
The VLDB Journal (2016) 25:223–241
DOI 10.1007/s00778-015-0412-3

REGULAR PAPER

Efficient order dependency detection

Philipp Langer1 · Felix Naumann1

Received: 9 July 2015 / Revised: 4 November 2015 / Accepted: 11 November 2015 / Published online: 9 December 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Order dependencies (ODs) describe a relation-
ship of order between lists of attributes in a relational table.
ODs can help to understand the semantics of datasets and
the applications producing them. They have applications in
the field of query optimization by suggesting query rewrites.
Also, the existence of an OD in a table can provide hints on
which integrity constraints are valid for the domain of the
data at hand. This work is the first to describe the discov-
ery problem for order dependencies in a principled manner
by characterizing the search space, developing and proving
pruning rules, and presenting the algorithm Order, which
finds all order dependencies in a given table. Order tra-
verses the lattice of permutations of attributes in a level-wise
bottom-up manner. In a comprehensive evaluation, we show
that it is efficient even for various large datasets.

Keywords Data profiling · Functional dependencies ·
Metadata

1 Order dependency discovery

Sorting, and thereby, order is an integral part of databases,
not only from the viewpoint of the user, who explicitly initi-
ates a sort with the order by statement in SQL, but also as
an internal aspect of database management systems, e.g., for
implementing indexes or sort-merge joins. Order dependen-
cies,which describe a relationship of order between attributes

B Felix Naumann
felix.naumann@hpi.de

Philipp Langer
philipp.langer@student.hpi.de

1 Hasso Plattner Institute, Potsdam, Germany

in a relational schema, were first introduced by Ginsburg and
Hull [6]. Order dependencies have again gained traction in
research in the last fewyears, and several interesting use cases
have been proposed in the context of query optimization and
integrity constraints.

Among the various use cases of data profiling are query
optimization, data preparation for data cleansing, and estab-
lishing a comprehension of the structure of a dataset to aid
data integration, scientific data management, and data ana-
lytics [13]. Integrity constraints, which are brought to light
by data profiling, can be used to enhance and ensure data
quality.

Below, we show several order dependencies in real-world
datasets, which are suitable for definition as constraints to
ensure data quality. We also demonstrate how order depen-
dencies can be leveraged for query rewrites in the optimizer
of a database management system for faster query process-
ing.

Consider the order dependencies shown in Table 1, which
(among many others) were found in a 10,000 table sample of
theWikiTables project [15]. TheWikiTables project provides
a collection of more than 1.3 million tables extracted from
the English version of the online encyclopedia Wikipedia.
Table 1 shows tables from Wikipedia articles alongside the
order dependencies we found in them.

The first article, “Demographics of Azerbaijan” contains a
table of vital statistics forAzerbaijan for the years 1960–2011
in the column Year, and the average population of Azer-
baijan in the column Average population. The order
dependency “Year orders Average population”
expresses the fact that the population of Azerbaijan never
declined until 2011. In fact, the population of Azerbaijan
steadily increased, which we can deduce from the order
dependencyAverage population ordersYear, which
holds as well (not listed). “Rank orders Time” is another

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0412-3&domain=pdf

224 P. Langer, F. Naumann

Table 1 Order dependencies
found in a sample of 10,000
tables of the WikiTables project

Wikipedia article (table) Order dependency

Demographics of Azerbaijan (Vital statistics) Year orders Average population

1994 Parliamentary Election (Kurunegala) % of votes orders # of seats

State highways in New Jersey (State Highways) Length (mi) orders Length (km)

Men’s 200m (Swimming at Olympics 2012) Rank orders Time

2008 African Futsal Championship (Group 2) Date and Time order Match no.

Table 2 Employee table with name, rank, and salary

emp_name rank salary (k)

Smith 1 40

Johnson 1 40

Williams 1 45

Brown 2 60

Davis 2 60

Miller 3 70

Wilson 4 100

order dependency that we encountered frequently in theWik-
iTables dataset, in tables on various sports events. In this case,
the sports event is the men’s 200-m swimming finale at the
2012 Summer Olympics in London.

Szlichta et al. [21] describe how order dependen-
cies can be used for query optimization. For example,
consider the SQL statement “select emp_name from

employees order by rank, salary,” which queries
the names of all employees shown in Table 2, sorted by
rank and – within equal ranks – by salary. A database
management system may initiate a sort operation on rank
and – within equal ranks – on salary. If, however, the
order dependency “salary orders rank” is known to the
optimizer, it can rewrite the above order by statement
to “order by salary,” because the order dependency
“salary orders rank” implies that the ordering of rank
is subsumed by the ordering of salary. By reducing the
order by statement, it is, for instance, more likely that the
entire sorting operation can be satisfied with the help of an
index. Likewise, a query “…order byrank” can be rewrit-
ten to “order by salary,” which is beneficial if there is
an index on salary, but not on rank. Further, Dong and
Hull show how order dependencies can be used to reduce
indexing space [5].

These use cases require knowledge about the order depen-
dencies in a dataset. In the case of query optimization,
Szlichta et al. [21] show how from order dependencies
declared by a database administrator, new order dependen-
cies can be inferred. They also show that order dependencies
may originate from the use of algebraic expressions or SQL
functions within a query: For instance, the order dependency

“date orders (date + 30 days)” always holds. However,
this leaves room for optimization on attributes that are not
generated from other attributes, such as in the example pro-
vided in Table 2. Their methods for query optimization [21]
benefit from our order dependency detection algorithms,
because (i) order dependencies need not be entered manually
by the database administrator, which is a tedious and error-
prone task and (ii) the number of order dependencies that are
automatically detected is complete, providing more oppor-
tunities for query rewrites. As for all dependency detection
algorithms, order dependencies can be detected on instances
only. In practice, this means that a database administrator or
domain expert should verify the order dependencies discov-
ered by our algorithm, before they can be defined as integrity
constraints.

In general, the detection of dependencies, such as func-
tional dependencies, inclusion dependencies, and unique
column combinations, in datasets is a fundamental task of
data profiling [1]. Dependency detection problems usually
have two subproblems: the validation problem and the search
problem.Whereas the validation problem checks the validity
of a single dependency (e.g., “is the functional dependency
A → B valid?”), the discovery problem defines the task
of finding the set of all dependencies (over combination of
columns) that hold in a given dataset. The resulting exponen-
tial number of dependency candidates poses a challenging
problem and is the main reason for an often intolerably
long runtime of dependency detection algorithms. How-
ever, intelligent generation of candidates and early pruning
can alleviate the worst case in practice. Order dependencies
are no exception to the rule of high complexity of depen-
dency detection algorithms: Because order dependencies –
as opposed to functional dependencies – are defined over
lists of attributes rather than sets, the order of the attributes
on the left- and right-hand side matters, resulting in a facto-
rial number of order dependency candidates.

Finding an algorithm for the validation of a single depen-
dency that is polynomial in the number of rows is typically
straightforward. For example, for functional dependencies,
inclusion dependencies, and unique column combinations,
such an algorithm follows directly from their respective def-
initions. Naturally, large datasets with many rows and the
large number of dependency candidates (and thus, the num-

123

Efficient order dependency detection 225

ber of dependency validations) make it desirable to develop
intelligent and more efficient validation methods.

In summary, this article is the first to tackle the problem
of automatically discovering order dependencies and makes
the following contributions:

– After introducing some notation (Sect. 2), we propose
the novel notion and definition of minimality for order
dependencies (Sect. 3).

– We define a data structure and an algorithm to efficiently
validate an order dependency (Sect. 4).

– We describe pruning rules (Sect. 5) and the algorithm
Order, which uses these rules to detect all ODs in a
table (Sect. 6).

– We evaluate the performance of our algorithm on various
real-world datasets (Sect. 7); all datasets and code are
available online (www.metanome.de).

2 Preliminaries

Here, we introduce the notation used throughout this paper
and establish an intuition for order dependencies by including
several examples.We investigate the influence of the compar-
ison operator (≤,<, . . .) in order dependencies in Sect. 2.4.
Section 2.5 formulates relationships between order depen-
dencies and other constraints. We describe the search space
for the OD detection problem as a lattice of permutations of
attributes in Sect. 2.6.

2.1 Notation

We denote the schema of a relation with R. A relational
instance over R is denoted by r . A unary order dependency
over a schemaR is a statement of the form A →θ B, where
A, B ∈ R, and θ ∈ {≤,<,=,>,≥}. The order depen-
dency A →θ B is valid in a relational instance r over R
iff for any two tuples s, t in r , s[A] θ t[A] ⇒ s[B] θ t[B] as
defined in [20]. Referring to Table 2, the order dependency
salary →≤ rank holds, but not rank →≤ salary,
because the order of employees Johnson and Williams is
not fixed wrt. their rank. Slightly unintuitively, rank →>

salary also holds, because the ranks of Johnson and
Williams are not in a > order.

With this definition, functional dependencies (FDs) are a
special case of order dependencies with θ as “=”. For the
remainder of this paper, θ is restricted to “<” and “≤”. The
discovery algorithms presented can trivially be adjusted to
discover order dependencies under “>” and “≥”, instead.
The order dependency discovery algorithmOrder presented
in Sect. 6 finds order dependencies under →<; we show the
equivalence of →< and →≥ later. The algorithm can also
be used for FD discovery if a validity check for functional

dependencies is used, because the lattice of attribute lists that
Order traverses contains all FD candidates as well. Special-
ized andmore efficient FDdiscovery algorithms are reviewed
in [17].

As opposed to functional dependencies, order dependen-
cies are sensitive to the order of the attributes on the left- and
right-hand side. Therefore, order dependencies are defined
over lists (rather than sets) of attributes. Such a list of
attributes is denoted in bold capital letters from the end of
the alphabet, such as X, Y, and Z, following [20]. The term
[] denotes the empty list. The size of an attribute list X,
denoted as |X|, is the number of attributes inX and |[]| = 0.
Wewrite s[X] ≤ t[Y] (for |X| = |Y|) to express that the tuple
constructed by projection of tuple s onX is lexicographically
smaller than or equal to the tuple constructed by projection of
tuple t onY. Wemay also represent an attribute list explicitly
from singleton attributes A, B, andC as ABC . Consequently,
an OD may have the form ABC →θ D (implicit concatena-
tion of A, B, andC to a list of attributes), orX →θ Y for two
attribute lists X and Y. An order dependency is completely
non-trivial, if its left- and right-hand side attribute lists are
disjoint.

2.2 OD variants

Bidirectional order dependencies allow differing sort orders
(ascending, descending) to be assigned to the left- and
right- hand side of an OD [22]. Hence, bidirectional order
dependencies generalize order dependencies, but are not the
focus of this paper. A sequential dependency (SD) X →g

Y expresses that in a table sorted on X , the difference
between two consecutive values in Y lies in the interval
g [7]. Sequential dependencies with g = [0,∞] corre-
spond to order dependencies. Thus, SDs are more general
than order dependencies. Golab et al. also describe partial
SDs (SDs that nearly hold) and conditional SDs (CSDs)
in [7]. They present a framework to discover tableaux for
CSDs, assuming the embedded SD is given. Because dis-
covery of (embedded) SD candidates is not considered, and
we neither consider the discovery of partial ODs nor of
conditional ODs in this work, their work is orthogonal to
ours.

Order dependencies are sensitive to the kind of order-
ing we impose on the tuples in a table. Consider Table 3
as an example. Let the ordering imposed on the salary
attribute be the natural ordering of integers. We could
interpret the ordering of employee_type as “Devel-
oper” < “Manager” < “Chief Executive Officer.” This
means that we compare the employees by their ranks.
The OD employee_type →< salary is valid under
this ordering, stating higher ranks earn higher salaries.
If, however, we simply compare the employees using a
lexicographical string comparison on employee_type,

123

www.metanome.de

226 P. Langer, F. Naumann

Table 3 Employee table to demonstrate different orderings

employee_type salary

Developer 50,000

Manager 70,000

Chief executive officer 200,000

we have “Developer” > “Chief Executive Officer,” and
the OD employee_type →< salary is no longer
valid.

We assume a natural order over three domains: Numerical
order of numbers (e.g., integers, floating point decimals),
lexicographical order on strings, and chronological order of
dates. If the domain of an attribute is not known, it can be
determined in a linear scan over the input table before running
the OD detection algorithm.

Order dependencies may span multiple attributes in R.
The concept of such n-ary order dependencies gives rise to
the question of how tuples and not just values should be
ordered. There are at least two possibilities, namely lexico-
graphical and pointwise ordering [14]. The lexicographical
ordering of tuples states that (s1, . . . , sn) < (t1, . . . , tn)
if there exists some i ≤ n such that si < ti and for all
j < i , s j = t j [14]. We assume this ordering semantics, as
it is also used in [20] and corresponds to the SQL seman-
tics.

In contrast, a pointwise ordering of tuples states that
(s1, . . . , sn) < (t1, . . . , tn) if for all 1 ≤ i ≤ n, si < ti . As
opposed to lexicographical ordering, which is total, point-
wise ordering of tuples is only a partial order. Thus for
the pointwise ordering semantics, the discovery problem for
ODs is fundamentally different from that for lexicographical
ODs. Our algorithm Order (Sect. 6) discovers lexicograph-
ical ODs, enabling the major use-case of query optimization,
which is explained in Sect. 1. Extensions to our algorithm
to cover some of the other variants are also discussed in
Sect. 6.

2.3 Intuition and examples

The order dependency A →θ Bmay be read as “A orders B.”
An intuitive way to think of order dependencies is that after
sorting a table by some attribute A, it may be sorted by some
other attribute B simultaneously, which implies A →θ B.

The concepts of a split and a swap have been introduced
in [20] as the only two ways an order dependency under
the operator “≤” can be falsified. We additionally introduce
a merge as one of the ways an order dependency under the
operator “<” can be falsified. Using these three concepts, we
give alternative definitions of validity for functional depen-
dencies and order dependencies, which are helpful for our
algorithm description.

Table 4 Tuples t1 and t2 form a
split among (AB,C) and a
merge among (C, AB)

A B C

t1 1 1 1

t2 1 1 2

t3 2 2 3

t4 2 3 4

t5 2 4 5

Table 5 Tuples t2 and t3 form a
swap among (AB,CD) and
(CD, AB)

A B C D

t1 1 2 3 2

t2 2 3 3 4

t3 3 3 3 3

t4 5 3 5 5

t5 5 4 5 6

Definition 1 (Split) Tuples s and t in a relational instance
r form a split among the pair of attribute lists (X,Y), if
s[X] = t[X], but s[Y] �= t[Y].
Definition 2 (Merge) Tuples s and t in a relational instance
r form a merge among the pair of attribute lists (X,Y), if
s[X] �= t[X], but s[Y] = t[Y].

Refer to Table 4 for an example of a split among (AB,C)

and amerge among (C, AB). Not only in this example, but in
general, a split among (X,Y) implies amerge among (Y,X)

and vice versa. This symmetry is also apparent from the def-
inition of a split and merge given above. Introducing both
as separate concepts facilitates the distinction between the
two types of order dependencies: Splits invalidate only order
dependencies under “≤”, and merges invalidate only order
dependencies under “<”.

Definition 3 (Swap) Tuples s and t in a relational instance
r form a swap among the pair of attribute lists (X,Y), if
s[X] < t[X], but s[Y] > t[Y].

Table 5 shows a swap among (AB,CD) and (CD, AB).
Not only in this example, but in general, a swap among (X,Y)

implies a swap among (Y,X).
We can define the validity of functional dependencies and

order dependencies by means of splits, swaps, and merges,
as Lemmata 1, 2, and 3 show.

Lemma 1 A functional dependencyX → A is valid, iff there
is no split among (B, A) for any B ∈ X .

Proof Recall the original definition of validity for func-
tional dependencies: A functional dependency X → A
(X ⊆ R, A ∈ R) is valid, if for all tuples s, t in a relational
instance r , s[B] = t[B] for all B ∈ X
⇒ s[A] = t[A].

123

Efficient order dependency detection 227

For brevity, we write s[X] = t[X] to mean s[B] = t[B] for
all B ∈ X .
(1) “⇐”: Let there be no split among X and A, i.e., for all
s, t ∈ r , s[X] = t[X]
⇒ s[A] = t[A]. Therefore, by the
definition of validity for FDs, X → A is valid.
(2) “⇒”: Assume there is a split among (B, A) for some
B ∈ X . Then, s[X] = t[X], but s[A] �= t[A] for some
tuples s, t . Tuples s and t invalidate the FD X → A. �
Lemma 2 An order dependency X →≤ Y is valid, iff there
is neither a split nor a swap among (X,Y).

Proof Recall the original definition of validity for order
dependencies under “≤”: An order dependency X →≤ Y
is valid, if for all tuples s, t in a relational instance r ,
s[X] ≤ t[X]
⇒ s[Y] ≤ t[Y].
(1) “⇐”: Assume X →≤ Y is not valid. Then, ∃u, v, s.t.
u[X] ≤ v[X], and u[Y] > v[Y]. Case 1: u[X] = v[X].
Because u[Y] > v[Y], u and v form a split among (X,Y).
Case 2: u[X] < v[X]. Because u[Y] > v[Y], u and v form a
swap among (X,Y).
(2) “⇒”: Case 1:Assume there is a split among (X,Y). Then,
s[X] = t[X], but s[Y] �= t[Y] for some tuples s and t . s and t
invalidate the OD X →≤ Y. Case 2: Assume there is a swap
among (X,Y). Then, s[X] < t[X], but s[Y] > t[Y] for some
tuples s and t . s and t invalidate the OD X →≤ Y. �
Lemma 3 An order dependency X →< Y is valid, iff there
is neither a merge nor a swap among (X,Y).

Proof Recall the original definition of validity for order
dependencies under “<”: An order dependency X →< Y
is valid, if for all tuples s, t in a relational instance r ,
s[X] < t[X]
⇒ s[Y] < t[Y].
(1) “⇐”: Assume X →< Y is not valid. Then, ∃u, v, s.t.
u[X] < v[X], and u[Y] ≥ v[Y]. Case 1: u[Y] > v[Y].
Because u[X] < v[X] and u[Y] > v[Y], there is a swap
among (X,Y). Case 2: u[Y] = v[Y]: Because u[X] < v[X]
and u[Y] = v[Y], there is a merge among (X,Y).
(2) “⇒”: Let X →< Y be valid. Case 1: Assume there is a
merge among (X,Y). Then, s[X] �= t[X], but s[Y] = t[Y]
for some tuples s, t . Since either s[X] < t[X] or t[X] < s[X],
s and t invalidate the OD X →< Y. Case 2: Assume there is
a swap among (X,Y). Then, s[X] < t[X], but s[Y] > t[Y]
for some tuples s, t . s and t invalidate the OD X →< Y. �

Wesay that theODX →< Y is “invalidated” by amerge, if
there is a merge among (X,Y). In analogy, the OD X →≤ Y
is invalidated by a split, if there is a split among (X,Y). The
OD X →θ Y with θ ∈ {≤,<} is invalidated by a swap if
there is a swap among (X,Y).

In Table 6, we provide simple exemplary relations that
illustrate the relationship between order dependencies and
splits, swaps, and merges. For instance, Table 6(a) depicts

Table 6 Tables with valid and invalid ODs under the operators “<”
and “≤”

the valid order dependency A →≤ B, because there are nei-
ther splits nor swaps. However, tuples (1, 2) and (3, 2) form
amerge among (A, B) (a split among (B, A)), which is why
A �< B (B �≤ A). Table 6(b) contains a split among
(A, B) in the tuples (1, 2) and (1, 3). That is why A � B
and A �≤ B. However, A →< B, because there are no
swaps or merges among (A, B). As there is a swap among
attributes (A, B) with tuples (3, 5) and (4, 4) in Table 6(c)
we have A �≤ B and A �< B. Because there is no split,
A → B is valid.

2.4 Influence of the comparison operator

Until now,wehave investigated the properties of order depen-
dencies under the operators “<” and “≤” separately.We now
prove a useful, unifying relationship between them:

Theorem 1 X →< Y is valid ⇐⇒ Y →≤ X is valid

Proof (1) “⇒”: Assume Y →≤ X is not valid, i.e., ∃t, u, s.t.
t[Y] ≤ u[Y] and t[X] > u[X].

Case 1: t[Y] < u[Y], i.e., u[X] < t[X] and u[Y] > t[Y].
Then tuples u and t violate the OD X →< Y.

Case 2: t[Y] = u[Y], i.e., u[X] < t[X] and u[Y] = t[Y].
Then tuples u and t violate the OD X →< Y.
(2) “⇐”:

Assume X →< Y is not valid, i.e., ∃t, u, s.t. t[X] < u[X]
and t[Y] ≥ u[Y].

Case 1: t[Y] > u[Y], i.e., t[X] < u[X] and t[Y] > u[Y].
Case 2: t[Y] = u[Y], i.e., t[X] < u[X] and t[Y] = u[Y].

In both cases, tuples u and t violate Y →≤ X. �
Theorem 1 implies that to find all n-ary order depen-

dencies under the operator “≤”, it suffices to find all n-ary
order dependencies under the operator “<” (and vice versa).
We leverage this insight in the design of the order depen-
dency discovery algorithm Order, which is described in
Sect. 6.

2.5 ODs and other constraints

As functional dependencies are definedover sets of attributes,
we introduce the notation X to denote a set of attributes as

123

228 P. Langer, F. Naumann

opposed to X for an (ordered) list of attributes. Szlichta et
al. show that order dependencies under “≤” subsume func-
tional dependencies in [22], i.e., every order dependency
X →≤ Y is also a functional dependency for the sets X ,Y:

Lemma 4 X →≤ Y is valid ⇒ X → Y is valid [22].

And thus, with Theorem 1 we have

Lemma 5

X →< Y is valid ⇒ Y →≤ X is valid

⇒ Y → X is valid

There is also a relationship between ODs and unique col-
umn combinations (uniques), which are sets of attributes in
R, in which no two rows have identical values (i.e., key can-
didates). A valid OD under “<” with a unique left-hand side
has several interesting implications, as the following lemma
shows:

Lemma 6 IfV →< W is valid andV is unique, the following
statements are true for any attribute lists X and Y over a
relation R.

W is unique. (1)

W →< V is valid. (2)

VX →< WY is valid. (3)

WY →< VX is valid. (4)

VX →≤ WY is valid. (5)

WY →≤ VX is valid. (6)

V → W is valid. (7)

W → V is valid. (8)

Proof Because V is unique, and V →< W is valid,W needs
to be unique as well (Statement 1): If W contained dupli-
cate rows, there would be a merge among (V,W) and thus
V �< W.

With bothV andW a unique, there can be nomerge among
(W,V). There can also be no swap among (W,V), because
then there would be a swap among (V,W) and V �< W.
Hence, W →< V is valid (Statement 2).

VX →< WY and WY →< VX are valid as well
(Statements 3 and 4): In general, because of lexicographi-
cal ordering of tuples, the tuples projected on an attribute list
S are always in the same order as the tuples projected on ST
for any T if S is unique. Thus, tuples projected on VX and
WY have the same order than tuples projected on V andW,
respectively.

With Theorem 1, Statements 5 and 6 follow directly from
Statements 3 and 4. Statements 7 and 8 then follow from
W →< V and V →< W and Lemma 5. �

Fig. 1 A candidate lattice created from three attributes. The high-
lighted node ABC generates the ODs A →< BC and AB →< C

In Sect. 5, we show how Statements 2–6 can be used to
prune the search space.

2.6 Complexity

To find all order dependencies in a given table, we can repre-
sent the search space as a lattice of attribute permutations. In a
relationRwith |R| = n, this lattice contains P(n, k):=(n

k

)·k!
nodes in level k as shown in Fig. 1. Each such node in level k
contains k attributes and represents k−1 ODs: For example,
the node ABCD in level 4 represents the three OD can-
didates A →< BCD, AB →< CD, and ABC →< D,
which are classified as either valid or invalid by the algo-
rithm Order presented in Sect. 6. The permutation lattice
is generated level by level from the bottom up as detailed in
Sect. 5.

The sum over all levels of the lattice is
∑n

k=0 P(n, k),
which is the series A000522 in [18]. Halbeisen et al. prove∑n

k=0 P(n, k) = �n! ·e� in [8]. Thus, the permutation lattice
containing all order dependencies, i.e., the search space, is
factorial of size �n! · e�.

The worst-case complexity of many existing discovery
algorithms that traverse a candidate lattice depends on the
number of candidates in that lattice. For example, the func-
tional dependency discovery algorithm Tane traverses a set
containment lattice with 2|R| nodes, and has an exponen-
tial worst-case complexity in the number of attributes [10].
Moreover, in the worst case, the solution space of minimal
functional dependencies is also exponential, so a polynomial
time algorithm cannot exist. Similar observations have been
made for the discovery of inclusion dependencies [12] and
unique column combinations [9].

3 Minimal order dependencies

Minimality is an important property of dependencies, such
as functional dependencies, inclusion dependencies, and
of other constraints, such as unique column combinations.
Apart from the obvious benefit of conciseness of represen-
tation, the concept of minimality is useful for pruning the
search space during dependency discovery. For instance, the

123

Efficient order dependency detection 229

Table 7 Minimality of ODs.
For instance, CA →≤ B is not
minimal, because already
C →≤ B is valid

A B C D

2 1 1 1

1 2 2 1

algorithm Tane introduces a candidate set C+ to effectively
exclude non-minimal FDs from the search for FDs [10].

In the case of order dependencies, there is another non-
obvious advantage of minimality. Szlichta et al. present the
algorithm ReduceOrder* [19] to rewrite SQL order specifi-
cations, i.e., a list of attributes in an order by. ODs with
fewer attributes have a higher likelihood ofmatching an order
specification and are thus more useful.

The minimality definition for order dependencies is more
complex than that for functional dependencies. An FDX →
A is minimal if there is no Y ⊂ X , s.t. Y → A is valid.
An equivalent definition for ODs is not meaningful, because
simply removing attributes from the left- or right-hand side of
an OD does not respect the sensitivity of ODs for the order of
the attributes. For instance, consider Table 7. Obviously, the
OD B →≤ C is valid. However, unlike for FDs, examining
AB →≤ C is not futile, because AB �≤ C . In contrast,
BA →≤ C is valid (but not minimal).

We consolidate the ideas from ReduceOrder* (in Def-
inition 4) and two prefix-based inference rules to a novel
definition of minimality for order dependencies under “<”
in Definition 5.

Definition 4 (Order-minimality) An attribute list X is mini-
mal, iff for any disjoint, contiguous sub-lists V and W in X
where

1. W directly precedes V in X, or
2. W follows (not necessarily directly) after V in X,

V →≤ W is not valid.

Definition 4 describes that the ordering of an attribute list
X may be subsumed within that of an attribute list Y with
|Y| < |X|. That is the case if there is an “embeddedOD” inX.
The same argument is made for the algorithm ReduceOrder*
and proven to be correct as inference rules Left Eliminate
(Case 1ofDefinition4) andEliminate (Case 2ofDefinition4)
in [20].

Definition 5 (Minimality of order dependencies) The order
dependency X →< Y is minimal, iff

1. � ∃ V ∈ prefixes(X), s.t. V �< Y, and
2. � ∃ W ∈ prefixes(Y), s.t. X →< W is valid, and
3. X is minimal, and
4. Y is minimal.

where prefixes(X) returns the set of all prefixes of X, e.g.,
prefixes(ABCD) = {A, AB, ABC}.

Because of Theorem 1,minimality for ODs under “≤” can
be defined analogously by switching the left- for the right-
hand side in Rules 1 and 2.

4 Efficient validity check

The definition of ODs suggests a naïve algorithm for check-
ing the validity of an order dependency A →θ B: For every
pair of tuples s and t , testwhether s[A] θ t[A] ⇒ s[B] θ t[B].
However, this procedure demands a quadratic number of
tuple comparisons. Alternatively, one could sort the relation
by the left-hand side attributes and verify sortation for the
right-hand side, still incurring n log n + n comparisons for
n tuples. We provide an efficient data structure, sorted parti-
tions, in Sect. 4.1, which is then used in Sect. 4.2 to check the
validity of an order dependency in linear time. New sorted
partitions can be created from those of smaller attribute lists
to avoid accessing the underlying data again and again. This
procedure is described as the product of sorted partitions in
Sect. 4.3.

4.1 Sorted partitions

A sorted partition τX is a list of sets, where the sets (or,
equivalence classes) carry tuples with equal values in the
attribute list X, and the sets are sorted into a list according
to the ordering imposed on the tuples in X. In other words, a
sorted partition τX of an attribute list X partitions the tuples
of a table into equivalence classes with equal values in X,
which are comparable to one another.

τ kX represents the kth smallest tuples ofX. |τX| denotes the
number of equivalence classes in τX. For this purpose, it is
not necessary to store entire tuples of data values. Instead, it
suffices to store only the tuple identifiers (row indices). Using
tuple identifiers results in faster comparisons, because they
are represented as integers and make comparisons indepen-
dent of the size of the tuples. The idea to represent tuples by
their identifiers is used in other dependency detection algo-
rithms as well. For instance,Tane introduces partitions [10],
which resemble the sorted partitions defined here, except
that they are defined as a set of sets, rather than a list of sets,
because for detection of functional dependencies, one need
not consider the order of the tuples. Ducc, an algorithm for
discovering all unique columncombinations in a dataset, uses
position list indices (PLIs) to employ row-based pruning [9].
PLIs are also used in Tane, where they are called stripped
partitions [10].

Table 8 shows a table containing the weight of shipped
goods along with their cost of shipping. The correspond-

123

230 P. Langer, F. Naumann

Table 8 Sorted partitions and data from which they are created

Tid Weight Shipping cost

(a) Table with shipped goods

0 5 14

1 10 22

2 3 10

3 10 25

4 5 14

5 20 40

(b) Corresponding sorted partitions.
Tuples are denoted by their identifiers

τweight = ({2}, {0, 4}, {1, 3}, {5})
τcost = ({2}, {0, 4}, {1}, {3}, {5})

ing sorted partitions τweight and τcost are given as well. The
sorted partition τweight can be constructed by sorting the
table byweight (in ascending order), building the equivalence
classes from equal values in the sorted stream of values in
weight, and incrementally adding these equivalence classes
to the list τweight . In this example, 3 is the smallest value in
weight, and it occurs only once.We add the set {2} to τweight ,
because the value 3 is found at position 2 in the table. There
are two occurrences of the second-smallest value 5 inweight,
at positions 0 and 4. Thus, we add the set {0, 4} to τweight ,
etc.

The stripped partitions of Tane remove any equivalence
classes of size 1. Unfortunately, this is not possible here:
Consider τA = ({0, 1}, {2}, {3}) and τB = ({0, 1}, {3}, {2}).
Stripping these sorted partitions of their equivalence classes
of size 1 results in a valid OD A →< B. However, A �< B,
because tuples 2 and 3 form a swap among (A, B).

So far, we have considered sorted partitions only on sin-
gle attributes. However, sorted partitions for attribute lists
|X| > 1 are needed to check n-ary order dependencies.
As defined in Sect. 2, we consider ODs on lexicograph-
ically ordered tuples. Because tuples are represented by
their identifiers regardless of their size, sorted partitions for
attribute lists have the same compact representation as those
for single attributes. For example, the sorted partition for
the attribute list (weight, cost) in Table 8 is τweight, cost =
({2}, {0, 4}, {1}, {3}, {5}). We obtain this sorted partition in
the same way as the sorted partition for the single attributes
except that we consider the order of tuples: The tuple (3, 10)
is the smallest tuple in the attribute list (weight, cost). It
occurs only once at position 2 in the table. Hence, we add
the set {2} to τweight, cost. The tuple (5, 14) occurs twice in
the table, at position 0 and 4. Thus, we add the set {0, 4} to
τweight, cost. The ordering of the next smallest tuples (10, 22)
and (10, 25) is created using lexicographical ordering. Since
the first components of the tuples are equal (both have the

value 10), the ordering of the respective second components
establishes the ordering of the entire tuples, i.e., because
(10, 22) < (10, 25), the set {1} is added to τweight, cost imme-
diately before {3}.

4.2 Efficient OD validation

The sorted partitions τX and τY can be used for checking
the validity of X →θ Y efficiently. As discussed earlier,
order dependencies under “<” may be invalidated either by
a merge or by a swap. In the remainder of this section, we
first show how sorted partitions and the concept of a merge
are related. We then show in Sect. 6.2 that swaps let us prune
more candidates from the lattice of attribute lists thanmerges
alone. Thus, we later on present a linear-time algorithm that
determines from two sorted partitions τX and τY if there is at
least one swap among (X,Y).

Lemma 7 provides a useful formalization of the connec-
tion between sorted partitions and the concept of a merge.

Lemma 7 There is amerge among (X,Y) ⇐⇒ the relation
e ⊆ τX × τY is not injective, with (x, y) ∈ e if ∃ty ∈ y, s.t.
ty ∈ x, where ty is a tuple identifier in y and x ∈ τX, y ∈ τY.

Proof If there is amerge among (X,Y), there are two distinct
tuple identifiers in different equivalence classes in τX, but in
the same equivalence class in τY. Mapping these equivalence
classes yields a relation that is not injective. If the relation
e is not injective, it maps two distinct tuple identifiers from
different equivalence classes in τX to one equivalence class
in τY. These tuple identifiers represent different values in X,
but equal values in Y, and hence a merge among X and Y. �

By construction, sorted partitions contain equivalence
classes of tuples that are sorted ascendingly. We can con-
clude that the OD X →< Y is invalidated by a swap if τX
and τY do not contain the tuple identifiers in the same order.
For example, let τ 1X = {5, 1, 4} be the smallest tuples inX. If
the tuples identified by 5, 1, and 4 are not among the smallest
tuples in Y, there is a swap among (X, Y), and X �< Y.
We use this insight in Algorithm 1 (checkForSwap), which
checks whether there is at least one swap, and if not, amerge
among (X,Y), or if X →< Y is valid.

checkForSwap detects if there is at least one swap
between two sorted partitions τX and τY by trying to match
tuple identifiers from equivalence classes of τX and τY. This
is achieved with a linear search (line 3) over the equiva-
lence classes in τX and τY. checkForSwap distinguishes
two cases—if the number of remaining, i.e., not-yet-mapped
tuple identifiers in eX compared to those remaining in eY is
(i) smaller (line 6) or (ii) greater or equal (line 15). In case
(i), checkForSwap checks whether eX is a subset of eY.
If this is not the case (line 8), there is at least one tuple in

123

Efficient order dependency detection 231

Algorithm 1 checkForSwap<

Input: τX, τY
Output: “swap” if there is at least one swap among (X,Y),

“merge” if there is no swap, but a merge,
“valid” if X →< Y is valid

1: nexteX ← nexteY ← true; i ← 1; j ← 1
2: merge ← false
3: while i < τX, j < τY
4: if (nexteX) eX ← τ iX

5: if (nexteY) eY ← τ
j
Y

6: if |eX| < |eY|
7: if not eX ⊆ eY
8: return “swap”
9: else
10: merge ← true
11: i ← i + 1
12: nexteX ← true
13: eY ← eY − eX
14: nexteY ← false

15: else
16: if not eY ⊆ eX
17: return “swap”
18: else
19: j ← j + 1
20: nexteY ← true
21: eX ← eX − eY
22: if |eX| = 0
23: i ← i + 1
24: nexteX ← true
25: else
26: nexteX ← false

27: if (merge) return “merge”
28: else return “valid”

eX that appears not in eY, but in a later equivalence class in
τY. Hence, there is a swap among (X,Y), and the algorithm
terminates. If, however, eX ⊂ eY (line 9), we increment the
counter i to retrieve the next equivalence class from τX in
the next iteration. Also, we update eY to remove all tuples
that are also present in eX (line 13), s.t. they are not mapped
again in the next iteration.

Note that in case (i) and eX ⊆ eY, we have also found
a merge: Since the number of tuples in eX is smaller than
those in eY, there must be at least one tuple in eY that is
mapped to another equivalence class in τX. By Lemma 7,
there is hence amerge among (X,Y). checkforSwap saves
this information in the variable merge (line 10).

In case (ii), checkForSwap performs the check for a
swap in line 16. The counter j is updated accordingly if no
swap was found. An additional check whether eX is empty
(line 22) then determines whether the next equivalence class
from τX should be retrieved in the next iteration (this hap-
pens if eY = eX). Finally, if no swapwas found, the algorithm
either returns that there is a merge among (X,Y) (as deter-
mined in line 10). If there is also no merge, the OD X →< Y
is valid (line 28).

1

2

Fig. 2 Sorted partition product of τA and τB yields τAB . The prod-
uct can be implemented efficiently using a hash-join-like procedure as
shown in Fig. 3

4.3 Product of sorted partitions

A stream of tuples, which is known to be sorted by Amay be
“nearly” sorted by AB as well, where the number of tuples
that are not (guaranteed to be) sorted, depends on the number
of non-distinct values in A. During a run of the algorithm
Order presented in Sect. 6, this situation is encountered
frequently, because the nodes in the permutation lattice of
level l are all prefixes of some node in level l + 1.

As the order of the tuples in an attribute list is represented
by a sorted partition, we present an algorithm for efficiently
calculating what we call the product of sorted partitions,
which—assuming constant-time lookup in hashing-based
data structures—runs in linear time. Using this algorithm,
the OD discovery algorithm Order touches the actual data
only once for the initial creation of the sorted partitions. In
the further run of the algorithm, sorted partitions are created
from sorted partitions of attribute lists of smaller size, thereby
saving many comparisons that would originate from sorting
the data again.

Before presenting the actual algorithm to calculate the
product of two sorted partitions, we briefly explain the idea
in Fig. 2. Let τA and τB be two sorted partitions for sin-
gle attributes A and B, respectively. Note that the following
arguments are the same for sorted partitions of attribute lists,
because tuples are represented by their identifiers regardless
of their size.Wedistinguish two cases: (i) equivalence classes
(represented as sets) of size 1 —these are appended to τAB
as is highlighted in green, and (ii) equivalence classes of size
greater than 1—these are split into new equivalence classes
according to the order of the tuple identifiers in τB and then
appended to τAB (highlighted in blue).

Because of the lexicographical ordering imposed on the
tuples, the values in A dominate the sorting of tuples of AB:
Sequences of different values in a tuple stream sorted by A
appear in the same order in the same position in the tuple
stream sorted by AB. For sorted partitions, this means that
equivalence classes of size 1 in τA are also present in τAB
in the same order as in τA. In Fig. 2, this is the case for
equivalence classes {0}, {1}, and {7}. In the extreme case, if
A is a unique column, τA = τAX for any attribute list X over
R.

123

232 P. Langer, F. Naumann

1

2
2
2
3
3

2

3

Fig. 3 Workflow of the sorted partition product algorithm on τA and
τB from Fig. 2

Where A has repeating values, B dominates the order of
AB. Therefore, to build τAB we need to find the relative
positions in τB of those tuple identifiers in τA, which are
contained in an equivalence class of size greater than 1. Fig-
ure 2 depicts this scenario for the equivalence classes {5, 6}
and {2, 4, 3} in τA. Since 5 is ranked before 6 in τB , the
equivalence class {5, 6} is split into two equivalence classes
in τAB . The generation of, e.g., τABC is simplified further by
each of these splits of equivalence classes. The equivalence
class {2, 4, 3} shows another case (Case 2 in Fig. 2): Because
2 and 4 are in the same equivalence class in τB as well, this
equivalence class of size 3 generates two equivalence classes
in τAB , namely {2, 4} and {3}. Since the tuple identified by
3 projected on B is strictly greater than the tuples identified
by 2 and 4 projected on B, τAB ranks {3} after {2, 4}.

The product of two sorted partitions can be efficiently
implemented using a hash-join-like procedure as shown in
Fig. 3. This algorithm for calculating the product of two
sorted partitions consists of three steps. First, we build a hash
table Hp mapping tuple identifiers t to the position in τA at
which t resides. As explained above, equivalence classes of
size 1 in τA are contained in τAB in the same order. Hence,
Hp need only contain tuple identifiers that are part of an
equivalence class of size greater than 1.

Second, we iterate over τB , building another hash table
HS mapping each position in τA that contains an equiva-
lence class of size greater than 1 to a list of equivalence
classes. This list is created for each eA ∈ τA by (i) split-
ting eA into equivalence classes eAB , each containing tuple
identifiers that are in the same equivalence class in τB and
(ii) adding eAB to the list corresponding to the order of the
equivalence classes in τB .

Lines 2 to 11 in Algorithm 2 detail this approach: The
algorithm iterates over each tuple identifier tideB of each
equivalence class eB ∈ τB . If tideB is not in an equivalence
class of size 1, i.e., Hp(tideB) is mapped to an actual position
in τA (line 5), t ideB is added to the current equivalence class
in HS(pos) (line 9), where pos (the position, or list index
in τA corresponding to tideB) is determined by Hp(t ideB)

(line 7).
Each iteration over eB creates new complete equivalence

classes, which are later added to τAB , i.e., a new complete

Algorithm 2 partitionProduct

Input: τA, τB , hash table Hp
Output: τAB
1: τAB ← []
2: for each eB ∈ τB , |τB | > 1
3: visi ted ← ∅
4: for each tideB ∈ eB
5: if Hp(tideB) = ⊥
6: continue
7: pos ← Hp(tideB)

8: add pos to visi ted
9: add tideB to last equivalence class in HS(pos)

10: for each pos ∈ visi ted
11: append ∅ to HS(pos)

12: for each index i in τA
13: if |τ iA| = 1
14: append eA to τAB
15: else
16: for each eAB ∈ HS(i), eAB �= ∅
17: append eAB to τAB

equivalence class eAB is created for each position in τA the
tuple identifiers t ideB are mapped to by means of Hp. To
guarantee that no tuple identifiers from different eB , eB′ are
added to the same equivalence class in τAB , the tuple identi-
fiers t ideB are only ever added to the last equivalence class in
HS(pos) (line 9). In addition, for each pos that at least one
of the t ideB has been mapped to, a new empty equivalence
class is created and added to HS(pos) in line 11 after each
iteration over the current eB . This new empty equivalence
class is then populated in one of the next iterations or stays
empty and is ignored during the assembly step in line 16. In
each iteration over eB , the algorithm keeps track of the posi-
tions in τA that have been “visited” by tuple identifiers in eB
in the set visi ted. From a more abstract point of view, the
above described part of the algorithm creates a connection
(HS) between equal values in A and the order of the corre-
sponding values in B, so that the ordering of those tuples in
AB with equal values in A can be established.

In a final assembly step (lines 12 to 17), we iterate over
τA, putting each equivalence class of size 1 into τAB without
further processing. For each position p of an equivalence
class in τA of size greater than 1, we append HS(p) to τAB .
Iterating over the last equivalence class eB of size greater
than 1, we added a redundant empty set to each HS(pos)
with pos ∈ visi ted (line 11). This empty set is not added to
τAB .

5 Lattice traversal and pruning

In Sect. 2.6, we showed that the number of nodes in the
candidate lattice that defines the search space for order depen-
dency detection is �|R|!×e�. To tackle the resulting factorial
complexity of the order dependency detection problem, we

123

Efficient order dependency detection 233

Table 9 A �< CD. Hence, by
pruning rule 1, AB �< CD

A B C D

1 2 2 2

1 1 2 1

3 3 3 5

4 3 3 5

employ a twofold strategy to systematically explore only
parts of the candidate lattice.

First, we generate the nodes in the candidate lattice level
by level from the bottom up making use of the general
“Apriori” idea [3]. Apriori-like generation of candidates is
also utilized by discovery algorithms for other types of
constraints, such as unique column combinations [2], inclu-
sion dependencies [4], and functional dependencies [10]. A
concrete algorithm implementing this procedure for order
dependency detection is presented in Sect. 6.3 as part of the
algorithm Order. Second, we avoid enumerating all nodes
by aggressively pruning the permutation lattice. To this end,
we define pruning rules 1 to 4 that allow to skipmany validity
checks while guaranteeing that no (minimal or valid) order
dependencies are missed.

Pruning rule 1 (Invalid under “<”)

X �< Y ⇒ XV �< Y

holds for any disjoint attribute listsX,Y, andV over a schema
R, where only V may be empty.

In Table 9, A �< CD. Therefore, by pruning rule 1,
AB �< CD. The reason is a merge among (A,CD), which
is still present when appending another column to the left-
hand side A of the OD A �< CD.

Pruning rule 2 (Valid under “<”)

X →< Y is valid ⇒ X →< YW is valid

holds for any disjoint attribute lists X,Y, and W over a
schema R, where only W may be empty.

Table 10 shows a relation in which A →< BC is valid.
Therefore, by pruning rule 2, A →< BCD is valid as well,
because we cannot create amerge or swap among (A, BCD)

if there is none among (A, BC).

Pruning rule 3 (Swap under “<”)Given X �< Y is inval-
idated by a swap,

X �< Y ⇒ XV �< YW

holds for any disjoint attribute lists X,Y,V, and W over a
schema R, where only V and W may be empty.

Table 10 A →< BC is valid.
Thus, by pruning rule 2,
A →< BCD is valid

A B C D

1 5 8 2

1 4 7 1

3 6 1 5

4 6 2 5

Table 11 A �< C is
invalidated by a swap

A B C D

1 3 6 0

2 4 5 1

3 5 7 2

4 6 8 3

Hence, by pruning rule 3,
AB �< CD is also invalidated
by a swap

Table 12 A →< C , A is unique A B C D

1 5 1 2

2 4 3 1

3 6 7 5

4 6 9 5

Thus, by pruning rule 12,
AB →< CD is valid

Table 11 shows a table to which we can apply pruning
rule 3. A �< C is invalidated by a swap among (A,C). By
pruning rule 3, AB �< CD, because the order of the tuples
in A and C does not change when we append any attribute
(such as B and D, respectively). Thus, there is a swap among
(AB,CD) as well.

Pruning rule 4 (Uniquenessunder“<”)GivenX is unique,

X →< Y is valid ⇒ XV →< YW is valid

holds for any disjoint attribute lists X,Y,V, and W over a
schema R, where only V and W may be empty.

In Table 12, A →< C is valid. Because A is unique, C is
unique as well (refer to Lemma 6 for details) and by pruning
rule 4, AB →< CD is valid as well.

Note that the generation of candidates from the bottom up
matches well to the presented pruning rules: All nodes of size
l in the candidate lattice are prefixes of some node in level
l + 1, and pruning of an OD candidate is done based on the
prefixes of a candidate’s left- and right-hand side attribute
lists.

Moreover, the creation of sorted partitions needed in lev-
els l > 2 can be created efficiently from the sorted partitions
needed in a previous level, as we show in Sect. 4.3. A level-
wise top-down traversal approach is not feasible, because it

123

234 P. Langer, F. Naumann

would require enumerating |R|! nodes already in the first
level, namely for the top node in the lattice, which represents
the entire attribute-set. Note that using the level-wise bottom-
up traversal strategy, it may still be necessary to generate all
lattice nodes, namely when none of the pruning rules apply.

6 The discovery algorithm

We present the algorithm Order (Algorithm 3), which
efficiently discovers all n-ary lexicographical order depen-
dencies under the operator “<” (and by Theorem 1, all ODs
under “≤”) in a given table. Order traverses the lattice of
all possible permutations of attributes described in Sect. 5 in
a level-wise manner from the bottom up.

Algorithm 3 Algorithm Order, which finds all valid ODs
X →< Y
Input: Relation R, relational instance r
Output: valid, the set of all minimal valid order dependencies that are

valid in r
1: l ← 1
2: valid ← ∅ � global variable: set of all valid ODs
3: C0([]) ← ∅; C1([]) ← {A | A ∈ R}
4: CS0 ← ∅; CS1 ← ∅
5: L1 ← {A | A ∈ R}
6: while Ll �= ∅
7: CSl ← updateCandidateSets(CSl−1)
8: computeDependencies(Ll ,CSl)
9: prune(Ll ,CSl)
10: Ll+1 ← generateNextLevel(Ll)
11: l ← l + 1
12: output valid

The algorithm makes use of the Apriori approach [3] to
generate candidates of size l from candidates of size l −
1 in the function generateNextLevel (line 10, see also
Algorithm 7 and the description in Sect. 6.3). In the call
computeDependencies (line 8, see also Algorithm 4), the
OD candidates generated for the current level are checked
for validity and added to valid if applicable. The knowledge
gained during these checks is then used in the function prune
(line 9, see alsoAlgorithm 6) to prune the search space before
generating the next level. If there are no more candidates left
(line 6), either because the lattice has been traversed fully or
no candidates remain after pruning, Order terminates and
all valid ODs in the table are returned (line 12).

The outline of the algorithm Order is structurally similar
to the algorithm Tane [10], because Tane and Order both
discover dependencies in a lattice of possible dependency
candidates and traverse it bottom up. Both algorithms reduce
the search space by applying pruning rules. Moreover, both
use candidate sets to represent dependency candidates that
need to be checked for validity. Still,Order and Tane differ

inmany details, e.g., the definition and application of pruning
rules and the creation and management of candidate sets.

In the following, we explain each of the procedures that
are called in the main loop of Order (Algorithm 3).

6.1 Dependency computation

In level l, Order checks l − 1 order dependency candi-
dates for validity for each node in the lattice. For example, in
level 4, the node CBDA generates the three OD candidates
C →< BDA, CB →< DA, and CBD →< A. This trivial
generation of OD candidates from a node in the candidate
lattice is implemented by the function obtainCandidates

called in line 3 of the procedure computeDependencies

(Algorithm 4).
For every left-hand side X of an order dependency can-

didate in level l, Order maintains a candidate set Cl(X).
In level l, Cl(X) contains all Y, s.t. X →< Y still needs to
be checked for validity and |X| + |Y| = l. For instance in
level 4, C4(AB) may contain CD, but not C or CDE . For
non-minimalX, Cl(X) = ∅. For non-minimalY,Y /∈ Cl(X)

for any X over R.
More formally, the candidate set Cl(X) for a minimal X

contains all those Y, for which

1. |X| + |Y| = l,
2. Y is minimal,
3. there is no swap among P and Q for any prefixes P of X

and Q of Y,
4. P �< Q for any prefixes P of X and Q of Y where P is

unique (see Lem. 6 in Sec. 2.5),
5. X �< Q for any prefix Q of Y, and
6. X′ →< Y is invalidated by a merge (where X′ is the

longest prefix of X), but X′ →< Y could not be merge-
pruned (see Sec. 6.1.1 for details on merge-pruning).

BecauseOrder traverses the candidate lattice of attribute
lists from the bottom up, every node in level l is a prefix of
some node in level l + 1. That makes the gradual genera-
tion of the candidate sets easy, because the decision whether
Y ∈ Cl(X) can be based on the prefixes of X and Y. How
candidate sets are created and extended is explained in detail
in Sect. 6.1.2.

Every Y ∈ Cl(X) implies an order dependency candidate
X →< Y, which may itself be valid or generate a minimal
valid OD in a higher level. Order skips the validity check
if Y /∈ Cl(X) (line 4). By removing only those candidates
Y from Cl(X) for which the validity of all XV →< YW
is known from the pruning rules (see Sect. 5), Order guar-
antees that no ODs whose validity is unknown are missed.
Order applies pruning by swap in line 11 by removing the
right-hand side Y of the invalid OD X �< Y from the
candidate set C(X). Thus, ODs of the form XV �< YW

123

Efficient order dependency detection 235

Algorithm 4 Order: computeDependencies
1: procedure computeDependencies(Ll ,CSl)
2: for each node ∈ Ll
3: for each X,Y ∈ obtainCandidates(node)
4: if Y /∈ Cl (X)

5: continue
6: if X →< Y is valid
7: add X →< Y to valid
8: if X is unique
9: remove Y from Cl (X)

10: else if X �< Y invalidated by swap
11: remove Y from Cl (X)

12: � merge-pruning:
13: for each Cl (X) ∈ CSl with |X| > 1
14: for each Y ∈ Cl (X)

15: X′ ← maxPrefix(X)

16: if X′
�< Y invalidated only by merge

17: if � ∃ V ∈ Cl (X′) maxPrefix(V) = Y
18: remove Y from Cl (X)

(V,W �= []) are never checked for validity, because they are
known to be invalidated by a swap as well. In addition to the
pruning applied in the first loop of computeDependencies,
we provide another slightly more complex pruning mecha-
nism calledmerge-pruning, which is described in detail next.

6.1.1 Merge-pruning

In general, we cannot remove Y from Cl(X) if X �< Y is
invalidated by a merge, but there is no swap among (X, Y).
For example, let A �< B be invalidated by amerge.We infer
that AX �< B for any attribute list X. However, there may
exist some Y, s.t. AX →< BY is valid. Table 13 illustrates
this situation. But AX →< BYwould not be generated if we
had pruned B from Cl(A). Hence, we cannot use merges to
prune the search space in the same way we use swaps.

Instead, assume we know in addition to A �< B being
invalidated only by a merge that any A →< BY (Y �= [])
need not be checked. Then, we need not check any OD of
the form AX �< BY. This “merge-pruning” is performed
in lines 13 to 18 of Algorithm 4 (computeDependencies).
Note that we need to combine the knowledge of validity of
dependencies for two levels to apply merge-pruning. Merge-
pruning is applied to candidate sets Cl(X) with |X| > 1 in
every level. The function maxPrefix is used to obtain the

Table 13 A �< B (merge),
AX �< B (merge), but
AX →< BY is valid

A X B Y

1 1 1 4

2 1 1 5

3 2 2 6

3 3 3 6

4 4 4 6

longest prefix of an attribute list X. Naturally, the longest
prefix of an attribute list X is the attribute list with the first
|X| − 1 attributes in X, e.g., maxPrefix(ABCD) = ABC .
If the OD maxPrefix(X) →< Y was invalidated only by a
merge (this is knowledge gained in level l−1), we know that
X �< Y (and also,XV �< Y for anyV). Then, if we cannot
find in Cl(maxPrefix(X)) anyV that starts withY, we need
not examine anyX →< YZ, because it is either invalid or not
minimal. Combined, we now know that it is futile to extend
the right- or the left-hand side of X →< Y. Therefore, we
can remove Y from Cl(X).

Withmerge-pruning, the algorithm can possibly terminate
earlier. For example, let C2(A) = {E}, with A �< E inval-
idated only by a merge. C3(AB) is generated from C2(A)

(line 17 inAlgorithm5), and thereforeC3(AB) = {E}. Anal-
ogously, we obtain C4(ABC) = {E}, C5(ABCD) = {E},
etc. Therefore, the candidates Cl(AX) with |AX| = l − 1
may contain E , even though AX →< E is known to be
invalidated by amerge. This is necessary in general, because
the OD AB →< E invalidated by a merge may generate the
possibly valid OD AB →< EF in level 4, as we pointed
out earlier by means of Table 13. Thus, we cannot remove
E from C3(AB). If, however, it is known that EK /∈ C3(A)

(for any attribute K ∈ R), because, e.g., A →< EK are
all invalidated by a swap, we would not need to examine
AB →< EK in level 4 and can therefore safely remove E
from C3(AB) in level 3.

Because merge-pruning demands fully pruned candidate
sets of one level, the earliest possible point in the algo-
rithm to prune by merge is after all ODs of the current level
have been checked, i.e., after termination of the first loop in
computeDependencies. Also, merge-pruning cannot hap-
pen before level 3, because level 3 is the first level to have
more than one candidate set per node – for merge-pruning,
we need in one level a candidate set Cl(X) and the candidate
set of its longest prefix Cl(maxPrefix(X)).

6.1.2 Updating candidate sets

Unlike Tane [10], Order’s candidate sets may increase in
size during the execution of the algorithm. For example, with
R = {A, B,C, D}, consider the left-hand side A in level 2
and the corresponding candidate set C2(A) = {B,C, D}. In
level 3, C3(A) = {BC, BD,CD, CB, DB, DC}, i.e., every
U ∈ C2(V) is extended with all E ∈ R forwhichU,V, and E
are mutually disjoint. This guarantees that |X| + |Y| = l for
any OD candidateX →< Y that is checked for validity in the
current level l, and ultimately that all possible, completely
non-trivialODcandidates are checked.Acandidate setCl (X)

is extended if |X| �= l−1, i.e., in each level all candidate sets
Cl(X) with 1 ≤ |X| ≤ l − 2 are extended. This implies that
before level 3, Order does not extend any of the candidate
sets.

123

236 P. Langer, F. Naumann

The procedure updateCandidateSets shown in Algo-
rithm 5 is responsible for the management of the candidate
sets, i.e., to initialize and extend them. To this end, Order
maintains a set of candidate sets CSl in level l, which is
populated using CSl−1.

Algorithm 5 Order: updateCandidateSets
1: procedure updateCandidateSets(CSl−1)
2: CSl ← ∅
3: for each Cl−1(X) ∈ CSl−1
4: Cl (X) ← ∅
5: if |X| �= l − 1 � extend Cl−1(X)

6: for each Y ∈ Cl−1(X)

7: if X →< Y ∈ valid
8: continue
9: for each U ∈ extend (X, Y)
10: if |X| > 1
11: X′ ← maxPrefix(X)

12: if (U /∈ Cl−1(X′)) and
(� ∃ Q ∈ prefixes(U) s.t.

X′ →< Q ∈ valid)
13: continue
14: if U is not minimal
15: continue
16: add U to Cl (X)

17: else � |X| = l − 1: create new candidate set
18: if X is minimal
19: for B ∈ Cl−1(maxPrefix(X))

20: if X and B are disjoint
21: add B to Cl (X)

22: if Cl (X) �= ∅
23: add Cl (X) to CSl
24: return CSl

Extending attribute lists is implemented by the function
extend called in line 9. extend takes the two parameters
X and Y, where Y ∈ Cl−1(X) is extended, and the extended
attribute list may later be added to Cl(X).X is needed so that
only those extensions of Y are generated that are disjoint
from X.

Attribute lists Y in Cl−1(X) for which X →< Y is valid
are not extended (lines 7 to 8), because the resulting OD
candidates X →< YK (for any K ∈ R) are not minimal,
and neither are any X →< YW (for any non-empty attribute
listW over R).

Lines 10 and 13 handle a case in which we need not add
an extended right-hand side candidate U to Cl(X). If U /∈
Cl−1(X′) for the longest prefix X′, then either (i) U is not
minimal, (ii) U was pruned by the swap rule, (iii) U was
pruned by the uniqueness rule, (iv) U was pruned by merge-
pruning, or (v) X →< T is valid for some prefix T of U. In
cases (i)–(iv), we need not add U to Cl(X). However, in case
(v) we need to add U to Cl(X), because for any valid OD
X →< Y, the ODXV →< YW (for any non-empty attribute

list V and any attribute listW) may or may not be valid, i.e.,
all XV →< YW still need to be checked.

If U was pruned from Cl−1(X′) because case (v) applied,
then there is a valid OD X′ →< Q (Q ∈ prefixes(U)).
This condition is checked in line 12 of Algorithm 5. If we
do not find any such valid OD, we do not need to add U to
Cl(X). Note that it is not necessary to actually check these
ODs, because we keep track of all found valid ODs in the set
valid. Furthermore, if the extended candidate is not minimal
(line 14), we need not add it toCl(X), because a non-minimal
attribute list cannot be a right-hand side to anyminimal order
dependency.

In level l, Order maintains all candidate sets for left-
hand side attribute lists of size 1 to l −1. In each level, a new
candidate set for some Zwith |Z| = l−1 is created from the
previous level’s longest prefix of Z (line 17). If, for example,
C2(A) = {B,C}, then we set C3(AB) = {C}, excluding
B of C2(A), because B is not disjoint from AB. Creating
candidate sets Cl(X) from Cl−1(maxPrefix(X)) is justified
by the pruning rules presented in Sect. 5: For instance, let
D /∈ C3(AB) with C3(AB) �= ∅, i.e., AB is minimal. Then,
we know that none of ABX →< DY need to be checked for
validity, because D was pruned from C3(AB). Therefore,
we also need not check ABC →< D, and consequentially,
D /∈ C4(ABC).

6.2 Pruning

It is only possible to prune a node from the permutation lat-
tice if it is certain that this node is not needed for generating
another node that contains an OD candidate whose validity
is not already known. Each node n in level |n| in the lat-
tice contains |n| − 1 order dependency candidates and thus
|n|−1 candidate sets, one for each prefix of n. If a candidate
set of some left-hand side X is empty, the search space for
order dependencies with X as a left-hand side is exhausted,
i.e., no more ODs with a prefix of X on their left-hand side
need to be checked for validity. In the case that all |n| − 1
candidate sets are empty, the above is true for all prefixes of
n. Thus, we can delete the node n from the lattice, which
means that larger nodes with n as prefix are not generated.
For example, for node ABCD of level 4 in the permutation
lattice, the candidate sets C4(A), C4(AB), and C4(ABC)

are needed. If C4(A) = C4(AB) = C4(ABC) = ∅, ABCD
(and all other nodes in level 4 with prefix ABC) are removed
from the lattice and the candidate nodes ABCDX (for some
non-empty X) are not generated. The function prune (Algo-
rithm 6) checks in lines 3 to 9 if all candidate sets for the
current node are empty and, if so, deletes the node from the
current level’s set of nodes Ll (line 11). Because empty can-
didate sets are not needed anymore, they are deleted from
CSl in line 14.

123

Efficient order dependency detection 237

Algorithm 6 Function prune

1: procedure prune(Ll ,CSl)
2: for each node ∈ Ll
3: allEmpty ← f alse
4: for each pre f i x ∈ prefixes (node)
5: if Cl (pre f i x) �= ∅
6: allEmpty ← f alse
7: break
8: else
9: allEmpty ← true

10: if allEmpty = true
11: remove node from Ll

12: for each Cl (X) ∈ CSl
13: if Cl (X) = ∅
14: remove Cl (X) from CSl

6.3 Level generation

In level l, the function generateNextLevel (Algorithm 7)
generates nodes of size l + 1 in the candidate lattice by join-
ing two nodes of size l with the same prefix of size l−1. The
procedure prefixBlocks is used in Tane as well [10]. It
partitions the nodes of size l in Ll into lists of nodes with the
same prefix of size l − 1 (line 3). Because, unlike Tane and
other typical uses of the Apriori approach, we need to gen-
erate all permutations of attributes of size l + 1, we compute
all pairs with distinct first and second components (lines 4
to 9) from each such prefix block.

Algorithm 7 Order: generateNextLevel
1: function generateNextLevel(Ll)
2: Ll+1 ← ∅
3: for each prefixBlock ∈ prefixBlocks (Ll)

4: for each node ∈ prefixBlock
5: for each joinNode ∈ prefixBlock
6: if node = joinNode
7: continue
8: joinedNode ← join (node, joinNode)
9: add joinedNode to Ll+1

10: for each node ∈ Ll
11: Cl (node) ← ∅ � needed in the next level
12: add Cl (node) to CSl
13: return Ll+1

The procedure join (line 8) is fairly simple: Given the
pair of nodes (n1, n2) with each component of size l and
the same prefix of size l − 1, join creates a new node of
size l + 1, with n1 taking up the first l positions and the last
attribute of n2 at the last position. The joined node of size
l + 1 is then added to Ll+1 (line 9). Lines 10 to 12 initialize
the candidate sets for the next level, which are then populated
by updateCandidateSets.

6.4 Algorithm extensions

There exist several other types of ODs, in particular bidirec-
tional ODs [19,22] and partial ODs [5]. While these types of

order dependencies are not the focus of this work, we discuss
the changes needed in Order to facilitate their discovery.

Partial Order Dependencies are order dependencies that
hold only for a subset of the data. To discover partial ODs, the
order dependency check (Algorithm 1) has to be changed as
to not terminate the check as soon as one tuple pair forming
a swap is found. To establish the necessary notion of near-
sortedness, we could make use of an algorithm to find the
longest common subsequence between two sorted partitions,
and compare its length to a given threshold (a deletion-based
metric).

Bidirectional Order Dependencies allow mixed sort orders,
i.e., an OD could be of the form A →≤,≥ B, which states that
for any two tuples r, s, if r [A] ≤ s[A], then r [B] ≥ s[B]. The
concept of a split can be directly transferred to bidirectional
ODs. Swaps can be defined for bidirectional ODs as well
by demanding a reverse order of the tuples of the left- and
right-hand side of an OD. Thus, the only part of Order to
change such that these bidirectional ODs are discovered is
the dependency check (Algorithm 1), which then iterates the
right-hand side sorted partition from back to front.

7 Evaluation

In this section, we evaluate the efficiency of the algorithm
Order with respect to its ability to scale in the number
of rows (Sect. 7.2) and columns (Sect. 7.3). We report the
results of Order on ten real-world datasets and one syn-
thetic dataset, which are described in Sect. 7.1. The algorithm
was implemented for the Metanome data profiling frame-
work [16]; all code and datasets are available at www.
metanome.de.

All experiments were run on a Dell Poweredge R620 with
CentOS 6.4, two Intel Xeon E5-2650 2GHz CPUs with 8
cores per CPU, and a total of 128 GB of main memory. There
are eight hard disks in a RAID 6 configuration. The execution
environment is a 64-bit OpenJDK in version 1.7.0_65, and
the JVM heap space was limited to 100 GB.

As there exists no prior work on the discovery of order
dependencies, we cannot perform a comparative analysis.
Instead, we show that Order is able to detect order depen-
dencies efficiently. For instance, Order finds the only OD
in a dataset with 16 columns and 3 million rows in under 7
min and all three ODs in a dataset with 28 columns and 300
rows in under 30 s. While these number might not seem
impressive, they are similar for instance to current state-
of-the-art algorithms to detect functional dependencies on
the same datasets [17], in the same execution environment
(Metanome), and on the same server. The higher complex-
ity of OD detection compared to FD detection is remedied
by a considerably lower number of ODs than FDs found in

123

www.metanome.de
www.metanome.de

238 P. Langer, F. Naumann

Table 14 Datasets and Order

execution statistics
Dataset Dataset properties Order

|r | |R| |OD| Max(OD) #checks Max(l) Time

abalone 4,177 9 0 – 72 2 775 ms

adult 32,561 15 0 – 210 2 2031 ms

bridges 108 13 0 – 156 2 517 ms

echo 132 13 12 2 156 2 529 ms

hepatitis 155 20 0 – 630 5 907 ms

horse 300 28 3 4 1,220 6 25.7 s

letter 20,000 17 0 – 272 2 1207 ms

wisconsin 699 11 0 – 110 2 592 ms

flights 500,000 20 1,545† 6† 44,928† 6† 5 h†

NCvoter 938,085 22 90† 4† 8,182† 4† 5 h†

lineitem 2,999,671 16 1 2 282 4 6.7 min

A “†” indicates that Order exceeded the time limit of 5 h ; the numbers are then intermediate results up to
that level

the considered datasets – enabling more pruning possibilities
during OD detection in Order.

7.1 Datasets

There are no publicly available datasets that have been
checked for order dependencies. However, there are datasets
that have previously been used to evaluate functional depen-
dency detection algorithms. As the presence of functional
dependencies in a dataset is a necessary condition for the
presence of order dependencies, they constitute promising
test data.

Table 14 lists the datasets and their properties. The first ten
are real-world datasets, of which the first eight are published
through theUCIMachine LearningRepository [11], flights
is a table containing data about US domestic flights, and
NCvoter is a dataset containing personal data of registered
voters fromNorth Carolina. TheNCvoter dataset originally
contained 94 columns, resulting in an immensely high num-
ber of OD candidates, and is infeasible forOrder to process.
Thus, we excluded all columns that contain one or more
NULL values, based on the assumption that the more inter-
esting ODs originate from comparisons of non-NULL values.
The result is the NCvoter dataset with 22 columns listed in
Table 14.We also include experiments on a synthetic dataset,
namely the lineitem table of a sf = 0.5 TPC-H instance.

For each dataset, we report the number of rows (|r |), the
number of columnswithout NULL values (|R|), and the num-
ber of order dependencies (|OD|). The size of the largest OD
is given as max(OD), where the size of an OD is the sum of
the sizes of its left- and right-hand sides. #checks is the num-
ber of dependency checks Order performed on the dataset,
and max(l) indicates the highest level for which Order gen-
erated candidates.

7.2 Scalability in the number of rows

We expect Order to scale linearly with an increasing num-
ber of rows, because all operations on rows are performed
on sorted partitions and have linear complexity, assuming
constant insertion/deletion/search time on hash-based data
structures. Thementioned operations on sorted partitions are
the dependency check and the product of sorted partitions.

None of the UCI datasets has enough rows to draw pro-
found conclusions about the scalability in the number of rows
of Order. Thus, we concentrate on the real-world datasets
flights (500,000 rows), NCvoter (938,085 rows), and the
synthetic dataset lineitem with 2,999,671 rows. Because
Order did not terminate on the full datasets, we consider
only a subset of ten randomly chosen columns of the flights
and NCvoter datasets.

For the experiments, we conduct several runs of Order
per dataset with increasing number of randomly selected
rows. Note that in principle, limiting the number of rows in
a dataset could result in more ODs, resulting in a longer exe-
cution time of Order on the sample than on the full dataset.
In practice, we did not encounter this situation; the initial
sample sizes are chosen sufficiently large.

Figure 4 shows the results for the scalability experiment on
the flights dataset with up to 500,000 rows. Each 100,000
rows increases the overall execution time of Order by about
7 min. Figure 5 shows results for the lineitem table with
up to 2,999,671 rows. Again, and as expected Order scales
linearly in the number of rows. There is large difference in the
execution times for the lineitem and flights dataset:While
processing 500,000 rows of the lineitem dataset takes just
50 s, processing the samenumber of rowson flights takes 37
min. This difference is due to themuch higher number ofODs
in the flights dataset (see Table 14), which causesOrder to
process the dataset up to level 9, while Order can terminate

123

Efficient order dependency detection 239

0

5

10

15

20

25

30

35

40

100,000 200,000 300,000 400,000 500,000

ex
ec

u�
on

 �
m

e
(m

in
)

number of rows

Fig. 4 Row scalability experiment on flights (500,000 rows, 10
columns)

0

100

200

300

400

500

600

500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000

ex
ec

u�
on

 �
m

e
(s

)

number of rows

Fig. 5 Row scalability experiment on lineitem (2,999,671 rows, 16
columns)

0

100

200

300

400

500

600

100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000

ex
ec

u�
on

 �
m

e
(s

)

number of rows

Fig. 6 Row scalability experiment on NCvoter (938,085 rows, 10
columns)

on the lineitem table already after checking candidates in
level 4. Finally, Fig. 6 confirms the linear scalability in the
number of rows of Order on the NCvoter dataset.

In summary, the experiments on all three datasets show
similar results and support our initial claim thatOrder scales
linearly with the number of rows. The experiments also show
that Order is applicable to datasets with millions of rows,
taking less than 7 min on the lineitem dataset with nearly
3,000,000 rows.

7.3 Scalability in the number of columns

In this section, we show how Order behaves on tables with
an increasingly large number of columns. TheUCI repository
datasets horse and hepatitis contain only few rows, and
both causeOrder to generate OD candidates in higher levels
(up to level 6 for horse andup to level 5 for hepatitis). Thus,
these datasets are well suited for evaluation of the influence
of an increasing number of columns on the execution time
of Order. To better evaluate the performance impact of a
larger number of columns, we limit the datasets flights and
NCvoter to (randomly chosen) 1000 rows.

To evaluate Order on a dataset with an increasing num-
ber of columns, we take two columns from each dataset,
and incrementally add more columns, until the number of
columns in the dataset is reached.

To avoid skewing the results by choosing columns with
especially high ordering impact, we generate k random 2-
permutations of all columns. Each of the k 2-permutations
is extended with another column, which is randomly cho-
sen from the dataset, yielding k 3-permutations, and so on.
Order is then executed on each of the k permutations of
columns, and we report the execution time for c columns
in the dataset as the average execution time over all k runs
on c columns. The number of runs k is chosen per dataset,
such that the set of experiments on each dataset could be run
within 24 h.

Figure 7 shows the results of the column scalability exper-
iment on the horse dataset, which contains three ODs. From
considering 26 to considering 28 columns of the dataset, the
execution timemore than doubles from 10 to 25 s. This is due
to the inherent complexity of OD detection: The candidate
lattice for 28 columns has �28! · e� ≈ 8.29 · 1029 nodes, and
each node in level l in the lattice contains l−1ODcandidates.
Ordergenerates candidates up to level 6 in this lattice,which
amounts to nearly 1.5 billionOD candidates (for 26 columns,
the candidate lattice contains more than 860 million candi-
dates up to level 6). Of course, because of pruning, Order
enumerates only a small fraction of these candidates (namely
1220 of the 1.5 billion candidates) and thus is able to find all
ODs within 10 and 25 s on 26 and 28 columns, respectively.

The column scalability experiment on the hepatitis

dataset is depicted in Fig. 8. On this dataset, the number
of dependency checks performed by Order grows quadrati-
cally in the number of columns. Interestingly, the graph does
not clearly show such quadratic growth in execution time in
the number of columns.

There are swaps among many of the columns in the
hepatitis dataset and because of the small size of the dataset,
the sorted partitions are small. Hence, the dependency check
and calculation of the partition products run fast (less than
100 μs on average). If the dataset contained more rows, the
quadratic increase in execution time could be observed more

123

240 P. Langer, F. Naumann

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28

ex
ec

u�
on

 �
m

e
(s

)

number of columns

Fig. 7 Column scalability experiment on horse (28 columns, 300
rows, 3 ODs)

0

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14 16 18 20

ex
ec

u�
on

 �
m

e
(m

s)

number of columns

Fig. 8 Column scalability experiment on hepatitis (20 columns, 155
rows, 0 ODs)

clearly. Note that becauseOrder can prunemany candidates
early on, the execution time is not exponential in the number
of columns, as observed for the horse dataset.

Figure 9 shows the execution timeof Orderon an increas-
ing number of columns on the flights dataset alongside the
number of found order dependencies.1 Note the logarithmic
scale on the vertical axes. On this dataset, we find more than
3,000 order dependencies when considering only 14 of the
total of 20 columns.

Because Order needs to consider OD candidates that
can be generated from valid ODs, the search space of open
OD candidates (and thus, the overall execution time) grows
rapidly with the number of columns. We aborted the exper-
iment on 15 columns after 5 h. At that point, Order had
found nearly 13,000 ODs. The large number of ODs in the
flights dataset originates from redundant data. For instance,
flights contains three columns that identify the origin
airport of a flight (Origin, OriginAirportID, and
OriginAirportSeqID), which results in ODs between
all of these columns, and generates manymore valid OD can-
didates in higher levels. A more interesting OD in flights

1 Figures 7 and 8 do not analogously show the number of ODs; there
are too few, namely 3 and 0, respectively.

1

10

100

1000

10000

100000

1

10

100

1000

10000

100000

2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
g

nu
m

be
r o

f O
Ds

lo
g

ex
ec

u�
on

 �
m

e
(s

)

number of columns

number of ODs

execu�on �me (s)

Fig. 9 Column scalability experiment on flights (20 columns, 1000
rows). The orange (squares) line shows the number of found ODs,
and the blue (triangles) line shows Order’s execution time (note the
logarithmic scale on the vertical axes). We aborted Order on its run on
15 columns after 5 h (“†”)

0

10

20

30

40

50

60

70

80

90

0

100

200

300

400

500

600

700

800

2 3 4 5 6 7 8 9 10 11 12 13 14 15

nu
m

be
r o

f O
Ds

ex
ec

u�
on

 �
m

e
(s

)

number of columns

execu�on �me (s)

number of ODs

Fig. 10 Column scalability experiment on NCvoter (22 columns,
1000 rows)

is FlightDate →≤ Month; as in the given instance,
all flight data are from the year 2012. In any instance, the
OD FlightDate →≤ DayOfMonth, Month, Year
is valid and could be defined as a constraint. Note that the
number of ODs in this experiment differs from the one
reported in Table 14, because we consider only a small sam-
ple of the data, resulting in more found ODs than in the full
dataset.

Finally, Fig. 10 tells a similar story for the NCvoter

dataset. As is the case for the flights dataset, the larger
number of ODs originates from columns that contain redun-
dant data. On a subset of 14 columns of the dataset, Order
terminates in about 100 s, finding all 12 ODs. As for the
flights dataset, this number of ODs differs from the one
reported in Table 14, because we consider only a small sam-
ple of the data. Processing 15 columns takes about 700 ss
and finds 78 ODs. We aborted Order on its run on 16
columns after 5 h (“†”). Again, we observe that the exe-
cution time of Order depends on the number of ODs found
in the dataset. The NCvoter dataset is sorted lexicographi-

123

Efficient order dependency detection 241

cally by column county. Because each county is associated
with an incrementing identifier in the column county_-
id, the order dependencies county_id →≤ county and
county →≤ county_id are valid.

In summary, the column scalability experiments show that
Order is applicable to datasets with tens of columns. We
have also shown the limitations of the algorithm, when there
are many valid ODs in the considered dataset. A comparative
runtime analysis to showwhich pruning rules are most effec-
tive turned out to be intractable. For example, disabling the
swap pruning rule leads to run times over 5 h (at that point
we aborted the execution of the algorithm) on all consid-
ered datasets. In another similar experiment with the merge-
pruning rule disabled, we terminated the execution of the
algorithm on the lineitem table again after 5 h (note that
with the merge-pruning rule enabled, the algorithm termi-
nated in 6.7 min).

8 Conclusion and future work

Order dependencies are an interesting type of constraint
with various use cases. While they are less common than,
say, functional dependencies, they could lead to signifi-
cant improvements of query optimization and aid in data
cleansing. Order dependencies have been defined and treated
theoretically, but this paper presented the first OD dis-
covery algorithm and to this end some further theoretical
results. The algorithm Order is efficient and scales well in
light of similar results for functional dependency discovery
algorithms.

As with any dependency discovery algorithm, several
standard extensions can be made in the future: Partial ODs
can be defined as order dependencies that hold for only a
subset of the records in a relation, i.e., only some records
violate the OD. Their discovery is in principle not difficult,
as one can simply postpone the stopping criterion during
validation. Conditional ODs are partial ODs for which a cer-
tain condition is known to select the non-violating records,
i.e., the condition characterizes where a partial OD holds.
Their discovery is difficult, as the search space is enormous,
allowing conditions on various attributes and of various
kinds.

Finally, and again as with all dependency discovery algo-
rithms, Order discovers ODs that hold only for the current
instance of the data. It is up to a human expert to promote
a discovered OD to an actual constraint. The at times quite
large results sets can be difficult to understand and interpret.
Thus, we plan to develop methods to rank, visualize, and
filter the set of observed dependencies.

Acknowledgments We thank Ziawasch Abedjan for his numerous
helpful comments, which improved this work.

References

1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a
survey. VLDB J. 24(4), 557–581 (2015)

2. Abedjan, Ziawasch, Naumann, Felix: Advancing the discovery of
unique column combinations. In: Proceedings of the International
Conference on Information and Knowledge Management (CIKM),
pp. 1565–1570, (2011)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association
rules in large databases. In: Proceedings of the International Con-
ference on Very Large Databases (VLDB), pp. 487–499, (1994)

4. De Marchi, F., Lopes, S., Petit, J.-M.: Unary and n-ary inclusion
dependency discovery in relational databases. J. Intell. Inf. Syst.
32(1), 53–73 (2009)

5. Dong, J., Hull, R.: Applying approximate order dependency to
reduce indexing space. In: Proceedings of the International Con-
ference on Management of Data (SIGMOD), pp. 119–127, (1982)

6. Ginsburg, S., Hull, R.: Order dependency in the relational model.
Theoret. Comput. Sci. 26(1–2), 149–195 (1983)

7. Golab, L., Karloff, H.J., Korn, F., Saha, A., Srivastava, D.: Sequen-
tial dependencies. Proc. VLDB Endow. 2(1), 574–585 (2009)

8. Halbeisen, L., Hungerbühler, N.: Number theoretic aspects of a
combinatorial function. Notes Numb. Theory Discrete Math. 5(4),
138–150 (1999)

9. Heise, A., Quiané-Ruiz, J.-A., Abedjan, Z., Jentzsch, A., Nau-
mann, F.: Scalable discovery of unique column combinations. Proc.
VLDB Endow. 7(4), 301–312 (2013)

10. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: an
efficient algorithm for discovering functional and approximate
dependencies. Comput. J. 42(2), 100–111 (1999)

11. Lichman, M.: UCI machine learning repository. University of Cal-
ifornia, Irvine, School of Information and Computer Sciences
(2013). http://archive.ics.uci.edu/ml. Accessed March 10, 2015

12. Liu, J., Li, J., Liu, C., Chen, Y.: Discover dependencies from data—
a review. IEEE Trans. Knowl Data Eng. 24(2), 251–264 (2012)

13. Naumann, F.: Data profiling revisited. SIGMODRec. 42(4), 40–49
(2013)

14. Ng, W.: Ordered functional dependencies in relational databases.
Inf. Syst. 24(7), 535–554 (1999)

15. Northwestern University. WikiTables: Public Site (2015). http://
downey-n1.cs.northwestern.edu/public. Accessed March 10, 2015

16. Papenbrock, T., Bergmann, T., Finke,M., Zwiener, J., Naumann, F.:
Data profiling with Metanome. Proc. VLDB Endow. 8(12), 1860–
1871 (2015)

17. Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P.,
Schönberg, M., Zwiener, J., Naumann, F.: Functional dependency
discovery: An experimental evaluation of seven algorithms. Proc.
VLDB Endow. 8(10), 1082–1093 (2015)

18. Sloane, N.J.A.: TheOn-Line Encyclopedia of Integer Sequences—
A000522 (2015). http://oeis.org/A000522. Accessed March 10,
2015

19. Szlichta, J., Godfrey, P., Gryz, J.: Chasing polarized order depen-
dencies. In: Proceedings of the Alberto Mendelzon International
Workshop on Foundations of Data Management (AMW), pp. 168–
179, (2012)

20. Szlichta, J., Godfrey, P., Gryz, J.: Fundamentals of order depen-
dencies. Proc. VLDB Endow. 5(11), 1220–1231 (2012)

21. Szlichta, J., Godfrey, P., Gryz, J., Ma, W., Qiu, W., Zuzarte, C.:
Business-intelligence queries with order dependencies in DB2. In:
Proceedings of the International Conference on Extending Data-
base Technology (EDBT), pp. 750–761, (2014)

22. Szlichta, J., Godfrey, P., Gryz, J., Zuzarte, C.: Expressiveness and
complexity of order dependencies. Proc. VLDB Endow. 6(14),
1858–1869 (2013)

123

http://archive.ics.uci.edu/ml
http://downey-n1.cs.northwestern.edu/public
http://downey-n1.cs.northwestern.edu/public
http://oeis.org/A000522

	Efficient order dependency detection
	Abstract
	1 Order dependency discovery
	2 Preliminaries
	2.1 Notation
	2.2 OD variants
	2.3 Intuition and examples
	2.4 Influence of the comparison operator
	2.5 ODs and other constraints
	2.6 Complexity

	3 Minimal order dependencies
	4 Efficient validity check
	4.1 Sorted partitions
	4.2 Efficient OD validation
	4.3 Product of sorted partitions

	5 Lattice traversal and pruning
	6 The discovery algorithm
	6.1 Dependency computation
	6.1.1 Merge-pruning
	6.1.2 Updating candidate sets

	6.2 Pruning
	6.3 Level generation
	6.4 Algorithm extensions

	7 Evaluation
	7.1 Datasets
	7.2 Scalability in the number of rows
	7.3 Scalability in the number of columns

	8 Conclusion and future work
	Acknowledgments
	References

