/L < b/L ≤ ε. Setε′ = ε − r/L.
By constructionN ′ = (1/α − ε′)L dividesb and therefore
alreadyN ′ < N input pairs are enough to build a chain of
lengthL asymptotically with certainty.

Theorem 17 (Resources for given resulting length, lower
bounds). Let

Q(N) ≤ αN + β

be some upper bound to the optimal strategy’s performance.
Choose anε > 0. Then there exists no strategyS′ such that,
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if S′ acts on(1/α − ε)L EPR pairs, it will output a single
chain not shorter thanL with probability approaching unity
asL→ ∞.

Proof. Assume there is such a strategyS′. Then

lim
N→∞

Q̃S′(N)

N
≥ (1/α− ε)−1 > α.

HenceQ̃S′(N) is eventually larger thanQ(N), which is a
contradiction.

Suppose one aims to build a linear cluster state of lengthN .
Combining the results of the present section with the findings
of Sections VII, VIII yields that the goal is achievable with
unit probability if more than6.6N EPR pairs are available.
Similarly, one will face a finite probability of failure in case
there are less than5N input chains. Both statements are valid
asymptotically for largeN .

X. TWO-DIMENSIONAL CLUSTER STATES

A. Preparation prescription

We finally turn to the preparation of two-dimensional clus-
ter states, which are universal resources for quantum computa-
tion [12, 13, 14]. To build up a two-dimensionaln×n cluster
state clearly requires the consumption ofO(n2) EPR pairs.
That this bound can actually be met constitutes the main re-
sult of this section: this question had been open so far, withall
known schemes exhibiting a worse scaling. From our previ-
ous derivations, we already know that length-n linear cluster
chains can be built consumingO(n) entangled pairs. Hence it
suffices to prove that linear chains with an accumulated length
of O(n2) can be combined to ann×n-cluster. Consequently,
for the constructions to come, we will employ linear chains –
as opposed to EPR pairs – as the basic building blocks.

Again, to actually connect two chains to form a two-
dimensional structure, probabilistic gates from arbitrary ar-
chitectures may be utilized. The following claim will hold for
gates that delete a constant amount of edges from the partic-
ipating chains on failure (maybe unequal for the two chains),
but not splitting them (noσz error outcome). In case of suc-
cess it shall create cross-like structures, again deletinga cer-
tain amount of edges (see Fig. 10). In particular, the quadratic
scaling as such is not altered by a possibly small probability
of successps < 1/2.

The main problem faced is to find a preparation scheme that
does not ’tear apart’ successfully prepared intermediate states
in case of a failed fusion. The challenge will be met by (a)
switching from type-I to type-II fusion (Section X B) and (b)
employing the pattern shown in Fig. 9 (Section X C).

B. Linear optical type-II fusion gate

As for linear optics fusion gates, an error outcome in the
type-I gate would tear each chain apart where we tried to fuse.

FIG. 9: A possible pattern of how to arrangen + 1 linear clusters to
build a two-dimensional cluster of widthn. Fusion operations have
to be applied at the black circles along the long linear cluster state.
Free ends carrying spare overhead are shown as arrows.

Hence the related type-II fusion gate [5] with a more suit-
able error outcome will be used. How this one actually acts is
shown in Fig. 10.

In preparation of a fusion attempt, a “redundantly encoded”
qubit with two photons (see [5]) is produced in one chain by
a σx measurement, which consumes two edges (giving rise
to another2n2 edges). Now the fusion type-II gate creates
a two-dimensional cross-like structure on success when be-
ing applied to one of the photons in the redundantly encoded
qubit and one of the other chain’s qubits. In case of failure it
acts like aσx measurement, therefore decreasing the encod-
ing level of the redundancy encoded qubit by one and deleting
two edges from the other chain, leaving us with a redundancy
encoded qubit there. Hence, we may apply the fusion type-
II again without any further preparation, deleting two edges
on successive failures from the two chains alternatingly. For
convenience we assume that we lose two edges per involved
chain per failure instead. This increases the overhead require-
ment roughly by a factor of two but allows us to forget about
the asymmetry in the fusion process. Hence, in the following
any resource requirements will be given in terms of double
edges instead of single ones.

Similar to the type-I case, the optimal success probability
can be found. Actually this type of fusion gate should per-
form a Bell state measurement, henceps ≤ 1/2 [28]. In fact,
the gate proposed in Ref. [5] consists of the parity check, the
Hadamard rotation and measurement of the second qubit (see
Fig. 2) with two additional Hadamard gates applied before
(which only map Bell states onto Bell states).

C. Asymptotic resource consumption for near-deterministic
cluster state preparation

Theorem 18 (Quadratic scaling of resource overhead). For
any success probabilityps ∈ (0, 1] of type-II fusion, ann× n
cluster state can be prepared usingO(n2) edges in a way such
that the overall probability of success approaches unity

Ps(n) → 1

asn→ ∞.

Proof. The aim is to prepare ann × n cluster state, starting
fromn+1 one-dimensional chains. For any integerl, starting
point is a collection ofn one-dimensional chains of length
m = n + l, and a single longer chain of lengthL = n(l +
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success (ps = 1/2)
failure (pf = 1/2)

FIG. 10: The elementary linear optics tools for building two-
dimensional structures from linear cluster chains. From top to bot-
tom: aσz measurement to remove unneeded nodes, aσx measure-
ment to create a redundancy encoded qubit in preparation of type-II
fusion. The last figure shows the action of a fusion type-II attempt.

1), referred to subsequently as thread. In order to achieve
the goal, a suitable choice for a pattern of fusion attempts is
required. One such suitable “weaving pattern” is depicted in
Fig. 9. Here, solid lines depict linear chains, whereas dots
represent the vertices along the thread where fusion gates are
being applied.

The aim will then be to identify a functionn 7→ g(n) such
that the choicem = g(n) leads to the appropriate scaling of
the resources. In fact, it will turn out that a linear function is
already suitable, so for ana > 1/ps we will considerg(n) =
an. This number

m− n = g(n) − n = (a− 1)n

quantifies the resource overhead: in case of failure, one can
make use of this overhead to continue with the prescription
without destroying the cluster state. If this overhead is too
large, we fail to meet the strict requirements on the scalingof
the overall resource consumption, if it is too small, the prob-
ability of failure becomes too large. Note that there is an ad-
ditional overhead reflected by the choiceL. This, however, is
suitably chosen not to have an implication on the asymptotic
scaling of the resources.

Given the above prescription, depending onn, the overall
probabilityPs(n) of succeeding to prepare ann × n cluster
state can be written as

Ps(n) = πs(n)n.

Here,

πs(n) = pn
s

(a−1)n
∑

k=0

(1 − ps)
k

(

n+ k − 1

k

)

is the success probability to weave a single chain of length
an into the carpet of sizen with the binomial quantifying
the number of ways to distributek failures onn nodes [34].
ps > 0 and1 − ps are the success and failure probabilities
for a fusion attempt, respectively. It can be rephrased as the

probability to find at leastn successful outcomes inan trials,

πs(n) =
an
∑

k=n

(1 − ps)
an−kpk

s

(

an

k

)

= 1 − F (n− 1, an, ps).

Here,F denotes the standard cumulative distribution function
of the binomial distribution [35]. Sincen − 1 ≤ anps for all
n, asa > 1/ps is assumed, we can hence boundπs(n) from
below by means ofHoeffding’s inequality[36, 37], provid-
ing an exponentially decaying upper bound of the tails of the
cumulative distribution function. This gives rise to the lower
bound

πs(n) ≥ 1 − exp

(

−2(anps − n+ 1)2

an

)

.

Now, again sincea > 1/ps, we have that

πn
s ≥ (1 − exp(−cn))

n

with c := 2(aps − 1)/a > 0. Further, for anyk ∈ N there
exists ann0 ∈ N such that for alln ≥ n0

(1 − exp(−cn))
n
> (1 − 1/(kn))

n
.

Noticing

lim
n→∞

(1 − 1/(kn))n = e−1/k

we can find for anyε > 0 a k satisfying1 − e−1/k < ε.
Therefore, for anyε > 0 it holds thatlimn→∞ Ps > 1 − ε.
This ends the argument leading to the appropriate scaling.

Even within the setting of quadratic resources, the appro-
priate choice fora does have an impact: If the probability of
successps is too small for a givena,

1/ps > a > 1,

then this will lead tolimn→∞ Ps(n) = 0, so the preparation of
the cluster will eventually fail, asymptotically with certainty.
This sudden change of the asymptotic behavior of the resource
requirements, leading essentially to either almost unit (almost
all cluster states can successfully be prepared) or almost van-
ishing success probability is a simple threshold phenomenon
as in percolation theory. In turn, for a givena, pth = 1/a
can be taken as a threshold probability: above this threshold
almost all preparations will succeed, below it they will fail
[38]. This numbera essentially dictates the constant factor in
front of the quadratic behavior in the scaling of the resource
requirements. Needless to say, this depends onps.

This analysis shows that a two-dimensional cluster state can
indeed be prepared usingO(n2) edges, employing probabilis-
tic quantum gates only. This can be viewed as good news, as
it shows that the natural scaling of the use of such resources
can indeed be met, with asymptotically negligible error. Pre-
viously, only strategies leading to a super-quadratic resource
consumption have been known. In turn, any such other scal-
ing of the resources could have been viewed as a threat to the
possibility of being able to prepare higher-dimensional cluster
states using probabilistic quantum gates.
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XI. SUMMARY, DISCUSSION, AND OUTLOOK

In this paper, we have addressed the question of how to
prepare cluster states using probabilistic gates. The emphasis
was put on finding bounds that the optimal strategy neces-
sarily has to satisfy, to identify final bounds on the resource
overhead necessary in such a preparation. This issue is partic-
ularly relevant in the context of linear optics, where the nec-
essary overhead in resource is one of the major challenges in-
herent in this type of architecture. It turns out that the waythe
classical strategy is chosen has a major impact on the resource
consumption. By providing these rigorous bounds, we hope to
give a guideline to the feasibility of probabilistic state genera-
tion. One central observation, e. g., is that for any preparation
of linear cluster states using linear optical gates as specified
above, one necessarily needs at least five EPR pairs per av-
erage gain of one edge.This limit can within these rules no
further be undercut. But needless to say, the derived results
are also applicable to other architectures, and we tried to sep-
arate the general statements from those that focus specifically
on linear optical setups.

It is also the hope that the introduced tools and ideas are ap-
plicable beyond the exact context discussed in the present pa-
per. There are good reasons to believe that these methods may
prove useful even when changing the rules: For example, as
fusion type-II can also be used for production of redundancy
encoding resource states [6] and linear cluster states in a sim-
ilar fashion, similar bounds to resource consumption may be
derived for these schemes. Due to the fact that fusion type-II
does not require photon number resolving detectors, this could
be a matter of particular interest for experimental realizations.
Also, generalizations of some of the statements forps 6= 1/2
have been explicitly derived. Other generalizations may well
also be proven with the tools developed in this paper.

Concerning lossy operations, we emphasize again that
when all EPR pairs are simultaneously created in the begin-
ning, their storage time will be minimized by application of
the strategy that optimizes the expected final length. Obvi-
ously, the problem of storage using fiber loops or memories
is a key issue in any realization. Yet, for a given loss mech-
anism, it would be interesting to see to what extent a modi-
fication of the optimal protocol would follow – compared to
the one here assuming perfect operations – depending on the
figures of merit chosen. One then expects trade-offs between
different desiderata to become relevant [39]. In the way it is
done here, decoherence induced by the actual gates employed
for the fusion process is also minimized exactly by choosing
the optimal strategy of this work: it needs the least number of
uses of the underlying quantum gates.

Further, studies in the field of fault tolerance may well ben-
efit from this approach. To start with, one has to be aware that
the overhead induced in fully fault-tolerant one-way comput-
ing schemes is quite enormous [21]. This is extenuated when
considering photon loss only as a source of errors [6, 22]. Yet,
methods as the ones presented here will be expected to be use-
ful to very significantly reduce the number of gate invocations
in the preparation of the resources.
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