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Series and parallel connections are usually first encountered in the study of elec-
trical circuits. Our approach is to first examine a relevant class of partially ordered
sets (posets) and then to define series-parallel networks by analogy [1]. Interesting
asymptotic constants appear everywhere, similar to those associated with counting
various species of trees [2]. We also talk briefly about the enumeration of Boolean
(or switching) functions under different notions of equivalence.

0.1. Series-Parallel Posets. We introduce two procedures for combining two
posets (S,≤) and (S ′,≤) to obtain a new poset, assuming that S ∩ S ′ = ∅:

• the disjoint sum S ⊕ S ′ is the poset on S ∪ S′ such that x ≤ y in S ⊕ S′ if
either x, y ∈ S and x ≤ y in S, or x, y ∈ S ′ and x ≤ y in S′

• the linear product S � S ′ is the poset on S ∪ S ′ such that x ≤ y in S � S ′ if
x, y ∈ S and x ≤ y in S, or x, y ∈ S ′ and x ≤ y in S ′, or x ∈ S and y ∈ S ′.

Clearly ⊕ is commutative but � is not. A series-parallel poset is one that can be
recursively constructed by applying the operations of disjoint sum and linear product,
starting with a single point [3].

Define a poset to be N-free if there is no subset {a, b, c, d} whose only nontrivial
relations are given by

a < c, a < d, b < d.

It can be proved that a finite poset is series-parallel if and only if it is N-free [4, 5, 6].
Hence there are 15 series-parallel posets with 4 points (see the 16 posets in Figure 2
of [7] and eliminate the poset that looks like an “N”).

There are two cases we shall consider. The number f
n
of unlabeled series-parallel

posets with n points has (ordinary) generating function [3, 8, 9]

F (x) =
∞∑

n=0

f
n
xn = 1 + x+ 2x2 + 5x3 + 15x4 + 48x5 + 167x6 + 602x7 + 2256x8 + · · ·
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which satisfies the functional equation

F (x) = exp

[
∞∑
k=1

1

k

(
F (xk) +

1

F (xk)
+ xk − 2

)]

Alternatively, if the sequence {f̂n} is defined by 1/F (x) =
∑
∞

n=0 f̂nx
n, then

F (x) =
∞∏
j=1

(
1− xj

)
−(fj+f̂j+δj,1)

where δj,k = 1 when j = k and δj,k = 0 otherwise. Using such properties, it follows
that

fn ∼ β · n−3/2 · α−n

where α = 0.2163804273... is the unique positive root of F (x) = ϕ and ϕ is the
Golden mean, and where

β =

√√√√ 1

(3
√
5 − 5)π

[
α

1− α
+

∞∑
i=2

αiF ′(αi)

(
1− 1

F (αi)2

)]
= 0.2291846208...

The number gn of labeled series-parallel posets with n points has (exponential)
generating function [1, 3, 8, 9]

G(x) =
∞∑
n=1

gn

n!
xn = x+

3

2!
x2 +

19

3!
x3 +

195

4!
x4 +

2791

5!
x5 +

51303

6!
x6 +

1152019

7!
x7 + · · ·

=

(
ln(1 + x)− x2

1 + x

)〈−1〉
=

(
∞∑
k=1

(−1)k+1k + 1

k
xk

)〈−1〉

where the notation P (x)〈−1〉 denotes the reversion of the power series P (x). Well-
established theory [10, 11, 12] gives that

gn ∼ η · n! · n−3/2 · ξ−n

where ξ = ln(ϕ)− 2ϕ+ 3 = 0.2451438475... and

η =

√√√√ ξ

2
√
5(2− ϕ)π

= 0.2137301074...

Now let us define an equivalence relation on the set of series-parallel posets with n

points, induced simply by declaring S�S ′ and S ′�S to be equivalent. (See Figure 1.)
The equivalence classes correspond to what are called two-terminal series-parallel

networks with n edges [13, 14, 15, 16, 17, 18, 19], with the understanding that
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Figure 1: There are 10 non-equivalent (unlabeled) series-parallel posets with 4 points.
Note the analogy with Figure 2.

• points of a poset are mapped in a one-to-one manner to edges of the corre-
sponding network

• two points of the poset are comparable if and only if the analogous edges of the
network are connected in series

• two points of the poset are incomparable if and only if the analogous edges of
the network are connected in parallel.

(See Figures 2 and 3.) The leftmost and rightmost points are the terminals (two
distinguished points playing a role similar to that of the root of a rooted tree). A
network, however, is not necessarily a graph since it may possess multiple parallel
edges. Observe that an interchange of parts of the network, either in series or in par-
allel, is immaterial. In other words, when we count series-parallel networks, our tally
is unaffected by a permutation of variables in the indicated Boolean representations.

0.2. Series-Parallel Networks. The number un of unlabeled series-parallel net-
works with n edges has generating function [20]

U(x) =
∞∑
n=0

unx
n = 1 + x+ 2x2 + 4x3 + 10x4 + 24x5 + 66x6 + 180x7 + 522x8 + · · ·

which satisfies the functional equation

U (x) = exp

[
∞∑
k=1

1

2k

(
U(xk) + xk − 1

)]
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Figure 2: There are 10 unlabeled series-parallel networks with 4 edges, that is, u4 =
10. The “essentially parallel” networks constitute the first row and the “essentially
series” networks constitute the second row.

Figure 3: There are 8 labeled series-parallel networks with 3 edges, that is, v3 = 8.
The “essentially parallel” networks constitute the first row and the “essentially series”
networks constitute the second row.
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Alternatively, we have

U(x) =
∞∏
j=1

(
1− xj

)−(uj+δj,1)/2

Using these properties, it follows that [15, 21, 22, 23]

un ∼ λ · n−3/2 · κ−n

where κ = 0.2808326669... = (3.5608393095...)−1 is the unique positive root of
U(x) = 2 and

λ =

√√√√ 1

π

[
κ

1 − κ
+

∞∑
i=2

κiU ′(κi)

]
= 0.4127628892... = 2 · (0.2063814446...)

This also gives the number of non-equivalent Boolean functions of n variables, built
only with + (disjunction) and · (conjunction).

The number vn of labeled series-parallel networks with n edges has generating
function [1, 24]

V (x) =
∞∑
n=1

vn

n!
xn = x+

2

2!
x2 +

8

3!
x3 +

52

4!
x4 +

472

5!
x5 +

5504

6!
x6 +

78416

7!
x7 + · · ·

= (2 ln(1 + x)− x)〈−1〉 =

(
∞∑
k=1

(−1)k+1 2
k
xk

)〈−1〉

By techniques similar to those used to analyze {gn}, we have [21, 25]
vn ∼ τ · n! · n−3/2 · σ−n

where σ = 2 ln(2)− 1 = 0.3862943611... = (2.5886994495...)−1 and

τ =

√
σ

π
= 0.3506584008... = 2 · (0.1753292004...)

Related work involves bracketing of n-symbol products [26] and phylogenetic trees
[27].

0.3. Series-Parallel Networks Without Multiple Parallel Edges. If we pro-
hibit multiple parallel edges, so that the networks under consideration are all graphs,
different constants arise. (See Figure 4).

The number q
n
of such unlabeled series-parallel networks with n edges has gener-

ating function [28]

Q(x) =
∞∑

n=0

qnx
n = 1 + x+ x2 + 2x3 + 4x4 + 8x5 + 18x6 + 40x7 + 94x8 + 224x9 + · · ·
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Figure 4: There are 8 unlabeled series-parallel networks with 5 edges that obey the
prohibition against multiple parallel edges, that is, q5 = 8. The “essentially parallel”
networks constitute the first row and the “essentially series” networks constitute the
second row.

which satisfies the functional equation

Q(x) = exp

[
∞∑
k=1

1

2k

(
Q(xk)− x2k + xk

− 1
)]

Alternatively, we have

Q(x) =
∞∏
j=1

(
1− xj

)−(qj+δj,1−δj,2)/2

Using these properties, it follows that [21]

qn ∼ ν · n−3/2 · µ−n

where µ = 0.3462834070... is the unique positive root of Q(x) = 2 and

ν =

√√√√1

π

[
µ

1 + µ
+

∞∑
i=2

µiQ′(µi)

]
= 0.3945042461... = 2 · (0.1972521230...)

The number rn of such labeled series-parallel networks with n edges has generating
function [29]

R(x) =
∞∑
n=1

rn
n!
xn = x+

1

2!
x2 +

4

3!
x3 +

20

4!
x4 +

156

5!
x5 +

1472

6!
x6 +

17396

7!
x7 + · · ·

=
(
(x+ 1)2 exp(−x)− 1

)〈−1〉
=

(
∞∑
k=1

(−1)k
k2 − 3k + 1

k!
xk

)〈−1〉
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Proceeding as before, we have [21]

rn ∼ ω · n! · n−3/2 · θ−n

where θ = 4/e− 1 = 0.4715177646... and

ω =
1

2

√
eθ

π
= 0.3193679560... = 2 · (0.1596839780...)

It follows that the probability that a random n-edge series-parallel network has
no multiple parallel edges is asymptotically

(
ν

λ

)(
κ

µ

)n

= (0.9557648142...)(0.8109908278...)n

if the network is unlabeled and(
ω

τ

)(
σ

θ

)n

= (0.9107665899...)(0.8192572794...)n

if the network is labeled. We hope to report on later on other relevant material in
[21].

0.4. Boolean Functions. We have already enumerated the number un of distinct
Boolean functions of n variables, built only with + and ·, under the action of the
symmetric group Sn.

Of course, the set of all Boolean functions also includes those involving comple-
mentation of variables (¬X). Let us examine briefly this larger set [30, 31]. Define
two Boolean functions to be equivalent if they are identical up to a bijective renam-
ing of the variables. The number of equivalence classes in this case is asymptotically
[32, 33, 34]

22
n

/n!

hence no new constants arise. Define two Boolean functions to be congruent if they
are identical up to a bijective renaming of the variables and an additional complemen-
tation of some of the variables. The number of congruence classes is asymptotically

22
n
−n/n!

Other results of this kind are also known, but none contain new constants.
Let us return to our original set of Boolean functions of n variables and let F 2

denote the binary field. S
n
is a subgroup of the group T

n
of invertible linear transfor-

mations F n
2
→ F

n

2
, namely, the n×n matrices that have exactly one 1 in each row and

each column. What can be said about the number ũn of distinct Boolean functions,
built only with + and ·, under the action of the (larger) group Tn? Our experience
with un leads us to conjecture that the asymptotics of ũn will be quite interesting.
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0.5. Irreducible Posets. Another unsolved problem involves the number a
n
of

unlabeled (⊕,�)-irreducible posets with n points. It is known that

A(x) =
∞∑

n=0

a
n
xn = x+x4+12x5+104x6+956x7+10037x8+126578x9+1971005x10+· · ·

and, further, that

P (x) = exp

[
∞∑
k=1

1

k

(
P (xk) +

1

P (xk)
+A(xk)− 2

)]

where

P (x) =
∞∑
n=0

pnx
n = 1+ x+ 2x2+5x3+16x4+63x5+318x6+2045x7+16999x8+ · · ·

is the generating function of (arbitrary) unlabeled posets [3, 7, 9]. What can be said
about the asymptotics of an? Even a nice functional equation for A(x) in-and-by-itself
is probably impossible.
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[31] P. Savický and A. R. Woods, The number of Boolean functions computed by
formulas of a given size, Random Structures Algorithms 13 (1998) 349—382;
MR1662790 (2000e:68077).

[32] M. A. Harrison, On asymptotic estimates in switching and automata theory, J.
ACM 13 (1966) 151—157; MR0186504 (32 #3964).



Series-Parallel Networks 11

[33] M. A. Harrison, Counting theorems and their applications to classification
of switching functions, Recent Developments in Switching Theory, ed. A.
Mukhopadhyay, Academic Press, 1971, pp. 85—120; MR0280279 (43 #6000).

[34] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000231, A003180,
A000616.


