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Scientific American, May 2003

www.cecm.sfu.ca/~ jborwein/talks.html
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Abstract. In this lecture I shall talk gener-

ally about experimental mathematics. Near

the end, I briefly present some more de-

tailed and sophisticated examples. Through-

out, I emphasize the visual.

The emergence of powerful mathematical com-

puting environments, the growing availability

of correspondingly powerful (multi-processor)

computers and the pervasive presence of the

internet allow for research mathematicians, stu-

dents and teachers, to proceed heuristically

and ‘quasi-inductively’.

• We may increasingly use symbolic and nu-

meric computation, sophisticated visualiza-

tion tools, simulation and data mining.
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Many of the benefits of computation are acces-
sible through low-end ‘electronic blackboard’
versions of experimental mathematics. This
also permits livelier classes, more realistic ex-
amples, and more collaborative learning. More-
over, the distinction between computing (HPC)
and communicating (HPN) is increasingly moot.

The unique features of my discipline make
this both more problematic and more chal-
lenging.

• For example, there is still no truly satisfac-
tory way of displaying mathematical nota-
tion on the web;

• and we care more about the reliability of
our literature than does any other science.

The traditional role of proof in mathemat-
ics is arguably under siege.
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Limned by examples, I intend to ask:

• What constitutes secure mathematical knowl-
edge?

• When is computation convincing? Are hu-
mans less fallible?

• What tools are available? What method-
ologies?

• What about the ‘law of the small num-
bers’?

• How is mathematics actually done? How
should it be?

• Who cares for certainty? What is the role
of proof?
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And I shall offer some personal conclusions.

• Many of the more sophisticated examples
originate in the boundary between mathe-
matical physics and number theory and in-
volve the ζ-function, ζ(n) =

∑∞
k=1

1
kn, and

its relatives.

They often rely on the sophisticated use of In-
teger Relations Algorithms — recently ranked
among the ‘top ten’ algorithms of the century.

• Integer Relation methods were first discov-
ered by Helaman Ferguson the mathe-
matical sculptor we will meet later—and
who, with his photographer wife Claire, will
give this year’s Mekler lecture on Novem-
ber 18th.

See www.cecm.sfu.ca/projects/IntegerRelations/
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POLYA and HEURISTICS

[I]ntuition comes to us much earlier
and with much less outside influence
than formal arguments which we can-
not really understand unless we have
reached a relatively high level of logical
experience and sophistication.

In the first place, the beginner must
be convinced that proofs deserve to be
studied, that they have a purpose, that
they are interesting.
(George Polya∗, 1968)

∗In Mathematical Discovery: On Understanding, Learn-
ing and Teaching Problem Solving.
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MOORE’S LAW

The complexity for minimum compo-
nent costs has increased at a rate of
roughly a factor of two per year. . . .
Certainly over the short term this rate
can be expected to continue, if not to
increase. Over the longer term, the
rate of increase is a bit more uncertain,
although there is no reason to believe
it will not remain nearly constant for at
least 10 years.
(Gordon Moore, Intel co-founder, 1965)

I “Moore’s Law” asserts that semiconductor
technology approximately doubles in capacity
and performance roughly every 18 to 24 months
(not quite every year as Moore predicted).

This trend has continued unabated for 40 years,
and, according to Moore and others, there is
still no end in sight—at least another ten years
is assured.
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I This astounding record of sustained expo-
nential progress has no peer in the history of
technology.

What’s more, mathematical computing tools
are now being implemented on parallel com-
puter platforms, which will provide even greater
power to the research mathematician.

I Amassing huge amounts of processing power
will not solve all mathematical problems, even
those amenable to computational analysis.

There are cases where a dramatic increase in
computation could, by itself, result in signifi-
cant breakthroughs, but it is easier to find ex-
amples where this is unlikely to happen.
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SIMON and RUSSELL

This skyhook-skyscraper construction

of science from the roof down to the

yet unconstructed foundations was pos-

sible because the behaviour of the sys-

tem at each level depended only on a

very approximate, simplified, abstracted

characterization at the level beneath.13

This is lucky, else the safety of bridges

and airplanes might depend on the cor-

rectness of the “Eightfold Way” of look-

ing at elementary particles.

¦ Herbert A. Simon, The Sciences of the Ar-

tificial, MIT Press, 1996, page 16.
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13... More than fifty years ago Bertrand
Russell made the same point about the
architecture of mathematics. See the
“Preface” to Principia Mathematica “...
the chief reason in favour of any the-
ory on the principles of mathematics
must always be inductive, i.e., it must
lie in the fact that the theory in ques-
tion allows us to deduce ordinary math-
ematics. In mathematics, the great-
est degree of self-evidence is usually
not to be found quite at the begin-
ning, but at some later point; hence
the early deductions, until they reach
this point, give reason rather for believ-
ing the premises because true conse-
quences follow from them, than for be-
lieving the consequences because they
follow from the premises.” Contempo-
rary preferences for deductive formalisms
frequently blind us to this important
fact, which is no less true today than
it was in 1910.
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VISUAL DYNAMICS

• In recent work on continued fractions, we
needed to understand the dynamical system
t0 := t1 := 1:

tn ←↩
1

n
tn−1 + ωn−1

(
1− 1

n

)
tn−2,

where ωn = a2, b2 for n even, odd respectively.
Which we may think of as a black box.

• Numerically all one learns is that is tending
to zero slowly.

• Pictorially we see more:
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• Scaling by
√

n, and coloring odd and even
iterates, fine structure appears.

The attractors for various |a| = |b| = 1.

F This is still unexplained, save for the rate
of convergence, which follows by a fine
singular-value argument.
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GAUSS and HADAMARD

Carl Friedrich Gauss, who drew (carefully) and
computed a great deal, once noted, I have the
result, but I do not yet know how to get it.

Pauca sed Matura

The object of mathematical rigor is to
sanction and legitimize the conquests
of intuition, and there was never any
other object for it.

¦ J. Hadamard quoted at length in E. Borel,
Lecons sur la theorie des fonctions, 1928.
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Novus in analysi campus se nobis aperuit

An excited young Gauss writes: “A new field

of analysis has appeared to us, evidently in the

study of functions etc.” (October 1798)
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MOTIVATION and GOALS

INSIGHT – demands speed ≡micro-parallelism

• For rapid verification.

• For validation; proofs and refutations; “mon-
ster barring”.

F What is “easy” changes: HPC & HPN blur,
merging disciplines and collaborators — de-
mocratizing mathematics but challenging
authenticity.

• Parallelism ≡ more space, speed & stuff.

• Exact ≡ hybrid ≡ symbolic ‘+’ numeric
(Maple meets NAG).

• In analysis, algebra, geometry & topology.
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. . . MOREOVER

• Towards an Experimental Mathodology —
philosophy and practice.

• Intuition is acquired — mesh computa-
tion and mathematics.

• Visualization — 3 is a lot of dimensions.

• “Monster-barring” (Lakatos) and “Caging”:

– randomized checks: equations, linear al-
gebra, primality

– graphic checks: compare 2
√

y − 2y and

−√y ln(y) on [0,1]
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EXPERIMENTAL MATHODOLOGY .

1. Gaining insight and intuition.

2. Discovering new patterns and relationships.

3. Graphing to expose math principles.

4. Testing and especially falsifying conjectures.

5. Exploring a possible result to see if it merits
formal proof.

6. Suggesting approaches for formal proof.

7. Computing replacing lengthy hand deriva-
tions.

8. Confirming analytically derived results.
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A BRIEF HISTORY OF RIGOUR

• Greeks: trisection, circle squaring, cube
doubling and

√
2.

• Newton and Leibniz: fluxions and infinites-
imals.

• Cauchy and Fourier: limits and continuity.

• Frege and Russell, Gödel and Turing.
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THE PHILOSOPHIES OF RIGOUR

• Everyman: Platonism—stuff exists (1936)

• Hilbert: Formalism—math is invented; for-

mal symbolic games without meaning

• Brouwer: Intuitionism-—many variants; (em-

bodied cognition)

• Bishop: Constructivism—tell me how big;

(social constructivism)

† Last two deny the excluded middle: A ∨ Ã
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HALES and KEPLER

• Kepler’s conjecture: the densest way to
stack spheres is in a pyramid is the oldest
problem in discrete geometry.

• The most interesting recent example of com-
puter assisted proof.

• To be published with an “only 99% checked”
disclaimer in Annals of Mathematics.

• This has triggered very varied reactions.

• Famous earlier examples: The Four Color
Theorem and The non existence of a pro-
jective plane of order 10.

• The three raise and answer quite distinct
questions—both real and specious.
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Grocers the world over know the most efficient way to stack spheres — but a mathematical proof for the method has brought reviewers to their knees.

J
ust under five years ago, Thomas Hales
made a startling claim. In an e-mail he
sent to dozens of mathematicians,

Hales declared that he had used a series of
computers to prove an idea that has evaded
certain confirmation for 400 years. The sub-
ject of his message was Kepler’s conjecture,
proposed by the German astronomer
Johannes Kepler, which states that the dens-
est arrangement of spheres is one in which
they are stacked in a pyramid — much the
same way as grocers arrange oranges.

Soon after Hales made his announce-
ment, reports of the breakthrough appeared
on the front pages of newspapers around the
world. But today, Hales’s proof remains in
limbo. It has been submitted to the presti-
gious Annals of Mathematics, but is yet to
appear in print. Those charged with check-
ing it say that they believe the proof is correct,
but are so exhausted with the verification
process that they cannot definitively rule out
any errors. So when Hales’s manuscript
finally does appear in the Annals, probably
during the next year, it will carry an unusual
editorial note — a statement that parts of the
paper have proved impossible to check.

At the heart of this bizarre tale is the use 
of computers in mathematics, an issue that
has split the field. Sometimes described as a
‘brute force’ approach, computer-aided

proofs often involve calculating thousands of
possible outcomes to a problem in order to
produce the final solution.Many mathemati-
cians dislike this method, arguing that it is
inelegant. Others criticize it for not offering
any insight into the problem under consider-
ation.In 1977,for example,a computer-aided
proof was published for the four-colour 
theorem,which states that no more than four
colours are needed to fill in a map so that any
two adjacent regions have different colours1,2.
No errors have been found in the proof, but
some mathematicians continue to seek a
solution using conventional methods.

Pile-driver

Hales, who started his proof at the University
of Michigan in Ann Arbor before moving to
the University of Pittsburgh, Pennsylvania,
began by reducing the infinite number of
possible stacking arrangements to 5,000 con-
tenders. He then used computers to calculate
the density of each arrangement. Doing so
was more difficult than it sounds. The proof
involved checking a series of mathematical
inequalities using specially written computer
code. In all, more than 100,000 inequalities
were verified over a ten-year period.

Robert MacPherson, a mathematician at
the Institute for Advanced Study in Prince-
ton, New Jersey, and an editor of the Annals,

was intrigued when he heard about the
proof.He wanted to ask Hales and his gradu-
ate student Sam Ferguson, who had assisted
with the proof, to submit their finding for
publication,but he was also uneasy about the
computer-based nature of the work.

TheAnnalshad,however,already accepted
a shorter computer-aided proof — the paper,
on a problem in topology, was published this
March3. After sounding out his colleagues on
the journal’s editorial board, MacPherson
asked Hales to submit his paper. Unusually,
MacPherson assigned a dozen mathemati-
cians to referee the proof — most journals
tend to employ between one and three. The
effort was led by Gábor Fejes Tóth of the
Alfréd Rényi Institute of Mathematics in
Budapest, Hungary, whose father, the math-
ematician László Fejes Tóth, had predicted in
1965 that computers would one day make a
proofofKepler’s conjecture possible.

It was not enough for the referees to rerun
Hales’s code — they had to check whether
the programs did the job that they were 
supposed to do. Inspecting all of the code
and its inputs and outputs, which together
take up three gigabytes of memory space,
would have been impossible. So the referees
limited themselves to consistency checks, a
reconstruction of the thought processes
behind each step of the proof, and then a

news feature

Does the proof stack up?
Think peer review  takes too long? One m athem atician has w aited four

years to have his paper refereed, only to hear that the exhausted review ers

can’t be certain w hether his proof is correct. George Szpiro investigates.

12 NATURE |VOL 424 |3 JULY 2003 |www.nature.com/nature
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Pyramid power:

Thomas Hales

believes that

computers will

succeed where

humans have failed

in verifying 

his proof.

study ofall of the assumptions and logic used
to design the code. A series of seminars,
which ran for full academic years, was orga-
nized to aid the effort.

But success remained elusive. Last July,
Fejes Tóth reported that he and the other 
referees were 99% certain that the proof is
sound. They found no errors or omissions,
but felt that without checking every line of
the code,they could not be absolutely certain
that the proof is correct.

For a mathematical proof, this was not
enough. After all, most mathematicians
believe in the conjecture already — the proof
is supposed to turn that belief into certainty.
The history of Kepler’s conjecture also gives
reason for caution. In 1993, Wu-Yi Hsiang,
then at the University ofCalifornia,Berkeley,
published a 100-page proofof the conjecture
in the International Journal of Mathematics4.
But shortly after publication, errors were
found in parts of the proof.Although Hsiang
stands by his paper,most mathematicians do
not believe it is valid.

After the referees’ reports had been con-
sidered, Hales says that he received the 
following letter from MacPherson: “The
news from the referees is bad, from my per-
spective. They have not been able to certify
the correctness of the proof, and will not be
able to certify it in the future, because they
have run out of energy … One can speculate
whether their process would have converged
to a definitive answer had they had a more
clear manuscript from the beginning, but
this does not matter now.”

The last sentence lets some irritation shine
through. The proof that Hales delivered was
by no means a polished piece. The 250-page
manuscript consisted of five separate papers,
each a sort of lab report that Hales and Fer-
guson filled out whenever the computer 
finished part of the proof. This unusual 
format made for difficult reading. To make
matters worse, the notation and definitions
also varied slightly between the papers.

Rough but ready
MacPherson had asked the authors to edit
their manuscript. But Hales and Ferguson
did not want to spend another year rework-
ing their paper. “Tom could spend the rest
of his career simplifying the proof,” Fergu-
son said when they completed their paper.
“That doesn’t seem like an appropriate use
of his time.” Hales turned to other chal-
lenges, using traditional methods to solve
the 2,000-year-old honeycomb conjecture,
which states that of all conceivable tiles of
equal area that can be used to cover a floor
without leaving any gaps, hexagonal tiles
have the shortest perimeter5. Ferguson left
academia to take a job with the US Depart-
ment of Defense.

Faced with exhausted referees, the editor-
ial board of the Annalsdecided to publish the
paper — but with a cautionary note. The
paper will appear with an introduction by
the editors stating that proofs of this type,
which involve the use of computers to check
a large number of mathematical statements,
may be impossible to review in full. The 
matter might have ended there, but for
Hales, having a note attached to his proof

was not satisfactory.
This January, he launched the 

Flyspeck project, also known as the
Formal Proof of Kepler.Rather than
rely on human referees, Hales
intends to use computers to verify

news feature

every step of his proof.The effort will require
the collaboration ofa core group ofabout ten
volunteers, who will need to be qualified
mathematicians and willing to donate the
computer time on their machines. The team
will write programs to deconstruct each step
of the proof, line by line, into a set of axioms
that are known to be correct. If every part of
the code can be broken down into these
axioms, the proof will finally be verified.

Those involved see the project as doing
more than just validating Hales’s proof.Sean
McLaughlin, a graduate student at New York
University, who studied under Hales and 
has used computer methods to solve other
mathematical problems, has already volun-
teered. “It seems that checking computer-
assisted proofs is almost impossible for
humans,”he says.“With luck, we will be able
to show that problems of this size can be 
subjected to rigorous verification without
the need for a referee process.”

But not everyone shares McLaughlin’s
enthusiasm. Pierre Deligne, an algebraic
geometer at the Institute for Advanced Study,
is one of the many mathematicians who do
not approve of computer-aided proofs.
“I believe in a proof if I understand it,”he says.
For those who side with Deligne, using com-
puters to remove human reviewers from the
refereeing process is another step in the
wrong direction.

Despite his reservations about the proof,
MacPherson does not believe that math-
ematicians should cut themselves off from
computers.Others go further.Freek Wiedijk,
of the Catholic University ofNijmegen in the
Netherlands, is a pioneer of the use of com-
puters to verify proofs. He thinks that the
process could become standard practice in
mathematics. “People will look back at the
turn of the twentieth century and say ‘that is
when it happened’,”Wiedijk says.

Whether or not computer-checking takes
off, it is likely to be several years before 
Flyspeck produces a result. Hales and
McLaughlin are the only confirmed partici-
pants, although others have expressed an
interest. Hales estimates that the whole
process, from crafting the code to running 
it, is likely to take 20 person-years of work.
Only then will Kepler’s conjecture become
Kepler’s theorem, and we will know for sure
whether we have been stacking oranges 
correctly all these years. n

George Szpiro writes for the Swiss newspapers NZZ

and NZZ am Sonntag from Jerusalem, Israel. His book

Kepler’s Conjecture (Wiley, New York) was published 

in February. 
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ç www.math.pitt.edu/~ thales/ flyspeck/ index.html
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Star player:Johannes Kepler’s conjecture has

kept mathematicians guessing for 400 years.
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19th C. MATHEMATICAL MODELS

Felix Klein’s heritage

Considerable obstacles generally present
themselves to the beginner, in study-
ing the elements of Solid Geometry,
from the practice which has hitherto
uniformly prevailed in this country, of
never submitting to the eye of the stu-
dent, the figures on whose properties
he is reasoning, but of drawing per-
spective representations of them upon
a plane. . . .
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I hope that I shall never be obliged to

have recourse to a perspective drawing

of any figure whose parts are not in the

same plane.

Augustus de Morgan (1806–71).

• de Morgan, first President of the London

Mathematical Society, was equally influen-

tial as an educator and a researcher.

• There is evidence that young children see

more naturally in three than two dimen-

sions.

(See www.colab.sfu.ca/ICIAM03/)
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Coxeter’s octahedral kaleidoscope

(circa 1925)

Modern science is often driven by fads

and fashion, and mathematics is no ex-

ception. Coxeter’s style, I would say, is

singularly unfashionable. He is guided, I

think, almost completely by a profound

sense of what is beautiful.

(Robert Moody)
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Mathematics, rightly viewed, possesses

not only truth, but supreme beauty—a

beauty cold and austere, without ap-

peal to any part of our weaker nature,

without the gorgeous trappings of paint-

ing or music, yet sublimely pure, and

capable of a stern perfection such as

only the greatest art can show.

(Bertrand Russell, 1910)

• Quoted in the introduction to Coxeter’s In-

troduction to Geometry.

• Russell, a family friend, may have been re-

sponsible for Coxeter pursuing mathemat-

ics. After reading the 16 year old’s prize-

winning essay on dimensionality, he told

Coxeter’s father his son was unusually gifted

mathematically, and urged him to change

the direction of Coxeter’s education.
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A four dimensional polytope with 120
dodecahedral faces

• In a 1997 paper, Coxeter showed his friend
Escher, knowing no math, had achieved
“mathematical perfection” in etching Cir-
cle Limit III. “Escher did it by instinct,”
Coxeter wrote, “I did it by trigonometry.”

• Fields medalist David Mumford recently noted
that Donald Coxeter (1907-2003) placed

great value on working out details of com-
plicated explicit examples.
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In my book, Coxeter has been one of

the most important 20th century math-

ematicians —not because he started a

new perspective, but because he deep-

ened and extended so beautifully an

older esthetic. The classical goal of ge-

ometry is the exploration and enumer-

ation of geometric configurations of all

kinds, their symmetries and the con-

structions relating them to each other.

The goal is not especially to prove

theorems but to discover these perfect

objects and, in doing this,theorems are

only a tool that imperfect humans need

to reassure themselves that they have

seen them correctly.

(David Mumford, 2003)
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20th C. MATHEMATICAL MODELS

Ferguson’s “Eight-Fold Way” sculpture
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The Fergusons won the 2002 Communications

Award, of the Joint Policy Board of Mathemat-

ics. The citation runs:

They have dazzled the

mathematical community

and a far wider public

with exquisite sculptures

embodying mathematical

ideas, along with artful

and accessible essays and

lectures elucidating the

mathematical concepts.

It has been known for some time that the hy-

perbolic volume V of the figure-eight knot

complement is

V = 2
√

3
∞∑

n=1

1

n
(
2n
n

)
2n−1∑

k=n

1

k

= 2.029883212819307250042405108549 . . .
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Ferguson’s “Figure-Eight Knot

Complement” sculpture
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In 1998, British physicist David Broadhurst con-

jectured V/
√

3 is a rational linear combination

of

Cj =
∞∑

n=0

(−1)n

27n(6n + j)2
.(1)

Indeed, as Broadhurst found, using Ferguson’s

PSLQ:

V =

√
3

9

∞∑

n=0

(−1)n

27n
×

{
18

(6n + 1)2
− 18

(6n + 2)2
− 24

(6n + 3)2

− 6

(6n + 4)2
+

2

(6n + 5)2

}
.
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• Entering the following code in the Mathe-

matician’s Toolkit, at www.expmath.info:

v = 2 * sqrt[3] * sum[1/(n * binomial[2*n,n])

* sum[1/k,{k, n,2*n-1}], {n, 1, infinity}]

pslq[v/sqrt[3],

table[sum[(-1)^n/(27^n*(6*n+j)^2),

{n, 0, infinity}], {j, 1, 6}]]

recovers the solution vector

(9, -18, 18, 24, 6, -2, 0).

• The first proof that this formula holds is

given in our new book.

• The formula is inscribed on each cast of

the sculpture—marrying both sides of Hela-

man!
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21st C. MATHEMATICAL MODELS

Knots 10161 (L) and 10162 (C) agree (R)∗.

In NewMIC’s Cave or Plato’s?
∗KnotPlot: from Little (1899) to Perko (1974) and on.
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MORE of OUR ‘METHODOLOGY’

1. (High Precision) computation of object(s).

2. Pattern Recognition of Real Numbers (In-
verse Calculator and ’RevEng’)∗, or Se-
quences ( Salvy & Zimmermann’s ‘gfun’,
Sloane and Plouffe’s Encyclopedia).

3. Extensive use of ‘Integer Relation Meth-
ods’: PSLQ & LLL and FFT.†

• Exclusion bounds are especially useful.

• Great test bed for “Experimental Math”.

4. Some automated theorem proving (Wilf-
Zeilberger etc).

∗ISC space limits: from 10Mb in 1985 to 100Gb today.
†Top Ten “Algorithm’s for the Ages,” Random Sam-
ples, Science, Feb. 4, 2000.
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On-Line Encyclopedia of Integer Sequences (Look-Up)

 

The On-Line Encyclopedia of Integer Sequences

Enter a  sequence,  word, or  sequence number:

      Clear | Hints | Advanced look-up 

Other languages:   Albanian   Arabic   Bulgarian   Catalan   Chinese (simplified, traditional) 
Croatian   Czech   Danish   Dutch   Esperanto   Finnish   French   German   Greek 

Hebrew   Hindi   Hungarian   Italian   Japanese   Korean   Polish  Portuguese 
Romanian   Russian   Serbian   Spanish   Swedish   Thai   Turkish 
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FOUR EXPERIMENTS

• 1. Kantian example: generating “the

classical non-Euclidean geometries (hyperbolic,

elliptic) by replacing Euclid’s axiom of parallels

(or something equivalent to it) with alternative

forms.”

• 2. The Baconian experiment is a contrived

as opposed to a natural happening, it “is the

consequence of ‘trying things out’ or even of

merely messing about.”

• 3. Aristotelian demonstrations: “apply elec-

trodes to a frog’s sciatic nerve, and lo, the leg

kicks; always precede the presentation of the

dog’s dinner with the ringing of a bell, and lo,

the bell alone will soon make the dog dribble.”

37

Jon
Highlight



• 4. The most important is Galilean: “a crit-
ical experiment – one that discriminates be-
tween possibilities and, in doing so, either gives
us confidence in the view we are taking or
makes us think it in need of correction.”

• It is also the only one of the four forms
which will make Experimental Mathemat-
ics a serious enterprise.

• From Peter Medawar’s Advice to a Young
Scientist, Harper (1979).

A Julia set
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MILNOR

If I can give an abstract

proof of something, I’m rea-

sonably happy. But if I

can get a concrete, compu-

tational proof and actually

produce numbers I’m much

happier.

I’m rather an addict of doing

things on the computer, be-

cause that gives you an ex-

plicit criterion of what’s go-

ing on. I have a visual way

of thinking, and I’m happy if

I can see a picture of what

I’m working with.
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ZEROES of 0− 1 POLYNOMIALS

Data mining in polynomials

• The striations are unexplained!
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A NEW PROOF
√

2 is IRRATIONAL

• A reductio “proof without words”, pub-
lished by Tom Apostol in the year 2000.

• But symbols are often more reliable than
pictures.

• On to more detailed examples . . .
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TWO INTEGRALS

A. Why π 6= 22
7 :

0 <
∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π.

[
∫ t

0
· = 1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) .]

The Colour Calculator
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B. The sophomore’s dream:

∫ 1

0

1

xx
dx =

∞∑

n=1

1

nn
.

• Such have many implications for teaching
— flagging issues of ‘Packing and unpack-
ing’ concepts?

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Pascal’s Triangle modulo two

1,11,121,1331,14641,15101051 · · ·
43

Jon
Highlight

Jon
Highlight



TWO INFINITE PRODUCTS

A. A rational evaluation:

∞∏

n=2

n3 − 1

n3 + 1
=

2

3
.

· · ·
B. And a transcendent one:

∞∏

n=2

n2 − 1

n2 + 1
=

π

sinh(π)
.

• The Inverse Symbolic Calculator can iden-

tify this product.

• ∫
,
∑

,
∏

are now largely algorithmic not black

arts.
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HIGH PRECISION FRAUD

∞∑

n=1

[n tanh(π)]

10n

?
=

1

81

is valid to 268 places; while
∞∑

n=1

[n tanh(π
2)]

10n

?
=

1

81

is valid to just 12 places.

• Both are actually transcendental numbers.

Correspondingly the simple continued fractions
for tanh(π) and tanh(π

2) are respectively

[0,1, 267,4,14,1,2,1,2,2,1,2,3,8,3,1]

and

[0,1, 11,14,4,1,1,1,3,1,295,4,4,1,5,17,7]

• Bill Gosper describes how continued frac-
tions let you “see” what a number is. “[I]t’s
completely astounding ... it looks like you
are cheating God somehow.”
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CONVEX CONJUGATES and NMR(MRI)

The Hoch and Stern information measure, or

neg-entropy, is defined in complex n−space by

H(z) =
n∑

j=1

h(zj/b),

where h is convex and given (for scaling b) by:

h(z) , |z| ln
(
|z|+

√
1 + |z|2

)
−

√
1 + |z|2

for quantum theoretic (NMR) reasons.

• Recall the Fenchel-Legendre conjugate

f∗(y) := sup
x
〈y, x〉 − f(x).

• Our symbolic convex analysis package (stored

at www.cecm.sfu.ca/projects/CCA/) produced:

h∗(z) = cosh(|z|).
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• Compare the fundamental Boltzmann-Shannon

entropy:

(z ln z − z)∗ = exp(z).

F I’d never have tried by hand!

• Knowing ‘closed forms’ helps:

(exp exp)∗(y) = y ln(y)−y{W (y)+W (y)−1}
where Maple or Mathematica recognize the

complex Lambert W function

W(x)eW(x) = x.

Thus, the conjugate’s series is

−1+(ln(y)− 1) y−1

2
y2+

1

3
y3−3

8
y4+

8

15
y5+O

(
y6

)
.
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SOME FOURIER INTEGRALS

Recall the sinc function

sinc(x) :=
sin(x)

x
.

Consider, the seven highly oscillatory integrals

below.∗

I1 :=
∫ ∞
0

sinc(x) dx =
π

2
,

I2 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
dx =

π

2
,

I3 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
sinc

(
x

5

)
dx =

π

2
,

. . .

I6 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

11

)
dx =

π

2
,

I7 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

13

)
dx =

π

2
.

∗These are hard to compute accurately numerically.
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However,

I8 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

15

)
dx

=
467807924713440738696537864469

935615849440640907310521750000
π

≈ 0.499999999992646π.

I When a researcher, using a well-known com-
puter algebra package, checked this he – and
the makers – concluded there was a “bug” in
the software. Not so!

¦ Our analysis, via Parseval’s theorem, links
the integral

IN :=
∫ ∞
0

sinc(a1x)sinc (a2x) · · · sinc (aNx) dx

with the volume of the polyhedron PN given
by

PN := {x : |
N∑

k=2

akxk| ≤ a1, |xk| ≤ 1,2 ≤ k ≤ N}.

where x := (x2, x3, · · · , xN).
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If we let

CN := {(x2, x3, · · · , xN) : −1 ≤ xk ≤ 1,2 ≤ k ≤ N},
then

IN =
π

2a1

V ol(PN)

V ol(CN)
.

I Thus, the value drops precisely when the
constraint

∑N
k=2 akxk ≤ a1 becomes active and

bites the hypercube CN . That occurs when∑N
k=2 ak > a1.

In the above, 1
3 + 1

5 + · · · + 1
13 < 1, but on

addition of the term 1
15, the sum exceeds 1,

the volume drops, and IN = π
2 no longer holds.

and

• A somewhat cautionary example for too
enthusiastically inferring patterns from seem-
ingly compelling computation.
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ENIAC: Integrator and Calculator

SIZE/WEIGHT: ENIAC had 18,000 vacuum
tubes, 6,000 switches, 10,000 capacitors, 70,000
resistors, 1,500 relays, was 10 feet tall, occu-
pied 1,800 square feet and weighed 30 tons.

SPEED/MEMORY: A 1.5GHz Pentium does
3 million adds/sec. ENIAC did 5,000 — 1,000
times faster than any earlier machine. The first
stored-memory computer, ENIAC could store
200 digits.
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ARCHITECTURE: Data flowed from one

accumulator to the next, and after each ac-

cumulator finished a calculation, it communi-

cated its results to the next in line.

The accumulators were connected to each other

manually.

• The 1949 computation of π to 2,037 places

took 70 hours.

• It would have taken roughly 100,000 ENI-

ACs to store the Smithsonian’s picture!

52

Jon
Underline



BERLINSKI

The computer has in turn changed the
very nature of mathematical experience,
suggesting for the first time that math-
ematics, like physics, may yet become
an empirical discipline, a place where
things are discovered because they are
seen.

David Berlinski, “Ground Zero: A Re-
view of The Pleasures of Counting, by
T. W. Koerner,” 1997.

A virtual fractal postcard
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· · · and · · ·

The body of mathematics to which the

calculus gives rise embodies a certain

swashbuckling style of thinking, at once

bold and dramatic, given over to large

intellectual gestures and indifferent, in

large measure, to any very detailed de-

scription of the world.

It is a style that has shaped the physical

but not the biological sciences, and its

success in Newtonian mechanics, gen-

eral relativity and quantum mechanics

is among the miracles of mankind. But

the era in thought that the calculus

made possible is coming to an end. Ev-

eryone feels this is so and everyone is

right.
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PI and FRIENDS

A: (A quartic algorithm.) Set a0 = 6 − 4
√

2
and y0 =

√
2− 1. Iterate

yk+1 =
1− (1− y4

k)
1/4

1 + (1− y4
k)

1/4

ak+1 = ak(1 + yk+1)
4

− 22k+3yk+1(1 + yk+1 + y2
k+1)

Then ak converges quartically to 1/π.

• Used since 1986, with Salamin-Brent scheme,
by Bailey, Kanada (Tokyo).

A random

walk on

a million

digits of π
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RAMANUJAN (1887-1920)

Ramanujan (1910) found remarkable series,
barely known (nor fully proven) until recently
when his Notebooks were fully edited:

1

π
=

2
√

2

9801

∞∑

k=0

(4k)! (1103 + 26390k)

(k!)43964k
(2)

Each term adds eight correct digits. When
Gosper used (2) to compute 17 million digits
of (the continued fraction for) π in 1985, this
concluded the first proof of (2) !
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BACK to THE FUTURE

I In 1997, Kanada computed over 51 billion

digits on a Hitachi supercomputer (18 itera-

tions, 25 hrs on 210 cpu’s), and 236 digits in

April 1999.

I In December 2002, Kanada computed π to

over 1.24 trillion decimal digits. His team

first computed π in hexadecimal (base 16) to

1,030,700,000,000 places, using the following

two arctangent relations:

π = 48 tan−1 1

49
+ 128 tan−1 1

57
− 20 tan−1 1

239

+48 tan−1 1

110443

π = 176 tan−1 1

57
+ 28 tan−1 1

239
− 48 tan−1 1

682

+96 tan−1 1

12943
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I Kanada verified the results of these two com-
putations agreed (also with ‘BBP’), and then
converted the hex digit sequence to decimal
and back.

• A billion (230) digit computation has been
performed on a single Pentium II PC in un-
der 9 days.

• 50 billionth decimal digit of π and 1/π is
042 !

F And after 17 billion digits 0123456789 has
finally appeared (Brouwer’s famous intu-
itionist example now converges!)

I Kanada’s estimate of time to run the same
FFT/Karatsuba-based π algorithm on a serial
machine: “infinite”.

Details at: www.cecm.sfu.ca/personal/jborwein/
pi cover.html.
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‘PENTIUM FARMING’ for BITS

B: Bailey, P. Borwein and Plouffe (1996) dis-
covered a series for π (and other polylogarith-
mic constants) which allows one to compute
hex–digits of π without computing prior digits.

I The algorithm needs very little memory and
does not need multiple precision. The running
time grows only slightly faster than linearly in
the order of the digit being computed.

I The key, found by ’PSLQ’ (below) is:

π =
∞∑

k=0

(
1

16

)k ( 4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

• Knowing an algorithm would follow they
spent several months hunting for such a
formula.

• Once found, easy to prove in Mathematica,
Maple or by hand.
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A most successful case of

REVERSE

MATHEMATICAL

ENGINEERING

I (Sept 97) Fabrice Bellard (INRIA) used a

variant formula to compute 152 binary digits

of π, starting at the trillionth position (1012).

This took 12 days on 20 work-stations working

in parallel over the Internet.

I (August 98) Colin Percival (SFU, age 17)

finished a similar ‘embarrassingly parallel’ com-

putation of five trillionth bit (using 25 ma-

chines at about 10 times the speed). In Hex:

07E45733CC790B5B5979

The binary digits of π starting at the 40 tril-

lionth place are

00000111110011111.
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I (September 2000) The quadrillionth bit is ‘0’

(used 250 cpu years on 1734 machines in 56

countries). From the 999,999,999,999,997th

bit of π one has:

111000110001000010110101100000110

F One of the largest computations ever!

Bailey and Crandall (2001) make a reasonable,

hence very hard conjecture, about the uniform

distribution of a related chaotic dynamical

system. This conjecture implies:

Existence of a ‘BBP’ formula base b for

α ensures the normality base b of α.

For log2 the dynamical system is

xn+1 ≡ 2(xn +
1

n
) mod 1,

See www.sciencenews.org/20010901/bob9.asp .
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A MISLEADING PICTURE

Polytopic except at one point?
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DISJOINT GENERA

Theorem 1 There are at most 19 integers not
of the form of xy + yz + xz with x, y, z ≥ 1.

The only non-square-free are 4 and 18. The
first 16 square-free are

1,2,6,10,22,30,42,58,70,78,102

130,190, 210,330,462.

which correspond to “discriminants with one
quadratic form per genus”.

• If the 19th exists, it is greater than 1011

which the Generalized Riemann Hypothesis
(GRH)∗ excludes.

I Matlab was the road to proof and showed the
hazards of (not) using Sloane’s Encyclopedia.

∗A million dollar Millennium Problem.
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A FULL EXAMPLE—LOG-CONCAVITY

Consider the unsolved Problem 10738 in the

1999 American Mathematical Monthly:

Problem: For t > 0 let

mn(t) =
∞∑

k=0

kn exp(−t)
tk

k!

be the nth moment of a Poisson distribution

with parameter t. Let cn(t) = mn(t)/n! . Show

a) {mn(t)}∞n=0 is log-convex∗ for all t > 0.

b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

∗A sequence {an} is log-convex if an+1an−1 ≥ a2
n, for

n ≥ 1 and log-concave when the sign is reversed.
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Solution. (a) Neglecting the factor of exp(−t)

as we may, this reduces to

∑

k,j≥0

(jk)n+1tk+j

k!j!
≤

∑

k,j≥0

(jk)ntk+j

k! j!
k2 =

∑

k,j≥0

(jk)ntk+j

k!j!

k2 + j2

2
,

and this now follows from 2jk ≤ k2 + j2.

(b) As

mn+1(t) = t
∞∑

k=0

(k + 1)n exp(−t)
tk

k!
,

on applying the binomial theorem to (k + 1)n,

we see that mn(t) satisfies the recurrence

mn+1(t) = t
n∑

k=0

(n
k

)
mk(t), m0(t) = 1.

In particular for t = 1, we obtain the sequence

1,1,2,5,15,52,203,877,4140 . . . .
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• These are the Bell numbers as was discov-
ered by consulting Sloane’s Encyclopedia.
www.research.att.com/~ njas/sequences/index.html

• Sloane can also tell us that, for t = 2,
we have the generalized Bell numbers, and
gives the exponential generating functions.∗

I Inter alia, an explicit computation shows
that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)

2 = t2

exactly if t ≥ 1, which completes (b).

Also, preparatory to the next part, a simple
calculation shows that

∑

n≥0

cnun = exp (t(eu − 1)) .(3)

∗The Bell numbers were known earlier to Ramanujan —
an example of Stigler’s Law of Eponymy !
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(c∗)∗ We appeal to a recent theorem due to E.

Rodney Canfield,† which proves the lovely and

quite difficult result below.

Theorem 2 If a sequence 1, b1, b2, · · · is non-

negative and log-concave then so is the se-

quence 1, c1, c2, · · · determined by the generat-

ing function equation

∑

n≥0

cnun = exp


 ∑

j≥1

bj
uj

j


 .

Using equation (3) above, we apply this to the

sequence bj = t/(j− 1)! which is log-concave

exactly for t ≥ 1. QED

∗The ‘*’ indicates this was the unsolved component.
†A search in 2001 on MathSciNet for “Bell numbers”
since 1995 turned up 18 items. This paper showed up
as number 10. Later, Google found it immediately!
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• It transpired that the given solution to (c)

was the only one received by the Monthly.

IThis is quite unusual.

• The reason might well be that it relied on

the following sequence of steps:

(??) ⇒ Computer Algebra System ⇒ Interface

⇒ Search Engine ⇒ Digital Library

⇒ Hard New Paper ⇒ Answer

F Now if only we could automate this!
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KUHN

The issue of paradigm choice can never
be unequivocally settled by logic and
experiment alone.

· · ·
in these matters neither proof nor error
is at issue. The transfer of allegiance
from paradigm to paradigm is a conver-
sion experience that cannot be forced.

• In Who Got Einstein’s Office? (Beurling)

And Max Planck, surveying his own ca-
reer in his Scientific Autobiography, sadly
remarked that ’a new scientific truth
does not triumph by convincing its op-
ponents and making them see the light,
but rather because its opponents even-
tually die, and a new generation grows
up that is familiar with it.’

69



A PARAPHRASE of HERSH

I Whatever the outcome of these develop-

ments, mathematics is and will remain a uniquely

human undertaking. Indeed Reuben Hersh’s

arguments for a humanist philosophy of math-

ematics, as paraphrased below, become more

convincing in our setting:

1. Mathematics is human. It is part of

and fits into human culture. It does not

match Frege’s concept of an abstract,

timeless, tenseless, objective reality.

2. Mathematical knowledge is fallible.

As in science, mathematics can advance

by making mistakes and then correct-

ing or even re-correcting them. The

“fallibilism” of mathematics is brilliantly

argued in Lakatos’ Proofs and Refuta-

tions.
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3. There are different versions of proof
or rigor. Standards of rigor can vary
depending on time, place, and other
things. The use of computers in formal
proofs, exemplified by the computer-
assisted proof of the four color theorem
in 1977 (1997), is just one example of
an emerging nontraditional standard of
rigor.

4. Empirical evidence, numerical ex-
perimentation and probabilistic proof all
can help us decide what to believe in
mathematics. Aristotelian logic isn’t
necessarily always the best way of de-
ciding.

71



5. Mathematical objects are a special
variety of a social-cultural-historical ob-
ject. Contrary to the assertions of cer-
tain post-modern detractors, mathemat-
ics cannot be dismissed as merely a
new form of literature or religion. Nev-
ertheless, many mathematical objects
can be seen as shared ideas, like Moby
Dick in literature, or the Immaculate
Conception in religion.

I From “Fresh Breezes in the Philosophy of
Mathematics”, American Mathematical Monthly,
August-Sept 1995, 589–594.

I The recognition that “quasi-intuitive” analo-
gies may be used to gain insight in mathemat-
ics can assist in the learning of mathematics.

And honest mathematicians will acknowledge
their role in discovery as well. We should look
forward to what the future will bring.
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HILBERT

Moreover a mathematical problem should

be difficult in order to entice us, yet not

completely inaccessible, lest it mock our

efforts. It should be to us a guidepost

on the mazy path to hidden truths, and

ultimately a reminder of our pleasure in

the successful solution.

· · ·

Besides it is an error to believe that

rigor in the proof is the enemy of sim-

plicity. (David Hilbert)

• In his ‘23’ “Mathematische Probleme” lec-

ture to the Paris International Congress,

1900 (see Ben Yandell’s fine account in

The Honors Class, AK Peters, 2002).
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CHAITIN

I believe that elementary number the-

ory and the rest of mathematics should

be pursued more in the spirit of experi-

mental science, and that you should be

willing to adopt new principles. I be-

lieve that Euclid’s statement that an

axiom is a self-evident truth is a big

mistake∗. The Schrödinger equation

certainly isn’t a self-evident truth! And

the Riemann Hypothesis isn’t self-evident

either, but it’s very useful. A physicist

would say that there is ample experi-

mental evidence for the Riemann Hy-

pothesis and would go ahead and take

it as a working assumption.

∗There is no evidence that Euclid ever made such a
statement. However, the statement does have an un-
deniable emotional appeal.
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In this case, we have ample experimen-
tal evidence for the truth of our identity
and we may want to take it as some-
thing more than just a working assump-
tion. We may want to introduce it for-
mally into our mathematical system.

• Greg Chaitin (1994). A like article is in
press in the Mathematical Intelligencer.

A tangible Riemann surface for W
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CARATHÉODORY and CHRÉTIEN

I’ll be glad if I have succeeded in im-
pressing the idea that it is not only
pleasant to read at times the works of
the old mathematical authors, but this
may occasionally be of use for the ac-
tual advancement of science.

• Constantin Carathéodory,at an MAA meet-
ing in 1936 (retro-digital data-mining?).

A proof is a proof. What kind of a
proof? It’s a proof. A proof is a proof.
And when you have a good proof, it’s
because it’s proven.
(Jean Chrétien, 2002)

• The Prime Minister, explaining how Canada
would determine if Iraq had WMDs, sounds
a lot like Bertrand Russell!
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GAUSS

I In Boris Stoicheff’s often enthralling biogra-
phy of Herzberg∗, Gauss is recorded as writing:

It is not knowledge, but the act of learn-
ing, not possession but the act of get-
ting there which generates the greatest
satisfaction.

Fractal similarity in

Gauss’ discovery of

modular functions

∗Gerhard Herzberg (1903-99) fled Germany for Sask-
atchewan in 1935 and won the 1971 Chemistry Nobel.
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A FEW CONCLUSIONS

• The traditional deductive accounting of Math-

ematics is a largely ahistorical caricature.∗

• Mathematics is primarily about secure knowl-

edge not proof, and the aesthetic is central.

• Proofs are often out of reach — under-

standing, even certainty, is not.

• Packages can make concepts accessible (Lin-

ear relations, Galois theory, Groebner bases).

• While progress is made “one funeral at a

time” (Niels Bohr), “you can’t go home

again” (Thomas Wolfe).

∗Quotations are at jborwein/quotations.html
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HOW NOT TO EXPERIMENT

Pooh Math
‘Guess and Check’

while

Aiming Too High
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APPENDIX: INTEGER RELATIONS

The USES of LLL and PSLQ

I A vector (x1, x2, · · · , xn) of reals possesses
an integer relation if there are integers ai not
all zero with

0 = a1x1 + a2x2 + · · ·+ anxn.

PROBLEM: Find ai if such exist. If not, ob-
tain lower bounds on the size of possible ai.

• (n = 2) Euclid’s algorithm gives solution.

• (n ≥ 3) Euler, Jacobi, Poincare, Minkowski,
Perron, others sought method.

• First general algorithm in 1977 by Fer-
guson & Forcade. Since ’77: LLL (in
Maple), HJLS, PSOS, PSLQ (’91, parallel
’99).
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I Integer Relation Detection was recently ranked
among “the 10 algorithms with the greatest
influence on the development and practice of
science and engineering in the 20th century.”
J. Dongarra, F. Sullivan, Computing in Science
& Engineering 2 (2000), 22–23.

Also: Monte Carlo, Simplex, Krylov Subspace,
QR Decomposition, Quicksort, ..., FFT, Fast
Multipole Method.

A. ALGEBRAIC NUMBERS

Compute α to sufficiently high precision (O(n2))
and apply LLL to the vector

(1, α, α2, · · · , αn−1).

• Solution integers ai are coefficients of a
polynomial likely satisfied by α.

• If no relation is found, exclusion bounds are
obtained.
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B. FINALIZING FORMULAE

I If we suspect an identity PSLQ is powerful.

• (Machin’s Formula) We try lin dep on

[arctan(1),arctan(
1

5
),arctan(

1

239
)]

and recover [1, -4, 1]. That is,

π

4
= 4arctan(

1

5
)− arctan(

1

239
).

[Used on all serious computations of π from
1706 (100 digits) to 1973 (1 million).]

• (Dase’s ‘mental‘ Formula) We try lin dep

on

[arctan(1), arctan(
1

2
), arctan(

1

5
),arctan(

1

8
)]

and recover [-1, 1, 1, 1]. That is,

π

4
= arctan(

1

2
) + arctan(

1

5
) + arctan(

1

8
).

[Used by Dase for 200 digits in 1844.]
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C. ZETA FUNCTIONS

I The zeta function is defined, for s > 1, by

ζ(s) =
∞∑

n=1

1

ns
.

• Thanks to Apéry (1976) it is well known that

S2 := ζ(2) = 3
∞∑

k=1

1

k2
(
2k
k

)

A3 := ζ(3) =
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)

S4 := ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

)

I These results strongly suggest that

ℵ5 := ζ(5)/
∞∑

k=1

(−1)k−1

k5
(
2k
k

)

is a simple rational or algebraic number. Yet,
PSLQ shows: if ℵ5 satisfies a polynomial of
degree ≤ 25 the Euclidean norm of coefficients
exceeds 2× 1037.
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D. BINOMIAL SUMS and LIN DEP

I Any relatively prime integers p and q such

that

ζ(5)
?
=

p

q

∞∑

k=1

(−1)k+1

k5
(
2k
k

)

have q astronomically large (as “lattice basis

reduction” showed).

I But · · · PSLQ yields in polylogarithms:

A5 =
∞∑

k=1

(−1)k+1

k5
(
2k
k

) = 2ζ(5)

− 4
3L5 + 8

3L3ζ(2) + 4L2ζ(3)

+ 80
∑

n>0

(
1

(2n)5
− L

(2n)4

)
ρ2n

where L := log(ρ) and ρ := (
√

5 − 1)/2; with

similar formulae for A4, A6, S5, S6 and S7.
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• A less known formula for ζ(5) due to Koecher

suggested generalizations for ζ(7), ζ(9), ζ(11) . . .

• Again the coefficients were found by in-

teger relation algorithms. Bootstrapping

the earlier pattern kept the search space

of manageable size.

• For example, and simpler than Koecher:

ζ(7) =
5

2

∞∑

k=1

(−1)k+1

k7
(
2k
k

)(4)

+
25

2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1

j4

I We were able – by finding integer relations

for n = 1,2, . . . ,10 – to encapsulate the formu-

lae for ζ(4n+3) in a single conjectured gener-

ating function, (entirely ex machina).
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I The discovery was:

Theorem 3 For any complex z,

∞∑

n=0

ζ(4n + 3)z4n

=
∞∑

k=1

1

k3(1− z4/k4)
(5)

=
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)
(1− z4/k4)

k−1∏

m=1

1 + 4z4/m4

1− z4/m4
.

• The first ‘=‘ is easy. The second is quite

unexpected in its form!

• z = 0 yields Apéry’s formula for ζ(3) and

the coefficient of z4 is (4).
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HOW IT WAS FOUND

I The first ten cases show (5) has the form

5

2

∑

k≥1

(−1)k−1

k3
(
2k
k

) Pk(z)

(1− z4/k4)

for undetermined Pk; with abundant data to
compute

Pk(z) =
k−1∏

m=1

1 + 4z4/m4

1− z4/m4
.

• We found many reformulations of (5), in-
cluding a marvellous finite sum:

n∑

k=1

2n2

k2

∏n−1
i=1(4k4 + i4)

∏n
i=1, i 6=k(k

4 − i4)
=

(2n

n

)
.(6)

• Obtained via Gosper’s (Wilf-Zeilberger type)
telescoping algorithm after a mistake in an
electronic Petri dish (‘infty’ 6= ‘infinity’).
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I This finite identity was subsequently proved

by Almkvist and Granville (Experimental Math,

1999) thus finishing the proof of (5) and giving

a rapidly converging series for any ζ(4N + 3)

where N is positive integer.

F Perhaps shedding light on the irrationality

of ζ(7)?

Recall that ζ(2N + 1) is not proven irra-

tional for N > 1. One of ζ(2n + 3) for

n = 1,2,3,4 is irrational (Rivoal et al).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Kakeya’s needle

an excellent

false conjecture
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PAUL ERDŐS (1913-1996)

Paul Erdős, when shown (6) shortly before his
death, rushed off.

Twenty minutes later he returned saying he did
not know how to prove it but if proven it would
have implications for Apéry’s result (‘ζ(3) is
irrational’).
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Reply from On-Line Encyclopedia

 

Greetings from the On-Line Encyclopedia of Integer Sequences!

Lookup | Index | Browse | Format | Contribute | EIS | NJAS 

Matches (up to a limit of 30) found for       1 1 2 5 15 52 203 877 : 
[It will take a few minutes to search the table (the second and later lookups are faster)]

ID Number: A000110 (Formerly M1484 and N0585)

URL:       http://www.research.att.com/projects/OEIS?Anum=A000110
Sequence:  1,1,2,5,15,52,203,877,4140,21147,115975,678570,4213597,

           27644437,190899322,1382958545,10480142147,82864869804,
           682076806159,5832742205057,51724158235372,474869816156751,
           4506715738447323
Name:      Bell or exponential numbers: ways of placing n labeled 
balls into n
              indistinguishable boxes.
Comments:  Number of partitions of an n-element set.
           If an integer is square free and has n distinct prime 
factors then a(n) is
              the number of ways of writing it as a product of its 
divisors - Amarnath
              Murthy (amarnath_murthy(AT)yahoo.com), Apr 23 2001
           Consider rooted trees of height at most 2. Letting each 
tree 'grow' into
              the next generation of n means we produce a new tree 
for every node which
              is either the root or at height 1, which gives the Bell 
numbers. - Jon
              Perry (perry(AT)globalnet.co.uk), Jul 23 2003
References M. Aigner, A characterization of the Bell numbers, Discr. 
Math., 205
              (1999), 207-210.
           J.-P. Allouche and J. Shallit, Automatic Sequences, 
Cambridge Univ.
              Press, 2003, p. 205.
           E. T. Bell, Exponential numbers, Amer. Math. Monthly, 41 

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi (1 of 6)10/21/2003 3:59:02 AM

http://www.research.att.com/~njas/sequences/Seis.html
http://www.research.att.com/~njas/sequences/index.html
http://www.research.att.com/~njas/sequences/Sindx.html
http://www.research.att.com/~njas/sequences/Sbrowse.html
http://www.research.att.com/~njas/sequences/eishelp2.html
http://www.research.att.com/~njas/sequences/Submit.html
http://www.research.att.com/~njas/sequences/Seis.html
http://www.research.att.com/~njas/
http://www.research.att.com/projects/OEIS?Anum=A000110
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/showtabl.cgi?A=A000110&format=4&height=0&seq=,1,1,2,5,15,52,203,877,4140,21147,115975,678570,4213597,27644437,190899322,1382958545,10480142147,82864869804,682076806159,5832742205057,51724158235372,474869816156751,4506715738447323
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Reply from On-Line Encyclopedia

(1934),
              411-419.
           E. T. Bell, Exponential polynomials, Ann. Math., 35 
(1934), 258-277.
           E. T. Bell, The iterated exponential numbers, Ann. Math., 
39 (1938),
              539-557.
           N. G. de Bruijn, Asymptotic Methods in Analysis, 1958, 
Sections
              6.1-6.3.
           L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 210.
           G. Everest, A. van der Poorten, I. Shparlinski and T. 
Ward, Recurrence
              Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
           Flajolet, Philippe, and Schott, Rene, Nonoverlapping 
partitions,
              continued fractions, Bessel functions and a divergent 
series,
              European J. Combin. 11 (1990), no. 5, 421-432.
           Martin Gardner, Fractal Music, Hypercards, and More 
(Freeman, 1992),
              Chapter 2.
           H. W. Gould, Research bibliography of two special number 
sequences,
              Mathematica Monongaliae, Vol. 12, 1971.
           R. L. Graham, D. E. Knuth and O. Patashnik, Concrete 
Mathematics,
              Addison-Wesley, 2nd ed., p. 493.
           M. Klazar, Counting even and odd partitions, Amer. Math. 
Monthly, 110
              (No. 6, 2003), 527-532.
           Christian Kramp, Der polynomische Lehrsatz (Leipzig: 
1796), 113.
           G. Labelle et al., Stirling numbers interpolation using 
permutations
              with forbidden subsequences, Discrete Math. 246 (2002), 
177-195.
           J. Levine and R. E. Dalton, Minimum periods, modulo p, of 
first-order
              Bell exponential integers, Math. Comp., 16 (1962), 416-
423.
           S. Linusson, The number of M-sequences and f-vectors, 
Combinatorica,

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi (2 of 6)10/21/2003 3:59:02 AM



Reply from On-Line Encyclopedia

              19 (1999), 255-266.
           L. Lovasz, Combinatorial Problems and Exercises, North-
Holland,
              1993, pp. 14-15.
           W. F. Lunnon, P. A. B. Pleasants and N. M. Stephens, 
Arithmetic
              properties of Bell numbers to a composite modulus I, 
Acta Arithmetica
              35 (1979) 1-16.
           N. S. Mendelsohn, Number of equivalence relations for n 
elements,
              Problem 4340, Amer. Math. Monthly 58 (1951), 46-48.
           T. S. Motzkin, Sorting numbers for cylinders and other 
classification
              numbers, in Combinatorics, Proc. Symp. Pure Math. 19, 
AMS, 1971, pp.
              167-176.
           A. Murthy, Generalization of partition function, 
introducing
              Smarandache factor partition, Smarandache Notions 
Journal, Vol.11,
              No. 1-2-3, Spring 2000.
           M. Rayburn, On the Borel fields of a finite set, Proc. 
Amer. Math.. Soc.,
              19 (1968), 885-889.
           C. Reid, The alternative life of E. T. Bell, Amer. Math. 
Monthly, 108
              (No. 5, May 2001), 393-402.
           G.-C. Rota, The number of partitions of a set. Amer. Math. 
Monthly 71
              1964 498-504.
           R. P. Stanley, Enumerative Combinatorics, Cambridge; see 
Section 1.4
              and Example 5.2.4.
Links:     Pat Ballew, Bell Numbers

           P. Blasiak, K. A. Penson and A. I. Solomon, The Boson 

Normal Ordering Problem and Generalized Bell Numbers

           H. Bottomley, Illustration of initial terms

           P. J. Cameron, Sequences realized by oligomorphic 

permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

           K.-W. Chen, Algorithms for Bernoulli numbers and Euler 

numbers, J. Integer Sequences, 4 (2001), #01.1.6.

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi (3 of 6)10/21/2003 3:59:02 AM

http://www.geocities.com/Paris/Rue/1861/Bellno.html
http://arxiv.org/abs/quant-ph/0212072
http://arxiv.org/abs/quant-ph/0212072
http://www.research.att.com/~njas/sequences/A000110.gif
http://www.math.uwaterloo.ca/JIS/index.html
http://www.math.uwaterloo.ca/JIS/index.html
http://www.math.uwaterloo.ca/JIS/index.html
http://www.math.uwaterloo.ca/JIS/index.html


Reply from On-Line Encyclopedia

           R. M. Dickau, Bell number diagrams

           John Fiorillo, GENJI-MON

           H. Fripertinger, The Bell Numbers

           A. Gertsch & A.M.Robert, Some congruences concerning the 

Bell numbers

           Ivan Graham, Bell Numbers

           INRIA Algorithms Project, Encyclopedia of Combinatorial 

Structures 15

           INRIA Algorithms Project, Encyclopedia of Combinatorial 

Structures 65

           INRIA Algorithms Project, Encyclopedia of Combinatorial 

Structures 73

           INRIA Algorithms Project, Encyclopedia of Combinatorial 

Structures 291

           Kazuhiro Kunii, Genji-koh no zu [Japanese page 

illustrating a(5) = 52]
           W. Lang, On generalizations of Stirling number triangles, 

J. Integer Seqs., Vol. 3 (2000), #00.2.4.
           J. W. Layman, The Hankel Transform and Some of its 

Properties, J. Integer Sequences, 4 (2001), #01.1.5.

           A. M. Odlyzko, Asymptotic enumeration methods, pp. 1063-
1229 of R. L. Graham et al., eds., Handbook of Combinatorics, 1995; 
see Examples 5.4 and 12.2. (pdf, ps)

           K. A. Penson and J.-M. Sixdeniers, Integral 

Representations of Catalan and Related Numbers, J. Integer Sequences, 

4 (2001), #01.2.5.
           E. W. Weisstein, Link to a section of The World of 

Mathematics (1).

           E. W. Weisstein, Link to a section of The World of 

Mathematics (2).

           E. W. Weisstein, Link to a section of The World of 

Mathematics (3).

           Index entries for sequences related to rooted trees

           Index entries for "core" sequences

           T. Prellberg, On the asymptotic analysis of a class of 

linear recurrences (slides).

Formula:   E.g.f.: exp (exp(x)- 1). Recurrence: a(n+1) = Sum a(k)C(n,
k). Also
              a(n) = Sum Stirling2(n,k), k=1..n.

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi (4 of 6)10/21/2003 3:59:02 AM

http://mathforum.org/advanced/robertd/bell.html
http://spectacle.berkeley.edu/~fiorillo/7genjimon.html
http://www-ang.kfunigraz.ac.at/~fripert/fga/k1bell.html
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/BBMS/Bulletin/bul964/Robert-Gertsch.pdf
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/BBMS/Bulletin/bul964/Robert-Gertsch.pdf
http://students.bath.ac.uk/ns1tcll/bell.html
http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=15
http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=15
http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=65
http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=65
http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=73
http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=73
http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=291
http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=291
http://plaza27.mbn.or.jp/~921/kumiko/genjiko/genjikou.html
http://www.math.uwaterloo.ca/JIS/index.html
http://www.math.uwaterloo.ca/JIS/index.html
http://www.math.uwaterloo.ca/JIS/index.html
http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf
http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.ps
http://www.math.uwaterloo.ca/JIS/index.html
http://www.math.uwaterloo.ca/JIS/index.html
http://mathworld.wolfram.com/BellNumber.html
http://mathworld.wolfram.com/BellNumber.html
http://mathworld.wolfram.com/BinomialTransform.html
http://mathworld.wolfram.com/BinomialTransform.html
http://mathworld.wolfram.com/StirlingTransform.html
http://mathworld.wolfram.com/StirlingTransform.html
http://www.research.att.com/~njas/sequences/Sindx_Ro.html#rooted
http://www.research.att.com/~njas/sequences/Sindx_Cor.html#core
http://algo.inria.fr/seminars/sem02-03/prellberg1-slides.ps
http://algo.inria.fr/seminars/sem02-03/prellberg1-slides.ps


Reply from On-Line Encyclopedia

           G.f.: sum(1/((1-k*x)*k!),k = 0 .. infinity)/exp(1) = 
hypergeom([
              -1/x],[(x-1)/x],1)/exp(1)=((1-2*x)+LaguerreL(1/x,(x-1)/
x,1)+x*LaguerreL(1/x,(2*x-1)/x,1))*Pi/(x^2*sin(Pi*(2*x-1)/x)),
              where LaguerreL(mu,nu,z) =(
              GAMMA(mu+nu+1)/GAMMA(mu+1)/GAMMA(nu+1))* hypergeom([
              -mu],[nu+1],z) is the Laguerre function, the analytic 
extension of
              the Laguerre polynomials, for mu not equal to a 
nonnegative integer.
              This generating function has an infinite number of 
poles accumulating
              in the neighborhood of x=0.- Karol A. Penson
              (penson(AT)lptl.jussieu.fr), Mar 25, 2002.
           a(n) = EXP(-1)*sum(k=>0,k^n/k!) - Benoit Cloitre
              (abcloitre(AT)wanadoo.fr), May 19 2002
           a(n) is asymptotic to n!*(2 Pi r^2 exp(r))^(-1/2) exp(exp
(r)-1) / r^n,
              where r is the positive root of r exp(r) = n. - see e.
g. the Odlyzko
              reference.
           a(n) is asymptotic to b^n*exp(b-n-1/2)/sqrt(ln(n)) where b
              satisfies b*ln(b) = n - 1/2 (see Graham, Knuth and 
Patashnik, Concrete
              Mathematics, 2nd ed., p. 493) - Benoit Cloitre
              (abcloitre(AT)wanadoo.fr), Oct 23 2002
Maple:     A000110:=proc(n) option remember; if n <= 1 then 1 else add
(
              binomial(n-1,i)*A000110(n-1-i),i=0..n-1); fi; end; # 
version 1
           A:=series(exp(exp(x)-1),x,60);
              A000110:=n->n!*coeff(A,x,n); # version 2
           with(combstruct); spec:=[S, {S=Set(U,card >= 1), U=Set(Z,
card
              >= 1)},labeled]; [seq(combstruct[count](spec, size=n),
              n=0..40)];
Math'ca:   f[n_] := Sum[ StirlingS2[n, k], {k, 1, n}]; Table[ f[n], 
{n, 0, 21}]
              (from RGWv)
Program:   (PARI)
              a(n)=if(n<0,0,n!*polcoeff(exp(exp(x+x*O(x^n))-1),n)) 
(from
              Michael Somos)
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           (PARI)
              a(n)=local(m);if(n<0,0,m=contfracpnqn(matrix(2,n\2,i,k,
if(i==1,-k*x^2,1-(k+1)*x)));polcoeff(1/(1-x+m[2,1]/m[1,1])+x*O(x^n),
n))
              (from Michael Somos)
See also:  Partial sums give A005001. Cf. A049020. See A061462 for 

powers of 2
              dividing a(n).
           Sequence in context: A007296 A056272 A056273 this_sequence 

A006790

              A007548 A022493

           Adjacent sequences: A000107 A000108 A000109 this_sequence 

A000111

              A000112 A000113

Keywords:  core,nonn,easy,nice
Offset:    0
Author(s): njas

Show internal format for above sequence? 

Lookup | Welcome | Francais | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics

More pages | Superseeker | Maintained by N. J. A. Sloane (njas@research.att.com) 

home | people | projects | research areas | resources | 
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