
Shapes of Binary Trees

Steven Finch

June 24, 2004

This is a sequel to our treatment of various attributes of trees [1], expressed in
the language of probability. Let {Yt : 0 ≤ t ≤ 1} be standard Brownian excursion.
Define the Lp-norm

‖Y ‖p =





 1∫

0

|Yt|
p
dt




1/p

if 0 < p < ∞,

max
0≤t≤1

|Yt| if p = ∞

and a (new) seminorm

〈Y 〉p =





 1∫

0

v∫
0

∣∣∣∣Yu + Yv − 2 min
u≤t≤v

Yt

∣∣∣∣p du dv



1/p

if 0 < p <∞,

max
0≤u<v≤1

∣∣∣∣Yu + Yv − 2 min
u≤t≤v

Yt

∣∣∣∣ if p =∞.

We examined ‖Y ‖p earlier [2]; 〈Y 〉p is a less familiar random variable but nevertheless
important in the study of trees. Note that 〈Y 〉p is not a norm since, for any constant
c, 〈c〉p = 0 even if c �= 0.

Let T be an ordered (strongly) binary tree with N = 2n+1 vertices. The distance
between two vertices of T is the number of edges in the shortest path connecting them.
The height of a vertex is the number of edges in the shortest path connecting the
vertex and the root.

TheWiener index d1(T ) is the sum of all
(
N
2

)
distances between pairs of distinct

vertices of T , and the diameter d∞(T ) is the maximum such distance. If δ(v,w)
denotes the distance between vertices v and w, then

dλ(T ) =

(
1

2

∑
v,w

δ(v,w)λ
)
1/λ

, λ > 0,

includes both the Wiener index and diameter as special cases.
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The internal path length h1(T ) of a tree is the sum of all N heights of vertices
of T , and the height h∞(T ) is the maximum such height. Let o denote the root of
T . The generalization

hλ(T ) =

(∑
v

δ(v, o)λ
)1/λ

, λ > 0,

includes both the internal path length and height as special cases. If we restrict
attention to only those n+ 1 vertices v̂k that are leaves (terminal nodes) of T , listed
from left to right, then a sequence δ(v̂1, o), δ(v̂2, o), . . . , δ(v̂n+1, o) emerges. This is
called the contour of T .

The width w
∞
(T ) of a tree is the maximum of ζl(T ) over all l ≥ 0, where ζl(T )

is the number of vertices of height l in T . Note that

wλ(T ) =


h∞(T )∑

l=0

ζl(T )λ



1/λ

, λ > 0,

includes the trivial case w1(T ) = N . The sequence ζ0(T ), ζ1(T ), . . . , ζh∞(T ) is known
as the profile of T .

0.1. Uniform Combinatorial Model. In this model, the
(
2n
n

)
/(n + 1) ordered

binary trees are weighted with equal probability, where N = 2n+ 1 is fixed.
Janson [3] determined the joint distribution of internal path length and Wiener

index: (
h1(T )

2N 3/2
,
d1(T )

2N5/2

)
→ (‖Y ‖1 , 〈Y 〉1)

as N → ∞. The marginal distribution of h1(T ) was obtained earlier by Takács
[4, 5, 6]; the result for d1(T ) is apparently new. No explicit formula for P (〈Y 〉1 ≤ x)
is known; see [2] for the corresponding result for ‖Y ‖1. We have expected values

E (‖Y ‖1) =
1

2

√
π

2
, E (〈Y 〉1) =

1

4

√
π

2

and correlation coefficient

Cov(‖Y ‖1 , 〈Y 〉1)√
Var(‖Y ‖1)

√
Var(〈Y 〉1)

=

√
48− 15π

50− 15π
= 0.5519206030...

As an aside, we mention that ‖Y ‖1−〈Y 〉1 ≥ 0 always. Underlying the joint moment
[3]

E
(
‖Y ‖k1 (‖Y ‖1 − 〈Y 〉1)l

)
=

k!l!
√
π

2(7k+9l−4)/2Γ((3k + 5l − 1)/2)
ak,l
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is the following interesting quadratic recursion [7, 8, 9, 10, 11, 12]:

ak,l = 2(3k + 5l− 4)ak−1,l + 2(3k + 5l− 6)(3k + 5l − 4)ak,l−1 +
∑

0<i+j<k+l

ai,jak−i,l−j

with a0,0 = −1/2, a1,0 = 1 = a0,1 and ak,l = 0 when k < 0 or l < 0. All ak,l but a0,0
are positive integers when k ≥ 0 and l ≥ 0. Applications include the enumeration of
connected graphs with n vertices and n +m edges. We have asymptotics [3, 13]

ak,0 ∼ 1

2π
6k(k − 1)!, a0,l ∼ C · 50l ((l − 1)!)2 ,

where the precise identity of the constant

C =
1

50
(0.981038...) = 0.01962... =

1

50.9664...

remains an unsolved problem.
Chassaing, Marckert & Yor [14] determined the joint distribution of height and

width: (
h∞(T )

N1/2
,
w∞(T )

N 1/2

)
→

 1∫

0

dt

Yt
, ‖Y ‖

∞




as N → ∞. The marginal distribution of height was obtained earlier by Rényi &
Szekeres and Stepanov [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]; earlier works on width
include [25, 26, 27, 28, 29, 30]. It turns out that the marginal distributions are
identical (up to a factor of 2) and that this is the first of several theta distributions
[31] we will see here:

P


1
2

1∫
0

dt

Yt
≤ x


 = P(‖Y ‖

∞
≤ x) =

√
2π5/2

x3

∞∑
k=1

k2e−π
2k2/(2x2).

The expected values thus coincide:

E


1

2

1∫
0

dt

Yt


 = E (‖Y ‖

∞
) =

√
π

2
.

Rényi & Szekeres also computed the location of the maximum of the probability
density [15]:

mode (‖Y ‖
∞
) =

1

2
(2.3151543618...) =

1

2

√
2

0.3731385248...
.



Shapes of Binary Trees 4

Returning to the joint distribution formula, it is clear that h
∞
(T ) and w

∞
(T ) are

negatively correlated. A numerical estimate (let alone an exact expression) for the
correlation coefficient evidently remains open [14, 32].

For the generalized height and diameter parameters, we have marginal distribu-
tions [3, 14, 33, 34, 35]:

hλ(T )

2N (λ+2)/(2λ)
→ ‖Y ‖λ ,

dλ(T )

2N (λ+4)/(2λ)
→ 〈Y 〉λ

as N →∞. The latter includes the special cases of Wiener index (λ = 1, as mentioned
before) and diameter (λ =∞):

P (〈Y 〉
∞
≤ x) =

1024
√
2π5/2

3x9

∞∑
k=1

k2
[(
3 + π2k2

)
x4 − 36π2k2x2 + 64π4k4

]
e−8π

2k2/x2,

which possesses expected value

E (〈Y 〉
∞
) =

4

3

√
2π

and maximum location [33]

mode (〈Y 〉
∞
) = 3.2015131492... =

√
8

0.7805116813...
.

Nothing is known for other values of λ (even λ = 2 seems to have been neglected).
It would also be good to learn the value of the correlation coefficient of d∞(T ) and
h∞(T ), or of d∞(T ) and w∞(T ).

Consider finally the minimum height η(T ) of a leaf; that is,

η(T ) = min
1≤k≤n+1

δ(v̂k, o).

It is known that E(η) → ∑∞
k=1 2

k+1−2k = 1.5629882961... as N → ∞ [36, 37]. Can
this result be related to Brownian excursion in some way? We will report more on
the properties of leaves of T later.

0.2. Critical Galton-Watson Model. In this model, the size N = 2n + 1 is
free to vary: All ordered binary trees are included but with weighting 2−N . (We omit
subcritical and supercritical cases for reasons of space.)

Let T be a random tree. The probability that T has precisely N vertices is clearly
[38]

1

n+ 1

(
2n

n

)
2−N ∼

√
2

π
N−3/2;
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hence the expected number of vertices of T is infinite. We examine this result in
another way. If

νl =
l∑

k=0

ζk

where ζk is the number of vertices of height k in T , then E(νl) = l+1 and Var(νl) =
(2l + 1)(l + 1)l/6, both which →∞ as l→∞. More complicated conditional distri-
butions are due to Pakes [39, 40]:

lim
l→∞

P

(
νl
l2
≤ x |ζl > 0

)
=

x∫
0

f(t) dt,

lim
l→∞

P

(
νl
l2
≤ x |ζm > 0 for all positive integers m

)
=

x∫
0

g(t) dt,

where the first density function is given by

f(t) =
2√

2πt3/2

∞∑
k=0

(
(2k + 1)2

t
− 1

)
exp

(
−(2k + 1)2

2t

)

with mean 1/3, variance 2/45, and Laplace transform
∞∫
0

e−stf(t) dt =
√
2s csch

(√
2s
)
.

The second density function is not explicitly known, but has mean 1/2, variance 1/12
and satisfies

∞∫
0

e−stg(t) dt = sech2
(√

s

2

)
.

Consequently g(t) is the convolution of g̃(t) with itself, where

g̃(t) =
1√

2πt3/2

∞∑
k=0

(−1)k (2k + 1) exp

(
−(2k + 1)2

8t

)
,

but this appears to be as far as we can go.
Define Tl to be the subtree of T consisting of all νl vertices up to and including

height l. We have the parameters dλ(Tl), hλ(Tl) and wλ(Tl) available for study, but
little seems to be known. Of course, w1(Tl) = νl. Athreya [41], building on [42, 43, 44],
proved that E (w∞(Tl)) ∼ ln(l) as l → ∞, which contrasts nicely with the fact that

P (ζk = 0)→ 1 as k →∞. See also [45, 46, 47, 48, 49, 50, 51]. Kesten, Ney & Spitzer
[52, 53, 54] demonstrated that P (h∞(Tl) = j) ∼ 2/j2 as j → ∞; further references
include [55, 56, 57]. Can exact distributional results be found? What about other
values of λ? Is anything known about diameter for Galton-Watson trees?

More material to come...
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