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Signed bits and fast exponentiation
Wieb Bosma

Abstract.

An exact analysis is given of the benefits of using the non-adjacent form representation for integers
when computing powers of elements in a group in which inverting is easy. By counting the number of
multiplications for a random exponent requiring a given number of bits in its binary representation,
we arrive at a precise version of the known asymptotic result that on average one in three signed
bits in the non-adjacent form is non-zero. This shows that the use of signed bits can reduce the cost
of exponentiation by one ninth.

1. Introduction

To raise elements in a monoid into the power e > 1, the method of repeated squaring
and multiplication is often employed. To calculate ¢, where e = Y. b;2%, with
b; € {0,1} and b,, = 1, the powers
Yo = xlyyl = m2)y2 = m47"')yn = m2"

are computed by repeated squaring, and z¢ is found by taking the product of the y;
for which b; = 1. It is clear that computing z¢ this way takes I(e) — 1 squarings and
w(e) — 1 multiplications, where the (binary) length l(¢) = n + 1 and the Hamming
weight w(e) are the total number of bits and the number of non-zero bits b; used to
express the exponent e.

If the monoid is a group in which inverses can be computed efficiently, it may be
advantageous to use a different representation of the exponent. Writing e = > ' 5,27,
where s; € {—1,0,1}, we have obtained a signed bit representation for e [2]. To
determine z°, again compute

Yo = xlyyl = m2)y2 = m4)"'>ym = xzm
via repeated squaring, and accumulate the product y;* (for the non-zero s;), which
involves an inversion if s; = —1.

The advantage of signed bit representations is that the signed bit weight ws(e)
may be smaller than w(e). Taking e = 15 for example, the binary representation
consists of four bits equal to 1: in binary e = 1111. But 15 = —1 + 2%, so e = 1000—1,
a signed bit representation of weight 2 and length 5. At the cost of one inversion and
an extra squaring we have done away with two multiplications.

For certain exponents e there exist better ways to compute z€, using arbitrary
addition chains or addition-subtraction chains. We briefly discuss them in Section 3.

A complication in considering signed bits may seem that signed bit representations
of integers are by no means unique. Indeed, using that the integer 1 has a represen-
tation 1 = 2F + Zf;ol —1-2¢ for any k > 1, it is seen that every integer admits
infinitely many signed bit representations. In Section 2 we describe the non-adjacent
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form, which selects a unique signed bit representation for any non-negative integer e.
We indicate how it, and a modified version of it, can be determined efficiently, and
we show that these special representations have certain optimal properties.

In Sections 4 and 5 we will analyze exactly the weight of non-adjacent forms for
integers e. It is shown (in a precise sense) that on average this weight is a third
of the length of e (as opposed to a half for the binary form). In general the gain
that can be achieved from this in exponentiation will depend on the relative costs
of inverting, multiplying, and squaring in the group. The standard application for
signed bit exponentiation is to the arithmetic of elliptic curves, [7], [9]. The group of
points on an elliptic curve over a field in Weierstrass form has the desired property
that inverting is almost free. In such situations the results of Section 5 show that a
reduction in cost of a ninth on average is obtained by using the non-adjacent form
rather than the binary form. This makes precise a result that so far only seems to be
known heuristically or asymptotically [1], [7], [9].

2. Signed Bits

To fix the notation, let a signed-bit representation of length l(e) for a positive integer
e be a sequence sy(¢)_1, Si(e)—2, - - -, So such that e = Zig_l 5;2¢, with s; € {~1,0,1}
and s;(,)—1 = 1. Sometimes we will write m = I(e) — 1; the sequence of signed bits s;
is usually written without comma’s with most-significant digit s;— first.

As we have seen already, e will in general have signed-bit representations of various
lengths; indeed, since we may replace the leading 2™ by 2™+ — 2™, a process which
can be repeated, we find infinitely many representations for any e, of arbitrary (large
enough) length. With our application of minimizing costs of exponentiation in mind,
we are particularly interested in short representations of low weight.

We will call a signed bit representation for e optimal if it has least possible weight
and among all representations of minimal weight it has minimal length — clearly
the length of the binary expansion is a lower bound for the length of a signed-bit
representation. But note that optimality does not determine a unique representation
in general, as the example 11 = 2% +2 + 1 = 23 + 22 — 1 shows.

Let us first worry about uniqueness. The non-adjacent form representation is the
signed bit representation for e characterized by the property:

S; 7é 0 = s.1=0, for 4 > 1.

Proposition 1. Positive integers have unique non-adjacent form representations.

Proof. Suppose that there exist positive integers e with two different non-adjacent
forms. Among all such e select ey having a non-adjacent form of minimal length. The
minimality condition requires that the least significant bit in the minimal represen-
tation of ey differs from that in any other. The only admissible pairs for the two
least-significant bits in non-adjacent forms are 00, 01, 0—1, 10, —10; only —10 and 10
determine the same value modulo 4, but their least-significant bits are equal.

This ends the proof.



It is easy to obtain the non-adjacent form from the ordinary binary expansion: apply
the following rule repeatedly, working from right to left (least-significant first):

replace any sequence O1---1 by 10---0—1

where the number of consecutive 0’s in the latter is one less than the number of
consecutive 1’s in the former.

Since Ef:o = 2kl — 1 it is clear that the result will always be a non-adjacent
form representation for the given integer determined by the binary expansion. It will
also be clear that the length of the non-adjacent form is either equal to or one larger
than that of the binary expansion.

Example. Starting with the binary expansion for 3190 = 2142104264254 2442242,
the rule produces:

11 000111 0 1 1 O
11 000111 1 0 -10
11 001000 -10 -10
10 -10010O0O0 -1 0 —-120

for 3190 = 212 — 210 4 27 _ 93 _ 2,

In fact the above procedure can be generalized to transform any given signed bit
representation into the non-adjacent form; first apply the following rule repeatedly
working from left to right:

replace —11 by 0—1, and

(%)
replace 1-1 by 01,

and then apply the following repeatedly (working from right to left).

k>1 k-1
— —
(%) replace 01---1 by 10---0-1, and
replace 0-1---—1 by —=10---01.
—— S——
k>1 k—1

Proposition 2. For any integer the non-adjacent form has minimal weight.

Proof. Apply the above two rule-transformation to any signed bit represenatation
of minimal weight; the result is the non-adjacent form. The transformation does not
increase the weight.

Corollary 3. For every integer there is a unique signed bit representation satisfying:
s Z0 = s,_1=0, or k=m and s,_1=1=sy;
moreover this expansion is optimal.

Proof. Let t,t,,—1 - - - t1to be the non-adjacent form for e. If the three most significant
bits tytm_1tm_2 are 10—1, then let n = m — 1 and define

g — 1 fori=n,n—-1
Tt for0<i<m-—2.
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In all other cases let n = m and s; = t; for 0 < ¢ < n. This way s is equal to
the non-adjacent form except when the leading digits for the non-adjacent form are
10—10, in which case we replace them by the shorter expansion with leading digits
110. Clearly s satisfies the non-adjacency conditions of the statement; we will show
that it is optimal too.

In the exceptional case the weights of s and ¢ are equal, but the length of s equals
that of the binary expansion. Hence s is optimal in that case. We will prove that in
all other cases the non-adjacent form ¢ itself is optimal.

Suppose that e is an integer with non-adjacent form t,,t,,_1 ---t1tp of minimal
length that is not optimal. Since the non-adjacent weight is always minimal, this
can only occur if the length of the non-adjacent form of e exceeds that of its binary
expansion by 1. This only happens if in the final transformation step a sequence of
k > 2 adjacent 1’s is replaced by 10---0—1, where the number of 0’sis k — 1. If k = 2
we are in the exceptional case, so we will assume that k£ > 2. The binary expansion
U1 Um—2 - -+ Ug hAS Upy 1 = U2 = U3 = 1, while u,, 4 =0 or 1.

Since the non-adjacent weight is minimal, there must exist a signed bit represen-
tation vy, —1Um—2 - - vp of length m, and it necessarily has v,,—1 = vm—2 = V-3 =1,
and vp—4 = Upm—4g € {0,1} since u and v represent the same number e. If vy, 4 =1,
an extra reduction step reduces length plus weight, which contradicts optimality of
v. SO vy 4 = 0; but then v # w contradicts minimality of m since vy, _5v,_¢---
represents the same number as u,,_5u,,_g with lower weight.

That ends the proof.

We will refer to the optimal representation of Corollary 3 as the modified non-adjacent
form. It is the same as the non-adjacent form, except that non-adjacency is allowed in
the most significant two bits, that is 110 is not transformed to 10—10, because such
transformation increases the length without decreasing the weight.

Note that this does not mean that the modified version is different for precisely
those integers for which the leading bits in the binary expansion are 110 because of
the propagation of carries in the transformations: non-adjacent and modified non-
adjacent forms for 27 = 11011 = 100—10—1 are the same, but for 25 = 11001 they
are different, namely 10—1001 and 11001.

It is not so difficult to obtain the (modified) non-adjacent form directly from e,
without computing the binary (or another signed-bit) expansion first. The method
resembles the method for finding the binary expansion producing the least significant
bit first: starting with £ = e repeat:

if k even: produce 0 and divide k by 2;

if k odd: produce 1, subtract 1 from k& and divide &k by 2;
until &k is 0.

For the non-adjacent form one proceeds as follows. Starting with & = e > 0 again,
one repeats:

kmod 4 =s € {-1,1}: produce signed bits s and 0, and replace k by (k — s)/4;

k mod 4 = s € {0,2}: produce 0 and replace k by k/2.
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until £ is less than or equal to 3, after which

if k = 0: produce nothing;

if k = 1: produce 1;

if k = 2: produce 0 and 1;

if k = 3: produce —1 and 0 and 1;



and terminate.

For the modified version the only change necessary is to produce 11 in the case
that £ = 3.

Note the similarities with the continued fraction algorithm, where division by 2 is
replaced by inverting, and truncation replaces extracting bits. The algorithm to obtain
the non-adjacent form is similar to the nearest integer continued fraction algorithm.

The table shows binary expansion, non-adjacent form, and modified non-adjacent
form for the first few positive integers.

3. Addition-subtraction chains

The method of repeated squaring and multiplication does not necessarily give the
fastest way to evaluate powers. It is well-known [6] that for certain exponents there
are ways to find z¢, using fewer multiplications.

An addition chain for a positive integer e is a sequence 1 = eg, €1, ..., € = e with
the property that for 1 < i < k it holds that e; = e, + e, with 0 < u,v < i. Each
term is thus the sum of two (possibly the same) previous terms. One usually arranges
the e; in ascending order. The length of the addition chain is the integer k. It will be
clear that an addition chain for e can be used to compute z¢: for any i the power z¢
can be computed from z, ..., z% -1 by a single multiplication.

The binary expansion e = Y1 b;2% of any e of length n + 1 defines an addition
chain of length n+w(e) — 1 for e, corresponding to repeated squaring and multiplica-
tion as described in Section 1, as follows. Write down the powers p; = 2%,i = 0,...,n
of 2 less than or equal to e. Next take ro = 0 and let r; be r;_; +p;;, where iy, ... i
are those ¢ from 0 to n for which b; # 0. The addition chain for e then consists of the
the p; (with 1 <7 <n) and r; (with j > 1) in ascending order.

There is an alternative addition chain associated with the binary expansion, ob-
tained by reading the bits from left to right (most significant first). Starting with
eo = 1 one repeats fori =1,... n:

if b,—; = 1: append 2e; and 2e; + 1 to the existing sequence ey, . ..¢€;;
otherwise: append 2e; to the existing sequence e, .. .e;.

There are two problems with addition chains. In the first place is it hard to find a
shortest chain for given e [6]. Secondly, general addition chains make it necessary to
remember entries z°,...,z% -1 along the way to compute z{. Note that this is not
true for the left-to-right binary addition chain, as e; is either 2e;_; or e;_; + 1, that
is, every step is either a squaring or a multiplication by z ([4], see also [8] for the
special case of integer exponentiation).

Taking the possibility of subtracting into account as well, we arrive at addition-
subtraction chains [11]. In general we cannot insist on ascending entries anymore.
Again, it will be clear that any signed-bit representation of e will give rise to two
addition-subtraction chains, by reading the signed bits either way. It is also obvious
that, since the weight of a signed bit representation can be smaller than that of the
binary expansion, that the corresponding chain may be shorter.

Examples. Let e = 43; reading its bits 101011 right-to-left to obtain the sequence of

6



pi’s 1,2,4,8,16,32 and of r;’s 3,11,43, we obtain an addition chain by merging and
ordering: 1,2,3,4,8,11,16, 32,43 of length 8.

Reading the binary expansion 101011 left-to-right produces eg = 1, then e; = 2,
and ez = 4,e3 = 5, then ey = 10, and e5 = 20,eg = 21, and finally e; = 42,eg = 43.
Indeed, length 8 for 5 doublings and 3 multiplications.

Reading the modified non-adjacent form 43 = 110—10—1 left-to-right yields the
addition-subtraction chain 1,2,3,6,12,11,22,44, 43, reading it right-to-left the chain
—1,2,4,-5,8,16,11,32,43. Both have length 8. The non-adjacent form produces
chains of length 9.

There exists an addition chain of length 7 for 43: 1,2,4,8,9,17,34,43.

The addition-subtraction chain 1,2,4,8, 16,15 associated with 15 = 2% — 20, is
shorter than the chain 1,2,3,6, 7,14, 15 arising from the binary expansion 15 = 23 4
22 + 2! + 20 In this case there is an addition chain of length 5 as well, however:
1,2,3,5,10,15 for example.

In general, for e = 2¥ — 1 the binary expansion gives rise to an addition chain of
length 2k — 2 while the non-adjacent form leads to an addition-subtraction chain of
length k + 1.

Outside numbers of this form, e = 23 is the first example where the modified
non-adjacent form for e leads to an addition-subtraction chain (1,2,3,6,12,24,23 of
length 6) that is strictly shorter than the binary addition chains (1, 2,4, 5,10,11, 22,23
and 1,2,3,4,7,8,16,23 of length 7). Again there exist addition chains of length 6, like
1,2,3,5,10,13,23.

For e = 27 there are addition chains (such as 1,2,3,6,9,18,27) that are shorter
than both the chains obtained from the binary expansion (1,2,3,6,12,13,26,27)
and the addition-subtraction chain gotten from the (modified) non-adjacent form
(1,2,4,8,7,14,28,27).

For e = 47 the length of the chain given by the modified non-adjacent form
(1,2,3,6,12,24,48,47) is shorter than any addition chain (the shortest of which
have length 8: 1,2,3,4,7,10,20,27,47 for example, while the binary gives length
9:1,2,4,5,10,11,22,23,46,47); in this case there is no shorter addition-subtraction
chain either.

4. Analysis

To analyze the benefits of using the signed bit representations, we first prove some
results on (average) length of non-adjacent and modified non-adjacent forms. Let ¢,
denote the number of positive integers requiring ezactly n bits in their binary repre-
sentation, and let ¢}, and ¢|! be the number of positive integers requiring ezactly n
signed bits in the non-adjacent form and in the modified non-adjacent form represen-
tation, respectively. Also, let Cy,, C], and C) similarly define the number of positive
integers requiring at most n bits in the three representations.

Proposition 4. The number of positive integers with expansions of length n is given
byeci =c¢) =c¢{ =1, and forn > 2:

(_l)n " 5 —1 (_l)n
- _ = 2gn-1y 7
n=3 L

Cn = , c



Hence, for n> 0:

2 1 (=1)n 5. 1 (=1)n
— 9n I Zon — — A—— L — —_— .
Ca=2"  Gu=32t5-"F G=52"+3+75

Proof.  Only 1 requires one bit in any expansion. It is also clear that there are
exactly 2"~ ! integers with most significant bit b, ; = 1 (of length n), so ¢, = 2"}
and Cy, = > _gcp = 2",

The easiest way to count integers with n signed bits in their non-adjacent form is
to observe that the following recursion holds:

Crgn = Cpp1 + 20, for n>1.

Namely, the ¢!, positive integers of length n (all having s,,_1 = 1), when ‘prepended’
with s, = 0 and s,41 = 1 all contribute. We get another contribution of size ¢/,
by flipping the n-th bit b,_; to —1. This accounts for all positive integers requiring
n + 2 bits for which b, ; # 0. We obtain those with b, 1 = 0 by taking the ¢,
representations of length n + 1 and replacing the leading digit b, = 1 by b, = 0 and
putting b,+1; = 1. This way the validity of the recursion can be seen to hold. With
starting values ¢ = ¢}, = 1 the closed form for ¢!, in the statement of the proposition
is then easily proved, for example by induction. The formula for C!, is simply obtained
by summation: Y, _ c}.

One way to count integers with modified non-adjacent form of length n is to use
that their number also satisfies the recursion:

1" 1" 1"
Cpao = Chpyq T 2¢,, for n>2.

This time one takes the representations of length n, and obtains from each two valid
representations of length n + 2 by shifting over 2 places and inserting b; = 0 and
by = £1. From the length n + 1 representations one gets length n + 2 representations
by shifting one place and taking by = 0. This clearly leads to 2c], 4 c;,,, valid repre-
sentations of length n + 2 (taking care that n > 1 to prevent the illegal representation
10—1 for 3) that are all distinct (look at bg); it is not terribly hard to see that we
obtain all valid modified signed bit representations this way. The starting values for
the recursion are ¢j = 2 and ¢ = 3. Again, C}] can be derived by summation.

Here are the first few values for each of the functions:

n =123 456 7 8 9 10 11...
cpn =124 81632 64128 256 512 1024 ...
¢, =113 51121 43 85171 341 683...
cr =123 71327 53107213 427 853 ...
Cr =24816 3264 128 256 512 1024
Cl,=236112243 86171 342 683
Cl' =24714 27 54 107 214 427 854



Remarks. Note that ¢, also satisfies the recursion that ¢/, and ¢! satisfy. The se-
quence ¢}, has been called the Jacobsthal sequence (A001045 in [10], [5]).

The six sequences satisfy many other intriguing relations, of which we just mention
a few (see also [5]). Forn >1

Cn+1 +Cn = 3- 2n72’
g+ =2-2""2=2""1
)

c;;+1+c;;:§-2”*2:5-2”*3.

Related to this, are
-1+ Z =1+ Z 2k,
¢, = (=" Z(—2)k
k=0

_1 n—2 5
2 (_Z)k)v

k=0
While ¢,,+1 = 2¢, and C, 41 = 2C), for all n, we have

/ / n—1 ' ’ 1 (_l)n
Cpyr = 2¢, +(—1) and (), =2C) +§— 5
1 1)

Cni1 =2¢ 4+ (—1)" and C;{+1:20;L'+§—( ;

The various sequences are interrelated via, for example,
Cn=Ch+ch_y and C,=C,+C,_, —

(x%) =+ cpos and  C, =CJ_| +Ch_o,

ar=cp1+c,_y and O] =Ch1+C_,.
Next we count the total weight of all representations of fixed length. Define s,, to be
the total number of ones in all different n-bit integers; we use s, and s for the total
number of non-zero signed bits in all different non-adjacent forms and modified non-
adjacent forms of length n. Similarly, by Sy, S;, and S!! we denote the total number of
non-zeroes in in all binary, non-adjacent and modified non-adjacent representations
of length at most n.

Proposition 5. Forn > 2:

n+1 1
n — - 2" )
s 2
6n + 10 6n + 5
1 .on—1 _1\n—1
W= AT
15n + 34 6n+5
" — . 271,—1 _ _1 n—1 .
5n 54 (=1) 27



Also,

n
n—3 '2n7
5 2
6n +4 3n+4
I 10 _1\n—1
Sn= =g T HEVT
on 19 3n+4
n_ (2% Zy.on (1 n—1 .
Sn=(35 T 59 V" =7

Proof. To count the total number of non-zero bits in n-bit words, note that n + 1
bit words can be formed out of n-bit words by shifting and ‘appending’ a single bit
(0 or 1). Since there are ¢, such n-bit integers, having s, non-zero bits, we find

Sp+1 = Sp + (Sn + Cn)-

From s; = 1 and sy = 3 we get the result by induction.
To prove the formula for s/,, note that

i ! ! i
Sn+2 = Q(Sn + cn) + Sn+1'

This follows immediately from the proof of the previous Proposition. Then use veri-
fication of s] = s; = 1 and induction.
For s!" one derives similarly that

" o ! ! !
sn+2—sn+cn+2-sn+1+cn+1.

For S, and S/, we sum Y, _,sr and > ,_, s}, only using that

n
> k2 =(n—1)2" 42
k=0

Here are the first few values for each of the functions again:

n =123 45 6 7 8 9 10 11...
sp, =13 82048 112 256 576 1280 2816 6144 ...
s, =11 5 925 53125 273 609 1325 2885 ...
sh =13 51531 75163 367 799 1747 3771 ...
Sp =14 12 32 80 192 448 1024 2304 5120
SI, =12 71641 94219 492 1101 2426
SI'=14 92455130293 660 1459 3206

As a consequence we can determine how many non-zero (signed) bits there are on
average in all integers requiring exactly or at most n bits in the various expansions;
we denote these by gn,gl,, gn and t,,t ,t"

nsinyrbn-
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Corollary 6. For all n > 2:

s 111
gn_ncn_Q 2 n’
!
, s 1 501 N 1
= — — - — — (=1
=g =3 g n - Vs
"n__ S _1 % l (-1)" ( _%)
In = e T3 45 3-(5-2 2+ (—)n)’
and g .
— n —
Gn=re, =2
o o= Sn 1.2 1 3+(=D)"+ QA+ (=)
" nCl 3 9 n 3-(2n2 + 34 (-1)n)
G Su 1,191 3-(=D)"+(19-(=1)" )5
" onCl 3 45 n 3-5-2"+3+ (-1

This Corollary, the proof of which is an easy computation, tells us that on average
half the bits in a binary expansion are non-zero (as expected), one in three signed
bits in the non-adjacent form are non-zero (compare [1, 3, 9]). For the modified non-
adjacent form also a third of the bits are non-zero asymptotically, but the convergence
is slightly slower because there are fewer zeroes in the exceptional case.

To give a fair comparison, we need to count the number of bits used for integer
with binary expansion of length n. An n-bit integer is a non-negative integer for which
the ordinary binary representation has length n exactly.

5. Analysis for integers of given length

First we count the total length and the total weight of n-bit integers in the various
representations. As usual we denote by [,I’,]"” and L,L’,L"” the values for ordinary
binary, non-adjacent form and modified non-adjacent form representation.

Proposition 7. The total length of all numbers that take exactly n bits in binary:

l, =n2" 1,
2 1 1
l’ — = 27’7,71 (-1 n—1-"
= o= Loyl
1 1 1
n_ - 27’7,71 _ = —1 nfl_.

The total length of all numbers that take at most n bits (in the ordinary representa-
tion):
L,=(n-1)2"+1,

1 no1 (=1)n
I =(n—=)n -2
n=m-3) s 1T T2
2 no 3 (=1)n
L' = _Zyon 0 2 )
n=m=3) 5 1T 12
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Proof. Obviously the ¢, length n integers give
l, = ne,.

One way to count I/, is to determine which length n integers contribute to length n
non-adjacent forms. These are the binary expansions of length n for which b, 2 =0
and for which the non-adjacent form of b, _3b, 4 ---bo has length n — 2. Of those
there are exactly C),_,. The others, ¢,, — C},_5 = Cp,_1 — C},_, = C},_; — 1 in number
(compare (xx)), contribute length n + 1 each, so

Ly =nCy 5+ (n+1)(C,y — 1) =(n+1)en — Cp, .
Using Proposition 4 immediately gives the desired result.

Similarly it can be proven that

Iy =nCy_y + (n+1)(C},_, — 1),
For L,, we merely sum:
L, =Yl
k=0
and likewise for L] and L.

The first few values for these functions are:

n =1234 5 6 7 8 9 10 11 ...
[, =141232 80 192 448 1024 2304 5120 11264 ...
I! =15 1437 90 213 490 1109 2474 5461 11946 ...
I"=141334 85202 469 1066 2389 5290 11605 ...
L, =151749 129 321 769 1793 4097 9217
L), =16 2057 147 360 850 1959 4433 9894
L =1518 52 137 339 808 1874 4263 9553

Let wy,w!,,w! denote the total weight of all non-negative integers requiring exactly
n bits in binary representation, and W,, W), W/’ the same for integers of at most n
bits.

Proposition 8.
wy, = (n+1)2"72 wh, =wh = (

W, =n2""', W, =Ww]=

Proof. Obviously again,



The weight of non-adjacent and modified non-adjacent forms are the same, so w!, = w!’
and W), = W)!. The first integer that requires n binary bits is f, = 2"~!. For every
integer h larger than f, for which the length of its non-adjacent form is n, there is an
integer g smaller than f,, that has non-adjacent form of length n — 1 and the same
weight as h: simply reverse all bits of h except for the most significant one. Thus
the integers with non-adjacent forms of length n other than f, (which has weight
1) contribute exactly half their total weight, that is (s}, — 1)/2, to w},. On the other
hand, for the same reason exactly half the total weight of the length n+1 non-adjacent
forms contribute to the binary length n count, which implies that

,  sh—=1 s -1

Wn =77 2

+1,
the +1 being the contribution of f, itself. Substitution then gives the result.

A small table again:

n =123 45 6 7 8 9 10 11...
wp, =13 82048 112 256 576 1280 2816 6144 ...
wh=wl =13 71739 89199 441 967 2105 4551 ...
W, =14 12 32 80 192 448 1024 2304 5120
W) =W} =14112867 156 355 796 1763 3868

Corollary 9. The number of multiplications necessary to compute x¢ for a random
integer e of exactly n bits using the binary expansion, the non-adjacent form and the
modified non-adjacent form for e is:

ln +wy, 3
n:7—2:— _].,
m o 2(n )

I +w! 4 7 1 1 1
r'—m _ m_9_-"(n=1 _ (= —1)n—l )y,

m, = 2 S 1)+ 5= (5 ()" )
I+ w! 4 4 1 5 1
m_m__m_ 99— "(n—=1 Z (2 (=11, )
Min n 3D+ -G-ED"") 5

If e is random of at most n digits, the cost functions are:

L,+W, 3 1
n
L, +Ww, 4 7 n 1 ) 1
MI:M—2:— —2 — -  — = _1TL_ - —
L+ w) 4 4 n 1 1 1
M/ =200 9 T 2) b s b (kD (—1) )
" C., g =2 F gt gt - ) 5

As expected we see that, for e of binary length n, it takes n — 1 multiplications (all
squarings) and on average (n — 1)/2 multiplications using the binary expansion for e;

13



using the non-adjacent form the number of multiplications can be reduced to (n—1)/3,
where on average we save 1/3 multiplication using the modified form.
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