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The 2n−1 factor for multi-dimensional lattice paths

with diagonal steps

E. Duchi∗ and R. A. Sulanke†

Abstract

In Zd, let D(n) denote the set of lattice paths from the origin to (n, n, . . . , n) that
use nonzero steps of the form (x1, x2, . . . , xd) where xi ∈ {0, 1} for 1 ≤ i ≤ d. Let
S(n) denote the set of lattice paths from the origin to (n, n, . . . , n) that use nonzero
steps of the form (x1, x2, . . . , xd) where xi ≥ 0 for 1 ≤ i ≤ d. For d = 3, we prove
bijectively that the cardinalities satisfy |S(n)| = 2n−1|D(n)| for n ≥ 1. One can extend
our method to any dimension and obtain the same identity. We find an explicit formula
for |D(n)| when d = 3.
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1 Introduction

In d-dimensional space Zd, consider a lattice path to be represented as a concatenation

of directed steps. Let D(n) denote the set of paths from (0, 0, . . . , 0) to (n, n, . . . , n) using

nonzero steps of the form (x1, x2, . . . , xd) where xi ∈ {0, 1} for 1 ≤ i ≤ d. These steps

are the positive steps, including the diagonal ones, between vertices of a unit hypercube.

Let S(n) denote the set of paths from (0, 0, . . . , 0) to (n, n, . . . , n) using the steps of the

form (x1, x2, . . . , xd) where the xi’s are nonnegative integers, not all zero. The paths of

S(n) correspond to MacMahon’s [6, sect. IV] “compositions of the multipartite number

(n, n, . . . , n)”.

Our main result is a bijective proof that, for any dimension and for n ≥ 1, the cardinalities

|D(n)| and |S(n)| satisfy

|S(n)| = 2n−1|D(n)|. (1)
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In the 2-dimensional case, the numbers (|D(n)|)n≥0 = 1, 3, 13, 63, 321, 1683, 8989, . . . are

the central Delannoy numbers with |D(n)| =
∑

0≤k≤n

(
n
k

)2
2k. For d = 2, explicit formulas and

generating functions for (|D(n)|)n≥0 and (|S(n)|)n≥0 appear under A001850 and A052141 in

[7]. For d = 2, identity (1) appears in an exercise in Stanley [8, Exercise 6.16] with a bijective

proof appearing in [9]. Recently, Humphreys and Niederhausen [3] applied techniques of the

umbral calculus to obtain (1) for d = 2. For further information regarding the Delannoy

numbers, see the historical note on the work and life of Henri Delannoy given by Banderier

and Schwer [1]. See also the collection of 29 configurations counted by the Delannoy numbers

given by Sulanke [10]. Recently, he [11] has used different bijective techniques to show that

identity (1) holds for any dimension when the sets D(n) and S(n) are restricted to contain

those paths lying in the region {(x1, x2, . . . , xd) : x1 ≤ x2 ≤ . . . ≤ xd}.
For dimension d = 3 and n ≥ 0, formula (4) of Section 9 yields

|D(n)| =
n∑

i=0

n−i∑
j=0

n∑
k=0

(
n

i

)(
n− i

j

)(
n

k

)(
n + i

i + j

)(
n

i + k

)
2i+j+k.

One then finds that

(|D(n)|)n≥0 = 1, 13, 409, 16081, 699121, 32193253, 1538743249, . . .

(|S(n)|)n≥0 = 1, 13, 818, 64324, 5592968, 515092048, 49239783968, . . .

With the notation of Section 2, we prove identity (1) for dimension d = 3 by a series of

bijections in a manner that can be routinely extended to any dimension:

S(n) −→ L′(n) −→ L∗(n)× 2[n−1] −→ ZL∗(n)× 2[n−1] −→ ZL∗∗(n)× 2[n−1]

−→ Y L∗∗(n)× 2[n−1] −→ L′′(n)× 2[n−1] −→ D(n)× 2[n−1], (2)

where 2[n−1] is the power set of [n−1] = {1, 2, . . . , n−1}. In Section 2 we give an explanation

of our notation and a more extensive overview of our proof of identity (1). Sections 3 through

8 define the bijections used in (2).

In the final section we consider the set of lattice paths from the origin to (n1, n2, n3)

using the unit steps X, Y , and Z. We discuss some statistics for paths in this set. We then

generalize these statistics and outline the proof of identity (1) for dimensions d > 3. We

briefly examine a generalization of identity (1) for the non-central case. For completeness,

we mention some results on generating functions which appeared in MacMahon’s work [6].

2 Notation and overview of proof

From the context it will be clear whether the notation (x, y, z) denotes a point in Z3 or
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denotes a step from an arbitrary point (x0, y0, z0) to the point (x0 +x, y0 +y, z0 +z). We will

denote the unit steps as X, Y , and Z, where X = (1, 0, 0), Y = (0, 1, 0), and Z = (0, 0, 1).

Let L(n) denote the set of lattice paths from (0, 0, 0) to (n, n, n) using the unit steps X,

Y , and Z. For any path, in order to mark the intermediate vertex between two adjacent

steps Si and Si+1 by a color c, c ∈ {b, r} = {blue, red}, we will replace SiSi+1 by SicSi+1 in

the concatenation representing the path.

Table 1 summarizes the notation for the various sets of lattice paths used in the proof.

In the table, the term “section” refers to the section where the notation first appears. The

phrase “colored pairs” refers to those step pairs having independently colored blue or red

intermediate vertex. All other intermediate vertices and the point (n, n, n) are red. Notice

that path sets with the same superscripting (i.e., asterisk, double asterisks, and double

prime) have essentially the same vertex coloring schemes.

set section steps initial final colored pairs

used point point

L(n) §2 X, Y , Z (0, 0, 0) (n, n, n)

L′(n) §3 X, Y , Z (0, 0, 0) (n, n, n) XX, Y X, Y Y, ZX,ZY, ZZ

L∗(n) §4 X, Y , Z (0, 0, 0) (n, n, n) Y Y, ZY, ZZ

ZL(n) §5 X, Y , Z (0, 0,−1) (n, n, n)

ZL∗(n) §5 X, Y , Z (0, 0,−1) (n, n, n) Y Y, ZY, ZZ

Y L2(n) §6 X, Y (0,−1, 0) (n, n, 0)

ZL2(n) §6 X, Z (0, 0,−1) (n, 0, n)

ZL∗∗(n) §7 X, Y , Z (0, 0,−1) (n, n, n) Y Y, ZY, non-origin ZX

Y L(n) §7 X, Y , Z (0,−1, 0) (n, n, n)

Y L∗∗(n) §7 X, Y , Z (0,−1, 0) (n, n, n) Y Y, ZX,ZY

Y L′′(n) §7 X, Y , Z (0,−1, 0) (n, n, n) ZX, ZY, non-origin Y X

L′′(n) §7 X, Y , Z (0, 0, 0) (n, n, n) Y X,ZX, ZY

Table 1: Notation for path sets

This and the following paragraphs indicate an overview of our proof of identity (1).

Through a series of bijections in Sections 3, 4, and 5, we encode each path in S(n), which

uses steps of arbitrary length, by a pair, say (ZP ∗, A), where ZP ∗ ∈ ZL∗(n) and A is a

subset of [n − 1]. On any path P ′ ∈ L′(n), ignoring the first X step on any path, the set

A encodes the coloring of the remaining n − 1 initial vertices of the X steps on P ′. It is

the cardinality of the collection of all such subsets which accounts for the factor 2n−1 of

identity (1).
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In Sections 6 and 7, we transform each path ZP ∗ ∈ ZL∗(n) into a path ZP ∗∗ ∈ ZL∗∗(n).

Essentially, the colors on the intermediate vertices of the ZZ’s move to the non-origin vertices

of ZX’s while the colors on the intermediate vertices of the Y Y ’s and ZY ’s are preserved

under the transformation ZL∗(n) −→ ZL∗∗(n). To make this transformation we first keep

unaltered, as labeling words, the Y steps and the colors appearing between successive (not

necessarily adjacent) steps of types X and Z. E.g., we have underlined the labeling words

in the following path:

ZbZbY bY rY rXrXrXrZbY rZrZbZrXr ∈ ZL∗(n).

We next project the path ZP ∗ orthogonally onto the x-z-plane so that the labeling words

become labels for intermediate vertices of the ZZ, ZX, XZ, and XX pairs on the resulting

2-dimensional path. Using the maps of Section 6, we then transform this 2-dimensional path

to a new 2-dimensional path so that each ZZ pair, together with its labeling word, maps to

a ZX pair, and vice-versa, and so that all other labeling words map similarly. Finally, we

expand the labeling words on the new 2-dimensional path to obtain a 3-dimensional path

ZP ∗∗ ∈ ZL∗∗(n).

After changing the initial step from Z to Y , analogously we transform each Y P ∗∗ to a

path P ′′ ∈ L′′(n). We complete the proof of (1) in Section 8 by transforming each path P ′′

into a path belonging to D(n) by changing blue colored step pairs and triples (i.e., ZbY bX)

into diagonal steps.

3 The bijection S(n) to L′(n)

Let L′(n) denote the set of paths formed from the paths of L(n) by independently coloring

with b and r the intermediate vertices of XX, Y X, Y Y , ZX, ZY , and ZZ, and by coloring

with r the other intermediate vertices.

We define the bijection

α : S(n) −→ L′(n)

to be a morphism that sequentially applies the following replacement rules to each path: for

x > 0, y > 0, and z > 0,
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(x, 0, 0) −→ X(bX)x−1

(0, y, 0) −→ Y (bY )y−1

(0, 0, z) −→ Z(bZ)z−1

(x, y, 0) −→ Y (bY )y−1(bX)x

(x, 0, z) −→ Z(bZ)z−1(bX)x

(0, y, z) −→ Z(bZ)z−1(bY )y

(x, y, z) −→ Z(bZ)z−1(bY )y(bX)x,

and then assigns color r to all non-b intermediate vertices on the resulting path. Here the

exponents indicate multiple factors in the concatenation; the color b marks intermediate

vertices. See Examples 1 and 2 in the following section. (One might glean the bijection α

from an encoding for compositions of tripartite numbers given by MacMahon [6, sect. IV].)

4 The bijection L′(n) to L∗(n) × 2[n−1]

Let L∗(n) denote the set of paths formed from the paths of L(n) by independently coloring

with b and r the intermediate vertices of all Y Y , ZY , and ZZ pairs together with all vertices

(0, 0, 0) that precede a Y or Z step. All other vertices, including (n, n, n) are red.

We now define a bijection

β : L′(n) −→ L∗(n)× 2[n−1].

For P ′ ∈ L′(n), let (P ∗, A) = β(P ′), where

(i) The path P ∗ traces the same points in R3 as P ′ does. Momentarily, give P ∗ the coloring

of P ′.

(ii) If the first occurrence of an X step in the path P ′ in L′(n) is immediately preceded by

a b vertex, then color the point (0, 0, 0) on P ∗ by b; if otherwise, color it by r.

(iii) Let A be the set of all i, 1 ≤ i ≤ n − 1, for which the initial vertex of the (i + 1)-st

X on P ′ is red. Equivalently, A is the set of all x, x > 0, such that (x, y, z) is an r

colored initial vertex of an X step on P ′.

(iv) Color red all the intermediate vertices of XX, XY , XZ, Y X, Y Z, and ZX pairs,

together with (n, n, n) on P ∗. (Items (ii) and (iii) preserve any lost information.)

Example 1 If S = (0, 2, 1)(2, 1, 0)(1, 1, 1)(1, 0, 2) ∈ S(4), then

α(S) = P ′ = ZbY bY rY bXbXrZbY bXrZbZbX ∈ L′(4)
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and P ∗ = bZbY bY rY rXrXrZbY rXrZbZrXr ∈ L∗(4) with A = ∅. Here the origin is blue

since the first X in P ′ has a blue initial vertex; A = ∅ since none of the following X’s in P ′

have a red initial vertex. This example will continue through the paper.

Example 2 If S = (0, 2, 1)(2, 0, 0)(1, 0, 0)(1, 2, 3), then

α(S) = P ′ = ZbY bY rXbXrXrZbZbZbY bY bX ∈ L′(4)

and P ∗ = rZbY bY rXrXrXrZbZbZbY bY rXr ∈ L∗(4). Here the origin is red since the first

X in P ′ has a red initial vertex; also A = {2} since the third X in P ′ has a red initial vertex.

5 Labeling words and the bijection ε : L∗(n) to ZL∗(n)

Let ZL(n) denote the set of paths using the steps X, Y , and Z, beginning with a Z step

and running from (0, 0,−1), through (0, 0, 0), and on to (n, n, n). Let ZL∗(n) denote the

set of paths formed from the paths of ZL(n) by independently coloring with b and r the

intermediate vertices of all Y Y , ZY , and ZZ pairs.

Here we introduce the notion of a labeling word and then define a simple bijection. Sup-

pose that P ∗ ∈ L∗(n) is factored as

P ∗ = Y0S1Y1S2Y2 · · ·SiYi · · ·S2nY2n

where

(i) Si ∈ {X, Z} for 1 ≤ i ≤ 2n,

(ii) Yi is a subpath that is just a color or appears as Yi = ci0Y ci1Y ci2 · · ·Y ciji
with cih ∈

{b, r}, for 0 ≤ h ≤ ji, for 0 ≤ i ≤ 2n. We will refer to any such subpath as a labeling

word.

(iii) Y0 = c00Y c01Y c02 · · ·Y c0j0 with c0h ∈ {b, r}, for 0 ≤ h ≤ j0 if P ∗ begins with a Y step,

(iv) Y0 = c00 if P ∗ begins with an X or Z step.

We define a simple bijection:

ε : L∗(n) −→ ZL∗(n).

where

ε(P ∗) = ZP ∗ = ZY0S1Y1S2Y2 · · ·SiYi · · ·S2nY2n (3)

where the initial Z begins at (0, 0,−1). In effect, the notation of this section has mapped a

path in L∗(n) to a 2-dimensional path in the x − z plane with the labeling words marking

the new path’s vertices.
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Example 3 This continues Example 1. With the labeling words Y0 = b, Y1 = bY bY rY r,

Y4 = bY r, Y6 = b, and Y2 = Y3 = Y5 = Y7 = Y8 = r,

ε(P ∗) = ε(bZbY bY rY rXrXrZbY rXrZbZrXr) = ZY0ZY1XY2XY3ZY4XY5ZY6ZY7XY8.

6 Auxiliary bijections for two-dimensional paths.

Let Y L2(n) denote the set of 2-dimensional paths restricted to the plane z = 0 using

the steps X and Y and running from (0,−1, 0), through (0, 0, 0), to (n, n, 0). Similarly, let

ZL2(n) denote the set of paths restricted to the plane y = 0 using the steps X and Z and

running from (0, 0,−1), through (0, 0, 0), to (n, 0, n).

For paths in Y L2(n) (in ZL2(n), resp.),

• A double rise is the intermediate vertex of a consecutive Y Y pair (ZZ, resp.).

• A non-origin descent is the intermediate vertex of a consecutive Y X (ZX, resp.) that

is not (0, 0, 0).

• An otherwise point is an intermediate vertex which is absent from the above categories

or the final vertex on a path. An ascent, i.e., the intermediate vertex of a consecutive

XY (XZ, resp.), is an example of an otherwise point.

We now introduce two bijections for paths in the plane which will be applied in the

following section. We define the first, denoted by δy, and indicate that the second, denoted

by δz, is defined similarly.

Lemma 1 For any k, 0 ≤ k ≤ n, there is a bijection denoted as

γ1 : {P ∈ Y L2(n) : P has k ascents }

−→ {P ∈ Y L2(n) : P has n-k ascents }.

To define this bijection, let P ∈ Y L2(n) with k ascents, located at (x1, y1) . . . (xk, yk).

These ascents completely determine P . Let (x′1, y
′
1), . . . , (x

′
n−k, y

′
n−k) be the increasing se-

quence of points satisfying

{x′1, x′2, . . . , x′n−k} = {1, 2 . . . , n} − {x1, x2, . . . , xk} and

{y′1, y′2, . . . , y′n−k} = {0, 1, . . . , n− 1} − {y1, y2, . . . , yk}.

As ascents, the vertices (x′1, y
′
1), . . . , (x

′
n−k, y

′
n−k) completely determine the path γ1(P ) in a

manner yielding the lemma. �
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Lemma 2 For any P ∈ Y L2(n), P has k double rises if, and only if, it has n− k ascents.

Hence,

γ1 : {P ∈ Y L2(n) : P has k double rises }

−→ {P ∈ Y L2(n) : P has k ascents }.

This from the fact that each noninitial Y step is preceded by either a Y or an X step

and from Lemma 1. (Such a result fails on L2(n); the Y at the start of each path in Y L2(n)

is required.) �

Lemma 3 For any k, 0 ≤ k ≤ n, there is a bijection denoted as

γ2 : {P ∈ Y L2(n) : P has k ascents }

−→ {P ∈ Y L2(n) : P has k non-origin descents }.

For each P ∈ Y L2(n), reflect about the line y = x the subpath of P running from (0, 0)

to (n, n). �

Lemma 4 For any k, 0 ≤ k ≤ n, there is a bijection, δy : Y L2(n) → Y L2(n), such that

P ∈ Y L2(n) has j non-origin descents if, and only if, δy(P ) has j double rises. Likewise,

there is a bijection, δz : ZL2(n) → ZL2(n), such that P ∈ ZL2(n) has j non-origin descents

if, and only if, δz(P ) has j double rises.

To see this for δy, define (δz is defined analogously.)

δy = γ2 ◦ γ1 : {P ∈ Y L2(n) : P has k double rises}

−→ {P ∈ Y L2(n) : P has k non-origin descents}. �

A note on indexing the vertices of the paths of Y L2(n) and ZL2(n): For each

path of Y L2(n) having k double rises, index the intermediate vertices of its double rises by

assigning 1, . . . , k, in order of their position on the path. Likewise, index its j non-origin

descents by 1, . . . , j and index its otherwise points by 1, 2, . . . , in order of position on the

path.

Example 4 In the case of δz we have δz(ZZXXZXZZX) = γ2(γ1(ZZXXZXZZX)) =

γ2(ZXZZZXXXZ) = ZZXXXZZZX, where the analog of Lemma 1 uses (x1, z1) = (2, 1),

(x2, z2) = (3, 2), (x′1, z
′
1) = (1, 0), and (x′2, z

′
2) = (4, 3). Let Y0, Y1, . . . , Y8 denote vertex labels

on the path. Requiring that the labels of the double rises maps sequentially to the labels of

the non-origin descents, etc., we have

δz(ZY0ZY1XY2XY3ZY4XY5ZY6ZY7XY8) = ZY1ZY0XY2XY3ZY5XY4ZY7ZY6XY8.
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7 The bijection ZL∗(n) to L′′(n)

In any of the following colored paths, all unspecified intermediate vertices and the final

vertex are colored r.

Let ZL∗∗(n) denote the set of paths formed from the paths of ZL(n) by independently

coloring with b and r the intermediate vertices of all Y Y , ZY , and non-origin ZX pairs (i.e.,

those ZX pairs whose intermediate vertex is not the origin).

Let Y L(n) denote the set of paths using the steps X, Y , and Z, beginning with a Y step

and running from (0,−1, 0), through (0, 0, 0), and on to (n, n, n).

Let Y L∗∗(n) denote the set of paths formed from the paths of Y L(n) by independently

coloring with b and r the intermediate vertices of all Y Y , ZX, and ZY pairs.

Let Y L′′(n) denote the set of paths formed from the paths of Y L(n) by independently

coloring with b and r the intermediate vertices of all ZX, ZY , and non-origin Y X pairs

(i.e., those Y X pairs whose intermediate vertex is not the origin).

Let L′′(n) denote the set of paths formed from the paths of L(n) by independently coloring

with b and r the intermediate vertices of Y X, ZX, and ZY .

We first define a bijection

η1 : ZL∗(n) −→ ZL∗∗(n)

(i) by first projecting orthogonally each path in ZL∗(n), expressed as in the right side of

(3), onto a path in ZL2(n) in the x− z plane, so that the labeling words Y0, Y1, . . . , Yi,

. . . ,Y2n, (defined in Section 5) are contracted to become labels for the indexed vertices

(as described at the end of Section 6) of the 2-dimensional path,

(ii) next, by applying bijection δz, so that each label Yi is moved bijectively according to

the indexing defined in Section 6, (Specifically, a label Yi on a double rise ZZ indexed

by h on a path P is moved to the non-origin descent ZX of index h of path δz(P );

likewise, a label Yi on a non-origin descent is moved to the double rise of the same

index, and a label Yi on an otherwise vertex is moved to the otherwise vertex with the

same index.)

(iii) and finally by expanding each label Yi as a subpath to obtain a 3-dimensional path in

ZL∗∗(n).

The bijection

η2 : ZL∗∗(n) −→ Y L∗∗(n)

simply changes the first step of each path in ZL∗∗(n) into a Y step. It can be routinely

checked that the coloring is transfered in a manner preserving the appropriate number of

blue and red vertices. The composition η = η2 ◦ η1 bijectively maps ZL∗(n) to Y L∗∗(n).
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Next we define

φ = φ2 ◦ φ1 : Y L∗∗(n) −→ L′′(n)

where the map

φ1 : Y L∗∗(n) −→ Y L′′(n)

is defined by mimicking the definition of η1 by now projecting the path onto the x− y plane

and using the bijection δy, and the map

φ2 : Y L′′(n) −→ L′′(n)

is defined simply to delete the first step, together with the first and last colors (necessarily

r), from each path in Y L′′(n).

Example 5 Continuing from the previous examples, we have the following. Here the un-

derlined (double underlined and overlined, resp.) labeling words are transfered sequentially

from double rises (e.g., ZZ) to non-origin descents (e.g., ZX), etc.

P ∗ = bZbY bY rY rXrXrZbY rXrZbZrXr ∈ L∗(4),
ε(P ∗) = ZbZbY bY rY rXrXrZbY rXrZbZrXr ∈ ZL∗(4),

η1(ε(P
∗)) = ZbY bY rY rZbXrXrXrZbY rZrZbXr ∈ ZL∗∗(4),

η(ε(P ∗)) = Y bY bY rY ZbXrXrXZbrY rZrZbXr ∈ Y L∗∗(4),

φ1(η(ε(P ∗))) = Y rZbY bXrY bXrY rZrZbY rXrZbXr ∈ Y L′′(4),
φ(η(ε(P ∗))) = ZbY bXrY bXrY rZrZbY rXrZbX ∈ L′′(4).

8 The bijection L′′(n) to D(n)

We define a bijection

µ : L′′(n) −→ D(n)

so that, for each P ∈ L′′(n), µ(P ) is obtained by replacing sequentially each maximal factor

of steps having consecutively b colored vertices by an oblique step having 0-1 coordinates

according to the following rules:

Y bX −→ (1, 1, 0)

ZbX −→ (1, 0, 1)

ZbY −→ (0, 1, 1)

ZbY bX −→ (1, 1, 1)

On the resulting path, keep the remaining unit steps and remove the color r.
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Example 6 The last path in Example 5, ZbY bXrY bXrY rZrZbY rXrZbX ∈ L′′(4), is

mapped under µ to the path

(1, 1, 1)(1, 1, 0)(0, 1, 0)(0, 0, 1)(0, 1, 1)(1, 0, 0)(1, 0, 1) ∈ D(4).

9 Appendix

Let L(n1, n2, . . . , nd) denote the set of d-dimensional lattice paths running from the origin

to (n1, n2, . . . , nd) using the unit steps Xk, where Xk denotes the unit d-vector with 1 in

position k. In this section we consider statistics on paths of L(n1, n2, . . . , nd), a proof of

identity (1) for d > 3, and an explicit formula for |D(n)| when d = 3. We also generalize (1)

to the non-central case and mention some generating functions results.

Some Statistics: We order the steps so that X < Y < Z. We define the following

statistics, the last two being the classical number of descents (called number of major contacts

in [6]) and number of excedances considered by MacMahon. [6, sect. IV, chap. III] (See [4,

chap. 10].) For any path P = p1p2 . . . pm in L(n1, n2, n3), with ZP denoting Zp1p2 . . . pm,

etc., define (with the choice of the subscripts made clear later)

(i) f3(P ) = #(Y Y, ZY, or ZZ pairs on ZP ),

(ii) f2(P ) = #(Y Y, ZX, or ZY pairs on Y P ),

(iii) des(P ) = |{i : pi > pi+1}| = #(Y X,ZX, or ZY pairs on P ).

(iv) exced(P ) = |{i : pi > qi}| where q1q2 . . . qm is that path in L(n1, n2, n3) for which

qi ≤ qi+1 for 1 ≤ i < m.

Notice that

exced(P ) = #(Z in first n1 + n2 positions of P ) + #(Y in first n1 positions of P ).

The establishment of the maps η1 and φ1 in Section 7 yields the following.

Proposition 1 The statistics f3, f2, and des are equi-distributed on L(n, n, n).

In general we remark that this proposition does not hold on L(n1, n2, n3) where n1, n2, n3

are unequal; hence a neat “2n−1 result” is only realized in the central cases where ni ∈ {0, n}.
We consider the non-central case later in Proposition 3.
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Higher dimensions: In order to state and prove identity (1) or the analog of Proposition

1 for d = 4, we expand the definitions of the statistics so that, if X = (1, 0, 0, 0), Y =

(0, 1, 0, 0), Z = (0, 0, 1, 0), and W = (0, 0, 0, 1), then

f4(P ) = #(Y Y, ZY, ZZ,WY, WZ, WW on WP )

f3(P ) = #(Y Y, ZY, ZZ,WX,WY, WZ on ZP )

f2(P ) = #(Y Y, ZX,ZY, WX, WY, WZ on Y P )

f1(P ) = #(Y X,ZX, ZY, WX, WY,WZ on XP )

des(P ) = #(Y X,ZX, ZY, WX, WY,WZ on P )

Analogously to Sections 3 and 4, we can encode each path of S(n) in terms of a path using

X, Y, Z, and W having colored vertices related to the statistic f4 together with a set A ∈ 2[n−1]

corresponding to the colors preceding the X steps. Analogously to Section 8, we can encode

each path of D(n) in terms of a path using X, Y, Z, and W having colored vertices related to

the statistic des. By employing the scheme of the previous sections we can show sequentially

that each of f4, f3, f2, and des is equi-distributed with the next. Essentially, we transfer

each path into and out of the x−w plane, into and out of the x− z plane, and then into and

out of the x− y plane, each time using an analog of Lemma 4 on the 2-dimensional path at

each stage to move the coloring on certain double rises to certain non-origin descents.

Next we indicate how this approach extends to higher dimensions. Let Bk denote a

set of step pairs defined recursively (backwards) so that Bd = {XiXj : 2 ≤ j ≤ i ≤ d} and

Bk−1 = Bk∪{XkX1}\{XkXk} for 1 < k ≤ d. For 1 ≤ k ≤ d and any path XkP = p0p1 . . . pdn,

define the statistic fk(P ) = |{i : pi−1pi ∈ Bk, 1 ≤ i ≤ dn}|. We then encode each path of

S(n) in terms of a path using X1, . . . , Xd having colored vertices related to the statistic

fd together with a set A ∈ 2[n−1]. Also we encode each path of D(n) in terms of a path

using X1, . . . , Xd having colored vertices related to the statistic des = f1. By mimicking

the scheme of the previous sections where sequentially the coloring on double rises XkXk is

swapped for the coloring on descents XkX1, k running from d back to 2, we can show that

each of fd, fd−1, . . . f2, and des = f1 is equi-distributed with the next.

Explicit formulas and the non-central case: Now we establish an explicit formula

for enumerating L(n1, n2, n3) with respect to the number of descents, which appears in an

equivalent form in MacMahon [6, p. 180]. However, since we have been considering equi-

distributed statistics, we will use a related result of MacMahon [6, sect. IV, ch. III] [5,

p. 669], which is proved bijectively by Foata [4] and Clarke and Foata [2] (See also [5, pp.

455-6].) For d = 3, the result is

Proposition 2 The statistics des and exced are equi-distributed on L(n1, n2, n3).
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Thus ∑
P∈L(n1,n2,n3)

tdes(P ) =
∑

h

|{P : des(P ) = h}|th =
∑

h

|{P : exced(P ) = h}|th.

Since |{P : exced(P ) = h}| is the number of paths having i Z’s and j Y ’s in the first n1

positions and k Z’s and ` Y ’s in the next n2 positions, then, with h = i + j + k,

|{P : exced(P ) = h}| =∑
i,j,k,`

n1!

i!j!(n1 − i− j)!

n2!

k!`!(n2 − k − `)!

n3!

(n3 − i− k)!(n2 − j − `)!(i + j + k + `− n2)!
.

Hence, after some simplification, with the indices satisfying 0 ≤ i ≤ n1, 0 ≤ j ≤ n1 − i, and

0 ≤ k ≤ n2, we find∑
P∈L(n1,n2,n3)

tdes(P ) =
∑
i,j,k

(
n1

i

)(
n1 − i

j

)(
n2

k

)(
n2 + i

i + j

)(
n3

i + k

)
ti+j+k. (4)

By setting n1 = n2 = n3 = n, by setting t = 2 corresponding to the blue or red choice at

each descent, and by using the mapping µ of Section 8, formula (4) yields an explicit formula

for |D(n)| for d = 3.

MacMahon in his book [6] comes close to formulating identity (1) for d = 2 and 3. He

mentions the Delannoy numbers, without name, briefly on [6, p. 159], and records (1) for

d = 1 on [6, p. 151]. Armed with the bijections of Sections 3 and 8, and now aware of his

analysis, we will give a generalization of identity (1) for the non-central case.

Let D(n1, n2, . . . , nd) denote the set of paths from the origin to (n1, n2, . . . , nd) using

nonzero steps of the form (x1, x2, . . . , xd) where xi ∈ {0, 1} for 1 ≤ i ≤ d. Let S(n1, n2, . . . , nd)

denote the set of paths from the origin to (n1, n2, . . . , nd) using the steps of the form

(x1, x2, . . . , xd) where the xi’s are nonnegative integers, not all zero.

Proposition 3 Let f(t; n1, n2, n3) denote the polynomial in t of (4). For (n1, n2, n3) 6=
(0, 0, 0),

|S(n1, n2, n3)| = 2n1+n2+n3−1f(
1

2
; n1, n2, n3) (5)

while

|D(n1, n2, n3)| = f(2; n1, n2, n3). (6)

The proof of (6) was effectively covered in the paragraph following the formula (4). To prove

(5), which is also stated and proven in [6, p. 180], we require some notation. On L(n1, n2, n3)
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we define the following statistics (names borrowed from MacMahon’s equal contact and minor

contact):

des(P ) = #(Y X,ZX, and ZY on P )

eqcon(P ) = #(XX, Y Y, and ZZ on P )

mincon(P ) = #(XY,XZ, and Y Z on P )

Let L′(n1, n2, n3) denote the set of paths formed from the paths of L(n1, n2, n3) by weighting

the intermediate vertices of XX, Y X, Y Y , ZX, ZY , and ZZ with 2. Hence, by extending

the map α of Section 3 to α : S(n1, n2, n3) → L′(n1, n2, n3), we obtain

|S(n1, n2, n3)| =
∑

P∈L(n1,n2,n3)

2des(P )+eqcon(P ).

That there are n1 + n2 + n3 − 1 interior lattice points on any path of L(n1, n2, n3), together

with symmetry, yields∑
P∈L(n1,n2,n3)

tdes(P )+eqcon(P ) =
∑

P∈L(n1,n2,n3)

tn1+n2+n3−1−mincon(P )

= tn1+n2+n3−1
∑

P∈L(n3,n2,n1)

t−des(P ). (7)

Thus formula (5) follows by the symmetry of |S(n1, n2, n3)| in n1, n2, and n3. �

Generating functions and recurrences: For any d, the formulas for the gener-

ating functions for
∑

n1,...,nd
|D(n1, . . . , nd)|xn1

1 · · ·xnd
d and

∑
n1,...,nd

|S(n1, . . . , nd)|xn1
1 · · ·xnd

d

are given by MacMahon on [6, p. 159, p. 156, resp.]. For d = 3 we find∑
m,n,p≥0

|D(m, n, p)|xmynzp =
1

1− x− y − z − xy − xz − yz − xyz∑
m,n,p≥0

|S(m,n, p)|xmynzp =
1

2
+

1

2(1− 2(x + y + z − xy − xz − yz + xyz))
,

which give rise to the recurrences:

|D(m, n, p)| = |D(m− 1, n, p)|+ |D(m,n− 1, p)|+ |D(m, n, p− 1)|+ |D(m− 1, n− 1, p)|
+|D(m− 1, n, p− 1)|+ |D(m, n− 1, p− 1)|+ |D(m− 1, n− 1, p− 1)|

|S(m, n, p)| = 2(|S(m− 1, n, p)|+ |S(m, n− 1, p)|+ |S(m, n, p− 1)| − |S(m− 1, n− 1, p)|
−|S(m− 1, n, p− 1)| − |S(m,n− 1, p− 1)|+ |S(m− 1, n− 1, p− 1)|)

For the second recurrence we require that m > 1 or n > 1 or p > 1.
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A reciprocal polynomial: We conclude by noting that, in the central case and d = 3

(the proof for any d is similar), the polynomial
∑

P∈L(n) tdes(P ) is a reciprocal polynomial,

i.e., if
∑

h cht
h denotes

∑
P∈L(n) tdes(P ) then c2n−h = ch for 0 ≤ h ≤ 2n. By exchanging the

blue-red coloring for an indeterminate t, we can routinely modify our bijection proving (1)

to show ∑
P∈L(n)

tdes(P )+eqcon(P ) = tn−1
∑

P∈L(n)

tdes(P ).

Combining this with the identity of (7) yields∑
P∈L(n)

t2n−des(P ) =
∑

P∈L(n)

tdes(P ).
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