
The VLDB Journal (2017) 26:5–30
DOI 10.1007/s00778-016-0434-5

SPECIAL ISSUE PAPER

Dissociation and propagation for approximate lifted inference
with standard relational database management systems

Wolfgang Gatterbauer1 · Dan Suciu2

Received: 31 December 2015 / Revised: 25 April 2016 / Accepted: 13 June 2016 / Published online: 16 July 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Probabilistic inference over large data sets is a
challenging data management problem since exact inference
is generally #P-hard and is most often solved approximately
with sampling-based methods today. This paper proposes
an alternative approach for approximate evaluation of con-
junctive queries with standard relational databases: In our
approach, every query is evaluated entirely in the database
engine by evaluating a fixed number of query plans, each
providing an upper bound on the true probability, then tak-
ing their minimum. We provide an algorithm that takes
into account important schema information to enumerate
only the minimal necessary plans among all possible plans.
Importantly, this algorithm is a strict generalization of all
known PTIME self-join-free conjunctive queries: A query is
in PTIME if and only if our algorithm returns one single plan.
Furthermore, our approach is a generalization of a family of
efficient ranking methods from graphs to hypergraphs. We
also adapt three relational query optimization techniques to
evaluate all necessary plans very fast. We give a detailed
experimental evaluation of our approach and, in the process,
provide a new way of thinking about the value of proba-
bilistic methods over non-probabilistic methods for ranking
query answers. We also note that the techniques developed
in this paper apply immediately to lifted inference from sta-

Electronic supplementary material The online version of this
article (doi:10.1007/s00778-016-0434-5) contains supplementary
material, which is available to authorized users.

B Wolfgang Gatterbauer
gatt@cmu.edu

1 Tepper School of Business, Carnegie Mellon University,
Pittsburgh, PA, USA

2 Department of Computer Science and Engineering,
University of Washington, Seattle, WA, USA

tistical relational models since lifted inference corresponds
to PTIME plans in probabilistic databases.

Keywords Probabilistic inference · Lifted inference ·
Probabilistic databases · Problem relaxation · Ranking ·
Query plans · Query optimization

1 Introduction

Probabilistic inference over large data sets is becoming
a central data management problem. Recent large knowl-
edge bases, such as Yago [39], Nell [7], DeepDive [15],
or Google’s Knowledge Vault [18], have millions to bil-
lions of uncertain tuples. Data sets with missing values
are often “completed” using inference in graphical mod-
els [8,60,70] or sophisticated low rank matrix factorization
techniques [20,69] that ultimately result in a large probabilis-
tic database. Data sets that result from crowdsourcing [1] or
that are inferred from unstructured information [9] are also
uncertain, and probabilistic databases have been applied to
bootstrapping over samples of data [79].

However, probabilistic inference is known to be #P-hard
in the size of the database, even for some very simple
queries [12]. Today’s state of the art inference engines
use either sampling-based methods or are based on some
variant of the DPLL algorithm for Weighted Model Count-
ing [14]. For example, Tuffy [50], a popular implementation
of Markov Logic Networks (MLN) over relational data-
bases, uses Markov Chain Monte Carlo methods (MCMC).
Gibbs sampling can be significantly improved by adapting
some classical relational optimization techniques [80]. For
another example, MayBMS [3] and its successor Sprout [54]
use query plans to guide a DPLL-based algorithm for
Weighted Model Counting [34]. While both approaches

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-016-0434-5&domain=pdf
http://dx.doi.org/10.1007/s00778-016-0434-5

6 W. Gatterbauer, D. Suciu

deploy some advanced relational optimization techniques,
at their core they are based on general purpose probabilistic
inference techniques, which either run in exponential time
(DPLL-based algorithms have been proven recently to take
exponential time even for queries computable in polynomial
time [4]), or require many iterations until convergence.

In this paper, we propose a different approach to query
evaluation with probabilistic databases (PDBs). In our
approach, every query is evaluated entirely in the database
engine. Probability computation is done at query time, using
simple arithmetic operations and aggregates. Thus, prob-
abilistic inference is entirely reduced to a standard query
evaluation problem with aggregates. There are no iterations
andno exponential blowups.All benefits of relational engines
(such as cost-based optimizations, multi-core query process-
ing, shared-nothing parallelization) are directly available to
queries over probabilistic databases.

To achieve this, we compute approximate rather than exact
probabilities, with a one-sided guarantee: The probabilities
are guaranteed to be upper bounds to the true probabilities,
whichwe show is sufficient to rank the topquery answerswith
high precision. Our approach consists of approximating the
true #P-hard query probability by evaluating a fixed number
of PTIME queries (the number depends on the query), each
providing an upper bound on the true probability, then taking
their minimum. Another way to put this is that we replace
the standard semantics based on reliability, with a related
but much more efficient semantics based on propagation,
and which is guaranteed to be an upper bound on reliability.
We explain this alternative semantics next.

The semantics of a query over a PDB is based on the
possible world semantics, which is equivalent to “query reli-
ability” [36]. Among its roots are network reliability [10]
which is defined as the probability that a source node s
remains connected to a target node t in a directed graph if
edges fail independently with known probabilities. However,
computing network reliability is #P-hard.Hence,many appli-
cations where an exact probabilistic semantics is not critical
(especially for ranking alternative answers) have replaced
network reliability with another semantics based on a “prop-
agation scheme.” We illustrate with an example.

Example 1 (Propagation in k-partite digraphs) Consider the
4-partite graph in Fig. 1a. Intuitively, let’s call a node x
“active” if there exists a directed path from the source node to
x . Then, the “reliability score” r(x) of a node x is the proba-
bility that x is active if every edge e is included in the graph
independently with probability pe. The score of interest is
the reliability of a target node t : r(t) = p1(p2 p4⊗ p3 p5) =
p1(1− (1− p2 p4)(1− p3 p5)) where “⊗” stands for the
“independent-or” in infix or prefix notation, which combines
probabilities as if calculating the disjunction between inde-
pendent events:

⊗
i pi :=1 −

∏
i (1 − pi). While reliability

s ta
c

bp1
p2
p3

p4
p5

(a)

q :−R(s,x),S(x,y),T (y, t)

R C A
p1 s a

S A B
p2 a b
p3 a c

T B C
p4 b t
p5 c t

(b)

s t
a" c

b
p1

p2

p3

p4
p5

a'p1

(c)

qΔ1 :−Ry(s,x,y),S(x,y),T (y, t)
Ry C A B
p1 s a b
p1 s a c

S A B
p2 a b
p3 a c

T B C
p4 b t
p5 c t

(d)

Fig. 1 Example 1. The propagation score ρ(t) in graph a corresponds
to the reliability score r(t) in graph c with node a dissociated into two.
b, d Corresponding chain queries with respective databases

can be computed efficiently for series-parallel graphs as the
one in Fig. 1a, it is #P-hard in general, even on 4-partite
networks [10]. The probability of a query over a PDB corre-
sponds precisely to network reliability. For example, in the
case of a 4-partite graph, reliability is given by the probabil-
ity of the 3-chain query q :− R(s, x), S(x, y), T (y, t) over
the PDB shown in Fig. 1b (here s and t stand for con-
stants). Notice that the reliability of a node is a combinatorial
or “global property” of the entire graph: it is defined as a
weighted average over all possible worlds and can generally
not be calculated easily.

In contrast, the propagation score ρ(x) of a node x is a
value that recursively depends on the scores of its neighbors
and the probabilities of the connecting edges:

ρ(x) ←
⊗

e

pe · ρ(ue) (1)

where e ranges over all incoming edges (ue, x). Bydefinition,
ρ(s) = 1. In Fig. 1a, the propagation score of the target
node t is ρ(t) = p4ρ(b)⊗ p5ρ(c) = p1 p2 p4 ⊗ p1 p3 p5 =
1− (1− p1 p2 p4)(1− p1 p3 p5). Notice that the propagation
score of a node is a recursive or “local property” since it can
be calculated from the scores of its neighbors.

With “propagation”, we refer to a family of techniques for
calculating the relative importance of nodes in networks with
iterative models of computation: “relevance” is propagated
across edges from node to node while ignoring past depen-
dencies (see Fig. 2). Thus, unlike reliability, propagation
scores can always be computed efficiently, even on very large
graphs. Variants of propagation have been successfully used
in a range of applications for calculating relevance where
exact probabilities are not necessary. Examples include sim-
ilarity ranking of proteins [77], integrating and ranking
uncertain scientific data [16], models of human comprehen-
sion [59], activation in feedforward networks [65], search in
associative networks [11], trust propagation [38] and influ-
ence propagation [35] in social networks, keyword search in
databases [5], the noisy-or gate [56, Sect. 4.3.2], computing

123

Dissociation and propagation for approximate lifted inference with standard relational... 7

Fig. 2 “Relevance propagation” in graphs works by iteratively cal-
culating messages m(e) across edges e and relevance scores ρ(n) of
nodes n. The propagation method we consider is pseudoprobabilis-
tic in that the two operators are “independent-and” or product (·),
and “independent-or” (⊗). PageRank and related methods from semi-
supervised learning replace the probability pe of an edge with a weight
(here dn stands for the out-degree of node n) and the independent-or
with addition or sum (

∑
). Belief Propagation propagates not just one

message across an edge but a vector m(e) of messages, scales this
message vector with a matrix ψe (also called “edge potential”), and
replaces the independent-or with a component-wise product (�), fol-
lowed by a normalization (here Z stands for a normalizer). Linearized
Belief Propagation uses again addition as second operator and requires
no normalization. Intuitively, the method developed in this paper gen-
eralizes pseudoprobabilistic relevance propagation to hypergraphs

web page reputation with PageRank [6], belief propagation
in graphical models [56], linearized belief propagation for
node labeling [26], or finding true facts from a large amount
of conflicting information [78].1 Note that the resulting rel-
evance scores commonly do not have an exact probabilistic
semantics, andmay be used as a heuristics instead. For exam-
ple, the PageRank of a web page does not have to be smaller
than 1 (see Fig. 2 for a comparison of the update equations).
However, these variants have in common that the score of
a node is recursively defined only in terms of the scores of
its neighbors, and not in terms of the entire topology of the
graph.

While Example 1 shows how the propagation score can
be defined on graphs, queries are not represented by graphs
but hypergraphs, in general. To the best of our knowledge,
no definition of a propagation score on hypergraphs exists,
and it is not obvious how to define such a score. Also, the
propagation score between two nodes depends on the direc-
tionality of the graph, which can be best illustrated with our

1 Also see [55] for a related discussion of fact finding algorithms, in
which the approach of [78] and its use of the iterative propagation Eq. 1
is referred to as “pseudoprobabilistic”.

example of k-partite graphs: In Fig. 1a the propagation score
from s to t is different from the one from t to s (in fact, the lat-
ter coincides with the reliability score). It is not immediately
clear what this directionality corresponds to for a relational
query whose lineage defines a hypergraph.

With this paper, we introduce a propagation score for
queries over PDBs, describe the connection to the relia-
bility score, and give a method to efficiently compute the
propagation score for any self-join-free conjunctive query
with a standard relational database engine. While the prop-
agation score differs from the reliability score, we prove
several properties showing that it is a reasonable substitute:
(1) propagation and reliability are guaranteed to coincide
for all known PTIME queries: our score are thus strict gen-
eralization of efficient evaluation methods from PTIME to
#P-hard queries; (2) propagation is in PTIMEand canbe eval-
uated with a standard relational DBMS without any changes
to the underlying relational query engine; (3) propagation
is inspired by the above listed number of successful ranking
schemes on graphs: yet our score extends the underlying idea
of propagation on graphs to propagation on hypergraphs; (4)
the propagation score is always an upper bound to the relia-
bility score: it can thus be applied as efficient filter; and (5)
the ranking given by the propagation score is very close to
the ranking given by the reliability score in our experimental
validation.

Example 2 (Example 1 cont.) We have seen that the propa-
gation score differs from the reliability score on the DAG
(Directed Acyclic Graph) in Fig. 1a. By inspecting the
expressions of the two scores, one can see that they dif-
fer in the way they treat p1: reliability treats it as a single
event, while propagation treats it as two independent events.
In fact, the propagation score is precisely the reliability score
of the DAG in Fig. 1c, which has two copies of p1. We
call this DAG the “dissociation” of the DAG in Fig. 1a.
At the level of the database, dissociation can be obtained
by adding a new attribute B to the first relation R (Fig. 1d).
The dissociated query is qΔ1 :−Ry(s, x, y), S(x, y), T (y, t),
where the exponent y in Ry indicates the new attribute,
and its probability is indeed the same as the propagation
score for the graph in Fig. 1a. The important observation
here is that, while the evaluation problem for q is #P-hard
in general, the query qΔ1 is “hierarchical” [12] and can
therefore be computed efficiently. A query q usually has
more than one dissociation: q has a second dissociation
qΔ2 :− R(s, x), S(x, y), T x (x, y, t) obtained by adding the
attribute A to T (not shown in the figure). Its probability cor-
responds to the propagation score from t to s, i.e. from right
to left. And qΔ3 :− Ry(s, x, y), S(x, y), T x (x, y, t) is a third
dissociation. We prove that each dissociation step can only
increase the probability (e.g., r(q) ≤ r(qΔ1) ≤ r(qΔ3)). We
define the propagation score of q as the smallest probabil-

123

8 W. Gatterbauer, D. Suciu

ity of these three dissociations. The database system has to
compute r(qΔ1) and r(qΔ2) and return the smallest score: on
the graph in Fig. 1a, this is r(qΔ2), since r(q) = r(qΔ2).

Contributions and outline. (1) We derive “query disso-
ciation” as a generalization of relevance propagation from
graphs to hypergraphs and define the propagation score for
any self-join-free conjunctive query in terms of dissociations
(Sect. 3). A query dissociation is a rewriting of both the data
and the query. On the data, a dissociation is obtained by
making multiple, independent copies of some of the tuples
in the database. Technically, this is achieved by extending
the relational schema with additional attributes. On a query,
a dissociation extends atoms with additional variables. We
prove that a dissociation can only increase the probability of
a query, and define the propagation score of a query as the
minimum reliability of all dissociated queries that are “hier-
archical”. This is justifiedby the fact that, in a k-partite graph,
the propagation score is precisely the probability of one dis-
sociated hierarchical query. Thus, in our definition, choosing
a direction for the network in order to define the propagation
score corresponds to choosing a particular dissociation that
makes the query hierarchical.

(2) We show how the propagation score can be evaluated
with the help of a query-dependent number of query plans
(Sect. 4). We achieve this by establishing a one-to-one corre-
spondence between hierarchical dissociations and traditional
query plans and showing that every query plan computes a
probability that is an upper bound of query reliability. More-
over, we describe a natural partial order on the probabilities
of query plans Thus every self-join-free conjunctive query
can be approximated by a fixed number of query plans, and
it suffices to iterate over all minimal plans, compute their
probabilities, then take the minimum. We give an intuitive
system R-style algorithm [66] that enumerates all minimal
plans for a given query q.

(3) We generalize the algorithm to take into consideration
schema knowledge on deterministic relations and functional
dependencies (Sect. 5). In particular, we give a unified treat-
ment and generalization of all previously known PTIME
self-join free conjunctive queries, i.e. those that can be eval-
uated with a query plan in polynomial time in the size of the
database, and show that our approach naturally generalizes
all known PTIME queries: for every query that is PTIME
(whether due to key constraints, or the presence of deter-
ministic tables), reliability and propagation scores always
coincide; for every query that is #P-hard, our approach still
returns a unique, well-defined score in polynomial time.

(4) We give a set of targeted multi-query optimization
techniques that considerably speed up the time needed to
evaluate the propagation score (Sect. 6). Evaluating some
queries may require a large number of plans (e.g., an 8-chain
query requires 429 plans). Evaluating all plans sequentially

would still be prohibitively expensive. Instead, we tailor
three relational query optimization techniques to dissocia-
tion: (i) combining all minimal plans into one single query,
(ii) reusing common subexpressionswith views, and (iii) per-
forming deterministic semi-join reductions.

(5) We conduct a set of very extensive experiments in
which we compare the quality of ranking and scalability of
various alternative methods (probabilistic and not) against
exact probabilistic inference on TPC-H data [71]. We devise
a setup that measures the additional benefit of probabilistic
inference for ranking over alternative methods, showing that
our technique has high precision for ranking query answers
based on their output probabilities. We also show that, with
all our optimizations enabled, computing hard queries over
probabilistic databases incurs only a modest penalty over
computing the same query on a deterministic database: For
example, the 8-chain query (with 429 query plans) runs only
a factor of <10 slower than on a deterministic database.

Prior publications. In recent work [29], we apply the idea
of dissociation to both upper and lower bound the probability
of Boolean functions, but discuss the connection to query
evaluation only in passing. Parts of Sects. 3 and 4 are based
on a workshop paper [27]. The remainder is based upon [30].
We added the connection to propagation on graphs, more
detailed experiments, slightly changed the formalisms, and
included extensive illustrating examples throughout. Due to
space restrictions, some of our proofs had to be included in
an online appendix on ArXiv [28].

2 Technical background

2.1 Probabilistic databases and self-join-free
conjunctive queries

A tuple-independent probabilistic database (TI-PDB) is a
database D plus a function p(t) ∈ [0, 1] associating an
independent probability to each tuple t ∈ D. We fix a rela-
tional vocabulary σ = (R1, . . . , Rm) and denote with D
the database, i.e. the collection of tuples and their probabil-
ities. A possible world is then a subset of D generated by
independently including each tuple t in the world with prob-
ability p(t). We use bold notation (e.g., x) to denote both
sets or tuples. A self-join-free conjunctive query (sj-free CQ)
is a first-order formula q(z) = ∃x1 . . . ∃xk .(a1 ∧ · · · ∧ am)

where each atom ai represents a relation Ri (xi), the variables
x1, . . . , xk are called existential variables, and z are called
the head variables (or free variables).2

2 W.l.o.g. we assume xi to be a tuple of only variables and don’t write
the constants. Selections can always be directly pushed into the database
before executing the query.

123

Dissociation and propagation for approximate lifted inference with standard relational... 9

The term “self-join-free” means that the atoms refer to
distinct relational symbols.We assume therefore w.l.o.g. that
every relational symbol R1, . . . , Rm occurs exactly once in
the query. Unless otherwise stated, a “query” in this paper
always denotes a sj-free CQ. As usual, we abbreviate a query
by q(z) :− a1, . . . , am , and write HVar(q) = z,EVar(q) =
{x1, . . . , xk} and Var(q) = HVar(q)∪EVar(q) for the set
of head variables, existential variables, and all variables of
q. If HVar(q) = ∅, then q is called a Boolean query and
EVar(q) = Var(q). We also write Var(ai) for the vari-
ables in atom ai and at(x j) for the set of atoms that contain
variable x j . The active domain of a variable x j is denoted
ADomx j ,

3 and the active domain of the entire database is
ADom =⋃

j ADomx j . The focus of probabilistic query eval-
uation is to compute P[q], i.e. the probability that the query
is true in a randomly chosen world. We will refer to this
probability as the “query reliability” r(q) [36].

It is known that the data complexity [76] of any query q
is either in PTIME or #P-hard [13]. The PTIME queries are
also called “safe queries” and, for the case of sj-free CQs, are
characterized precisely by a syntactic property called hier-
archical queries [12]. We briefly review these results:

Definition 3 (Hierarchical query) A query q is called hier-
archical iff for any two existential variables x, y ∈ EVar(q),
one of the following three conditions holds: at(x) ⊆
at(y),at(x) ⊇ at(y), or at(x) ∩ at(y) = ∅.

For example, the query q1 :− R(x, y), S(y, z), T (y, z, u) is
hierarchical, while q2 :− R(x, y), S(y, z), T (z, u) is not as
neither of the three conditions holds for the variables y and
z.

Theorem 4 (Hierarchy dichotomy [12]) If q is hierarchical,
then P[q] can be computed in PTIME in the size of D. Oth-
erwise, computing P[q] is #P-hard in the size of D.

We next give an equivalent, recursive characterization of
hierarchical queries, for which we need a few definitions.
We write SepVar(q) for the set of existential variables that
appear in every atom (called “separator variables”). A con-
nected component of q (or short, “query component”) is a
subset of atoms that are connected via existential variables.
A query q is disconnected if its atoms can be partitioned into
two non-empty sets that do not share any existential variables
(e.g., q :− R(x, y), S(z, u), T (u, v) is disconnected and has
two query components: “R(x, y)” and “S(z, u), T (u, v)”).
For every set of variables x, denote q − x the query obtained
by removing all variables x and decreasing the arities of the
relational symbols that contain variables from x. Any query
can become disconnected by removing a set of variables.

3 Defined formally as ADomx j =
⋃

i :x j∈Var(Ri) πx j (Ri).

Lemma 5 (Hierarchical queries) A query q is “hierarchi-
cal” iff either: (1) q has a single atom; (2) q has k ≥ 2
query components all of which are hierarchical; or (3) q has
a separator variable x, and q − {x} is hierarchical.
Every hierarchical query can be computed in PTIME, but
non-hierarchical queries are #P-hard, in general.4

2.2 Probabilistic query plans

Unless otherwise stated, a “query plan” in this paper always
denotes a probabilistic query plan.

Definition 6 (Query plans) A query plan P is given by the
grammar P ::= Ri (x) | π

p
x P | ��

p
[
P1, . . . , Pk

]
where

Ri (x) is a relational atomcontaining the variables x, π p
x is the

probabilistic project operator with duplicate elimination (or
short “projection”), and ��

p
[
. . .

]
is the probabilistic natural

join (or short “join”) in prefix notation, which we allow to be
k-ary (k ≥ 2). We require that joins and projections alternate
in a plan and do not distinguish between join orders.

We write Var(P) for all variables in a plan P and
HVar(P) for its head variables, which are recursively
defined as follows: (1) if P = Ri (x), then HVar(P) = x;
(2) if P = π

p
x (P ′), then HVar = x; and (3) if P =��

p
[
P1, . . . , Pk

]
, then HVar(P) = ⋃k

i=1 HVar(Pi). The exis-
tential variables EVar(P) are then defined as Var(P) −
HVar(P).

Every plan P represents a query qP defined by taking all
atoms mentioned in P as the body and setting HVar(qP) =
HVar(P). A plan is called Boolean if HVar(P) = ∅. We
assume the usual sanity conditions on plans to be satisfied:
for a projection π

p
x P we assume x ⊆ HVar(P), and each

variable y is projected away at most once in a plan, i.e. there
exists at most one operator π

p
x P s.t. y ∈ HVar(P) − x.

For notational convenience, we also use the “project-away
operator” π

p
−yP instead of π

p
x P , where y are the variables

being projected away, i.e. x = HVar(π
p
−yP) = HVar(P)−

y.
Each subplan P returns an intermediate relation of arity

|HVar(P)| + 1. The extra probability attribute stores a
score(t) for each output tuple t ∈ P(D). Given a probabilis-
tic database D and a plan P, score(t) is defined inductively
on the structure of P as follows: (1) If t ∈ Ri (x), then
score(t) = P[t], i.e. its probability in D; (2) if t ∈
��

p
[
P1(D), . . . , Pk(D)

]
where t =��

p
[
t1, . . . , tk

]
, then

score(t) = ∏k
i=1 score(ti); and (3) if t ∈ π

p
x P(D), and

t1, . . . , tn ∈ P(D) are all the tuples that project onto t ,
then score(t) = ⊗n

i=1 score(ti), where “⊗” stands for the
independent-or. In other words, score computes a probability

4 Non-hierarchical queries can be in PTIME when considering func-
tional dependencies or deterministic tables [12,53] (see Sect. 5).

123

10 W. Gatterbauer, D. Suciu

by assuming that all tuples joined by ��
p and all duplicates

eliminated by π p are independent. Only if these conditions
hold, then score is the correct query probability (also called
“query reliability” [36]), but in general it is not. Therefore,
score is also called an extensional semantics [25,56,61] and
is, in general, not equal to the query probability, which is
defined in terms of possible worlds: score(P) �= P[qp].5 For
a Boolean plan P , we get one single score, which we denote
score(P).

The requirement that joins and projections alternate is
w.l.o.g. because nested joins, such as ��

p
[

��
p
[
R1, R2

]
, R3

]

or ��
p

[
R1, ��

p
[
R2, R3

]]
, can be rewritten into ��

p
[
R1,

R2, R3
]
while keeping the same score, e.g., (p1 p2)p3 =

p1(p2 p3). For the same reasonwedonot distinguish between
different permutations in the joins, called join orders [49].We
do not focus on query optimization in this paper until Sect. 6.

Definition 7 (Safe plan) A plan P is called “safe” iff, for
each join ��

p
[
P1, . . . , Pk

]
, the head variables of each sub-

plan Pi contain the same existential variables of plan P:
HVar(Pi) ∩ EVar(P) = HVar(Pj) ∩ EVar(P),∀1 ≤
i, j ≤ k.

The recursive definition of Lemma 5 gives us immediately
a safe plan for a hierarchical query. Conversely, every safe
plan defines a hierarchical query. We next illustrate this.

Example 8 (Hierarchical queries and safe plans) Consider
q(x) :− R(x, y), S(x, y, z), T (y, z, u), depicted in Fig. 3b
with its “augmented incidence matrix”.6 The incidence
matrix I (q) of a Boolean sj-free CQ q with m atoms and k
variables is a m× k-dimensional 01-matrix with I (i, j) = 1
iff x j ∈ Var(ai). We “augment” it in three ways: (1) We
replace 1-entries with circles (◦) and ignore 0-entries: this
merely cosmetic change makes it is easier to recognize pat-
terns; (2) We separate columns for HVar(q) to the left and
EVar(q) to the right: recall that query components and safety
are only determined by EVar(q). For our example we have
HVar(q) = {x} and EVar(q) = {y, z, u}; (3) If the query
is hierarchical, then we emphasize the hierarchy between
EVar(q) with gray background. For our example we have
at(u) ⊆ at(z) ⊆ at(y). Figure 3c shows the correspond-
ing safe plan of q where the hierarchy is reflected in the order

5 Extensional approaches compute the probability of any formula as
a function of the probabilities of its subformulas according to syntactic
rules, regardless of how those were derived. Intensional approaches
reason in terms of possible worlds and keep track of dependencies [56].
6 Incidence matrices allow us to compactly reason about two types of
relationships between variables and relations of sf-free CQs simulta-
neously: (i) in a column: a variable that is shared across relations, and
(ii) in a row: relations that are joined by a variable. They thus allow
us to reason about both the “query hypergraph” and the “dual query
hypergraph” at the same time, which is helpful also for other types of
problems involving sf-free CQs (see, e.g. [24]).

(a) (b)

(c)

(d)

Fig. 3 Example 8. A query q in Datalog (a), its augmented incidence
matrix (b), its unique safe plan in our plan notation (c), and in SQL (d)

in which variables are projected away: first u, then z, finally
the separator variable y. Figure 3d shows the translation into
SQLassuming R(A, B), S(A, B,C), T (B,C, D) as schema
and each table having one additional attribute P for the prob-
ability of a tuple. Here IOR(X) is a user-defined aggregate
(UDA) that calculates the independent-or for the probabili-
ties of grouped tuples, i.e. IOR(p1, . . . , pn) =⊗n

i=1 pi . See
[29] for the complete UDA definition in PostgreSQL.

Next consider q ′ :− R(x, y), S(x, y, z), T (y, z, u), i.e. a
variant of q where x ∈ EVar(q ′). Now q ′ is not hierarchi-
cal anymore since at(x) � at(z),at(x) � at(z), and
at(x) ∩ at(z) �= ∅. Starting with P from Fig. 3c and
replacing the final projection π

p
−y with π

p
−x,y , the plan P ′

is now unsafe: the join ��
p
[
S(x, y, z), π p

−uT (y, z, u)
]
, has

(i)HVar(S(x, y, z)) = {x, y, z}, but (i i) HVar
(π

p
−uT (y, z, u)) = {y, z}: their intersections with EVar(P ′)

= {x, y, z, u} are now different.

The following proposition summarizes our discussion:

Proposition 9 (Safety [12]) (1) Let P be a plan for query
q. Then score(P) = P[q] for any probabilistic database iff
P is safe. (2) Assuming #P �=PTIME, a query q is safe (i.e.
P[q] has PTIME data complexity) iff it has a safe plan P;
in that case the safe plan is unique (up to permutation in the
join orders), and P[q] = score(P).

2.3 Boolean Formulas

Consider a set of Boolean variables X = {X1, X2, . . .} and
a probability function p : X→ [0, 1]. Given a Boolean for-
mula F , denote P[F] the probability that F is true if each

123

Dissociation and propagation for approximate lifted inference with standard relational... 11

(a)

(c)

(b)

(d)

Fig. 4 Example 14: Incidence matrices of q :− R(x), S(x, y), T (y)
and dissociation qΔ :−R

y(x, y), S(x, y), T (y). Original database D
and new database DΔ with table R dissociated on variable y. a q, b qΔ,
c D and d DΔ

variable Xi is independently true with probability p(Xi). In
general, computing P[F] is #P-hard in the number of vari-
ables X.

If D is a probabilistic database then we interpret every
tuple t ∈ D as a Boolean variable and denote the lineage
of a Boolean query q :− a1, . . . , am on D as the Boolean
DNF formula Fq,D = ∨

θ :θ |�q θ(a1) ∧ · · · ∧ θ(am), where
θ ranges over all assignments of EVar(q) to constants in
the active domain that satisfy q on D. It is well known that
P[q] = P[Fq,D]. In other words the probability of a Boolean
query is the same as the probability of its lineage formula.

Example 10 (Lineage) If F = XY1Z1 ∨ XY2Z2, then
P[F] = p(X)

(
p(Y1)p(Z1) ⊗ p(Y2)p(Z2)

)
. Next consider

a query q :− R(x), S(x, y), T (y) over the database D from
Fig. 4c. Then the lineage formula is Fq,D =

(
R(a)∧S(a, b)∧

T (b)
) ∨ (

R(a) ∧ S(a, c) ∧ T (c)
)
, i.e. the same as F up to

variable renaming. It is now easy to see that P[q] = P[Fq,D].
A key technique that we use in this paper is the following

result from [29]: Let F and F ′ be two Boolean functions
with sets of variables X and X′, respectively. We say that
F ′ is a “dissociation” of F if there exists a substitution θ :
X′ → X such that F ′[θ] = F . If θ−1(X) = {X ′, X ′′, . . .}
thenwe say that the variable X dissociates into X ′, X ′′, . . .; if
|θ−1(X)| = 1 then we assume w.l.o.g. that θ−1(X) = X (up
to variable renaming) and we say that X does not dissociate.
Given a probability function p : X→ [0, 1], we extend it to
a probability function p′ : X′ → [0, 1] by setting p′(X ′) =
p(θ(X ′)). Then, we have previously shown:

Theorem 11 (Oblivious DNF bounds [29]) Let F ′ be a
monotone DNF formula that is a dissociation of F through
the substitution θ . Assume that for any variable X, no two
distinct dissociations X ′, X ′′ of X occur in the same prime
implicant of F ′. Then: (1) P[F] ≤ P[F ′], and (2) if every
dissociated variable X ∈ X is deterministic (i.e. p(X) = 0
or p(X) = 1), then P[F] = P[F ′].

Intuitively, a dissociation F ′ is obtained from a formula F
by replacing different occurrences of a variable X with fresh

variables X ′, X ′′, . . .; by doing this, P[F ′] gives us an upper
bound for P[F] and may be easier to compute.

Example 12 (Dissociation) F ′ = X ′Y ∨ X ′′Z is a disso-
ciation of F = XY ∨ X Z , and its probability is P[F ′] =
p(X)p(Y) ⊗ p(X)p(Z). Here, only the variable X disso-
ciates into X ′, X ′′. It is easy to see that P[F] ≤ P[F ′].
Moreover, if p = 0 or 1, then P[F] = P[F ′]. The condi-
tion that no two dissociations of the same variable occur in
a common prime implicant is necessary: for example, F ′ =
X ′X ′′ is a dissociation of F = X as X = XX . However,
P[F] = p(X), P[F ′] = p(X)2, and thus P[F] � P[F ′].

3 Dissociation and propagation for unsafe queries

This section defines our technique of “query dissociation”
and defines the “propagation score” of a query. Our moti-
vation comes from Theorem 4: hierarchical queries are safe
(i.e. in PTIME), while non-hierarchical queries are unsafe
(i.e. #P-hard). At its very core, our approach will approxi-
mate the probability of a non-hierarchical query with a set
of related hierarchical queries. We first define our approach
(Sect. 3.1), then draw the connection to propagation in graphs
(Sect. 3.2), and finally derive a partial order between a set of
hierarchical queries (Sect. 3.3).

3.1 Query dissociation

Definition 13 (Query dissociation) Given a probabilistic
database D and a query q(z) :− R1(x1), . . . , Rm(xm). Let
Δ = (y1, . . . , ym) be a collection of sets of variables with
yi ⊆ EVar(q)− xi for every relation Ri . The “query disso-
ciation” defined by Δ has then two components:

1. the “dissociated query”:

qΔ(z) :− R
y1
1 (x1, y1), . . . , R

ym
m (xm, ym)

where each R
yi
i (xi , yi) is a new relation of arity |xi |+|yi |.

2. the “dissociated database” DΔ consisting of the tables
over the vocabulary σΔ = (R

y1
1 , . . . , R

ym
m) obtained

by replacing each table Ri with the ki -fold Cartesian
product Ri × ADomyi1 × · · · × ADomyik where yi =
(yi1, . . . , yiki). For each new tuple t ′ ∈ R

yi
i , its proba-

bility is p′(t ′) = p(πxi t
′), i.e. the probability of t in the

database D.

Thus, conceptually, we define the semantics of “query
dissociation” as follows: Add some existential variables to
some atoms in the query; this results in a dissociated query
over a new schema. Transform the probabilistic database by
replicating some of their tuples and by adding new attributes

123

12 W. Gatterbauer, D. Suciu

to match the new schema; this is the dissociated database.
Finally, compute the probability of the dissociated query on
the dissociated database. Recall that each tuple in the original
table represents an independent probabilistic event. The dis-
sociated table now contains multiple copies of each tuple, all
with the same probability, yet considered to represent inde-
pendent events. Thus, the dissociated table has a different
probabilistic interpretation than the original table. Notice that
this is the semantics of a dissociated query, and not the way
we actually evaluate queries (in later sections we describe
methods that evaluate the dissociated query without modify-
ing the tables in the database).

Example 14 (Example 10 cont.) We illustrate with the query
q :− R(x), S(x, y), T (y) and the database shown in Fig. 4c
where a variable pi stands for the independent probabil-
ity of a tuple with index i . Then Δ = ({y},∅,∅) defines
the following dissociation: qΔ :− Ry(x, y), S(x, y), T (y).
Notice we write here and later Ry instead of R{y} to sim-
plify our notation. The active domain ADomy is {b, c}, and
Fig. 4d shows the new database with table Ry as the original
table R dissociated on variable y. Notice that the origi-
nal tuple R(a) got dissociated into two tuples Ry(a, b) and
Ry(a, c) with the same probability p1. Figure 4b shows qΔ

with the help of an incidence matrix that is augmented in
a 4th way: while an empty circle (◦) still indicates that the
original relation contains a variable, a full circle (•) now
indicates that a relation is dissociated on a variable. Notice
that the lineage of the dissociated query qΔ is FqΔ,DΔ =
Ry(a, b), S(a, b), T (b) ∨ Ry(a, c), S(a, c), T (c) and is the
same (up to variable renaming) as the dissociation of the
lineage of query q: F ′ = X ′Y1Z1 ∨ X ′′Y2Z2. Also notice
the deliberate similarity with Example 1 and Fig. 1 from the
introduction.

This example generalizes and allows us to prove our
first major technical result that query dissociation can only
increase the probability:

Theorem 15 (Upper query bounds) For every database D
and every dissociation Δ of a query q : P[qΔ] ≥ P[q].
Proof (Theorem 15) This follows immediately from Theo-
rem 11 by noting that the lineage FqΔ,DΔ is a dissociation
of the lineage Fq,D through the substitution θ : DΔ → D
defined as follows: for every tuple t ′ ∈ R

yi
i , θ(t ′) = πxi (t

′).
��

By Theorem 4, the probability of a dissociation can be
evaluated in PTIME iff qΔ is hierarchical. Hence, amongst
all dissociations, we are interested in those that are easy to
evaluate and use them as a technique to approximate the
probabilities of queries that are hard to compute:

Fig. 5 Connection between reliability and propagation in networks
and conjunctive queries (CQs). In contrast to networks, the propagation
score for CQs is the minimum over all possible hierarchical dissocia-
tions, and is therefore unique for every query and database. (+) and (−)
denote positive or negative properties (color figure online)

Definition 16 (Hierarchical dissociation) A dissociation Δ

of a query q is called “hierarchical” if the dissociated query
qΔ is hierarchical.

The idea now is simple: Find a hierarchical dissociation Δ,
compute P[qΔ], and thereby obtain an upper bound on P[q].
In fact, we will consider all hierarchical dissociations and
take the minimum of their probabilities, since this gives an
even better upper bound on P[q] than that by a single disso-
ciation. We call this quantity the “propagation score” of the
queryq because of similaritieswith efficient relevance propa-
gation algorithms on graphs. Figure 5 and the next subsection
explain in more detail how query dissociation generalizes
“relevance propagation” from graphs to hypergraphs.

Definition 17 (Propagation) The “propagation score” ρ(q)

for a query q is the minimum probability of all hierarchical
dissociations, i.e. ρ(q) = minΔ P[qΔ] with Δ ranging over
all hierarchical dissociations.

We propose to adopt the propagation score as an alter-
native semantics for ranking query results over probabilistic
databases. While the data complexity of computing the reli-
ability r(q) is #P-hard in general, computing the propagation
score ρ(q) is always in PTIME in the size of the database.
Furthermore,ρ(q) ≥ r(q) and, ifq is safe, thenρ(q) = r(q).
Both claims follow immediately from Theorem 15. Hence,
the propagation score is a natural generalization of relia-
bility from safe queries to all queries: If the query is safe,
both scores coincide; if the query is unsafe, propagation still
allows to evaluate the query in PTIME (in addition, the next

123

Dissociation and propagation for approximate lifted inference with standard relational... 13

two sections will show how to evaluate the propagation very
efficiently without first dissociating the tables).

3.2 Dissociation and the relation to propagation on
graphs

Recall that our original motivation was to develop for queries
a concept that is analogous to propagation on directed net-
works. Queries have no concept of direction, and we suggest
that the choice of direction in a graph corresponds to a partic-
ular choice of hierarchical dissociation of a query. We now
justify our definitions of query dissociation and propagation
by drawing the connection to network reliability and propa-
gation: When a digraph is k+1-partite, then its two terminal
reliability can be expressed by a conjunctive k-chain query.7

Further, the propagation score over this network corresponds
to one of several possible dissociations of this query q, some
of which khave no natural correspondence to propagation on
graphs. Thus, query dissociation is a strict generalization
of network propagation on k-partite graphs, and we define
query propagation as theminimum reliability of a set of query
dissociations (see Fig. 5). Notice, however, that dissociation
admits a natural interpretation as network propagation only
on k-partite graphs, and says nothing about graphs that are
not k-partite.

In the following, we use [k] to denote the set {1, . . . , k},
and x[i, j] as short form for (xi , xi+1, . . . , x j).

Proposition 18 (Connection to networks) Let G = (V, E)

be a k+1-partite digraph with a source node s and a target
node t, where each edge has a probability. The nodes are
partitioned into V = {s}∪V2 ∪ . . .∪Vk ∪{t}, and the edges
are E = ⋃

i Ri , where Ri denotes the set of edges from Vi
to Vi+1 with i ∈ [k]. Then:

(a) The (s, t)-network reliability of G is P[q] with:

q :− R1(s, x2), R2(x2, x3), . . . , Rk(xk, t)

(b) The directed propagation score from s to t (as defined
in Example 1) is P[qΔ] with:

qΔ :− R
x[3,k]
1 (s, x[2,k]), R

x[4,k]
2 (x[2,k]), . . . , R∅k (xk, t)

7 A conjunctive k-chain query is a query q without self-joins in which
each relation is binary, all relations are joined together, and there is no
single variable common to more than two relations. Furthermore, the
first and last variable are head variables and can be replaced by con-
stants: q(x1, xk+1) :− R1(x1, x2), R2(x2, x3), . . . , Rk(xk , xk+1). The
fact that relations are binary entails that the query hypergraph is actually
a standard graph. Similarly, the fact that a variable is not common to
more than two relations also entails the “dual hypergraph” to be a graph
as well. The expression chain query derives from the observation that
both its hypergraph and dual hypergraph resemble a simple chain.

3.3 Partial dissociation order

The difficulty in computing ρ(q) is that the total number
of dissociations is large even for relatively small queries:
the number corresponds to the cardinality of the power set
of variables that can be added to atoms. Thus, if q has k
existential variables and m atoms, then q has 2|K | possible
dissociations with K = ∑m

i=1
(
k − |Var(ai)|

)
forming a

partial order in the shape of a power set lattice:

Definition 19 (Partial dissociation order)Wedefine the par-
tial order on the dissociations of a query as:

Δ � Δ′ ⇔ ∀i : yi ⊆ y′i

Whenever Δ � Δ′, then qΔ′ , DΔ′ is a dissociation of
qΔ, DΔ (given by Δ′′ = Δ′ − Δ). Therefore, we obtain
immediately: If Δ � Δ′ then P[qΔ] ≤ P[qΔ′]. However, the
statement holds in both directions:

Theorem 20 (Partial dissociation order) For every two dis-
sociations Δ and Δ′ of a query q, the following holds over
every database:

Δ � Δ′ ⇔ P[qΔ] ≤ P[qΔ′]

Example 21 (Partial dissociation order) Consider the query
q :− R(x), S(x), T (x, y),U (y). It is unsafe and allows 23 =
8 dissociations which are shown in Fig. 6a with the help of
augmented incidence matrices. Among the 8 dissociations,
5 are hierarchical, and 2 among those 5 are minimal:

(a) (b)

Fig. 6 Examples 21 and 23: a Partial dissociation order for
q :− R(x), S(x), T (x, y),U (y). “Hierarchical dissociations” are green
and have the hierarchies between variables shown in their augmented
incidencematrices (3–7), “minimal hierarchical dissociations” are dark
green and double-lined (3 and 4). b All 5 query plans, their correspon-
dence to hierarchical dissociations, and their partial dissociation order
(color figure online)

123

14 W. Gatterbauer, D. Suciu

qΔ3 :− R(x), S(x), T (x, y),Ux (x, y)

qΔ4 :− Ry(x, y), Sy(x, y), T (x, y),U (y)

The propagation score is the minimum score of all mini-
mal hierarchical dissociations: ρ(q) = mini∈{3,4} P[qΔi].
To illustrate that these dissociations are upper bounds, con-
sider a database with R = T = U = {(1), (2)}, S =
{(1, 1), (1, 2), (2, 2)}, and the probability of all tuples being
1
2 . Then P[q] = 83

29
≈ 0.161, while P[qΔ3] = 169

210
≈

0.165 and P[qΔ4] = 353
211

≈ 0.172. Both dissociations give
upper bounds, and the propagation score is their minimum
(≈ 0.165). Figure 6b is explained later in Example 23.

The smallest element in the lattice of dissociations is
Δ⊥ = (∅, . . . ,∅) with qΔ⊥ = q, and the largest element is
Δ� = (Var(q) − Var(a1), . . . ,Var(q) − Var(am)).qΔ�

is always hierarchical as every atom contains all variables.
As we move up in the lattice the probability increases,
but the hierarchy status may toggle arbitrarily from hier-
archical to non-hierarchical and back. For example, the
query q :− R(x), S(y), T (x, y, z) is non-hierarchical, its
dissociation q ′ :− R(x), Sy(x, y), T (x, y, z) is hierarchical,
its dissociation q ′′ :− Rz(x, z), Sy(x, y), T (x, y, z) is non-
hierarchical again.

This suggests the following naive algorithm for computing
ρ(q): Enumerate all dissociations Δ1,Δ2, . . . by traversing
the lattice breadth-first, bottom up (i.e. whenever Δi ≺ Δ j

then i < j). For each dissociation Δi , check if qΔi is safe. If
so, then first update ρ ← min(ρ, P[qΔi)], then remove from
the list all dissociationsΔ j � Δi . However, this algorithm is
inefficient for practical purposes for two reasons: (i) we need
to iterate over many dissociations in order to discover those
that are safe; and (ii) computing P[qΔi] requires computing
a new database DΔi for each hierarchical dissociation Δi . In
the next two sections we show how to evaluate the propaga-
tion score very efficiently.

4 Dissociations and minimal query plans

So far, in order to compute the propagation score of a query
q, we need to dissociate its tables and compute several disso-
ciated hierarchical queries qΔ. In practice, we will not apply
naively query dissociation (Definition 13) because creating
the dissociated database is very inefficient.We next show a 1-
to-1 correspondence between hierarchical dissociations and
queryplanswhich allowsus to calculateP[qΔ]on the original
database (Sect. 4.1), and then present an efficient algorithm
for enumerating a minimum number of query plans we need
to evaluate (Sect. 4.2).

4.1 Hierarchical dissociations and query plans

We next show (i) how to efficiently find hierarchical dis-
sociations (by iterating over query plans instead of all
dissociations), and (ii) how to computeP[qΔ]without having
to materialize the dissociated database DΔ.

Theorem 22 (Hierarchical dissociation) For every sf-free
CQ, there is an isomorphism between the set of query plans
and the set of hierarchical dissociations. Moreover, the prob-
ability of a hierarchical dissociated query qΔ is equal to the
score of the corresponding plan: P[qΔ] = score(PΔ).

We next describe the mappings: (1) Δ �→ PΔ: Consider a
hierarchical query dissociationqΔ and denote its correspond-
ing unique safe plan PΔ. This plan uses dissociated relations,
hence each relation R

yi
i (xi , yi) has extraneous variables yi .

Drop all variables yi from the relations and all operators
using them. Since we only remove existential variables from
subgoals, the usual sanity conditions for projections are sat-
isfied and each variable is still projected away in at most one
project operator. This transforms PΔ into a regular, generally
unsafe plan P for q. For a trivial example, the plan corre-
sponding to the top dissociation Δ� of a query q (i.e. the
dissociation at the top of the partial dissociation order with
yi = EVar(q) − xi) is π

p
−EVar(q) ��

p
[
P1, . . . , Pk

]
: It first

joins all tables, then projects away all existential variables.
(2) P �→ ΔP : Conversely, consider any plan P for q.

We define its corresponding hierarchical dissociation ΔP as
follows: For each join operation ��

p
[
P1, . . . , Pk

]
, let its join

variables JVar be the union of the head variables of all sub-
plans: JVar = ⋃

j HVar(Pj). We go from a plan P to a
hierarchical dissociation Δ = g(P) by recursively dissoci-
ating each relation Ri occurring in a subplan Pj of a join
operation ��

p
[
P1, . . . , Pk

]
on the missing existential vari-

ables
(
JVar − HVar(Pj)

) ∩ EVar(P). Then, recursively
and for every relation Ri occurring in Pj , add those variables
to yi .

8

Example 23 (Example 21 continued) We saw in Example 21
that the query q :− R(x), S(x), T (x, y),U (y) has 8 dissoci-
ations depicted in Fig. 6a. Among those, 5 are hierarchical,
and Fig. 6b shows their query plans:

PΔ3 = π
p
−x ��

p[R(x), S(x), π p
−y ��

p[T (x, y),U (y)
]]

PΔ4 = π
p
−y ��

p[U (y), π p
−x ��

p[R(x), S(x), T (x, y)
]]

PΔ5 = π
p
−x ��

p[S(x), π p
−y ��

p[R(x), T (x, y),U (y)
]]

PΔ6 = π
p
−x ��

p[R(x), π p
−y ��

p[S(x), T (x, y),U (y)
]]

PΔ7 = π
p
−x,y ��

p[R(x), S(x), T (x, y),U (y)
]

8 Notice that dissociating a table on any head variable has no implica-
tion on the probability of a query result as it does not change its lineage.
We therefore only focus on dissociating existential variables.

123

Dissociation and propagation for approximate lifted inference with standard relational... 15

As every plan corresponds to one hierarchical dissocia-
tion, the partial dissociation order carries over to a partial
order on all query plans. The propagation score is thus
the minimum of the scores of the two minimal plans:
ρ(q) = mini∈{3,4}

[
score

(
PΔi

)]
. Next consider the subplan

��
p
[
R(x), T (x, y),U (y)

]
in PΔ5 . Here, JVar∩EVar(q) =

{x, y} and the corresponding hierarchical dissociation of this
subplan is qΔ(x, y) :− Ry(x, y), T (x, y),Ux (x, y).

Notice that a hierarchical dissociation is different from
and does not imply a safe plan for the original query. It
merely states that the dissociated query qΔ allowed a safe
plan P assuming all tuples in its relations were independent.
Further notice that while there is a 1-to-1 mapping between
hierarchical dissociations and query plans, non-hierarchical
dissociations do not correspond to plans and are still hard
(e.g., dissociations 0, 1, and 2 in Example 21 and Fig. 6a).

Recall from Sect. 2 that the extensional semantics of an
unsafe plan P differs from the query probability: score(P) �=
P[q], in general. Since we have previously shown that
score(P) = P[qΔ] for some dissociation Δ, we derive the
following rather surprising result:

Corollary 24 (Query plans are upper bounds) Let P be any
plan for a Boolean query q. Then P[q] ≤ score(P).

The proof follows immediately from P[q] ≤ P[qΔP] (The-
orem 15) and P[qΔP] = score(P) (Theorem 22). In other
words, any query plan for q as defined in Definition 6 com-
putes a probability score that is guaranteed to be an upper
bound on the correct probability P[q].

4.2 Enumerating minimal query plans

Theorem 22 suggests the following improved algorithm for
computing the propagation scoreρ(q) of a query: Iterate over
all plans P , compute their scores, and retain the minimum
score minP [score(P)]. Each plan P is evaluated directly on
the original probabilistic database, and there is no need to
materialize the dissociated database. However, this approach
is still inefficient because it computes several plans that cor-
respond to non-minimal dissociations (e.g., plans 5, 6, 7 in
Example 23 are “dominated” by plan 3 since plan 3 is lower
in the partial dissociation order). It thus suffices to evaluate
only the minimal query plans, i.e. those for which the corre-
sponding dissociation isminimal (i.e., not dominated) among
all hierarchical dissociations: in our Example 21, these are
plans 3 and 4. We next describe our third technical result,
the recursive Algorithm 1 that enumerates only the “minimal
query plans” (i.e. those that correspond tominimal hierarchi-
cal dissociations) and thus the minimum necessary number
of query plans to evaluate ρ(q).

We require some additional notation: Call a plan P mini-
mal if ΔP is minimal in the set of hierarchical dissociations.

For example, in Example 21, the minimal plans are PΔ3 and
PΔ4 . The propagation score is thus theminimumof the scores
of these two plans: ρ(q) = mini∈{3,4}

[
score

(
PΔi

)]
. Our

improved algorithm will iterate only over minimal plans, by
relying on a connection between plans and sets of variables
that disconnect a query: A “cut” is a set of existential vari-
ables x ∈ EVar(q) s.t. q − x is disconnected.9 A “min-cut”
(for minimal cut) is a cut for which no strict subset is a cut,
i.e. no proper subset y′ ⊂ y ∈ MinCuts(q) can disconnect
the querywhereMinCuts(q) denotes the set of all min-cuts.
Note that MinCuts(q) = ∅ iff q is disconnected.

The connection between MinCuts(q) and query plans is
given by two observations: (1) Let P be any plan for q. If q is
connected, then the last operator in P is a projection, i.e. P =
π

p
−x ��

p
[
P1, . . . , Pk

]
, and the variables x projected away are

the intersection of the join variables JVar = ⋃
i HVar(Pi)

with existential variables, as we must project away all exis-
tential variables. We claim that x is a cut for q and that
q − x has k query components corresponding to P1, . . . , Pk .
Indeed, if Pi , Pj share any common variable y, then they
must join on y, hence y ∈ JVar. Thus, cuts are in 1-to-
1 correspondence with the top-most project-away operator
of a plan. (2) Next suppose that P corresponds to a hierar-
chical dissociation ΔP , and let P ′ = π

p
−x ��

p
[
P ′1, . . . , P ′k

]

be its unique safe plan. Then x = SepVar(qΔP); i.e. the
top-most project operator removes all separator variables.10

Furthermore, ifΔ ! ΔP is a larger hierarchical dissociation,
thenSepVar(qΔ) ⊇ SepVar(qΔP) (because any separator
variable of a query continues to be a separator variable in any
dissociation of that query). Thus, minimal plans correspond
to min-cuts; in other words, MinCuts(q) is in 1-to-1 corre-
spondence with the top-most projection operator of minimal
plans.

Our discussion leads immediately toAlgorithm 1 for com-
puting the propagation score ρ(q). The algorithm proceeds
recursively: If q is a single atom (line 1), then it is safe andwe
only need to project on the head variables.11 If the query has
more than one atom, then we consider two cases depending
on whether the query is connected. If the query is discon-

9 Recall that we say a query is connected if all subgoals are connected
by consideringonly existential variablesEVar(q). In otherwords,when
computing query componentswe remove head variables from the query:
q − HVar(q). An alternative way to write this is to first substitute all
head variables by constants q ′ = q[a/x] (here q[a/x] denotes the query
obtained by substituting each head variable xi ∈ x with the constant
ai ∈ a), then to let q1, . . . , qk be the components of q ′ connected by any
variable. The query is connected if k = 1, otherwise it is disconnected,
and ∀i �= j : Var(qi) ∩ Var(q j) ⊆ HVar(q).
10 This follows from the recursive definition of the unique safe plan of
a query in Lemma 5: the top-most projection consists precisely of its
separator variables.
11 Note that if there are no existential variables (z = xi), then there is
no need for the projection operator and one could instead simplify to
P ← {Ri (z)}, instead of P ← {π p

z Ri (xi)}.

123

16 W. Gatterbauer, D. Suciu

Recursive algorithm: MP (EnumerateMinimalPlans)
Input: Query q(z) :− R1(x1), . . . , Rm(xm)

Output: Set of all minimal query plans P

1 if m = 1 then P ← {π p
z R1(x1)};

2 else
3 Set P ← ∅ ;
4 if q is disconnected then
5 Let q = q1, . . . , qk be the query components of q;
6 foreach qi do Let HVar(qi)← z ∩ Var(qi);
7 foreach (P1, . . . , Pk) ∈ MP(q1)× · · · × MP(qk) do
8 P ←P ∪ {��p

[
P1, . . . , Pk

]} ;
9 else

10 foreach y ∈ MinCuts(q) do
11 Let q ′ ← q with HVar(q ′) ← z ∪ y ;
12 foreach P ∈ MP(q ′) do P ←P ∪ {π p

−y P} ;

Algorithm 1: enumerates all minimal query plans for a query q.

(a) (b) (c)

Fig. 7 Example 26. Query q and its two minimal hierarchical dissoci-
ations. Notice the hierarchies between EVar(q) for both dissociations.
a q, b qΔ1 and c qΔ2

nected (line 4), then the algorithm recursively computes the
minimal subplans for each query component, then creates a
query plan for each combination of those subplans. If the
query is connected (line 8), the algorithm creates a separate
plan for each min-cut y ∈ MinCuts(q) by moving y from the
existential variablesEVar(q) to the head variablesHVar(q),
thereby disconnecting the query. Notice that recursive calls
of the algorithm will alternate between these two cases, until
they reach a single atom.

Theorem 25 (Algorithm 1)Algorithm 1 returns a sound and
complete enumeration of minimal query plans.

Algorithm 1 is sound in that only plans are generated which
are not dominated by any other plan. It is complete in that
the minimum score of all generated plans is equal to the
propagation score of the query.

Example 26 (Enumerate minimal query plans) Consider the
non-Booleanqueryq(v) :− R(x, y, u), S(y, z, u, v), T (z, v).
Figure 7a shows its incidence matrix with its head vari-
ables HVar(q) = {v} and existential variables EVar(q) =
{x, y, z, u} shown separately. The query is connected, and
among 24 different subsets of EVar(q), there are 2 “min-
cuts”, i.e. minimum sets of variables for which removing
them disconnects the query: MinCuts(q) = {{z}, {y, u}}.
Projecting away the first min-cut {z} separates the query into
q1(z, v) :− R(x, y, u), S(y, z, u, v) and q2(z, v) :− T (z, v).

Notice that q1 and q2 share no existential variables (they
only share head variables z and v). Projecting away the sec-
ond min-cut {y, u} separates q into q3(y, u) :− R(x, y, u)

and q4(y, u, v) :− S(y, z, u, v), T (z, v). Recursive evalua-
tion of q1 to q4 shows that they are all hierarchical, from
which follows that q has 2 minimal query plans:

PΔ1 = π
p
−z ��

p[π
p
−y,u ��

p[π
p
−x R(x, y, u), S(y, z, u, v)

]
, T (z, v)

]

PΔ2 = π
p
−y,u ��

p[π
p
−x R(x, y, u), π

p
−z ��

p[S(y, z, u, v), T (z, v)
]]

Figure 7b and c show their respective hierarchical dissoci-
ations, with existential variables re-ordered as to show the
hierarchy implied by the query plans.

4.3 Other observations

(1) Conservation. Some probabilistic database systems first
check if a query q is safe, and in that case compute the exact
probability using the safe plan, otherwise use some approxi-
mation technique.We show that Algorithm 1 is conservative,
in the sense that, if q is safe, then ρ(q) = P[q]. Indeed, in
that case MP(q) returns a single plan, namely the safe P for
q, because the empty dissociation,Δ⊥ = (∅, . . . ,∅), is safe,
and it is the bottom of the dissociation lattice, making it the
unique minimal hierarchical dissociation.
(2) Approximation quality. We next show that the relative
error of approximating query reliability with dissociation
improves when the input probabilities decrease. As a con-
sequence, the quality of the ranking also increases. As a
practical consequence, the rankings returned by dissociation
are better if the input probabilities are small.

Proposition 27 (Small probabilities) Given a query q and
database D. Consider the operation of scaling down the
probabilities of all tuples in D with a positive factor f < 1.
Then the relative error of approximation of the query prob-
ability P[q] by the propagation score ρ(q) decreases as f

goes to 0: lim f→0+
ρ(q)−P[q]

P[q] → 0.

In the following analytic example, we illustrate Proposi-
tion 27 by calculating the relative ratio between propagation
and reliability for changing input probabilities.

Example 28 (Small probabilities) We consider the Boolean
query q :− R(x), Sd(x, y), T (y, z) and the dissociation
qΔ :− Ry(x, y), Sd(x, y), T (y, z) over the database r1 =
R(a), s1 = Sd(a, b), s2 = Sd(a, c), t1 = T (b), and t2 =
T (c). With deterministic relation Sd , the lineages of q and
qΔ are Lin(q) = r1t1 ∨ r1t2 and Lin(qΔ) = r1t1 ∨ r ′1t2,
respectively. Assuming P[r1] = r and P[t1] = P[t2] = t , the
respective probabilities become P[q] = r(t⊗ t) = r t (2− t)
and ρ(q):=P[qΔ] = r t ⊗ r t = r t (2 − r t) with r1
dissociated.

123

Dissociation and propagation for approximate lifted inference with standard relational... 17

(a) (b) (c) (d)

Fig. 8 Example 28. Comparing P = P[q] = P[r1t1∨r1t2] and ρ = P[qΔ] = P[r1t1∨r ′1t2] for varying input probabilities p = P[r1] and q = P[ti].
a Probability P, dissociation ρ. b Relative ratio ρ/P. c Relative not-ratio P̄/ρ̄. d Odds ratio (ρP̄)/(ρ̄P) (color figure online)

There are four reasonable metrics to measure the approx-
imation quality of dissociation ρ with regard to a probability
P: (1) their absolute difference ρ−P, which is not meaning-
ful when both are too close to either 0 or 1; (2) their relative
ratio ρ/P, which is not meaningful close to 1; (3) their rela-
tive not-ratio P̄/ρ̄ with x̄ :=1 − x , which is not meaningful
close to 0; and (4) the odds ratio (ρ/ρ̄)/(P/P̄), which is the
product of the former two ratios and which is meaningful
everywhere in [0, 1]. Notice that all four metrics are defined
so they are ≥1. Figure 8a shows the original probabilities
P (full lines) and those of their dissociations ρ (border of
shaded areas) for various values of r and t . The horizontal
axis varies the probability of the dissociated tuple x within
[0, 1], and the different lines keep the non-dissociated tuples
y1, y2 at the same probability either 0.2, 0.5, or 0.9. Figure
8b, c, and d show the approximation quality in terms of our
three previously defined ratios. Notice that the red line varies
both r and t at the same time by keeping r = t . We see that
the approximation is good when both input probabilities are
small, but get increasingly worse when the probability of the
non-dissociated variables t1, t2 gets close to 1.

Finally notice that the relative error (ρ − P)/P = ρ/P−
1 = t (1−r)

2−t , which clearly tends towards 0 as r, t → 0.

(3) Number of minimal query plans. We end this section by
commenting on the number ofminimal hierarchical dissocia-
tions. Not surprisingly, this number is exponential in the size
of the query. To see this, consider a Boolean k-star query12

q :− R1(x1), . . . , Rk(xk),U (x1, . . . , xk). There are exactly
k! minimal hierarchical dissociations: Take any consistent
preorder � on the variables. It must be a total preorder, i.e.

12 A Boolean conjunctive k-star query is a query with k unary relations
and one k-ary relation: q :− R1(x1), . . . , Rk(xk),U (x1, . . . , xk). The
fact that each variable appears in exactly two relations implies that the
dual query hypergraph is actually a standard graph (the dual hypergraph
of a query is defined by the relations as vertices and variables as the
hyperedges). The expression star query derives from the observation
that the query’s dual (hyper)graph resembles a star with the table U
connected to all other relations.

k-star query k-chain query
k #MP #P #Δ k #MP #P #Δ
1 1 1 1 2 1 1 1
2 2 3 4 3 2 3 4
3 6 13 64 4 5 11 64
4 24 75 4096 5 14 45 4096
5 120 541 > 106 6 42 197 > 106
6 720 4683 > 109 7 132 903 > 109
7 5040 47293 > 1012 8 429 4279 > 1012

seq k! A000670 2k(k−1) seq A000108 A001003 2(k+1)k

Fig. 9 Number of minimal plans, total plans, and total dissociations
for star and chain queries (A are OEIS sequence numbers [51])

for any i, j , either xi � x j or x j � xi , because xi , x j occur
together inU . Since it is minimal,�must be an order, i.e. we
can’t have both xi � x j and x j � xi for i �= j . Therefore,
� is a total order, and there are k! such. Note that while the
number of hierarchical dissociations is exponential in the size
of the query, the number of query plans is independent of the
size of the database, and hence our approach has PTIME data
complexity [76] for all queries. Figure 9 gives an overview
of the number of minimal query plans, total query plans, and
dissociations for star and chain queries. Recall that in our def-
inition of query plans, we do not consider permutations in
the joins (called join orderings [49]). Also, our problem dif-
fers from the standard problem of optimal join enumeration
in relational database engines. For example, every safe query
has only one single minimal query plan, whereas any rela-
tional database engine compares several query plans. Later
Sect. 6 gives optimizations that allow us to evaluate a large
number of plans efficiently.

In summary, our approach allows to rank answers to both
safe and unsafe queries in polynomial time in the size of
the database, and is conservative w.r.t. the ranking according
to exact probabilistic inference for both safe queries and for
data-safe queries [42]. The latter follows easily from the point
that if a query over a particular database allows one single
safe plan, then this plan must be among the minimal plans in
the partial dissociation order.

123

18 W. Gatterbauer, D. Suciu

5 Optimizations with schema knowledge

In this section, we show how deterministic relations (i.e. all
tuples in a relation have probability 1), and functional depen-
dencies (e.g., keys) can reduce the number of plans needed
to calculate the propagation score.

5.1 Deterministic relations (DRs)

In the following, we denote deterministic relations (DRs)
with an exponent “d”, i.e. a relation R is probabilistic, and
a relation Rd is deterministic. First notice that we can treat
DRs just like probabilistic relations, and Corollary 24 with
P[q] ≤ score(P) still holds for any plan P . Just as before,
our goal is to find a minimum number of plans that compute
the minimal score of all plans: ρ(q) = minP score(P). It
is known that a non-hierarchical query q can become safe
(i.e., P[q] can be calculated in PTIME with one single plan)
if we consider DRs. Thus, we would still like an improved
algorithm that returns one single plan if a query with DRs is
safe. The following lemma will help us achieve this goal:

Lemma 29 (Dissociation and DRs) Dissociating a deter-
ministic relation does not change the probability.

We thus define a new probabilistic dissociation preorder
�p that only focuses on probabilistic relations:

Δ �p Δ′ ⇔ ∀i with Ri probabilistic : yi ⊆ y′i

In other words, Δ �p Δ′ still implies P[qΔ] ≤ P[qΔ′], but
�p is defined on probabilistic relations only. Notice, that
for queries without DRs, the relations �p and � coincide.
However, for queries with DRs, �p is a preorder, not an
order. Therefore, there exist distinct dissociations Δ, Δ′ that
are equivalent under�p (written asΔ ≡p Δ′), and thus have
the same probability: P[qΔ] = P[qΔ′]. As a consequence,
using�p instead of�, allows us to further reduce the number
of minimal hierarchical dissociations we need to evaluate.

Example 30 (RST query with DRs) Consider the query
q :− R(x), S(x, y), T d(y). This query is known to be safe.
We thus expect our definition of ρ(q) to find that ρ(q) =
P[q]. Ignoring that T d is deterministic, � has two mini-
mal plans corresponding to dissociations qΔ1 :− R{y}(x, y),
S(x, y), T d(y), andqΔ2 :− R(x), S(x, y), T d{x}(x, y). Since
Δ2 dissociates only T d , we now know from Lemma 29 that
P[q] = P[qΔ2]. Thus, by using � as before, and ignoring
information about DRs, we still get the correct answer. How-
ever, evaluating the plan PΔ1 is always unnecessary since
Δ2 �p Δ1. In contrast, without information about DRs,
Δ2 �

p Δ1, and we would thus have to evaluate both plans.
Figure 10 illustrates these ideas with incidence matrices

that are augmented in a 5th way: dissociated variables in

(a) (b) (c)

Fig. 10 Example 30. The presence of DRs Rd or T d changes the
probabilistic dissociation preorder for q :− R(x), S(x, y), T (y): sev-
eral dissociations now have the same probability (shown with shaded
areas instead of arrows). Our modified algorithm now returns, for each
minimal safe equivalence class, the query plan for the top most hierar-
chical dissociation (shown in dark green and double-lined). a No DRs,
b T d and c Rd and T d (color figure online)

DRs do not affect the probability and are now marked with
dotted circles (�) instead of full circles (•). Thus, the pre-
order �p is determined entirely by full circles (representing
dissociated variables in probabilistic relations). However,
as before, the correspondence to plans (as implied by the
hierarchy between all variables) is still determined by all
circles. Figure 10b shows that ρ(q) = P[qΔ2] = P[q]
since Δ0 ≡p Δ2 �p Δ1 ≡ Δ3 (equivalence under �p is
shown with former arrows being replaced by broad connec-
tors). Thus, the query is safe, and it suffices to evaluate only
PΔ2 . Notice that q is not hierarchical, but still safe since it
is in an equivalence class with a query that is hierarchical:
Δ0 ≡p Δ2.

Figure 10c shows that for Rd and T d being determinis-
tic, all three possible query plans (corresponding to Δ1,Δ2,
and Δ3) form an equivalence class in �p with Δ0, and thus
give the exact probability. In other words, the number of hier-
archical dissociations “minimal in �p” has increased to 3,
but all of them are now in the same equivalence class and
thus have the same probability. We, therefore, want to mod-
ify our algorithm to return just one plan from each “minimal
safe equivalence class”. Ideally, we prefer the plan corre-
sponding to Δ3 (or more generally, the plan for the top
hierarchical dissociation in� for eachminimum safe equiva-
lence class) since PΔ3 least constrains the join order between
tables: compare PΔ3 = π

p
−x,y ��

p
[
R(x), S(x, y), T d(y)

]

with PΔ2 = π
p
−x ��

p
[
R(x), π p

−y ��
p
[
S(x, y), T d(y)

]]
.

We now explain two simple modifications to Algorithm 1
that achieve our desired optimizations described above:

(1) Let a “p-cut” be a set of existential variables x ∈
EVar(q) s.t. q − x has at least two query components,
each of which has at least one probabilistic table. Denote

123

Dissociation and propagation for approximate lifted inference with standard relational... 19

by MinPCuts(q) the set of all “minimal p-cuts” and
replace MinCuts(q) with MinPCuts(q) in line 10.

(2) Denote with mp the number of probabilistic relations in
a query, and w.l.o.g. order the relations in a query q as
to first list the probabilistic relations, followed by DRs.
Replace the stopping condition in line 1 with: if mp ≤ 1
then P ← {π p

x ��
p
[
R1(x1), Rd

2 (x2), . . . Rd
m(xm)

]}. In
other words, if a query has maximal one probabilistic
relation, then first join all relations, then project on the
head variables.

Theorem 31 (Algorithm 1 with DRs) Above two modifica-
tions to Algorithm 1 return one plan for each minimal safe
equivalence class in �p, i.e. it returns a minimum number
of plans to calculate ρ(q) given schema knowledge about
deterministic relations.

Example 32 (Example 30 continued) For our simple query
q :− R(x), S(x, y), T d(y),MinCuts(q) = {{x}, {y}},while
MinPCuts(q) = {{x}}. Therefore, the modified algorithm
returns PΔ2 as single plan. For q :− Rd(x), S(x, y), T d(y),
the stopping condition is reached (also, MinPCuts(q) = ∅)
and the algorithm returns PΔ3 as single plan (Fig. 10c).

Note that as before, if the query is safe, then the algorithm
produces one single query plan. Furthermore, if all relations
are deterministic, then the returned query plan consists of one
multi-join between all relations followed by a single projec-
tion: π

p
x ��

p
[
R(xi), . . . , R(xm)

]
. The translation into SQL

is thus one single standard deterministic SQL query and the
query optimizer is unconstrained to determine the optimal
join order between the relations. Therefore, our algorithm
conservatively extends deterministic SQL queries to proba-
bilistic SQL queries in that fully deterministic queries are
evaluated exactly as deterministic SQL.

Example 33 (Example 23 continued) First consider relation
U to be deterministic: q1 :− R(x), S(x), T (x, y),Ud(y).
Figure 11a shows that ρ(q) = P[qΔ3] = P[q] and thus the
query is safe. Put differently, there is only one minimal safe
equivalence class Δ0 ≡p Δ3, and our modified algorithm
returns PΔ3 as single minimal plan. Next consider S to be
deterministic: q2 :− R(x), Sd(x), T (x, y),U (y). The query
is now in an equivalence class with Δ2 (Fig. 11b). However,
neither Δ0 nor Δ2 is hierarchical and thus the query is hard.
Also, Δ3 is in a minimal safe equivalence class with Δ6, the
latter of which has fewer constraints on the joins. Thus, the
algorithm returns PΔ4 and PΔ6 as the least constrained plans,
one from each minimum safe equivalence class.

We end with a short commend on actual implementa-
tion in SQL: In practice, deterministic relations do not have
a probabilistic attribute, which simplifies the calculations.
Consider a plan P =��

p
[
T d(z), Rd(x, z), M(x, y, z, u)

]
.

(a) (b)

Fig. 11 Example 33 (Example 23 continued). The presence of DRs
(either Ud or Sd) changes the probabilistic dissociation preorder and
thus the minimal plans returned by our algorithm: PΔ3 , or PΔ4 and PΔ6 .
a Ud and b Sd

This query is specified as join with standard semantics
T (x, y, z, u, p) :− T (z), R(x, z), M(x, y, z, u, p) over the
input relations with p as the probability attribute.

5.2 Functional dependencies (FDs)

Knowledge of functional dependencies (FDs), such as keys,
can also restrict the number of necessary minimal plans. A
well known example is the query q :− R(x), S(x, y), T (y)
from Example 30: It becomes safe if we know that S satisfies
the FD Γ : x → y and has a unique safe plan that corre-
sponds to dissociationΔ2. In other words, we would like our
modified algorithm to take Γ into account and to not return
the plan corresponding to dissociation Δ1.

Let � be the set of FDs on Var(q) consisting of the union
of FDs on every atom Ri in q. As usual, denote x

+
i the “clo-

sure” of a set of attributes xi under �, i.e. x+i is the smallest
set of variables that contains xi , and contains z whenever it
contains y and y ← z is a FD in �.13 Then we show:

Lemma 34 (Dissociation and FDs) Dissociating an atom
Ri (xi) on any variable y ∈ (x+i − xi) does not change the
probability of the query.

In other words, dissociating a table on a variable that is func-
tionally dependent on the existing variables does not change
the probability. This lemma is similar to Lemma 29 for DRs.
Next, for any query q, denote q+ the query where each atom

13 E.g., if x = {y} and � = {x → y, y → z, z → u}, then x+ =
{y, z, u}.

123

20 W. Gatterbauer, D. Suciu

Ri (xi) is replaced with Ri (x
+
i), and call q+ the closure of q.

Call a query “closed” if q+ = q, and call a dissociation Δ

closed if qΔ is closed, i.e. (xi ∪yi)+ = (xi ∪yi). We can then
further refine our probabilistic dissociation preorder �p by:

Δ�pΔ′ ⇔ ∀i with Ri probabilistic : (xi ∪ yi)
+ ⊆ (xi ∪ y′i)+

In otherwords,we only need to consider closed dissociations.
As a consequence, using our refined definition of �p allows
us to further reduce the number of minimal safe equivalence
classes. We next state a result by [53] in our notation:

Proposition 35 (Safety and FDs [53, Prop. IV.5]) A query q
is safe under FDs � iff q+ is hierarchical.

This justifies our third modification to Algorithm 1 for
enumerating the minimum number of plans for computing
ρ(q) over a database that satisfies FDs � and has DRs:

(3) At each recursive call of Algorithm 1, just before line 1,
replace q with its closure q+.

Theorem 36 (Algorithm 1 with DRs and FDs) Above three
modifications to Algorithm 1 return one plan for each mini-
mal safe equivalence class in �p, i.e. it returns a minimum
number of plans to calculate ρ(q) in the presence of deter-
ministic relations and functional dependencies.

It is easy to see that ourmodified algorithm returns one sin-
gle plan iff the query is safe (taking into account its structure,
DRs and FDs). It is thus a strict generalization of all known
safe self-join-free conjunctive queries [12,53]. In particular,
we can reformulate the known safe query dichotomy [12] in
our notation very succinctly:

Corollary 37 (Dichotomy) P[q] is in PTIME iff there exists
a dissociation of q+ that is hierarchical and that dissociates
only deterministic relations. In particular, if all relations are
probabilistic then P[q] is in PTIME iff q+ is hierarchical.

Corollary 38 (Dichotomy in plans) P[q] can be calculated
in PTIME iff our modified algorithm returns one single plan.

To see what Corollary 37 says, assume first that there are
no FDs: Then q is in PTIME iff there exists a hierarchical
dissociation Δ that dissociates only DRs. If there are FDs,
then we first compute the closure q+ (called “full chase” in
[53]), then apply the same criterion to q+.

Example 39 (Example 33 continued) We illustrate here how
FDs can change the “probabilistic dissociation preorder”.
Analogously to DRs, we mark variables in the incidence
matrix that are dissociated as result of an FD and do not
affect the probability with a dotted circle (�) instead of a
bullet (•). As before, the preorder �p is determined entirely

(a) (b)

Fig. 12 Example 39: (Example 33 continued): The presence of FDs
also changes the probabilistic dissociation preorder and thus the mini-
mal plans returned by our algorithm: either PΔ3 (as in Fig. 11a) or PΔ4 .
a Γ : y → x . b Γ : x → y

by full circles (representing dissociated variables in proba-
bilistic relations that are not implied by FDs on the other
variables). However, as before, the correspondence to plans
(as implied by the hierarchy between all variables) is still
determined by all circles.

First consider Γ : y → x : Fig. 12a shows that this FD
leads to the same preorder as for DRUd from Fig. 11a. Thus,
the minimal plan is also PΔ3 . Next consider Γ : x → y:
Figure 12b shows that there are now only two equivalence
classes, both of which are safe, and one of which is mini-
mal: Δ0 ≡p Δ1 ≡p Δ2 ≡p Δ4. Among those, only Δ4 is
hierarchical and is thus the one returned by the algorithm.

6 Multi-query Optimizations

So far, we enumerate all minimal query plans, then take
the minimum score of those plans in order to calculate the
propagation score ρ(q). In this section, we develop three
optimizations that can considerably reduce the necessary
calculations for evaluating all minimal query plans. Notice
that these three optimizations and the previous optimizations
using schema knowledge are orthogonal and can be arbi-
trarily combined in the obvious way. We use the following
example to illustrate the first two optimizations:

Example 40 (Multi-query optimizations) Consider the query
q:− R(x, z), S(y, u), T (z),U (u), M(x, y, z, u).Our default
is to evaluate all 6 minimal plans returned by Algorithm 1,
then take the minimum score (shown in Fig. 13a). Figure 13b

123

Dissociation and propagation for approximate lifted inference with standard relational... 21

(a)

(b)

(c)

Fig. 13 Example 40 before and after applying optimizations 1 and
2. a Result from Algorithm 1: six minimal query plans. b Result from
Algorithm2withOpt. 1: one single query plan. cResult fromAlgorithm
2 plus Opt. 2: re-using common subplans

and c illustrate the optimized evaluations after applying
Opt. 1, or Opt. 1 and Opt. 2, respectively.

6.1 Opt. 1: One single query plan

Our first optimization creates one single query plan by push-
ing the min-operator down into the leaves. It thus avoids
calculations when it is clear that other calculations must have
lower bounds. The idea is simple: Instead of creating one
query subplan for each min-cut y ∈ MinCuts(q) in line 12
of Algorithm 1, the adapted Algorithm 2 takes the minimum
score over thosemin-cuts, for each tuple of the head variables
in line 10. It thus creates one single query plan. Figure 13b
shows this single plan for our running example.

6.2 Opt. 2: Re-using common subplans

Our second optimization calculates only once, then re-uses
common subplans shared between the minimal plans. Thus,
whereas our first optimization reduces computation by com-
bining plans at their roots, the second optimization stores and
re-uses common results in the branches by re-using views.
The adapted algorithm works as follows: It first traverses the
whole single query plan and remembers each subplan by the
atoms used and its head variables in a HashSet. If it sees a
subplan twice, it creates a new view for this subplan, map-

Recursive algorithm: SP (SinglePlan)
Input: Query q(z) :− R1(x1), . . . , Rmp (xmp), . . . , R

d
m(xm)

Output: Single query plan P

1 if mp ≤ 1 then P ← {π p
x ��

p
[
R1(x1), R2(x2), . . . , Rd

m(xm)
]};

2 else
3 if q is disconnected then
4 Let q = q1, . . . , qk be the query components of q ;
5 foreach qi do HVar(qi)← HVar(q) ∩ Var(qi);
6 P ←��

p
[
SP(q1), . . . ,SP(qk)

]
;

7 else
8 Let MinPCuts(q) = {y1, . . . , y j } ;
9 foreach yi do q ′i ← qi with HVar(q ′i) ← HVar(q) ∪ yi ;

10 P ← min
[
π

p
−y1SP(q ′1), . . . , π

p
−y j

SP(q ′j)
]
;

Algorithm 2: Optimization 1 recursively pushes the min operator

into the leaves and generates one single query plan.

ping the subplan to a new view definition. The actual plan
then uses these views whenever possible. The order in which
the views are created assures that the algorithm also discov-
ers and exploits nested common subexpressions. Figure 13c
shows the generated views and plans for our running exam-
ple: Notice that the main plan and the view V3 both re-use
views V1 and V2.

6.3 Opt. 3: Deterministic semi-join reduction

The most expensive operations in probabilistic query plans
are the group-bys for the probabilistic project operations.
These are often applied early in the plans to tuples which are
later pruned and do not contribute to the final query result.
Our third optimization is to first apply a full semi-join reduc-
tion on the input relations before starting the probabilistic
evaluation from these reduced input relations.

We like to draw here an important connection to [53],
which introduces the idea of “lazy plans” and shows orders
of magnitude performance improvements for safe plans by
computing confidences not after each join and projection, but
rather at the very end of the plan. We note that our semi-join
reduction serves the same purpose with similar performance
improvements and also apply for safe queries. The advantage
of semi-join reductions, however, is that we do not require
any modifications to the query engine.

7 Experiments

We are interested in the efficiency (“how fast?”) and the qual-
ity (“how good?”) of ranking by dissociation as compared to
exact probabilistic inference, Monte Carlo simulation (MC),
and standard deterministic query evaluation (“determinis-
tic SQL”). Our experiments, thus, investigate the following
questions: How much can our three optimizations improve

123

22 W. Gatterbauer, D. Suciu

dissociation? How fast is dissociation as compared to exact
probabilistic inference, MC, and deterministic query evalua-
tion?Howgood is the ranking fromdissociation as compared
toMC and ranking by lineage size?What are the most impor-
tant parameters determining the ranking quality for each of
the three methods?

Ranking quality. We use mean average precision (MAP)
to evaluate the quality of a ranking by comparing it against
the ranking from exact probabilistic inference as ground truth
(GT). MAP rewards rankings that place relevant items ear-
lier; the best possible value is 1, and the worst possible 0.
We use a variant of “Average Precision at 10” defined as

AP@10:=
∑10

k=1 P@k
10 . Here, P@k is the precision at the kth

answer, i.e., the fraction of top k answers according to GT
that are also in the top k answers returned. Averaging over
several experiments yields MAP [46]. We use a variant of
the analytic method proposed in [47] to calculate AP in the
presence of ties. As baseline for no ranking, we use “random
average precision” [16], i.e. we assume all tuples have the
same score and are thus tied for the same position.

Exact probabilistic inference.Whenever possible, we cal-
culate GT rankings with a tool called SampleSearch [31,32],
which also serves to evaluate the cost of exact probabilistic
inference. We describe the method of evaluating the lineage
DNF with SampleSearch in [29].

Monte Carlo (MC). We evaluate the MC simulations for
different numbers of samples and write MC(x) for x sam-
ples. For example, AP for MC(10k) is the result of sampling
the individual tuple scores 10000 times from their lineages
and then evaluating AP once over the sampled scores. The
MAP scores together with the standard deviations are then
the average over several repetitions.

Ranking by lineage size. To evaluate the potential of non-
probabilistic methods for ranking answers, we also rank the
answer tuples by decreasing size of their lineages; i.e. number
of clauses in their DNFs. Intuitively, a larger lineage size
indicates that an answer has more “support” and should thus
be more important. Notice that, in contrast to other methods,
we ignore here the weight of support and correlations.

Setup 1. We use the TPC-H DBGEN data generator [71]
to generate a 1GB database to which we add a column P for
each table and store it in PostgreSQL 9.2 [58]. We assign to
each input tuple i a random probability pi uniformly chosen
from the interval [0, pi max], resulting in an expected average
input probability avg[pi] = pi max/2. By using databases
with avg[pi] < 0.5, we can avoid output probabilities close
to 1 for querieswith very large lineages.We use the following
intuitive parameterized hard query:

Q(a) :− S(s, a),PS(s, u), P(u, n), s ≤ $1, n like $2

select distinct s_nationkey from Supplier, Partsupp, Part
where s_suppkey = ps_suppkey and ps_partkey = p_partkey
and s_suppkey <= $1 and p_name like $2

(a) (b) (c)

Fig. 14 Parameterized Deterministic SQL query Q(a) over TPC-H.
Incidence matrices for TPC-H query Q(a) and its two minimal hierar-
chical dissociations from either dissociating table S or table P . a Q(a),
b QS(a) and c QP (a)

Relations S,PS and P represent tables Supplier, PartSupp
and Part, respectively. Variable a stands for attribute nation-

key (“answer tuple”), s for suppkey, u for partkey (“unit”),
and n for name. The probabilistic version of this query is:
“Which nations (as determined by the attribute nationkey)
are most likely to have suppliers with suppkey ≤ $1 that sup-
ply parts with a name like $2?” Parameters $1 and $2 allow
us to change the lineage size. Tables Supplier, Partsupp and
Part have 10k, 800k and 200k tuples, respectively. There are
25 different numeric attributes for nationkey and our goal is
to efficiently rank these 25 nations. As baseline for not rank-
ing, we use random average precision for 25 answers, which
leads to MAP@10 ≈ 0.220. This query has the following
two minimal query plans (Fig. 14):

PS(a) = π
p
a ��

p[π
p
a,u ��

p[S(s, a),PS(s, u), s ≤ $1
]
, P(u, n), n like $2

]

PP (a) = π
p
a ��

p[S(s, a), π
p
s ��

p[PS(s, u), s ≤ $1, P(u, n), n like $2
]]

Here, PS and PP stand for the plans that dissociate tables
Supplier or Part, respectively.We take theminimumof the two
bounds to determine the propagation score for each answer
tuple a. Wewill also evaluate the speed-up from applying the
following deterministic semi-join reduction (Optimization 3)
on the input tables and then reusing intermediate query results
across both query plans:

PS∗(s, u) :−PS(s, u), S(s, a), P(u, n), s ≤ $1, n like $2

P∗(u, n) :− P(u, n),PS∗(s, u)

Setup 2.We compare the runtimes for our three optimiza-
tions against evaluation of all plans for k-chain queries and
k-star queries over varying database sizes (data complexities)
and varying query sizes (query complexities). The k-chain
queries return many results, whereas the k-star queries return
one tuple, thus representing a Boolean query:

k-chain: q(x0, xk) :− R1(x0, x1), R2(x1, x2), . . . , Rk(xk−1, xk)
k-star: q(a) :− R1(a, x1), R2(x2), . . . , Rk(xk), R0(x1, . . . , xk)

Wedenote the length of the querywith k, the number of tuples
per table with n, and the domain size with N . We use integer
valueswhichweuniformly draw from the range {1, 2, . . . N }.
Thus, the parameter N determines the selectivity and is varied

123

Dissociation and propagation for approximate lifted inference with standard relational... 23

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15 Timing results: a–d For increasing database sizes and constant
cardinalities, our optimizations approach deterministic SQL perfor-
mance. e–h For the TPC-H query, the best evaluation for dissociation

is within a factor of 6 of that for deterministic query evaluation. a 4-
chain query. b 7-chain query. c 2-star query. d 5-star query. e $2 =
%red%green%. f $2 = %red%. g $2 = %. h Combining a–c

as to keep the answer cardinality constant around 20–50 for
chain queries, or the answer probability between 0.90 and
0.95 for star queries. For the data complexity experiments,
wevary the number of tuplesn per table between100 and106.
For the query complexity experiments, we vary k between 2
and 8 for chain queries. For these experiments, the optimized
(and often extremely long) SQL statements are “calculated”
in JAVA and then sent to Microsoft SQL server 2012 [48].
To illustrate with numbers, we have to issue 429 query plans
in order to evaluate the 8-chain query (see Fig. 9). Each of
these plans joins 8 tables in a different order. Optimization
1 then merges those plans together into one truly gigantic
single query plan.

7.1 Runtime experiments

Question 1 When and how much do our three query opti-
mizations speed up query evaluation?

Result 1 Combining plans (Opt. 1) and using intermediate
views (Opt. 2) almost always speeds up query times. The
semi-join reduction (Opt. 3) slows down queries with high
selectivities, but considerably speeds up queries with small
selectivities, bringing probabilistic query evaluation close to
deterministic evaluation.

Setup 2. Figure 15a–d show the results for increasing
database sizes, and Fig. 16 for increasing query sizes. For
example, Fig. 15b shows the performance of computing
a 7-chain query which has 132 hierarchical dissociations.
Evaluating each of these queries separately takes a long
time, while our optimization techniques bring evaluation
time close to deterministic query evaluation. Especially on
larger databases, where the running time is I/O bound, the
penalty of the probabilistic inference is only a factor of 2–3
in this example. Notice here the trade-off between optimiza-
tion 1–2 and optimization 1–3: Optimization 3 applies a full
semi-join reduction on the input relations before starting
the probabilistic plan evaluation from these reduced input
relations. This operation imposes a rather large constant
overhead, both at the query optimizer and at query exe-
cution. For larger databases (but constant selectivity), this
overhead is amortized. Without self-join reductions, opti-
mization 1–2 would not execute on the 6-star query with
720 minimal query plans at all (“The query processor ran
out of internal resources and could not produce a query
plan”). In practice, this suggests that dissociation allows us
a large space of optimizations depending on the query and
particular database that can conservatively extend the space
of optimizations performed today in deterministic query
optimizers.

123

24 W. Gatterbauer, D. Suciu

(a) (b)

Fig. 16 While the query complexity is exponential (number of min-
imal plans are shown on the right side), our optimizations can even
evaluate a very large number of minimal plans (here shown up to 429
for a 8-chain query and 5040 (!) for a 7-star query). a k-chain queries.
b k-star queries

Setup 1. Figure 15e–g compare the running times for
dissociation with two minimal query plans (“Diss”), dis-
sociation with semi-join reduction (“Diss + Opt3”), exact
probabilistic inference (“SampleSearch”), Monte Carlo with
1000 samples (“MC(1k)”), retrieving the lineage only (“Lin-
eage query”), and deterministic query evaluation without
ranking (“Standard SQL”). As experimental platform,we use
PostgreSQL 9.2 on a 2.5Ghz Intel Core i5 with 16G of main
memory. We run each query 5 times and take the average
execution time. We fixed $2 to ‘%red%green%’, ‘%red%’ or
‘%’ and varied $1 ∈ {500, 1000, . . . 10k}. Figure 15h com-
bines all three previous plots and shows the times as function
of the maximum lineage size (i.e. the size of the lineage for
the tuple with the maximum lineage) of a query. We see here
again that the semi-join reduction speeds up evaluation con-
siderably for small lineage sizes (Fig. 15e shows speedups of
up to 36). For large lineages, however, the semi-join reduction
is an unnecessary overhead, as most tuples are participating
in the join anyway (Fig. 15f shows overhead of up to 2).

Question 2 How does dissociation compare against other
probabilistic methods and standard query evaluation?

Result 2 The best evaluation strategy for dissociation takes
only a small overhead over standard SQL evaluation and
is considerably faster than other probabilistic methods for
large lineages.

Figure 15e–h show that SampleSearch does not scale to
larger lineages as the performance of exact probabilistic
inference depends on the tree-width of the Boolean lin-
eage formula, which generally increases with the size of the
data. In contrast, dissociation is independent of the treewidth.
For example, SampleSearch needed 780s for calculating the
ground truth for a query with max[lin] = 5.9k for which dis-
sociation took 3.0 s, and MC(1k) took 42s for a query with
max[lin] = 4.2k for which dissociation took 2.4 s. Dissoci-
ation takes only 10.5 s for our largest query $2 = ‘%’ and

Fig. 17 Overview timing results TPC-H

$1 = 10k with max[lin] = 35k. Retrieving the lineage for
that query alone takes 5.8 s, which implies that any proba-
bilistic method that evaluates the probabilities outside of the
database engine needs to issue this query to retrieve the DNF
for each answer and would thus have to evaluate lineages of
sizes around 35k in only 4.7(= 10.5−5.8) s to be faster than
dissociation (Figure 17).14

Further optimizations. We found that materialized views
performed better than just views. For example, the query $1
= 500 and $2= ‘%red%green%’ takes over 3 s with common
views instead of our reported 0.88 s for materialized views.
We also found that using standard database-provided aggre-
gates (which requires us to use the logarithm for products)
instead of user-defined aggregates notably speeds up query
evaluation for large lineages. Concretely, instead of every
occurrence of ‘ior(T.P) as P’ in our queries, we used the fol-
lowing nested PostgreSQL expression: ‘case when (sum(case

T.P when 1 then −746 else ln(1−T.P) end)) < −745 then 1

else 1 − exp(sum(case T.P when 1 then −746 else ln(1 − T.P)

end)) end as P’. The outer case statement prevents errors for
deterministic tuples (i.e. with pi = 1), and the inner case
statement prevents errors due to underflows. As illustration
of the improvements, the query $1 = 10k and$2 = ‘%’would
take42.2 s insteadof 20.7with semi-join reduction, and32.5 s
instead of 11.3 for the two individual query plans when using
a UDF instead of the above expression. We also found that
removing the outer case statement would reduce the time
by 5% (which could be used if there were no deterministic
tuples in a table), and removing the inner case by another
1% (which could be used if there was no risk of underflows).
An important by-product of using standard database-defined
aggregates is that dissociated queries (and their optimized
versions) can be executed with the help of any standard rela-
tional database, even cloud-based databases that commonly
do not allow users to define their own UDAs, e.g. Microsoft
SQL Azure. To our best knowledge, this is the currently only
technique to approximate rankings of probabilistic queries

14 The time needed for the lineage query thus serves as minimum
benchmark for any probabilistic approximation. The reported times for
SampleSearch and MC are the sum of time for retrieving the lineage
plus the actual calculations, without the time for reading and writing
the input and output files for SampleSearch.

123

Dissociation and propagation for approximate lifted inference with standard relational... 25

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 18 Ranking experiments on TPC-H: Assumptions for from each plot and conclusions are described below each respective result in the text.
a Result 3. b Result 4. c Result 5. d Result 6. e Result 6. f Result 7. g Result 7. h Result 8 (color figure online)

without any modifications to the database engine nor per-
forming any calculations outside the database.

7.2 Ranking experiments

For the following experiments, we are limited to those query
parameters $1 and $2 for which we can get the ground truth
(and results fromMC) in acceptable time. We systematically
vary pi max between 0.1 and 1 (and thus avg[pi] between
0.05 and 0.5) and evaluate the rankings several times over
randomly assigned input tuple probabilities. We only keep
data points (i.e. results of individual ranking experiments)
for which the output probabilities are not too close to 1 to be
meaningful (max[pa] < 0.999 999).

Question 3 How does ranking quality compare for our three
ranking methods and which are the most important factors
that determine the quality for each method?

Result 3 Dissociation performs better than MC which per-
forms better than ranking by lineage size.

Figure 18a shows averaged results of our probabilistic
methods for $2 = ‘%red%green%’.15 Shaded areas indicate

15 Results for MC with other parameters of $2 are similar. However,
the evaluation time for the experiments becomes quickly infeasible.

standard deviations and the x-axis shows varying numbers
of MC samples. We only used those data points for which
avg[pa] of the top 10 ranked tuples is between 0.1 and 0.9
according to ground truth (≈6k data points for dissociation
and lineage, ≈60k data points for MC, as we repeated each
MC simulation 10 times), as this is the best regime for MC,
according to Result 4. Figure 19 gives an overview of the per-
formance of each method, depending on the most important
parameters which we will explain next.

We also evaluated quality for dissociation and ranking
by lineage for more queries by choosing parameter values
for $2 from a set of 28 strings, such as ‘%r%g%r%a%n%d%’

and ‘%re%re%’. The average MAP over all 28 choices for
parameters $2 is 0.997 for ranking by dissociation and 0.520
for rankingby lineage size (≈100kdata points).Most of those
queries have too large of a lineage to evaluate MC. Note that
ranking by lineage always returns the same ranking for given
parameters $1 and $2, but the GT ranking would change with
different input probabilities.

Result 4 Ranking quality of MC increases with the number
of samples and decreases when the average probability of
the answer tuples avg[pa] is close to 0 or 1.

Figure 18b shows the AP as a function of avg[pa] of the
top 10 ranked tuples according to ground truth by logarith-
mic scaling of the x-axis (each point in the plot averages

123

26 W. Gatterbauer, D. Suciu

Fig. 19 Quality results TPC-H: Our three methods, their respectively
most important parameters, and their average ranking qualities

AP over ≈450 experiments for dissociation and lineage and
over ≈4.5k experiments for MC). We see that MC performs
increasingly poor for ranking answer tuples with proba-
bilities close to 0 or 1 and even approach the quality of
random ranking (MAP@10 = 0.22). This is so because, for
these parameters, the probabilities of the top 10 answers
are very close, and MC needs many iterations to distin-
guish them. Therefore, MC performs increasingly poorly for
increasing size of lineage but fixed average input probability
avg[pi] ≈ 0.5, as the average answer probabilities avg[pa]
will be close to 1. In order not to “bias against our com-
petitor,” we compared against MC in its best regime with
0.1 < avg[pa] < 0.9 in Fig. 18a.

Result 5 Ranking by lineage size has good quality onlywhen
all input tuples have the same probability.

Figure 18c shows that ranking by lineage is good only
when all tuples in the database have the same probability
(labeled by pi = const as compared to avg[pi] = const).
This is a consequence of the output probabilities depending
mostly on the size of the lineages if all probabilities are equal.
Dependence on other parameters, such as overall lineage size
and magnitude of input probabilities (here shown for pi =
0.1 and pi = 0.5), seem to matter only slightly.

Result 6 The quality of dissociation decreaseswith the aver-
age number of dissociations per tuple avg[d] and with the
average input probabilities avg[pi]. Dissociation performs
very well and notably better then MC(10k) if either avg[d]
or avg[pi] are small.

Each answer tuple a gets its score pa from one of two
query plans PS and PP that dissociate tuples in tables S
and P , respectively. For example, if the lineage size for
tuple a is 100 and the lineage contains 20 unique suppli-
ers from table S and 50 unique parts from table P , then
PS dissociates each tuple from S into 5 tuples and PP each
tuple from P into 2 tuples, on average. Most often, PP will

then give the better bounds as it has fewer average disso-
ciations. Let avg[d] be the mean number of dissociations
for each tuple in the dissociated table of its respective opti-
mal query plan, averaged across all top 10 ranked answer
tuples. For all our queries (even those with $1 = 10k and
$2 = ‘%’), avg[d] stays below 1.1 as, for each tuple, there
is usually one plan that dissociates few variables. In order
to understand the impact of higher numbers of dissociations
(increasing avg[d]), we also measured AP for the ranking
for each query plan individually. Hence, for each choice
of random parameters, we record two new data points—
one for ranking all answer tuples by using only PS and
one for using only PP—together with the values of avg[d]
in the respective table that gets dissociated. This allows us
to draw conclusions for a larger set of parameters. Figure
18d plots MAP values as a function of avg[d] of the top 10
ranked tuples on the horizontal axis, and various values of
avg[pi](avg[pi] = 0.05, 0.10, . . . , 0.5). Each plotted point
averages over at least 10 data points (some have 10, other
several thousands). Dashed lines show a fitted parameter-
ized curve to the data points on avg[pi] and avg[d]. The
figure also shows the standard deviations as shaded areas for
avg[pi] = 0.5. We see that the quality is very dependent on
avg[pi], as predicted by Proposition 27.

Figure 18e maps the trade-off between dissociation and
MC for the two important parameters for the quality of dis-
sociation (avg[d] and avg[pi]) and the number of samples
for MC. For example, MC(1k) gives a better expected rank-
ing than dissociation only for the small area above the thick
red curve marked MC(1k). For MC, we used the test results
from Fig. 18a; i.e. assuming 0.1 < avg[pa] < 0.9 for MC.
Also recall that for large lineages, having an input probability
with avg[pi] = 0.5 will often lead to answer probabili-
ties close to 1 for which ranking is not possible anymore
(recall Fig. 18c). Thus, for large lineages, we need small
input probabilities to have meaningful interpretations. And
for small input probabilities, dissociation considerably out-
performs any other method.

Notice that one should not confuse (i) the AP score of
each of the two plans taken separately with (ii) the AP score
of the min between the two plans; the ranking produced by
the latter can be much better. For example, one experiment
($1 = 10k, and $2 = ‘%re%bl%re%’) with maximal lineage
size 106 has avg[d] equal 1.053 and 1.099 for PP and PS ,
respectively. None of the two plans gets perfect AP@10.
However, using the minimum score of both plans for each
tuple individually has avg[d] = 1.049 and perfect AP@10=
1. We also evaluated MAP for ranking all tuples by the plan
that has the minimal mean avg[d] as compared to ranking by
the minimum scores for each tuple individually. MAP over
all 100k data points would then drop from 0.997 (Fig. 18g)
to only 0.995, which shows the value of taking the minimum
score for each tuple individually.

123

Dissociation and propagation for approximate lifted inference with standard relational... 27

Question 4 How much would the ranking change according
to exact probabilistic inference if we scale down all input
tuples?

Result 7 If the probabilities of all input tuples are already
small, then scaling them further down does not affect the
ranking much.

This result is a more general statement about the applica-
bility of ranking over probabilistic databases, and motivated
by the observation that dissociation works surprisingly well
for small input probabilities. Here, we repeatedly evaluated
the exact ranking for 7 different parameterized queries over
randomly generated databases with one query plan that has
avg[d] ≈ 3, for two conditions: first on a probabilistic
database with avg[pi] input probabilities (we defined the
resulting ranking as GT); then again on a scaled version,
where all input probabilities in the database are multiplied
by the same scaling factor f ∈ (0, 1). We then compared
the new ranking against GT. Figure 18f shows that if all
input probabilities are already small (anddissociation already
workswell), then scalinghas little effect on the ranking.How-
ever, for avg[pi] = 0.5 (and thus many tuples with pi close
to 1), we have a few tuples with pi close to 1. These tuples
are very influential for the final ranking, but their relative
influence decreases if scaled down even slightly. Also note
that even for avg[pi] = 0.5, scaling a database by a factor
f = 0.01 instead of f = 0.2 does not make a big difference.
However, the quality remains well above ranking by lineage
size (!). This suggests that the difference between ranking
by lineage size (MAP ≈ 0.529) and the ranking on a scaled
database for f → 0 (MAP ≈ 0.879) can be attributed to
the relative weights of the input tuples (we thus refer to this
as “ranking by relative input weights”). The remaining dif-
ference in quality then comes from the actual probabilities
assigned to each tuple. Using MAP ≈ 0.220 as baseline for
random ranking, 38% of the ranking quality can be found by
the lineage size alone versus 85% by the lineage size plus the
relative weights of input tuples. The remaining 15% come
from the actual probabilities (Fig. 18g). While these exact
numbers only hold for this particular choice of queries and
while the implicit assumption that the quality of rankingwere
a linear scale of MA is debatable, we think that this “thought
experiment” provides an interesting way to think about “the
value” of exact probabilistic inference.

Question 5 Does the expected ranking quality of dissocia-
tion decrease to random ranking for increasing fractions of
dissociation (just like MC does for decreasing number of
samples)?

Result 8 The expected performance of dissociation for
increasing avg[d] for a particular query is lower bounded
by the quality of ranking by relative input weights.

Here, we use a similar setup as before and now com-
pare various rankings against each other: SampleSearch on
the original database (“GT”); SampleSearch on the scaled
database (“Scaled GT”); dissociation on the scaled data-
base (“Scaled Diss”); and ranking by lineage size (which
is unaffected by scaling). From Fig. 18h, we see that the
quality of Scaled Diss w.r.t. Scaled GT → 1 for f → 0
since dissociation works increasingly well for small avg[pi]
(recall Proposition 27).We also see that ScaledDiss w.r.t. GT
decreases towards Scaled GTw.r.t. GT for f → 0. Since dis-
sociation can always reproduce the ranking quality of ranking
by relative input weights by first downscaling the database
(though losing information about the actual probabilities) the
expected quality of dissociation for smaller scales does not
decrease to random ranking, but rather to ranking by relative
weights. Note this result only holds for the expected MAP;
any particular ranking can still be very much off.

8 Related Work

Probabilistic databases. Query evaluation over probabilistic
databases corresponds to solving the weighted model count-
ing problem, and current approaches can be classified into
three categories (Fig. 20): (1) incomplete approaches iden-
tify tractable cases either at the query-level [12,13,23,53]
or the data-level [52,64,68] and ignore the rest; (2) exact
approaches [2,42,67] are based on variants and extensions
of a complete search based on the DPLL procedure [34] and
work well for queries over databases with simple lineage
expressions, but perform poorly on complex lineage expres-
sions; and (3) approximate approaches usually first compute
the lineage of the query on the given database to obtain a
Boolean formula, then either apply variants of Monte Carlo
sampling methods [41,44,45,62], or approximate the num-
ber of models of the Boolean lineage expression [22,54,63].
A recent approach combines safe plans with Monte Carlo
simulation [37]. An approximate “anytimemethod” based on
DPLL search is developed in [21] that stops the full search
whenever a given confidence bound can be guaranteed. This
approach allows evaluating a query to a precision determined
by a given computational budget. A variant of this method
with confidence bounds over first-order lineage formulas is
developed in [19].Ourwork can be seen as a generalization of
some of of these techniques: our algorithm returns the exact
probability if the query is safe [12,54] or data-safe [42] and
gives a unique and well-defined value for every query. This
property can be useful when learning the probabilities from
queries. In addition, our method can be used together with
any existing relational database without any modifications
to the engine. On the other side, our query-centric approach
currently works only for self-join-free conjunctive queries
and does not allow an iterative refinement or a trade-off

123

28 W. Gatterbauer, D. Suciu

between computational complexity and precision for appli-
cations where the exact probability scores are required.

Lifted and approximate inference. Lifted inference was
introduced in the AI literature as an approach to probabilistic
inference that uses the first-order formula to exploit sym-
metries at the grounded level [57]. This research evolved
independently of that on probabilistic databases, and the two
have many analogies: A formula is called domain liftable
iff its data complexity is in polynomial time [40], which is
the same as a safe query in probabilistic databases, and the
FO-d-DNNF circuits described in [75] correspond to the safe
plans discussed in this paper. See [74] for a recent discussion
on the similarities and differences.

Representing correlations. The most popular approach to
represent correlations between tuples in a probabilistic data-
base is by a Markov Logic network (MLN) which is a set of
soft constraints [17]. Quite remarkably, all complex corre-
lations introduced by an MLN can be rewritten into a query
over a tuple-independent probabilistic database [33,43,73].
In combination with such rewritings, our techniques can be
also applied toMLNs if their rewritings results in conjunctive
queries without self-joins.

Dissociation. In a graph-based scenario [16] that basi-
cally corresponds to our abstracted Example 1, we observed
that propagation-based methods often perform as well as
reliability-based methods for predicting protein functions
from integrated uncertain biological databases. We then first
introduced dissociation in the workshop paper [27] as an
attempt to generalize the success of propagation methods
from graphs to hypergraphs. [29] provides a general frame-
work for approximating the probability of Boolean functions
with both upper and lower bounds. We also illustrate how
upper bounds to hard queries can be complemented by
lower bounds (those lower bounds, however are not as tight,
which is why we only use upper bounds for ranking in this
paper). Dissociation is closely related to a number of recent
approaches in the graphical model and constraint satisfaction
literature which approximate an intractable problem with a
tractable relaxed version after treating multiple occurrences
of variables or nodes as independent or ignoring some equiv-
alence constraints. Those approaches are usually referred to
as relaxation [72] (see [29] for a detailed discussion on sim-
ilarities and differences).

9 Conclusions and Outlook

This paper developed a new scoring function called propa-
gation for ranking query results over probabilistic databases.
Our semantics is based on a sound and principled theory
of query dissociation, and can be evaluated efficiently in
an off-the-shelf relational database engine for any type of
self-join-free conjunctive query. We proved that the prop-

Fig. 20 Current techniques for evaluating probabilistic queries are
either (1) incomplete and work only on a subset of queries and data
instances, or (2) always work but may become arbitrarily slow on gen-
eral data instances, or (3) only approximate the actual score

agation score is an upper bound to query reliability, that
both scores coincide for safe queries, and that propaga-
tion naturally extends the case of safe queries to unsafe
queries. We further showed that the scores for chain queries
before and after dissociation correspond to two well-known
scoring functions on graphs, namely network reliability
(which is #P-hard) and propagation (which is related to
PageRank and in PTIME), and that our dissociation scores
are thus generalizations of the propagation score from graphs
to hypergraphs. We calculated the propagation score by
evaluating a fixed number of safe queries, each providing
an upper bound on the true probability, then taking their
minimum. We provided algorithms that takes into account
schema information to enumerate only the minimal neces-
sary plans among all possible plans, and prove our method
to be a strict generalization of all known results of PTIME
self-join free conjunctive queries. We described relational
query optimization techniques that allow us to evaluate
all minimal queries in a single query and very fast. Our
evaluations show that the optimizations of our approach
bring probabilistic query evaluation close to standard query
evaluation while providing high ranking quality. In future
work, we plan to generalize the approach to full first-order
queries.

Acknowledgements This work was supported in part by NSF Grants
IIS-0513877, IIS-0713576, IIS-0915054, IIS-1115188, IIS-1247469,
and CAREER IIS-1553547. We like to thank Abhay Jha for help with
the experiments in theworkshopversionof this paper,AlexandraMeliou
for suggesting the name “dissociation”, and Vibhav Gogate for guid-
ance in using his tool SampleSearch. WG would also like to thank
Manfred Hauswirth for a small comment in 2007 that was crucial for
the development of the ideas in this paper.

References

1. Amarilli, A., Amsterdamer, Y., Milo, T.: Uncertainty in crowd data
sourcing under structural constraints. In: DASFAAWorkshops, pp.
351–359 (2014)

2. Antova, L., Jansen, T., Koch, C., Olteanu, D.: Fast and simple rela-
tional processing of uncertain data. In: ICDE, pp. 983–992 (2008)

123

Dissociation and propagation for approximate lifted inference with standard relational... 29

3. Antova, L., Koch, C., Olteanu, D.: MayBMS: managing incom-
plete information with probabilistic world-set decompositions. In:
ICDE, pp. 1479–1480 (2007)

4. Beame, P., Li, J., Roy, S., Suciu, D.: Model counting of query
expressions: limitations of propositional methods. In: ICDT, pp.
177–188 (2014)

5. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan,
S.: Keyword searching and browsing in databases using BANKS.
In: ICDE, pp. 431–440 (2002)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. 30(1–7), 107–117 (1998)

7. Carlson,A., Betteridge, J.,Kisiel, B., Settles, B.,Hruschka Jr., E.R.,
Mitchell, T.M.: Toward an architecture for never-ending language
learning. In: AAAI (2010)

8. Chen, Y., Wang, D.Z.: Knowledge expansion over probabilistic
knowledge bases. In: SIGMOD, pp. 649–660 (2014)

9. Cohen, W.W.: Data integration using similarity joins and a word-
based information representation language. ACM Trans. Inf. Syst.
18(3), 288–321 (2000)

10. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford
University Press, New York (1987)

11. Crestani, F.: Application of spreading activation techniques in
information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)

12. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic
databases. VLDB J. 16(4), 523–544 (2007)

13. Dalvi, N.N., Suciu, D.: The dichotomy of probabilistic inference
for unions of conjunctive queries. J. ACM 59(6), 30 (2012)

14. Davis, M., Putnam, H.: A computing procedure for quantification
theory. J. ACM 7(3), 201–215 (1960)

15. DeepDive: http://deepdive.stanford.edu/
16. Detwiler, L., Gatterbauer, W., Louie, B., Suciu, D., Tarczy-

Hornoch, P.: Integrating and ranking uncertain scientific data. In:
ICDE, pp. 1235–1238 (2009)

17. Domingos, Pedro, Lowd, Daniel: Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan & Claypool Publishers,
San Rafael (2009)

18. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy,
K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-
scale approach to probabilistic knowledge fusion. In: KDD, pp.
601–610 (2014)

19. Dylla, M., Miliaraki, I., Theobald, M.: Top-k query processing in
probabilistic databases with non-materialized views. In: ICDE, pp.
122–133 (2013)

20. Ermis, B., Bouchard, G.: Iterative splits of quadratic bounds
for scalable binary tensor factorization. In: UAI, pp. 192–199
(2014)

21. Fink, R., Huang, J., Olteanu, D.: Anytime approximation in prob-
abilistic databases. VLDB J. 22(6), 823–848 (2013)

22. Fink, R., Olteanu, D.: On the optimal approximation of queries
using tractable propositional languages. In: ICDT, pp. 174–185
(2011)

23. Fink, R., Olteanu, D.: A dichotomy for non-repeating queries with
negation in probabilistic databases. In: PODS, pp. 144–155 (2014)

24. Freire, C., Gatterbauer, W., Immerman, N., Meliou, A.: The
complexity of resilience and responsibility for self-join-free con-
junctive queries. PVLDB 9(3), 180–191 (2015)

25. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the inte-
gration of information retrieval and database systems. ACMTrans.
Inf. Syst. 15(1), 32–66 (1997)

26. Gatterbauer, W., Günnemann, S., Koutra, D., Faloutsos, C.: Lin-
earized and single-pass belief propagation. PVLDB 8(5), 581–592
(2015)

27. Gatterbauer, W., Jha, A.K., Suciu, D.: Dissociation and propaga-
tion for efficient query evaluation over probabilistic databases. In:
Proceedings of 4th International VLDBworkshop onManagement
of Uncertain Data (MUD), pp. 83–97 (2010)

28. Gatterbauer, W., Suciu, V.: Dissociation and propagation for
approximate lifted inferencewith standard relational databaseman-
agement systems (2013). arXiv:1310.6257 [cs.DB]

29. Gatterbauer, W., Suciu, D.: Oblivious bounds on the probability of
Boolean functions. ACM Trans. Database Syst. (TODS) 39(1), 5
(2014)

30. Gatterbauer,W., Suciu,D.:Approximate lifted inferencewith prob-
abilistic databases. PVLDB 8(5), 629–640 (2015)

31. Gogate, V., Dechter, R.: SampleSearch: importance sampling in
presence of determinism. Artif. Intell. 175(2), 694–729 (2011)

32. Gogate, V., Domingos, P.: Formula-based probabilistic inference.
In: UAI, pp. 210–219 (2010)

33. Gogate, V., Domingos, P.: Probabilistic theorem proving. In: UAI,
pp. 256–265 (2011)

34. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In:
Handbook of Satisfiability, pp. 633–654 (2009)

35. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence
probabilities in social networks. In: WSDM, pp. 241–250 (2010)

36. Grädel, E., Gurevich, Y., Hirsch, C.: The complexity of query reli-
ability. In: PODS, pp. 227–234 (1998)

37. Gribkoff, E., Suciu, D.: Slimshot: in-database probabilistic infer-
ence for knowledge bases. PVLDB 9(7), 552–563 (2016)

38. Guha, R.V., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of
trust and distrust. In: WWW, pp. 403–412 (2004)

39. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: a
spatially and temporally enhanced knowledge base fromwikipedia.
Artif. Intell. 194, 28–61 (2013)

40. Jaeger, M., Van den Broeck, G.: Liftability of probabilistic infer-
ence: upper and lower bounds. In: StaRAI (2012)

41. Jampani, R., Xu, F., Wu, M., Perez, L.L., Jermaine, C.M., Haas,
P.J.: MCDB: a Monte Carlo approach to managing uncertain data.
In: SIGMOD, pp. 687–700 (2008)

42. Jha, A., Olteanu, D., Suciu, D.: Bridging the gap between inten-
sional and extensional query evaluation in probabilistic databases.
In: EDBT, pp. 323–334 (2010)

43. Jha, A., Suciu, D.: Probabilistic databases with MarkoViews.
PVLDB 5(11), 1160–1171 (2012)

44. Joshi, S., Jermaine, C.M.: Sampling-based estimators for subset-
based queries. VLDB J. 18(1), 181–202 (2009)

45. Kennedy, O., Koch, C.: PIP: a database system for great and small
expectations. In: ICDE, pp. 157–168 (2010)

46. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Infor-
mation Retrieval. Cambridge University Press, New York (2008)

47. McSherry, F., Najork, M.: Computing information retrieval perfor-
mancemeasures efficiently in the presence of tied scores. In: ECIR,
pp. 414–421 (2008)

48. Microsoft SQL Server 2012. http://www.microsoft.com/sqlserver
49. Moerkotte, G.: Building query compilers. Draft version 03 Mar

2009
50. Niu, F., Ré, C., Doan, A., Shavlik, J.W.: Tuffy: scaling up statistical

inference in markov logic networks using an RDBMS. PVLDB
4(6), 373–384 (2011)

51. OEIS: The on-line encyclopedia of integer sequences: http://oeis.
org/

52. Olteanu,D.,Huang, J.: UsingOBDDs for efficient query evaluation
on probabilistic databases. In: SUM, pp. 326–340 (2008)

53. Olteanu, D., Huang, J., Koch, C.: Sprout: lazy vs. eager query plans
for tuple-independent probabilistic databases. In: ICDE, pp. 640–
651 (2009)

54. Olteanu, D., Huang, J., Koch, C.: Approximate confidence compu-
tation in probabilistic databases. In: ICDE, pp. 145–156 (2010)

55. Pasternack, J., Roth, D.: Knowing what to believe (when you
already know something). In: COLING, pp. 877–885 (2010)

56. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers, San Mateo
(1988)

123

http://deepdive.stanford.edu/
http://arxiv.org/abs/1310.6257
http://www.microsoft.com/sqlserver
http://oeis.org/
http://oeis.org/

30 W. Gatterbauer, D. Suciu

57. Poole, D.: First-order probabilistic inference. In: IJCAI, pp. 985–
991 (2003)

58. PostgreSQL 9.2. http://www.postgresql.org/download/
59. Quillian, M.R.: Semantic memory. In: Semantic Information

Processing, pp. 227–270. MIT Press (1968)
60. Raghunathan, R., De, S., Kambhampati, S.: Bayesian networks for

supporting query processing over incomplete autonomous data-
bases. J. Intell. Inf. Syst. 42(3), 595–618 (2014)

61. Ré, C., Dalvi, N.N., Suciu, D.: Query evaluation on probabilistic
databases. IEEE Data Eng. Bull. 29(1), 25–31 (2006)

62. Ré, C., Dalvi, N.N., Suciu, D.: Efficient top-k query evaluation on
probabilistic data. In: ICDE, pp. 886–895 (2007)

63. Ré, C., Suciu, D.: Approximate lineage for probabilistic databases.
PVLDB 1(1), 797–808 (2008)

64. Roy, S., Perduca, V., Tannen, V.: Faster query answering in proba-
bilistic databases using read-once functions. In: ICDT, pp. 232–243
(2011)

65. Rumelhart, D.E., Hinton, G.E.,Williams, R.J.: Learning inter-
nal representations by error propagation. In: Parallel distributed
processing: explorations in the microstructure of cognition, vol. 1,
pp 318–362. MIT Press (1986)

66. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database manage-
ment system. In: SIGMOD, pp. 23–34 (1979)

67. Sen, P., Deshpande, A.: Representing and querying correlated
tuples in probabilistic databases. In: ICDE, pp. 596–605 (2007)

68. Sen, P., Deshpande, A., Getoor, L.: Read-once functions and query
evaluation in probabilistic databases. PVLDB 3(1), 1068–1079
(2010)

69. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix
factorization. In: KDD, pp. 650–658 (2008)

70. Stoyanovich, J., Davidson, S.B., Milo, T., Tannen, V.: Deriving
probabilistic databases with inference ensembles. In: ICDE, pp.
303–314 (2011)

71. TPC-H Benchmark. http://www.tpc.org/tpch/
72. Van den Broeck, G., Choi, A., Darwiche, A.: Lifted relax, compen-

sate and then recover: fromapproximate to exact lifted probabilistic
inference. In: UAI, pp. 131–141 (2012)

73. Van den Broeck, G., Meert, W., Darwiche, A.: Skolemization for
weighted first-order model counting. In: KR (2014)

74. Van den Broeck, G., Suciu, D.: Lifted probabilistic inference in
relational models. In: UAI tutorials (2014)

75. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt,
L.: Lifted probabilistic inference by first-order knowledge compi-
lation. In: IJCAI, pp. 2178–2185 (2011)

76. Vardi, M.Y.: The complexity of relational query languages
(extended abstract). In: STOC, pp. 137–146 (1982)

77. Weston, J., Elisseeff, A., Zhou, D., Leslie, C.S., Noble, W.S.: Pro-
tein ranking: from local to global structure in the protein similarity
network. Proc Natl Acad Sci USA 101(17), 6559–6563 (2004)

78. Yin, X., Han, J., Philip, S.Y.: Truth discovery with multiple con-
flicting information providers on theweb. IEEETrans.Knowl.Data
Eng. 20(6), 796–808 (2008)

79. Zeng, K., Gao, S., Mozafari, B., Zaniolo, C.: The analytical boot-
strap: a new method for fast error estimation in approximate query
processing. In: SIGMOD, pp. 277–288 (2014)

80. Zhang, C., Ré, C.: Towards high-throughput Gibbs sampling at
scale: a study across storage managers. In: SIGMOD, pp. 397–408
(2013)

123

http://www.postgresql.org/download/
http://www.tpc.org/tpch/

	Dissociation and propagation for approximate lifted inference with standard relational database management systems
	Abstract
	1 Introduction
	2 Technical background
	2.1 Probabilistic databases and self-join-free conjunctive queries
	2.2 Probabilistic query plans
	2.3 Boolean Formulas

	3 Dissociation and propagation for unsafe queries
	3.1 Query dissociation
	3.2 Dissociation and the relation to propagation on graphs
	3.3 Partial dissociation order

	4 Dissociations and minimal query plans
	4.1 Hierarchical dissociations and query plans
	4.2 Enumerating minimal query plans
	4.3 Other observations

	5 Optimizations with schema knowledge
	5.1 Deterministic relations (DRs)
	5.2 Functional dependencies (FDs)

	6 Multi-query Optimizations
	6.1 Opt. 1: One single query plan
	6.2 Opt. 2: Re-using common subplans
	6.3 Opt. 3: Deterministic semi-join reduction

	7 Experiments
	7.1 Runtime experiments
	7.2 Ranking experiments

	8 Related Work
	9 Conclusions and Outlook
	Acknowledgements
	References

