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Abstract. The multiple gamma function Γn, defined by a recurrence-functional
equation as a generalization of the Euler gamma function, was originally introduced
by Kinkelin, Glaisher, and Barnes around 1900. Today, due to the pioneer work
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1. Introduction

The Hurwitz zeta function, one of the fundamental transcendental
functions, is traditionally defined (see [11]) by the series

ζ(s, z) =
∞∑

k=0

1
(k + z)s , <(s) > 0. (1)

It admits an analytic continuation to the entire complex plane except
for the simple pole s = 1. The Riemann zeta function ζ(s) is a special
case of ζ(s, z)

ζ(s, 1) = ζ(s).

The Hurwitz function has quite a few series and integral representations
(see [11, 8]). The most famous is the Hermite integral:

ζ(s, z) =
z−s

2
+

z1−s

s− 1
+ 2

∫ ∞

0

sin (s arctan (x
z ))

(x2 + z2)s/2(e2πx − 1)
dx,

s 6= 1,<(z) > 0

(2)

from which one can deduce many fundamental properties of the Hur-
witz function, including the asymptotic expansion at infinity:
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2 V. Adamchik

ζ(s, z) =
z1−s

s− 1
+

z−s

2
+

m−1∑

j=1

B2j Γ(2j + s− 1)
(2j)! Γ(s)

z−2j−s+1 + O(
1

z2m+s+1
)

The Hurwitz function is closely related to the multiple gamma function
Γn(z) defined as a generalization of the classical Euler gamma function
Γ(z), by the following recurrence-functional equation (for references
and a short historical survey see [6, 19]):

Γn+1(z + 1) =
Γn+1(z)
Γn(z)

, z ∈ C| , n ∈ IN,

Γ1(z) = Γ(z), (3)
Γn(1) = 1.

The multiple gamma function, originally introduced over 100 years
ago, has significant applications in the connection with the Riemann
Hypothesis. Montgomery [14] and Sarnak [17] have conjectured that
the limiting distribution of the non-trivial zeros of the Riemann zeta
function is the same as that of the eigenphases of matrices in the CUE
(the circular unitary ensemble). It has been shown in works by Mehta,
Sarnak, Conrey, Keating, and Snaith that a closed representation for
statistical averages over CUE of N×N unitary matrices, when N →∞
can be expressed in terms of the Barnes function G(z) = 1/Γ2(z),
defined by

G(z + 1) = G(z) Γ(z), z ∈ C| , (4)
G(1) = 1.

Keating and Snaith [9, 10] conjectured the following relationship be-
tween the moments of |ζ

(
1
2 + i t

)
|, averaged over t, and characteristic

polynomials, averaged over the CUE:

log
(

1
a(λ)

lim
T→∞

1
logλ2

(T )T

∫ T

0
|ζ(

1
2

+ it)|
2λ

dt

)
=

λ2(γ + 1)− 2λ
∞∑

k=2

(−λ)k(2k − 1)
ζ(k)
k + 1

,

(5)

where a(λ) is a known function of λ ∈ IN . The series on the right hand
side of (5) is understood in a sense of analytic continuation (see [1]
for the method of evaluation of such sums), provided by the Barnes
function
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2
∞∑

k=2

(−z)k ζ(k)
k + 1

=
2
z

log G(z + 1) + z(γ + 1)− log(2π) + 1, (6)

|z| < 1,

where γ denotes the Euler-Mascheroni constant. Conversely, we find
that the moments of |ζ

(
1
2 + i t

)
| in (5) are just a ratio of two Barnes

functions:

log
(

1
a(λ)

lim
T→∞

1
logλ2

(T )T

∫ T

0
|ζ(

1
2

+ i t)|
2λ

dt

)
=

G(λ + 1)2

G(2λ + 1)

The evidence in support of Keating and Snaith’s conjecture is confirmed
by a few particular cases λ = 1, 2, 3, 4, and the numerical experiment,
conducted by Odlyzko [15], for T up to 1022th zero of the Riemann
zeta function.

The identity (6) can be further generalized to

∞∑

k=2

(−z)k ζ(k)
k + r − 1

, r ∈ Q| , |z| < 1

and then evaluated in terms of the r-tiple gamma functions. For in-
stance, with r = 3 we find

∞∑

k=2

(−z)k ζ(k)
k + 2

=
2
z2

log Γ3(z + 1) +
1
z2

log G(z + 1) + (7)

6z2 + 3z − 1
12z

+
γz

3
− log(2π)

2
− 2 ζ ′(−1)

z
, |z| < 1.

In this paper we aim at developing a mathematical foundation for
symbolic computation of special classes of infinite series and products.
Generally speaking, all series (subject to convergence) of the form:

∞∑

j=1

R(j) logmP (j), m ∈ IN,

where R(z) and P (z) are polynomials, can be expressed in a closed
form by means of the multiple gamma function, which may further
simplify to elementary functions. This algorithm also complements the
work previously started by Adamchik and Srivastava [1] for symbolic
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4 V. Adamchik

summation of series involving the Riemann zeta function. The algo-
rithm will expand the capabilities of existing software packages for
non-hypergeometric summation.

2. Asymptotics of ζ ′(−λ, z)

In this section, based on the integral (2), we derive the asymptotic
expansion of ζ ′(t, z) = d

dt ζ(t, z), when t = −λ, λ ∈ IN0 and z → ∞.
Differentiating both sides of (2) with respect to s, we obtain

ζ ′(−λ, z) =
zλ+1

λ + 1
log z − zλ

2
log z − zλ+1

(λ + 1)2

+ 2
∫ ∞

0

tan−1(x
z ) cos (λ tan−1(x

z ))

(e2πx − 1)(x2 + z2)−λ/2
dx (8)

+
∫ ∞

0

log(x2 + z2) sin (λ tan−1(x
z ))

(e2πx − 1)(x2 + z2)−λ/2
dx

Next, we expand the integrands into the Taylor series with respect to
z. Taking into account that

(x2 + z2)λ/2 cos (λ tan−1(
x

z
)) =

λ/2∑

k=0

(−1)k

(
λ

2k

)
zλ−2kx2k

and

(x2 + z2)λ/2 sin (λ tan−1(
x

z
)) =

λ/2∑

k=0

(−1)k

(
λ

2k + 1

)
zλ−2k−1x2k+1

we compute

∫ ∞

0

tan−1(x
z ) cos (λ tan−1(x

z ))

(e2πx − 1)(x2 + z2)−λ/2
dx =

λ/2∑

k=0

zλ−2k(−1)k

(
λ

2k

) ∫ ∞

0

x2k tan−1(x
z )

e2πx − 1
dx

(9)

and
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∫ ∞

0

log(x2 + z2) sin (λ tan−1(x
z ))

(e2πx − 1)(x2 + z2)−λ/2
dx =

−
λ/2∑

k=0

z−2k+λ−1(−1)k

(
λ

2k + 1

) ∫ ∞

0

x2k+1 log(x2 + z2)
e2πx − 1

dx.

(10)

In the next step, we find asymptotic expansions of integrals on the
right hand side of (9) and (10) when z →∞. Expanding tan−1(x

z ) and
log (x2 + z2) into the Taylor series with respect to x and performing
term by term integration, we arrive at

∫ ∞

0

x2k tan−1(x
z )

e2πx − 1
dx =

r∑

j=0

(−1)kz−2j−1B2(j+k+1)

4(2j + 1)(j + k + 1)
+ O(

1
z2r+3

),

∫ ∞

0

x2k+1 log(1 + x2/z2)
e2πx − 1

dx = −
r∑

j=1

(−1)kz−2jB2(j+k+1)

4j(j + k + 1)
+ O(

1
z2r+2

),

where Bk are the Bernoulli numbers. Substituting these into (9) and
(10) and the latters into (8), after some tedious algebra, we obtain

PROPOSITION 1. The derivatives of the Hurwitz zeta function have
the following asymptotic expansion when z →∞:

ζ ′(−λ, z) =
zλ+1

λ + 1
log z − zλ

2
log z − zλ+1

(λ + 1)2

+
r∑

j=1

z−2j+λ+1

(2j)!
B2j

2j−1∑

k=0

(k + 1)
[
2j − 1
k + 1

]
(−λ)k (11)

− log z
r∑

j=1

z−2j+λ+1B2j(−λ)2j−1

(2j)!
+ O(

1
z2 r−λ+1

)

where ζ ′(t, z) = d
dt ζ(t, z), (−λ)k = (−λ)(−λ+1) . . . (−λ+ k− 1) is the

Pochhammer symbol, and
[n

k

]
are the Stirling cycle numbers, defined

recursively [16] by

[
n

k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1
k − 1

]
,

[
n

0

]
=

{
1, n = 0,

0, n 6= 0
(12)
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6 V. Adamchik

For λ = 0 and λ = 1, formula (11) yields the well-know asymptotics
[11]:

ζ ′(0, N) = N log N − log N

2
−N + O(

1
N

),

ζ ′(−1, N) =

(
N2

2
− N

2
+

1
12

)
log N − N2

4
+

1
12

+ O(
1

N2
)

(13)

In the similar way, we can derive the asymptotic expansions for higher
order derivatives ζ(m)(−λ,N), where N →∞ and λ ∈ IN+.

3. Multiple gamma, zeta and the Hurwitz functions

In [20], Vardi expressed the Γn function in terms of the multiple zeta
function ζn(s, z), as

log Γn(z) = lim
s→0

(
∂ ζn(s, z)

∂s

)
+

n∑

k=1

(−1)k

(
z

k − 1

)
Rn+1−k (14)

where

Rn =
n∑

k=1

lim
s→0

(
∂ ζk(s, 1)

∂s

)
(15)

and

ζn(s, z) =
∞∑

k1=0

. . .
∞∑

kn=0

1
(k1 + k2 + ... + kn + z)s

=
∞∑

k=0

1
(k + z)s

(
k + n− 1

n− 1

)
(16)

The aim of this section is to find a closed form representation for
log Γn(z) in finite terms of the Hurwitz zeta function, and vice versa.

PROPOSITION 2. The multiple gamma function Γn(z) may be ex-
pressed by means of the derivatives of the Hurwitz zeta function:

log Γn(z) =
1

(n− 1)!

n−1∑

k=0

Pk,n(z)
(

ζ ′(−k, z)− ζ ′(−k)
)

, <(z) > 0,

(17)
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Multiple Gamma Function 7

where the polynomials Pk,n(z) are defined by

Pk,n(z) =
n∑

j=k+1

(−z)j−k−1

(
j − 1

k

)[
n

j

]
(18)

where
[

n
j

]
are the Stirling cycle numbers.

The polynomials Pk,n(z) can be envisaged as the generalized Stirling
polynomials of the first kind, generated by

n−1∏

k=1

(k + x− z) =
n−1∑

k=0

Pk,n(z)xk

with the following two alternative forms of representation

Pk,n(z) =
(−1)k

k!
∂n−1

∂yn−1

logk(1− y)
(1− y)1−z

∣∣∣∣
y→0

(19)

and

Pk,n(z) =
n∑

i=k+1

(
z

n− i

)
(n− 1)!
(i− 1)!

[
i

k + 1

]
(20)

For z = 1 the polynomials Pk,n(z) are simplified to the Stirling num-
bers:

Pk,n(1) =
[
n− 1

k

]
(21)

Interestingly, the polynomials Pk,n(z) were first considered by Mitri-
novic [13] 40 years ago (with no relation to the multiple gamma func-
tion) as a possible generalization of the Stirling numbers.

The proof of Proposition 2 is based on the following two lemmas.

LEMMA 1. The multiple zeta function ζn(s, z) defined by (16) may be
expressed by means of the Hurwitz function

ζn(s, z) =
1

(n− 1)!

n−1∑

j=0

Pj,n(z) ζ(s− j, z) (22)

Proof.
Recall the definition of the Stirling cycle numbers

(
k + n− 1

n− 1

)
=

1
(n− 1)!

n∑

i=0

ki−1
[
n

i

]
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Expanding ki−1 = ((k + z)− z)i−1 by the binomial theorem, implies
that

(
k + n− 1

n− 1

)
=

1
(n− 1)!

n∑

i=0

i−1∑

j=0

(
i− 1

j

)
(k + z)j(−z)i−j−1

[
n

i

]

Interchanging the order of summation and making use of (18), leads us
to

(
k + n− 1

n− 1

)
=

1
(n− 1)!

n∑

j=0

Pj,n(z)(k + z)j

Finally, we substitute this binomial coefficients representation into (16):

ζn(s, z) =
∞∑

k=0

1
(k + z)s

(
k + n− 1

n− 1

)

=
1

(n− 1)!

n∑

j=0

Pj,n(z)
∞∑

k=0

1
(k + z)s−j

We complete the proof by evaluating the inner sum to the Hurwitz zeta
function. ¤

LEMMA 2. The function Rn defined by (15) may be expressed by
means of the derivatives of the Riemann zeta function

Rn =
1

(n− 1)!

n−1∑

k=0

ζ ′(−k)
[

n

k + 1

]
(23)

Proof. Using Lemma 1 with z = 1 and formula (21), we get

ζk(s, 1) =
1

(k − 1)!

k∑

j=0

[
k − 1

j

]
ζ(s− j)

which, upon differentiation, yields

lim
s→0

∂ζk(s, 1)
∂s

= ζ ′(0) δ0,k−1 +
1

(k − 1)!

k∑

j=1

[
k − 1

j

]
ζ ′(−j) (24)

Here δk,n is the Kronecker delta function. Next, we sum both parts of
identity (24) with respect to k:
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Rn =
n∑

k=1

lim
s→0

∂ζk(s, 1)
∂s

= ζ ′(0) +
n∑

j=1

ζ ′(−j)
n∑

k=j

1
(k − 1)!

[
k − 1

j

]

Observing, that the inner sum can be expressed via the Stirling num-
bers:

n∑

k=j

1
(k − 1)!

[
k − 1

j

]
=

1
(n− 1)!

[
n

j + 1

]

we complete the proof. ¤

Proof of Proposition 2. The derivation of (17) immediately follows
from formula (14), by applying Lemma 1 and Lemma 2:

log Γn(z) =
1

(n− 1)!

n−1∑

j=0

Pj,n(z) ζ ′(−j, z)−

n−1∑

j=0

(−1)j

(
z

j

)
1

(n− j − 1)!

n−j−1∑

k=0

ζ ′(−k)
[
n− j

k + 1

]

Interchanging the order of summation, we obtain

log Γn(z) =
1

(n− 1)!

n−1∑

j=0

(
Pj,n(z) ζ ′(−j, z)−

ζ ′(−j)
n−j−1∑

k=0

(−1)k

(
z

k

)
(n− 1)!

(n− k − 1)!

[
n− k

j + 1

])

Finally, we note that the above inner sum is equal to representation
(20) with a reversed order of summation. This completes the proof. ¤

In the second part of this section we invert Proposition 2 and express
the derivatives of the Hurwitz function in finite terms of the multiple
gamma function. The problem of representing derivatives in terms of
other special functions was originally addressed by Ramanujan who
studied functional and asymptotic properties of this function [4]

φk(z) = ζ ′(−k, z + 1)− ζ ′(−k).

It is unknown if Ramanujan was aware of Barnes’ results regarding the
multiple gamma function.
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10 V. Adamchik

PROPOSITION 3. The derivatives of the Hurwitz zeta function may
be expressed by means of the multiple gamma function Γn(z)

ζ ′(−n, z)− ζ ′(−n) =
n∑

k=0

(−1)n−k k! Qk,n(z) log Γk+1(z), <(z) > 0

(25)
where the polynomials Qk,n(z) are defined by

Qk,n(z) =
n∑

j=k

(1− z)n−j
(

n

j

){
j

k

}
(26)

and
{

j
k

}
are the Stirling subset numbers, defined by [16]

{
n

k

}
= k

{
n− 1

k

}
+

{
n− 1
k − 1

}
,

{
n

0

}
=

{
1, n = 0,

0, n 6= 0
(27)

The immediate particular case of (25) is the formula for the triple
gamma function:

ζ ′(−2, z)− ζ ′(−2) = 2 log Γ3(z) + (3− 2z) log G(z) (28)

+ (1− z)2 log Γ(z), <(z) > 0

For z = 0 the polynomials Qk,n(z) simplify to the Stirling subset
numbers:

Qk,n(0) =
n∑

j=k

(
n

j

){
j

k

}
=

{
n + 1
k + 1

}

LEMMA 3. Polynomials Pj,n(z) and Qk,j(z) satisfy the following dis-
crete orthogonality relation:

n−1∑

j=k

(−1)j−kQk,j(z)Pj,n(z) = δk,n−1 (29)

where δk,n−1 is the Kronecker delta.

Proof. The proof is primarily based on the discrete orthogonality
relation for the Stirling numbers:

n∑

j=0

(−1)m+j
[

j

m

]{
n

j

}
= δm,n
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¤

Proof of Proposition 3. The proof readily follows from (25) by re-
placing log Γk+1(z) by (17) and then using lemma 3. ¤

Polynomials Qk,n(z) generate a great deal of new integer sequences
as well as closed form representations for the existing ones. Here are
two examples from the online encyclopedia of integer sequences [18].

Example 1
The sequence A021424: 1, 16, 170, 1520, 12411, 96096 made of coef-

ficients by x in the expansion of 1/((1 − x)(1 − 3x)(1 − 5x)(1 − 7x)).
This sequence has a closed form representation

2n−3Q3,n(
1
2
) =

1
48

(7n − 3 5n + 3n+1 − 1)

Example 2
Riordan’s sequence A000554 (labeled trees of diameter 3 with n

nodes): 12, 60, 210, 630, 1736, 4536, 11430. This sequence is generated
by the coefficients of z2 in the polynomial 2 ∗Q2,n(1− z), which is also
can be written as

∂2Q2,n(1− z)
∂z2

∣∣∣∣
z→0

= 2

(
n

n− 2

){
n− 2

2

}

4. Summation

Consider the class of infinite sums

∞∑

k=1

R(k) log P (k) (30)

where R(z) and P (z) are polynomials. We will show that all such
sums can be expressed in finite terms of the multiple gamma function.
Clearly, (30) is a linear combination (subject to the branch cut of log)
of

ΦN (z) = lim
N→∞

N∑

k=1

kp log(k + z) (31)

Thus, it is sufficient to find a closed form for (31). Expanding
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12 V. Adamchik

kp = ((k + x)− x)p

by virtue of the binomial theorem, we get

ΦN (z) = lim
N→∞

p∑

j=0

(
p

j

)
(−1)jzp−jFN (z)

where

FN (z) =
N∑

k=0

(k + z)j log(k + z) (32)

Assuming the analytic property of the Hurwitz zeta function, (32)
can be written in the form

FN (z) = − lim
s→∞

d

ds

N∑

k=0

1
(k + z)s

= ζ ′(−j, N + z + 1)− ζ ′(−j, z)

and therefore

ΦN (z) = lim
N→∞

p∑

j=0

(
p

j

)
(−1)j+1zp−j

(
ζ ′(−j,N + z + 1)− ζ ′(−j, z)

) (33)

Further, we replace the first cumulant ζ ′(−j, z) by a linear combination
of the multiple gamma function (see Proposition 3), and the second
cumulant ζ ′(−j,N + z + 1) by asymptotic (11). When the original
series (30) converges, the N -dependent term will vanish as N → ∞.
However, if series (30) diverges, formula (33) combined with (11) will
provide a zeta regularization of (30) in the Hadamard sense.

In order to make this idea clear, we will consider a few examples.

4.1. Dilcher’s sum

In [7], Dilcher introduced a particular generalization of the Euler gamma
function Γ(x) which is related to the Stieltjes constants γk, as Γ(x) is
related to the Euler γ constant. The Stieltjes constants γk are defined
as coefficients in the Laurent expansion of the Riemann zeta function
ζ(s) at the simple pole s = 1:

ζ(s) =
1

s− 1
+

∞∑

k=0

(−1)k

k!
γk(s− 1)k
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The Euler γ constant is a particular case of the Stieltjes constants
γ0 = γ. Dilcher derived a few basic properties of the generalized gamma
function as well as its asymptotic expansion when z → ∞. The fol-
lowing infinite series appears as a constant term in the asymptotic
expansion:

Dk =
∞∑

j=1

logk(j +
1
2
)− 2logkj + logk(j − 1

2
) (34)

For k = 1 the sum (34) simplifies to D1 = log (2/π). For other values
of k > 1, the closed form was unknown. In this section, we apply the
technique of the multiple gamma function and evaluate the logarithmic
series (34) in closed form.

We begin with a finite sum

Dk = lim
N→∞

N∑

j=1

logk(j +
1
2
)− 2 logkj + logk(j − 1

2
) (35)

and then rewrite it in terms of the Hurwitz function. The following
chain of operations is valid (assuming the analytic property of the
Hurwitz function)

(−1)k
N∑

j=1

logk(j + c) = lim
s→0

∂k

∂sk

N∑

j=1

1
(j + c)s =

lim
s→0

∂k

∂sk

( ∞∑

j=1

1
(j + c)s −

∞∑

j=N+1

1
(j + c)s

)
=

ζk(0, c + 1)− ζk(0, c + N + 1)

(36)

Applying this to (35), yields

(−1)kDk = −2ζk(0, 1) + ζk(0,
1
2
) + ζk(0,

3
2
)+

lim
N→∞

(
2 ζk(0, N + 1)− ζk(0, N +

1
2
)− ζk(0, N +

3
2
)
) (37)

Now we use the asymptotic expansion of ζk(0, N), N → ∞. From the
Hermite integral (2) it follows that the dominant asymptotic term of
ζk(0, N) comes from the first two terms

ζ(s, z) =
z−s

2
+

z1−s

s− 1
+ . . .

This leads to the following asymptotic expansion N →∞
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14 V. Adamchik

ζk(0, N) = N
k∑

j=0

(−1)j(k − j + 1)j logk−j+1N+

(−1)k

2
logkN + O(

1
N

),

(38)

where (k− j + 1)j is the Pochhammer symbol. Thus, to prove that the
limiting part in (37) vanishes to zero, it is sufficient to show that

lim
N→∞

[
2(N + 1)logj(N + 1)−

(
N +

1
2

)
logj

(
N +

1
2

)
−

(
N +

3
2

)
logj

(
N +

3
2

) ]
= 0

(39)

for any j = 1, 2, . . . , k + 1. This follows immediately from the fact that

log(N + c) = log N +
c

N
+ O

(
1

N2

)
, N →∞

and the sum of coefficients by logk−j+1(N) in (39) is zero.
Therefore, we have

Dk = (−1)k
(
− logk 2− 2 ζk(0) + 2 ζk(0,

1
2
)
)

(40)

Note, ζk(0, 1
2) in the right hand-side of (40) is a linear combination of

ζk(0):

ζk(0,
1
2
) = −1

2
logk2 +

k−1∑

j=1

(
k

j

)
ζk−j(0) logj 2

Combining this with (40), yields

PROPOSITION 4. The infinite series (34) can be expressed in finite
terms of the derivatives of the Riemann zeta function

(−1)k

2
Dk = − logk 2− ζk(0) +

k−1∑

j=1

(
k

j

)
ζk−j(0) logj 2 (41)

In particular, for k = 2 and k = 3 we have

D2 =
∞∑

j=1

log2
(

j +
1
2

)
− 2 log2j + log2

(
j − 1

2

)

=
π2

12
+ log2π − 3 log22− γ2 − 2γ1 (42)
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D3 = 3D2 log 2 + 2 ζ ′′′(0) + 9 log(2π) log2 2 + log3 4 (43)

respectively.

Note that by the functional equation

ζ(s) = 2sπs−1Γ(1− s) sin (
πs

2
) ζ(1− s), <(s) 6= 1

the Riemann zeta function admits a meromorphic continuation to the
entire complex plane. Differentiating this with respect to s and setting
s = 0, allows us to express derivatives ζk(0) in finite terms of the
Stieltjes constants (see [2] for a closed form evaluation). Therefore,
formulas like (42) and (43) can be used for numeric computation of
ζk(0) as well as the Stieljes constants γk.

4.2. Melzak’s Product

Let us consider the infinite product

lim
N→∞

2N∏

k=1

(
1 +

2x

k

)−k(−1)k

(44)

and evaluate it in closed form. Originally, this product was computed
by Melzak [12] in a particular case when x = 1

lim
N→∞

2N∏

k=1

(
1 +

2
k

)−k(−1)k

=
π

2 e
(45)

Later on, P. Borwein and W. Dykshoorn [5] generalized (45) and com-
puted it in terms of Bendersky’s function, defined by (see [26])

1122 . . . nn = Γ1(n + 1),

which is closely related to the Barnes function G

Γ1(n + 1) =
n!n

G(n + 1)

Note that (44) can be written in an alternative form by changing the
product limit from 2N to 2N + 1:

lim
N→∞

2N+1∏

k=1

(
1 +

2x

k

)−k(−1)k

= e2 x lim
N→∞

2N∏

k=1

(
1 +

2x

k

)−k(−1)k
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16 V. Adamchik

In this section, using the multiple gamma function technique, we reeval-
uate product (44), derive its few particular cases in terms of known
constants and then generalize it to

lim
N→∞

2N∏

k=1

(
1− 4x2

k2

)−k2(−1)k

PROPOSITION 5. The following identity holds for <(x) > −1
2

lim
N→∞

2N∏

k=1

(
1 +

2x

k

)−k(−1)k

=
e−xΓ(x + 1

2)
Γ(1

2)

(
G(x + 1

2)
G(x + 1)G(1

2)

)2

(46)

Proof. We first convert this product into a finite sum by applying
the logarithm to it:

lim
N→∞

2N∏

k=1

(
1 +

2x

k

)−k(−1)k

=

exp
(

lim
N→∞

2N∑

k=1

(−1)kk
(

log k − log(k + 2x)
)) (47)

In the next step we split the finite sum in the right hand-side of (47)
into three sums:

2N∑

k=1

(−1)kk
(

log k − log(k + 2x)
)

= 2 x
2N∑

k=1

(−1)k log(k + 2x)+

2N∑

k=1

(−1)kk log k −
2N∑

k=1

(−1)k(k + 2x) log(k + 2x)

and evaluate each of them in terms of the Hurwitz function. For arbi-
trary c such that <(c) > 0, we find

2N∑

k=1

(−1)k(k + c) log(k + c) = − lim
s→−1

∂

∂s

2N∑

k=1

(−1)k

(k + c)s =

N log 2 + 2 ζ ′
(
−1,

c + 1
2

)
− 2 ζ ′

(
−1,

c + 2
2

)
+

2 ζ ′
(
−1,

c + 2
2

+ N

)
− 2 ζ ′

(
−1,

c + 1
2

+ N

)
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and

2N∑

k=1

(−1)k log(k + c) = ζ ′
(

0,
c + 1

2

)
− ζ ′

(
0,

c + 2
2

)
+

ζ ′
(

0,
c + 2

2
+ N

)
− ζ ′

(
0,

c + 1
2

+ N

)

where derivatives ζ ′(−λ, z) are understood by (8). Now we use Propo-
sition 1, in particular asymptotic expansions (13), to get

lim
N→∞

2N∑

k=1

(−1)kk
(

log k − log(k + 2x)
)

=

2x log Γ(x +
1
2
)− 2x log Γ(x + 1)−

2 ζ ′(−1, x +
1
2
) + 2 ζ ′(−1, x + 1)−
log 2
12

− x− 3 ζ ′(−1)

(48)

In view of Proposition 3 with n = 1, we convert the derivatives of the
Hurwitz function to the Barnes function:

ζ ′(−1, z) = − log G(z + 1) + z log Γ(z) + ζ ′(−1)

3ζ ′(−1) = − log 2
12

+
log π

2
+ 2 log G(

1
2
)

Combining these with (48), after some algebraic manipulations, leads
to (46). ¤

Here are a few particular cases of (46):

lim
N→∞

2N∏

k=1

(1 +
1
k
)
−k(−1)k

=
A6

e
√

π 21/6
(49)

lim
N→∞

2N∏

k=1

(1 +
4
k
)
−k(−1)k

=
3 π2

16 e2
(50)

lim
N→∞

2N∏

k=1

(1− 1
2k

)
−k(−1)k

=
A3 e−G/π√π 21/6

Γ(1
4)

(51)

where A is the Glaisher-Kinkelin constant and G is Catalan’s constant
defined by
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18 V. Adamchik

log A =
1
12
− ζ ′(−1)

G =
∞∑

k=0

(−1)k

(2k + 1)2

respectively.
The Melzak product can be further generalized. Here is one of such

formulas

PROPOSITION 6. The following identity holds for <(x) > −1
2 :

lim
N→∞

2N∏

k=1

(
1− 4x2

k2

)−k2(−1)k

=
cos(πx)

π
exp

(
2x2 +

7ζ(3)
2π2

)

(
G(1 + x)G(1− x)

)4
(

Γ3(3
2 − x)Γ3(3

2 + x)
Γ3(1− x)Γ3(1 + x)

)8
(52)

We skip the proof of this proposition, since it could be done in the same
manner as in Proposition 5.

CORROLARY 1. Identity (52) can be further simplified to

lim
N→∞

2N∏

k=1

(
1− 4x2

k2

)−k2(−1)k

=

tan(πx)−4x2

exp
[
2x2(1 + πi) +

7ζ(3)
2π2

+

4ix

π

(
Li2(ω)− Li2(−ω)

)
− 2

π2

(
Li3(ω)− Li3(−ω)

)]

(53)

where ω = exp(2πix) and Lik(ω) is the polylogarithm, defined by

Lik(ω) =
∞∑

k=0

ωk

nk
, k > 1, |ω| ≤ 1

Proof. The proof follows straightforwardly from (52) upon employing
the reflexion formulas for the multiple gamma function:

log
G(1 + z)
G(1− z)

= z log
(

π

sinπz

)
− π i

2
B2(z) +

i

2π
Li2(e2πiz)
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2 log
(
Γ3(1 + z) Γ3(1− z)

)
+ log

(
G(1 + z) G(1− z)

)
=

z2 log
(

π

sinπz

)
− π i z B2(z) +

π i

3
B3(z) +

i z

π
Li2(e2πiz)− 1

2π2
Li3(e2πiz) +

ζ(3)
2π2

where Bk(z) are the Bernoulli polynomials. ¤

Proposition 6 yields the following particular cases:

lim
N→∞

2N∏

k=1

(1− 1
4k2

)
−k2(−1)k

= exp
(

1
8
− 2G

π
+

7ζ(3)
2π2

)
(54)

lim
N→∞

2N∏

k=2

(1− 1
k2

)
−k2(−1)k

=
π

4
exp

(
1
2

+
7ζ(3)
π2

)
(55)

Formula (54) follows from (53) with x = 1
4 , ω = i and taking into

account

Li2(i)− Li2(−i) = 2 iG

Li3(i)− Li3(−i) =
i π3

16

Similarly, (55) follows from (53) with x = 1
2 , ω = −1 and

Li2(1)− Li2(−1) =
π2

4

Li3(1)− Li3(−1) =
7ζ(3)

4

lim
x→ 1

2

tan−4x2
(πx)

1− 4x2
=

π

4

Acknowledgements

This work was supported by grant CCR-0204003 from the National
Science Foundation.

rama2.tex; 12/01/2004; 14:11; p.19



20 V. Adamchik

References

1. V. S. Adamchik, H. M. Srivastava, Some series of the zeta and related functions,
Analysis (1998) 131–144.

2. T. M. Apostol, Formulas for higher derivatives of the Riemann zeta function,
Math. Comp. 44 (1985) 223–232.

3. L. Bendersky, Sur la fonction gamma généralisée, Acta Math. 61 (1933) 263-
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