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Abstract

In this paper we will give a formal description of succession rules in
terms of linear operators satisfying certain conditions. This represen-
tation allows us to introduce a system of well-defined operations into
the set of succession rules and then to tackle problems of combinato-
rial enumeration simply by using operators instead of generating func-
tions. Finally we will suggest several open problems whose solution
should lead to an algebraic characterization of the set of succession
rules.

1 Introduction

A succession rule §2 is a system consisting of an aziom (b), b € NT | and
a set of productions:

{(ke) ~ (e1(ke))(e2(ke)) - - (ex, (Ke)) = £ € N},

where e; : Nt — N, which explains how to derive the successors (e1(k)),
(ea(k)), ... (ex(k)) of any given label (k), k € NT. In general for a succession
rule €2, we use the more compact notation
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{ & 1)
(k) ~ (e1(k))(e2(k)) - .. (ex(k)),
to mean that there can be infinitely many productions in the system, but
at most one for each integer k € NT.

The positive integers (b), (k), (e;(k)), are called labels of Q. The rule
Q2 can be represented by means of a generating tree, that is a rooted tree
whose vertices are the labels of ©; (b) is the label of the root and each node
labeled (k) has k sons labeled by e;(k),...,ex(k) respectively, according
to the production of (k) in (1). A succession rule  defines a sequence
of positive integers {f,}n>0, fn being the number of the nodes at level n
in the generating tree defined by Q. By convention the root is at level 0,
so fo = 1. The function fo(z) = Y, <o fnz™ is the generating function
determined by €. -

One of the most common succession rules is that defining Schroder
numbers [4], 1,2,6,22,90,394, M2898 in [12]:

(2)
(2) ~ (3)(3) (2)
k)~ (3)...(k+1), k>3

In Fig. 1 the first levels of the generating tree of (2) are shown. We
refer to [3] for further details and examples.
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Figure 1: The first levels of the generating tree of (2), and its number
sequence.

The concept of succession rule was first introduced in [6] by Chung et al.
to study reduced Baxter permutations, and was later applied to the enu-
meration of permutations with forbidden subsequences [8, 13]. Moreover,
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they represent an excellent tool for ECO method [3], which is a general
method for the enumeration of combinatorial objects. The basic idea of
this method is the following: given a class O of combinatorial objects and
a parameter p of O, let us consider the set O, = {z € O : p(z) = n}. If we
are able to define an operator ¥ which satisfies the following conditions:

1. for each @ € O,41 there exists P € O,, such that Q € J(P),

2. for each P, P, € O,, such that P; # P,, then ¥(Py) N¥(P,) = 0,

then F,,11 = {J(P) : VP € O,} is a partition of O,1. Therefore, we
have a recursive construction of the elements of O. A generating tree is
then associated to the operator ¢, in such a way that the number of nodes
appearing in the tree at level n gives the number of n-sized objects in the
class, and the sons of each object are the objects it produces through 4.
Such a generating tree can be formally represented by means of a succession
rule of the form (1), meaning that the root object has b sons, and the
k objects O},...,0;, produced by an object O through ¥ are such that
90| =ei(k), 1 <i<k.

A succession rule is called rational, algebraic or trascendental if its gen-
erating function is rational, algebraic or trascendental, respectively. The
relationship between the structural properties of the rules and their ratio-
nality, algebraicity or trascendence is studied in [1].

However, the complete analytic characterization of the set of algebraic suc-
cession rules and of the set of algebraic generating functions remains an
open problem.

In literature, succession rules can have several different forms. However,
this paper will focus only on the rules having the form (1), where each label
(k) produces exactly k sons, also named ECO-systems.

Two rules 1 and 9 are said to be equivalent, 21 = Qo if they define
the same number sequence, that is fo,(z) = fq,(x). For example, the
following rules are equivalent to (2), and define the Schréder numbers [4, 5]:



(2)
{ (2k) ~ (2)(4)%...(2k)%(2k + 2)

~ (3)2(5)%... (2k — 1)%2(2k + 1)

2)
{ (2F) ~ (22T (@27 (8)F 7L (282 (2F) (2R

where the power notation is used to express repetitions, that is (h)’ stands
for (h)...(h).
—_———

7 times

Next we slightly extend the definition of succession rule given at the
beginning, and introduce colored rules as follows: a rule €2 is colored when
there are at least two labels (k) and (k) having the same value but dif-
ferent productions. For example, it is easily proved, that the sequence

1,2,3,5,9,17,33,...,2" ! + 1, having

1—x—22

1—3x + 222

as generating function, can only be described by means of colored rules,
such as:

2

2

(1) ~ (@) 5
(2) ~ (1)(2)

( (2)(2).

In this paper we first solve two open problems on the set of finite succes-
sion rules. In Section 3, we introduce the concept of rule operator associated
with a succession rule, that is, the algebraic counterpart of the combinato-
rial concept of succession rule: it is a linear operator on R[x], considered as
an R-vector space, and it gives us a formal tool to deal with ECO-systems
from an algebraic view-point. Indeed it allows us to define some operations
in the set of rule operators, reflecting some well-known operations on the
number sequences associated with them.

)
)
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2 Finite succession rules

A succession rule € is finite if it has a finite number of different labels.
For example, for any positive integer, the number sequences {ay, i }r, defined
by the recurrences:

k
Z <)an k=0 keEN,
Jj=

having = L (En generating function, have finite succession rules:

r

(k)
(1)
Q(k) : EQ;

[ (F) = (). (k= 1) (k).
Moreover, let {a,}, be the sequence of integers satisfying the recurrence:
an = kap—1 + han—2, keNt heZ,

subject to the initial conditions ag = 1, a; = b € N*; thus every term of
the sequence is a positive number if £ + h > 0. In this case, the sequence
{an}n is defined by the finite succession rule:

(b)
) )~ (R) (R h)
Q20 T (R) ~ (R (k + ) @

(k+h) ~ (k)*P=1(k +h).

Finite succession rules play an important role in enumerative combina-
torics, because of their strong relations with rational functions and regu-
lar languages; in particular they allow the enumeration of some restricted
classes of combinatorial objects [9]. Let us first recall some basics about
PDOL systems [11]. A PDOL system is a triple:

G = (2, h,wo),

where ¥ is an alphabet, h is an endomorphism defined on X1 and wy,
named the aziom, is an element of ¥ 7. The language of G is defined by:

L(G) = {hi(wo) : i > O}.



The function fg(n) = |h™(wo)|, n > 0 is the growth function of G, and
the sequence |h"(wp)|, n > 0 is termed growth sequence.

It is important to point out that we can regard any finite succession rule
Q as a particular PDOL system using the set of labels of 2 as the alphabet
3, where h is defined by productions of 2, and wy € ¥. These remarks
together with Theorem II1.8.1 [11] lead us to the solution of the equivalence
problem for finite succession rules.

Equivalence. Let £ and Qo be two finite succession rules having hy and
ho labels respectively, then Q1 =2 Qo, if and only if the first hy + ho
terms of the two sequences defined by Q1 and Qo coincide.

For example, let us consider the number sequences defined by (3) and
by (4) with b =2,k = 1,h = 1 (which is the rule for Fibonacci numbers).
The sequences determined by (3) and (4) coincide for the first four terms,
but not for the fifth.

Let N be the set of rational generating functions of positive sequences,
R the set of generating functions of regular languages and S the set of gen-
erating functions of finite succession rules. The set of N-rational functions
f(z), for which f(0) equals 0 or 1, coincides with R [11]. Moreover, the
analytic characterization of N-rational functions is also given in [11]. With
reference to [2], or by the methods of [11, 10], given a rational function
f(x), it is possible to establish whether f(x) € R. Furthermore, there
are some examples of rational generating functions of positive sequences,
which are not the generating functions of any regular language (see Section
5, [2]). Below, we state a result obtained through Theorem III.4.11 in [10],
which gives an analytic characterization of the set of generating functions
of PDOL growth sequences:

Generating functions. The function f(x) is the generating function of
a finite succession rule if and only if:
L. f(z) = g3, with P(z),Q(x) € Z[z], and Q(0) = P(0) = 1;
2. L(f(x) — 1) — f(z) is N-rational.

T

This proves that each generating function of a finite succession rule is
the generating function of a regular language, whereas the converse does

not hold. For example, let g(2) = L and h(z) = (1791;)?1‘””&161;”2); h(z)

is a rational function having all positive coefficients (see [2] for the proof)
but it is not N-rational, since the poles of minimal modulus are complex
numbers. Let




f(@) = g(a?) + 2[g(2?) + h(2®)] = ki (2?) + wha(2?); (5)

f(z) is N-rational, since it is the merge in the sense of [10] of the two
functions ki (z) and ky(z), each of them having a real positive dominating
root, © = 10. This proves the existence of a regular language having f(z)
as its generating function. Moreover, it is clear that f(x) defines a strictly
increasing sequence of positive numbers. Neverthless 1 (f(z) — 1) — f(x)
is not N-rational, since it is a merge of ¢g(z) and h(z), and h(z) is not
N-rational. Thus there are no finite succession rules having f(x) as its

generating function. We conclude that

SCRCWN.

The equivalence and the generating functions problems remain still open
in the case of not finite succession rules.

3 Rule operators

In this section we introduce the concept of rule operator, which rep-
resents a simple algebraic tool to handle succession rules. This notion is
not completely new in combinatorics, indeed it has been widely applied
without a suitable algebraic formalization, especially when computing gen-
erating functions of succession rules [1, 3, 4].

Let us consider a succession rule having the form (1). We define the
rule operator Lq associated with 2 as follows:

Lg : R[z] — R[z]
Lo(1) =z
Lo(zF) = (k) o gerk).

Lo(k) = ka*, if the label (k) is not in the generating tree of € |

and then extending by linearity on R[z| (considered as a R-vector space).
In general, we use the power notation to express the iterated application of
Lo: LyT(1) = Lo(LB(1)). In the sequel we will always write L in place of
Lq, if not required by the context.

The following proposition characterizes the set of rule operators associ-
ated to ECO-systems:



Proposition 3.1 Let L be a linear operator on R[z]. It is the rule operator
associated with a ECO-system if and only if:

1) L(z*) € N[z], for all k € N;
2) L(1) = 2°, for some b € N*;
3) [L(z")]u=0 = 0, k € N;
4) [L(z*)]p=1 =k, k € N.
The linear operator L clearly retains the properties of the succession
rule ©; in particular, the sequence of positive integers {f,} defined by

can be easily obtained from L. We have the following proposition, which
can be easily proved by induction on n € N:

Proposition 3.2 For any n € N we have:

1) fo = (L (Damrs

2) fn = [DL"(1)]o=1;

where D is the derivative operator in the variable x.

We remark that condition 4) of Proposition 3.1 implies [L"*1(1)],=1 =
[DL™(1)]z=1, as stated in Proposition 3.2.

Example 3.1 We present a small catalogue of ECO-systems and the corre-
sponding rule operators associated with sequences of combinatorial interest.
The identification numbers refer to [12].

Number sequence | ECO-system rule operator
. . (2) 2 2
Fibonacci - L(1) = z°, L(z) = z°,
(M0692) 8 " 8; (2): L(z?) = x + 2?
Factorial (2) L(1) = 22,
(M1675) { (k) ~ (k+ 1)k L(z%) = ka*+! = 22D(a%)
Arrangements (2) L(1) = 22,
(M1497) { (k) ~ (k)(k +1)F1 L(z*%) = 2k + (k — 1)2* 1
Involutions (2) L(1) = 22,
(M1221) { (k) ~ (k— 1)1k +1) L(z%) = (k — 1)azb=1 4 2h+1
Bell (2) L(1) = 22,
(M1484) { (k) ~ (k)s=Y(k + 1) L(z%) = (k — 1)2* + 2++1 7
Catalan (2) L(1) = 22,
(M1459) { (k) ~ (2)(3)... (k)(kE +1) L(zF)y =22 + ... 42k
Motzkin { 8; - (2) L(ll: z, L(z) = 22, N
(M1184) (k) ~ (1)(2) ... (k = 1)(k + 1) Liz")y=z+...+2" " +=x




Now we aim at extending the concept of rule operator also to the set of
colored succession rules. Consider a 2-colored succession rule 2 written as
follows:

a

(a)
(h) ~ (er(h))(e2(h)). .. (ealh))(eat1(h)) ... (en(h)) (6)
(K) ~ (er(R))(e2 (k) - - (e (k) (cpr1 (k) - .- (er(K)).

The 2-colored operator Lq associated with (6) is then:

h
k

Lo : Rlz] @ yR[y] — Rlz] ® yRy]
Lqo(1) = 2%
Lo(zh) = ze1®) 4 4 gea(®) 4 yeasi(h) 4 4 yen(h),

LQ(yk) - xcl(k) + - + fl;‘cﬁ(k) —|— ycﬁ+l(k) + . + ka(k))

extended by linearity on the vector space R[z] ® yR[y]. Of course, this def-
inition generalizes to n-colored rules. Operators for 2-colored rules possess
analogous properties to those already stated for rule operators in the first
part of this section.

Proposition 3.3 The linear operator L on R[z] @ yR[y] is the rule oper-
ator of a 2-colored ECO-system if and only if the following conditions are
satisfied:

1) L(z*), L(y*) € N[z], for all k € N;
2) [L(z*)]u=y=0 = [L(Y*)]o=y=0 = 0 for all k € ;
3) [L(zF)]oey=1 = [L(y*)]smy=1 = k for all k € N.

Proposition 3.4 Let © be a 2-colored ECO-system, L the associated 2-
colored rule operator, and {f,} the sequence defined by 2. We have:

fo= L"), = [(De + DY (D],

for n € N, where D, and D, denote the partial derivative operators with
respect to x and y, respectively.

4 Operations on succession rules



Now we aim at defining some operations, to be carried out on the set
of rule operators, which reflect some well-known operations on the related
number sequences. Let Lg and Lg be two rule operators, associated to
the succession rules Q and €', defining the sequences {f,, }, and {g, }n, and
having f(z) and ¢g(z) as generating functions, respectively. Below we will
deal with Lo and L{, having the following general forms:

Lqo(1) =z
Lo(ah) = xe1() 4 ge2(h) | gen(h)]
LQ/(I) = J}b

Loy (2F) = xe1®) 4 ge2(k) g gonlk),

4.1 Sum of rule operators

Given two rule operators Lo and Ly, their sum, Lg ® Lg, is the rule
operator defining the sequence {h,}, such that hg = 1 and h,, = f, + gn,
when n > 0, and having f(z) + ¢g(z) — 1 as generating function. We define:

Lo @ Lo : Riz] @ yRly] ® zR[z] — Rlz] ® yRy] & zR[z]
Lo @ Loy(1) = 2010,
Lo @ Loy (2%) = Lo(2%) + Lo (4°),
Lo & Lo(a") = Lo (z"),

Lo ® Lo (y*) = Lo (y*).

If we define Lo @® Lo as the identity on the remaining powers of z,y, z, and
then we extend it by linearity, we obtain the desired rule operator which
defines the sequence {hy, }p.

4.2 Product of succession rules

Given two rule operators Lq and Lqs, their product , Lo ® Ly, is the rule

operator defining the sequence {Zk<n fn,kgk} , and having f(x)-g(z) as
- n

generating function. We define:
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Lo ® Lo : Rjz] @ yRly] — Rlz] @ yR[y]
Lo @ Loy (1) = 2,
Lo ® Ley ($h+b) = $bLQ (xh) + Loy (yb)v

Lo x Lo/ (y*) = Lo (y*).
We will prove that:

(Lo ® Lo)" ' (1 ] L= = fo k-
Y= k<n

Since (La ® Ley) (2"p(2)) = (Lo ® L) (35, pngz™?) =
>k Pk (TP La(z®) + Lo (%)) = 2P La(p(x)) + p(1) Lo (4°),

Lemma 4.1 follows:
Lemma 4.1 For each polynomial p(z) = Y_}"; pnxz”, we have:
(Lo ® Lor) (2"p(x)) = 2" La(p(x)) + p(1) Lo (4").

Proposition 4.1 For each n € N, we have

n—1
(Lo @ Lo)" (1) = LB + Y [Lh)] 1),
k=1

=1
Proof. We work by induction on n € N. It is easy to show that the

statement holds for n = 1,2,3. Supposing it holds for a fixed n, then we
have:

(Lo ® Lo )" (1) = (Lo ® Lay) (Lo ® Loy)" (1) = (Lo ® Loy) (2 L{(1)+
P LS (D))ot - LeF R (1) = 2P LT (1) + (L8 (1)]e=1 L2 (1) +
PHLE(W)]a=r - L ? 7R (1) = 2Lt (1) + S [L5(D)]e=1 - L 7F(1).0

Corollary 4.1 For each n € N, we have

xyl an kYk-

k<n

[(La ® Lo)" (1)

11



In a completely similar way it can also be proved that

(D2 + Dy) (Lo ® Lo )" (D],yey = > fakGh-
k<n

Example 4.1 i) Product of Catalan and Fibonacci numbers. The rule
operator obtained by applying the previously defined operation ® to
the rule operators for Catalan and Fibonacci numbers (see Example
3.1) is:

Le® Ly(l) = z?
Le@ Lp(@f*?) =z + 22 + 2t + 25 + ... + 2F + 2FH!
Le ® Ly(z) = 22

Le ® Ly(2?) =z + 22

and it defines the number sequence 1,4,12, 35,103, 312.... The reader
can check that in this case the product can be expressed with no need
of other variables.

ii) The rule operator for the n-th power Catalan numbers. We want to
prove that the rule operator L} for the sequence defined by C(z)" is
the following:

Li(1) =am
(7)

Lo(a%) = Le(a%) = a? + 23 + 2t + ..+ 2 4 2P

We can prove this statement inductively, supposing it holds for n € N,
and therefore verifying it for n 4+ 1. Since LZH = Lec ® L3, we have
LEH(1) = 2™*+L. Moreover we have:

LA (a%41) = Le@ LR (2F+Y) = oL (a®) + Le(2) = 22 +2° + 2t +...
+al 4 g 4 pht2 = Lg+1(xk+1)-

4.3 The Star of a rule operator

The star of the rule operator Lq is denoted as L, briefly L*, and it is the
operator defining the number sequence having

12



00) = Ty = L)+ )+ S+ = D )

as its generating function, where fo(x) = f(x) — 1. Set L(1) = z“, the
operator L* is defined as:

L*(z%th) = 2%(L(z*) + L(z")).
We then prove that, for every n € N:

(@ W] = l"lg@),

where [2"]g(z) indicates, as usual, the coefficient of 2" in g(z).

Lemma 4.2 For every polynomial p(z) € R[z]| such that degp(z) > 1, we
have:

L* (a"p(x)) = =* (L*()p(1) + L(p())) -
Proof. Let p(z) = Y.}_, puka®. Therefore we have:
L* (2p(x)) = L* (X poaa®™*) = 3y prk (2% (L(2?) + L(2%))) =
z® (L*(1)p(z) + L(p(z)) . O

Recall that the coefficients g, of the generating function g(z) = >, gna"
satisfy the recurrence relation:

go=1
1 )
gn = fogn-1+ fign-2+ ...+ faorg1 = D420 frgnk, > 1
From Lemma 4.2 and (9) we have:
Proposition 4.2 For any n € N, the following identity holds:
n
(LY () ==Y (L [y ). (10)

k=2

13



Proof. For n = 2,3 the identity (10) clearly holds. Now, if we suppose
it holds for n € N, we immediately have:

(L)1) = LI (1) = LY (wM)

ma

= 4o (LZ(l) (L (D)]p=1 + L (L*;cfl)))

= z° (LZ( ) L*n :v 1+ZLk+1 [L*n+1 kU)]zl)
— z<fch ] ). o

Corollary 4.2 For any n € N we have [L"‘""‘l(l)]m_1 = gn.

Example 4.2 i) The star of Catalan numbers. The rule operator L is:

Li(1) = 2
Li(2?) = 2t +2°

and it defines the sequence 1,2,9,42,199, ..., having

1
1— (1—290;;4@ _ 1)

as its generating function.

ii) The star of Schréder numbers. Consider the rule operator Lgs:
LS(I) = 1‘2

Ls(z%) = 22 4+ 22* + 225 + ... 4 222F 4 22k+2,
We get:

LE(1) = 22
Li(2?) = 2t + 2®
L (225+2) = 204 4 325 4 ... 1 202642 | g2kH4,

14



4.4 Partial sum of a succession rule

Let L be a rule operator and {fy,}, its associated sequence, having f(x) as
generating function. The partial sum XL, is the rule operator leading to

the sequence {Fy,}, = {ngn fj}n. We can obtain L by means of the
product operation, since F(z) =) Fpa" = ﬁ - f(x). Thus:
SL=1 oL,

where Ly is the rule operator for the sequence f,, = 1, for all n, that is:

{L(l)::c

L(z%) = ka*.
By applying the product operation we have:

YLz = 2(1 + 290 4 4 2o (M))) = (1 4 L(zh)).
This result can also be obtained by proving explicitely the following propo-
sition:
Proposition 4.3 For any n € N we have:

n—1

(EL*(1) == (Z [LW)],, + L”(1)> -

=1

For example, the rule operator Ly for Catalan numbers leads to the oper-
ator:

YLe(l) = 23,
YLe(x) =,

SLe(zMth) = + 2% 4 2 + ..+ 2T 4 2h 2

giving the sequence 1, 3,8,22,64,...
Moreover, it is easy to prove the following property.

15



Proposition 4.4 Let L be a rule operator defining the sequence {f,}.
Then a rule operator L' defining a sequence {gy}n, such that f, = g, —
rgn_1, for n > 1, exists:

L'(1) = 2%t = 2" L(1)

L'(z") =ra"

L'(zh*T) = ra” + 2" L(2").
Proof. We first prove that for any n € N,

n—1
(L) (1) == (Zrn—l )], +L”(1)>. (11)

=1

From (11) we immediately obtain:

(L) (@) = (L)1) = & (r [LM(D)],y + L"FH (1) — rL™(1)),

and then:

[(L’)”+1 (1) —rL’”(l)] =[], =fo. O

r=1

Proposition 4.5 Let L be a succession rule, defining the sequence {f,},
and let L?(1) — L(1) € N[z]. Then there is a rule operator L' defining the
sequence {gp}, such that go =1, and g, = f,, — fr—1, for n > 1.

Sketch of proof. Let us consider the following rule operator:

v (M) = 2y - Ly

L'(zF) = L(z*)

and let g, be the sequence described by L'. By applying the sum operation,
we easily conclude that:

L=LozL.
1 if n=0;

Finally, L' defines a sequence for g,, = { Fo— = fo— f otherwise
n— n — Jn = Jn-1 .

16



Example 4.3 Let Ls be the rule for Schroder numbers:

Ls(1) = 2?
Ls:
Ls(z?h) = 2% + 224 + ... 4 2020 4 22042,

The rule operator L,

Li(a?h+1) = g + 23 4 225 4. 22h 142043,

defines such a sequence {g,}, = {1,3,9,31,121,515,...}, that f, = g, —
gn—1, where f,, denotes the nth Schroder number. Moreover, since the
rule operator Lg satisfies the hypotheses of Proposition 4.5, there is a rule
operator L' defining the sequence k,, such that ko = 1, and k, = f,, — fn_1
for n > 0, that is the sequence {1,1,4,16, 68,

304, 1412, ...} (sequence M3521 in [12]):

L'(x?h) = 22 + 22 + ... + 2220 + 2?0 +2,

5 Open problems

There are several open problems related to the definition of an algebra
of succession rules which, in turn, lead to problems concerning the set of
rule operators. Below an overview of the most interesting problems is given:

e Other operations.

Subtraction Let us consider two rule operators Lo and Lqs, defining
the sequences { f,} and {g, } respectively. Moreover, let Lo© Lqy
be the rule operator defining the sequence {hy, },, such that h,, =

1 ifn=0
|frn —gn| otherwise.

17



The construction of the operator Lo © L presents an open
problem.

Hadamard product Let Lo and Lg be rule operators and, as usual,
{fn}n and {g,}n be their sequences, with their respective gen-
erating functions f(z) and g(z). The Hadamard product of Lg
and Lqy, denoted as Lo ® Lgqr, is the rule defining the sequence
{fngn}n- It is generally quite difficult to determine the gener-
ating function f(x) ® g(z), although the Hadamard product of
two N-rational series has been proved to be N-rational [11]. The
problem lies in the construction of the rule operator Lo ® Lgy.
However, we can prove that, in the case of finite rules, it is pos-
sible to determine a rule defining the Hadamard product. More
precisely we can state that the Hadamard product of two finite
rules is a finite rule.

Here is an example of our technique: let 2 be the rule for Pell
numbers, {1,2,5,12,29,...}, and Lgo be the rule for the Fi-
bonacci numbers having an odd index, {1,2,5,13,34,...},

2
(2)(3) Q' 2)
3

For each label (h) of Q and (k) of @', (h-k) is a label of the rule
Q ® Q, and it is colored only if there is already another label
having the same value. The axiom is (a - b), where (a) and (b)

are the axioms of the rules. If the productions of (h) and (k)
are:

(h) ~ (c1) ... (cn)

(k) ~ (ex) ... (ex),
then the production of (h - k) is:

(h-k)~(c1-e1)...(c1-ex)...(ch-e1)...(ch-e).

Referring to our example, the labels of Q@ ® Q' are (2-2) = (4),
(2-3) = (6), (3-2) = (6), (3-3) = (9). For instance, the
production for the label (4) is:



In the same way we obtain:

(4)
(4) ~ (4)(6)(6)(9)
Qo' (6) ~ (4)(6)(6)(6)(9)(9)
(6) ~ (4)(4)(6)(6)(6)(9)
(9) ~ (4)(4)(6)(6)(6)(6)(6) (9)(9)-

The rule Q ® Q' has ij labels, i and j being the number of labels
of Q and €)' respectively.

e Equivalence. Is there a criterion whereby we can establish whether
two given succession rules are equivalent simply by working on their
labels, that is, with no need to determine the corresponding generat-
ing functions? Furthermore, given a succession rule, is there a method
to obtain some equivalent rules?

e Inversion. Let {f,}, be a non-decreasing sequence of positive inte-
gers. Is there a method allowing us to decide whether a succession
rule defining the sequence { f,}, exists and, if it does, to find it? Note
that this problem can be solved for finite rules.

e Colored rules. Let {f,}, be a non-decreasing sequence of positive
integers defined by a colored succession rule 2. Is there a criterion to
establish whether a non-colored succession rule defining { f,, },, exists?
This problem is still open also for finite rules. Regarding the matter,
the following facts should be mentioned:

1. if the sequence {f,}, has repetitions, that is there exists j such
that f; = fj+1, then it is easy to check whether the rule for
{fn}n needs to be colored;

2. therefore, we can focus exclusively on the case of a strictly in-
creasing { f,}n. The only thing that can be surely stated is that
if the sequence {f,+1 — fn} is strictly increasing too, then a
non-colored succession rule defining { f },, must exist, although
sometimes it may have a very complicated form:

(f1)
(1) ~ (1)

(fk) ~ (OF (fopr — fr + 1)
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5.1 A Conjecture

Conjecture: if a succession rule has a rational generating function, then
it is equivalent to a finite succession rule. It is sufficient to prove that
each rational generating function of a succession rule satisfies the same
properties shared by the generating functions of finite rules, as described
in Section 1. If the conjecture proves true, rational functions such as (5)
cannot be the generating functions of any succession rule. For example, let
Q2 be the rule, studied in [1], whose set of labels is the whole set of prime
numbers:

Q: { (2)
(Pn) ~ (Prt1)(gn) (rn) (2)P 2,
where p,, denotes the nth prime number, and ¢, and r, are two primes
such that 2p, — pp+1 + 3 = ¢, + 7, (via Goldbach conjecture). According
to our conjecture, as its generating function is rational, f(z) = %,
it is possible to find a finite succession rule €2 equivalent to €:

(2)
o (2) ~ (2)(3)
(3) ~ (2)(3)(4)
(4) ~ (2)3)(4)(4).
It should be noticed that the rule Q' was further exploited in [9], being
the 4-approximating rule for Catalan numbers. Furthermore, such a rule

describes a recursive construction for Dyck paths whose maximal ordinate
is 4.

lod
~
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