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1 The Complexity of Counting Simple Paths in Graphs

A self-avoiding walk (SAW, for short) is a path on a graph G that does not visit any node more
than once. The problem of counting the SAWs in a given “regular” graph G, such as the one shown
in Figure 1, plays a crucial role in modeling many important prob-

Figure 1: A length-18 in
the complete 2D grid.

lems in different areas of science, such as combinatorics, statistical
physics, theoretical chemistry, and computer science. By “two-
dimensional grid” we mean the two-dimensional rectangular lat-
tice Z2 with origin (0, 0). One of the most prominent applications
of counting SAWs is the modeling of spatial arrangement of lin-
ear polymer molecules in a solution. Here a SAW represents a
molecule composed of monomers linked together in a chain by
chemical bonds. Other application areas include the percolation
model, the Ising model, and the network reliability model.

Valiant [Val79b] is the first to find connections between the
problem of counting SAWs and computational complexity theory.
He showed that the problem of counting SAWs between two given
points, the problem of counting Hamiltonian cycles, and the prob-
lem of counting Hamiltonian paths between two given points are all #P-complete under poly-
nomial parsimonious reductions (that is, polynomial-time reductions of functions not requiring
post-computation) both for directed graphs and for undirected graphs. One might ask for which
types of graphs these counting problems remain #P-complete. The goal of this paper is to present
some natural regular graphs for which the corresponding counting problems are #P-complete and
discuss some open issues.

2 Preliminaries

Let M be a nondeterministic Turing machine. By #accM we denote the function that maps
each string x to the number of accepting computation paths of M on input x. A class #P of
Valiant [Val79a] is defined as {#accM | M is a polynomial-time nondeterministic Turing machine}.
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Next we define polynomial-time reductions between counting functions. Let f and g be functions
from Σ∗ to N. We say that f is polynomial-time one-Turing reducible to g, denoted by f ≤p

1-T g, if
there is a pair of polynomial-time computable functions, R1 : Σ∗ → Σ∗ and R2 : Σ∗×N → N, such
that for all x it holds that f(x) = R2(x, g(R1(x))). We consider two special cases of polynomial-
time one-Turing reductions. We say that f is polynomial-time parsimoniously reducible to g if for
all x and y the above R2 satisfies R2(x, y) = y, i.e., for all x, f(x) = g(R1(x)). We say that the
function f is polynomial-time right-bit-shift reducible to g, denoted by f ≤p

r-shift g, if there is a
polynomial-time computable function R3 : Σ∗ → N − {0} such that for all x and y it holds that
R2(x, y) = y div 2R3(x), i.e., for all x, f(x) = g(R1(x)) div 2R3(x), where div is integer division. It
is easy to see that both types of reductions are transitive.

3 Counting Paths and Cycles in Planar 3-Regular Graphs

In 1976 Garey, Johnson, and Tarjan [GJT76] showed that the Hamiltonian Cycle problem is NP-
complete even for the graphs restricted to planar 3-regular graphs. Let us denote the restricted
version by HamCycle-Plan3 and its counting problem (that is, the problem of counting Hamiltonian
cycles in planar 3-regular graphs) by #HamCycle-Plan3.

It is known for many NP-complete problems that their counting versions (which ask to com-
pute the number of witnesses) are #P-complete. For a large number of such problems, the #P-
completeness of the counting version can be shown by simply observing two properties about an
existing NP-completeness proof: (1) the existing proof constructs a polynomial-time many-one re-
duction from an NP-complete problem whose counting version is known to be #P-complete and
(2) the reduction actually preserves the number of witnesses. For example, the six standard NP-
complete problems identified by Karp [K72] have this property (see page 169 of [GJ79]).

Does this property hold for HamCycle-Plan3, too? That is, does the reduction due to Garey,
Johnson, and Tarjan also serve as a reduction that shows #P-completeness of #HamCycle-Plan3?

In [Pro86] Provan claims that this is indeed the case by stating that, for each 3CNF formula
ϕ, and for each satisfying assignment α of ϕ, the graph produced by the Garey–Johnson–Tarjan
reduction on input ϕ has exactly

(87 · 18)m · 86a · 8b · 36

Hamiltonian cycles corresponding to α, where m is the number of clauses of ϕ and a and b are quanti-
ties not depending on α. Provan uses this analysis to argue #P-completeness of #HamCycle-Plan3
and this observation is referenced by others (e.g. [HMRS98] and [Vad01]). Unfortunately, this anal-
ysis is incorrect, since two factors are missing in the formula. The correct number of Hamiltonian
cycles corresponding to α is

2m2 · 3m3 · (87 · 18)m · 86a · 8b · 36,

where a and b have the same meaning as before and m2 (respectively, m3) is the number of clauses
C in ϕ such that α satisfies exactly two (respectively, three) literals of C.

Now that this argument for the #P-completeness of #HamCycle-Plan3 is incorrect, can we not
hope to prove the #P-completeness?

In [LOT03] it has been shown that indeed we can. The Garey–Johnson–Tarjan reduction can
be modified (by restricting the type of 3CNF formulas and by replacing one of the gadgets) to
prove that #HamCycle-Plan3 is #P-complete. Furthermore, a similar result has been shown for
the problem of counting Hamiltonian paths.
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Theorem 1 ([LOT03]) The problem of counting Hamiltonian cycles in planar graphs of degree
three and the problem of counting Hamiltonian paths in planar graphs of maximum degree three are
#P-complete under ≤p

r-shift-reductions.

In Section 5 we will sketch briefly the main idea behind a correct proof of the theorem.

4 The Complete Two-Dimensional Grids

Another type of important planar graphs is the two-dimensional grid and its fragments. Interest-
ingly, we know much less about the complexity of counting paths in this type of graphs. Evaluation
of the number of length-n SAWs from the origin in the two-dimensional grid for a given n (which
quantity we’ll refer to by cn) has been attracting many researchers. The term “self-avoiding walks”
is often used to refer to this specific problem.

The question of whether there exists a formula for cn has been extensively studied in the
literature (see [MS93] and [Wel93] for a survey), but is still open. One of the major achievements
in this direction is a result of Hammersley and Morton [HM54], which states that there exists some
µ > 0 such that limn→∞ c

1/n
n = µ and such that, for all n ≥ 0, cn

µn ≥ 1. However, the exact value
of µ is unknown. Hammersley and Welsh [HW62] show that there exists some constant a > 0
such that cn

µn = O(a
√

n). Much work has been done to improve lower and upper bounds of µ. The
current best bounds are 2.62002 ≤ µ and µ ≤ 2.67919, which are respectively shown in [CG96] and
in [PT00]. A conjecture in statistical physics states that for some constants A and γ it holds that

cn = Aµnnγ−1(1 + o(1))

and similar conjectures have been made for grids of higher dimension (see, e.g. [RS00]). Assuming
that the conjecture for the two-dimensional grid holds, experiments seem to suggest that γ = 43

32
(see [MS93] for more discussions).

Since the formula for cn is unknown, much efforts has been given to calculate the exact value
of cn for as large n as possible. As of today, the value has been calculate for all n up to 51 [CG96].
Also, Randall and Sinclair [RS00] present Monte Carlo algorithms for approximating the value of
cn, and for generating SAWs of a given length almost uniformly at random.

Using NP-completeness as a yardstick for measuring computational complexity of problems,
Istrail [Is00] has recently provided negative answers to conjectures about computability of some
thermodynamical quantities in two- and three-dimensional square lattices. More precisely, Bara-
hona [Ba82] shows that, for the much-studied Ising model on the three-dimensional cubic lattice,
the problem of computing the ground states on finite sublattices is NP-hard, and thus, intractable.
Istrail extends this result and proves that the problem remains NP-hard for every non-planar lattice,
including the two-dimensional non-planar lattices.

Computational complexity of computing cn is first addressed by Welsh [Wel93]:

Welsh’s Problem Is the exact computing of cn complete for #P1?

Here #P1 is the version of #P in which the inputs are over a single-letter alphabet and so the
length n is specified by the input length4. If the answer to Welsh’s question is affirmative then it
means that determining the strict value for cn may be computationally intractable and hence that
no exact formula for cn exists (see [GOR00] for hardness of #P1).

4In [Wel93, Problem 1.7.3] Welsh asks about #P-completeness, but we believe he meant #P1-completeness.
See [LOT03] for detail.
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3−choice walk Up−side walk2−choice walk Spiral walk

Figure 2: Various types of self-avoiding walks: the only solved models are spiral and up-side walks.

In addition to the general self-avoiding walks, some modified walks modeling various physical
conditions have been subjects of considerable amount of research. Exact formulas for such modified
SAWs could lead to discovery of the exact formula for the general case or better estimates of the
constant µ. Unfortunately, counting is difficult even in some very restricted models. Important
special cases are those in which the choices for the next move are restricted by the current move.
Example of such walks are 3-choice walks, 2-choice walks, spiral SAWs, and up-side SAWs. In
3-choice walks clockwise turns are forbidden after moving horizontally, that is, no “up” move
right after a “left” move and no “down” move after a “right” move. In 2-choice walks one more
restriction is added to 3-choice walks: no two successive moves are vertical. In spiral walks any
clockwise turns are forbidden and in up-side walks “down” moves are forbidden (see Figure 2). The
only non-trivial models in which the exact formula for the number of SAWs is known are the spiral
walks [BH84, GW84, Jo84, Wh84] and the up-side walks [PS89, Wil96]. In Section 6 we show that
using a finite-automata-approach one can derive the exact formula for the number of the up-side
SAWs. The exact computational complexity of computing the number SAWs in these models is an
interesting open question.

4.1 Counting in Grid Graphs Allowing Holes is Difficult

It is straightforward to prove that the ex-

Figure 3: A fragment of complete 2D grid and
a grid with holes.

act counting of SAWs for the complete two-
dimensional grid belongs to #P1 (consider a
nondeterministic Turing machine that, on in-
put 0n, nondeterministically generates a se-
quence of n moves and then accepts if and only
if the sequence is self-avoiding). On the other
hand, settling Welsh’s question of whether the
counting problem is #P1-hard appears to be
difficult. A straightforward approach to prov-
ing the hardness will be to embed the compu-

tation of a nondeterministic Turing machine in the grid, but doing this so that there are no holes
and the computation paths have the same length seems quite difficult. This leads us to the question
of whether the counting problem is hard for some complexity class if it is permitted to create holes,
that is, if the graphs in which SAWs are counted are those composed of the nodes and the edges
of the complete two-dimensional grid. Since the number of choices for locations of the holes in
a finite two-dimensional grid is exponential in the number of nodes in the grid, here we should
be rather thinking about #P-hardness than #P1-hardness. Thus, we ask: Is counting SAWs of
a specified length in finite subgraphs of complete two-dimensional grids #P-complete under some
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polynomial-time function reductions? In [LOT03] this problem has been positively resolved.
Theorem 2 ([LOT03]) Each of the following six problems about counting SAWs in subgraphs of
complete two-dimensional grids is #P-complete under ≤p

r-shift-reductions.

1. counting the SAWs from the origin to a specific point having a specific length,

2. counting the SAWs from the origin to any point having a specific length,

3. counting the SAWs between any two points having a specific length,

4. counting the SAWs from the origin to a specific point having any length,

5. counting the SAWs from the origin to any point having any length, and

6. counting the SAWs between any two points having any length.

Unfortunately, the above result does not resolve the question of Welsh.
A related question is whether the problem is #P-complete if the

Figure 4: A solid grid.

input graph is finite and without holes (that is, both the input graph
and its complement are connected) (see Figure 4). We conjecture that
this counting problem is #P-complete.

Another related question is whether counting Hamiltonian cycles
or Hamiltonian paths in finite subgraphs of the two-dimensional grid
(holes permitted) is #P-complete under some polynomial-time func-
tion reductions. It is known that the decision versions of these prob-
lems are NP-complete [IPS82], but the reductions shown in [IPS82] do
not possess the witness-preserving property (even with multiplicity).
We conjecture that these counting problems are #P-complete.

One can also question for which subgraphs of the two-dimensional grid counting Hamiltonian
cycles or Hamiltonian paths is in P. The question is unsolved for such simple subgraphs as rectangles,
and only a small progress has been made toward obtaining exact formulas for the corresponding
quantities. Göbel [Gö79] gives the correct number of Hamiltonian cycles for a 3× � grid. In [SS95]
Stoyan and Strehl show that the number of Hamiltonian cycles in a k× � rectangular grid for fixed
k has always a rational generating function, and provide generating functions for all k up to 8.
In [CK97] Collins and Krompart give a generating function for the number of Hamiltonian paths
from one corner of a k × � rectangular to another corner for all k up to 5. One can show that the
number of Hamiltonian paths or Hamiltonian cycles in a k× � rectangular grid can be computed in
polynomial time for each k ∈ O(log �). We assume here a unary encoding of both k and �. To the
knowledge of the authors, it is unknown whether the counting problem is polynomial-time solvable
if k ∈ ω(log �). In the case when k ∈ O(log �) we can say something stronger: both counting
problems are in #L, the logarithmic-space version of #P (for a definition and properties of #L
see [AO96, AJ93]).

5 #P-completeness of #HamCycle-Plan3

Here we quickly sketch how the reduction of Garey, Johnson, and Tarjan [GJT76] can be modified
to act as a reduction from #HamCycle-Plan3 to #3SAT. The reduction we’ll construct has a
special property: for each graph G produced by the reduction, there is at least one edge traversed
by all the Hamiltonian cycles of G and such an edge is easy to identify. So, by simply removing one
of such common edges, the Garey–Johnson–Tarjan reduction becomes a polynomial-time many-one
reduction from 3SAT to the Hamiltonian Path decision problem of planar graphs having maximum
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Figure 5: The Tutte-Gadget. (a) The gadget. (b) Hamiltonian traversals of the nodes in the Tutte-
gadget. The top four are traversals connecting nodes a and c with b in the middle. The bottom
two are traversals connecting nodes b and c with a in the middle.
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Figure 6: The XOR-Gadget. (a) The structure of the gadget: each of the eight shaded triangles
represents a copy of the Tutte-gadget placed in the structure as oriented above. (b) A symbol to
denote an XOR-gadget. (c) Crossing of two XOR-gadgets. On the left the four horizontal lines in
one XOR-gadget and the four vertical lines in the other XOR-gadget need to be crossed. On the
right the crossing of the lines are resolved by introduction of four additional XOR-gadgets.

degree three (we denote this problem by HamPath-Plan3̂ and the corresponding counting problem
by #HamPath-Plan3̂).

As described earlier, the problem in the use of the Garey–Johnson–Tarjan reduction in showing
#P-completeness of #HamCycle-Plan3 is that the number of Hamiltonian paths representing a
satisfying assignment depends on how it satisfies the formula. The problem can be overcome by
considering only instances of Not-All-Equal-3SAT (i.e. a problem of testing whether a given 3CNF
formula can be satisfied by a not-all-equal satisfying assignment) and applying slight modifications
to the Garey–Johnson–Tarjan reduction.

In [LOT03] it is shown that there is a polynomial-time reduction f with the following property:
For each n ≥ 1, for each m ≥ 1, and for each 3CNF formula ϕ having n variables and m clauses,
ψ = f(ϕ) is a CNF formula such that:

1. The number of variables of ψ is n + m + 1 and the number of clauses of ψ is 8m + 1. Of the
8m + 1 clauses in ψ exactly one is a single-literal clause and the rest are three-literal clauses.

2. Every satisfying assignment of ψ is a not-all-equal satisfying assignment. More precisely, for
every satisfying assignment α of ψ, α satisfies exactly two literals for exactly 4m three-literal
clauses and satisfies exactly one literal for exactly 4m three-literal clauses.

3. #SAT(ϕ) = #SAT(ψ).

Let ϕ be a 3CNF formula having n variables and m clauses for which we want to compute
#SAT. Let ψ = f(ϕ). We will construct a graph G from ψ by applying a modified Garey–Johnson–
Tarjan reduction. Basic components of the construction are the Tutte-gadget (see Figure 5), the
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Figure 7: The OR-Gadget. (a) A three-input OR-gadget. (b) Two ways to traverse an input line
whose value is true. (c) The way to traverse an input line whose value is false. (d) The traversal of
input lines when only input 1 is true. (e) Two possible traversals of input lines when exactly two
inputs are true. (f) Two ways to create a Hamiltonian traversal of the four nodes on the left side
of the gadget.

XOR-gadget (see Figure 6), and the OR-gadget (see Figure 7). Here the first two gadgets are taken
without changes from the Garey–Johnson–Tarjan reduction while the OR-gadget is our own device.

The Tutte-gadget is used to force branching. To visit c without missing a node, one has to
either enter from a and visit b on its way or enter from b and visit a on its way. There are four
ways to do the former and two ways to do the latter (see Figure 5 (b)).

The XOR-gadget is a ladder built using eight copies of the Tutte-gadget (see Figure 6 (a)).
To go through all the nodes in an XOR-gadget one has to enter and exit on the same vertical
axis. Moreover for each of the two vertical axes there are (4 · 2)4 = 212 Hamiltonian paths that
traverse the gadget. XOR-gadgets can be crossed without losing planarity by inflating the number
of Hamiltonian paths (see Figure 6). Since four XOR-gadgets are added, the number of Hamiltonian
paths is increased by a multiplicative factor of 248.

In an OR-gadget, each four-node rectangle on the right-hand side is considered to be an input.
The line at the right end of an input part provides connection to the outside world. The one shown
in Figure 7 is a three-input OR-gadget. Each input line will be either entirely available or entirely
unavailable. If an input line is available we think of the situation as the input being assigned true
as a value. Otherwise, we think of the situation as the input being assigned false. In the former
case, there are two ways to traverse the line (see Figure 7 (b)). In the latter there is only one way
to touch the two nodes on the line (see Figure 7 (c)). If the number of inputs that are assigned
true is one, there is only one way to traverse the nodes on the input lines (see Figure 7 (d)). If the
number is two, there are two possibilities (see Figure 7 (e)). Finally, there are two ways to traverse
all the four nodes on the left-hand side of an OR-gadget (see Figure 7 (f)).

Another important components of the graph G are two-node cycles. A two-node cycle is rep-
resented as a pair of nodes that are vertically lined up and are connected by two edges. We refer
to the two nodes by the top node and the bottom node and refer to the two arcs by the right edge
and the left edge. The paths consisting solely of one of the two arcs are the Hamiltonian paths of
a two-node cycle.

The graph G is essentially two vertical sequences of two-node cycles that are side-by-side. The
right sequence is called Π and the left sequence is called Σ here. In each of the two sequences
each neighboring cycle-pair is joined by an edge. The cycles in Σ correspond to the literals of ψ,
so there are exactly 24m + 1 cycles in it. On the other hand, the cycles in Π correspond to truth
assignments, so there are 2(n + m + 1) cycles in it. The sequences Σ and Π are joined by an edge

7



1

1

2

2

1

1

2

2

x

three−literal
clause

The first

single−literal
The

clause

x

x

ΠΣ

x

s
t

x

x

x

x

s
t

Figure 8: The reduction applied to a formula ψ = (x1 ∨ x1 ∨ x2) ∧ x2. Left: the graph. Right a
Hamiltonian cycle corresponding to satisfying assignment (x1 = 0, x2 = 0). Every satisfying assign-
ment of ψ satisfies exactly two literals of the three-literal clause. Since there are two variables and
four literals and there are no crossing XOR-Gadgets, each satisfying assignment of ψ corresponds
to exactly 2 · 4 · 212·2 · 212·4 Hamiltonian cycles.

connecting the very top nodes of Σ and Π and by an edge connecting the very bottom nodes of
Σ and Π, called s and t respectively. The first 24m cycles of Σ are divided into 8m three-cycle
blocks, where for each i, 1 ≤ i ≤ 8m, the ith block corresponds to the ith three-literal clause of
ψ, i.e., the first of the three cycles corresponds to the first literal of the clause, the second cycle to
the second literal, and the third cycle to the third literal (see Figure 8). The three cycles in each
three-cycle block are connected to each other by an OR-gadget attached on their left edges. The
last cycle corresponds to the unique single-literal clause of ψ. To the left edge of the two-node cycle
we attach a one-input OR-gadget. The sequence Π is divided into n + m + 1 blocks of cycle-pairs,
where for each i, 1 ≤ i ≤ n + m + 1, the ith pair corresponds to xi, the ith variable. For each
pair, the top cycle corresponds to xi and the bottom to xi. We connect the right edges of each pair
by an XOR-gadget as shown in Figure 8. This has the effect of forcing each Hamiltonian path of
Π to select for each pair of two-node cycles exactly one cycle whose left edge is traversed, where
the other cycle will be traversed on the right edge. Now, for each i, 1 ≤ i ≤ 2(n + m + 1), and
each j, 1 ≤ j ≤ 24m + 1, if the literal represented by the ith cycle of Π is the literal at the jth
position in Σ, join the left edge of the ith cycle in Π and the right edge of the jth cycle in Σ by an
XOR-gadget. Here, in the case where two XOR-gadgets connecting Σ and Π need to be crossed,
we do so with the method for crossing XOR-gadgets described earlier.

Note that for every i, 1 ≤ i ≤ n + m + 1, traversing the XOR-gadget connecting the two right
edges in the ith cycle-pair in Π corresponds to selection of a value for the ith variable. Here if the
right edge of the top (respectively, the bottom) cycle is used to traverse the XOR-gadget, then it
frees up the left edge of the bottom (respectively, the top) cycle, enforcing that all the XOR-gadgets
attached to the left edge of the bottom (respectively, the top) cycle are traversed from the Π side
and that all the XOR-gadgets attached to the left edge of the top (respectively, the bottom) cycle
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are traversed from the Σ side. We view this situation as the ith variable assigned the value true
(respectively, false). So, each Hamiltonian path of the Π side corresponds to a truth assignment of
ψ. Let a Hamiltonian path of the Π side be fixed and let α be the corresponding truth-assignment
of ψ. Let j, 1 ≤ j ≤ 8m, be an integer. If α does not satisfy the jth clause, then in each of the three
cycles in the jth block in Σ, the right edge needs to be taken so as to traverse the XOR-gadgets
attached to it, which means that the OR-gadget attached to the block cannot be traversed. If α
satisfies exactly one literal, exactly one of the three left edges of the three cycles is available, so
there are two ways to traverse all the nodes in the block. If α satisfies exactly two literals, exactly
two of the three left edges of the three cycles are available, so there are four ways to traverse all
the nodes in the block. As to the last single-cycle with one single-input OR-gadget, if the literal
is not satisfied, then there is no way to traverse the OR-gadget, and if the literal is satisfied, then
there are two ways to construct a Hamiltonian path in it. The formula ψ is designed so that every
satisfying assignment of ψ satisfies exactly 4m three-literal clauses by satisfying exactly two literals
and exactly 4m three-literal clauses by satisfying exactly one literal. So, each Hamiltonian path of
G corresponds to a satisfying assignment of ψ. Furthermore, for each satisfying assignment α of
G, the number of Hamiltonian paths of G that represent α is

2
(
44m24m212(n+m+1)212(24m+1)248r

)
= 248r+12n+312m+25,

where r is the number of crossings of XOR-gadgets. Note that the degree of the nodes in G is all
three. Since #SAT(ϕ) = #SAT(ψ), #SAT(ϕ) can be computed from the number of Hamiltonian
cycles in G by right-shifting 48r+12n+312m+25. Thus, we have strengthened the NP-completeness
result by Garey, Johnson, and Tarjan as follows:

Lemma 5.1 The Hamiltonian Cycle Problem of planar 3-regular graphs is NP-complete in the
sense that there exists a polynomial-time many-one reduction f from 3SAT to the problem such that,
together with another polynomial-time computable function, f acts as a polynomial-time ≤p

r-shift-
reduction from #3SAT to #HamCycle-Plan3.

In the above construction, the edge (s, t) is traversed by every Hamiltonian cycle of G (see
Figure 8). Thus if we remove the edge, then each st-Hamiltonian path in the resulting graph
corresponds to exactly one Hamiltonian cycle in G. This proves the #P-completeness of the
#HamPath-Plan3̂ problem.

6 Up-side SAWs in Complete Grids

In this section we show how a finite-automaton can be used to

U

L

R

U

U

L

R3

2

1

Figure 9: DFA M for up-
side SAWs.

derive an exact formula for the number of the up-side SAWs (that
is, SAWs without down moves) in two-dimensional grid. Let us
denote by Lup-side the set of all strings over {U, L, R} that encode
up-side SAWs. Obviously this language can be recognized by a
deterministic 1-way finite automaton. Below we show how using
this fact one can deduce a formula for the number of up-side SAWs
of a given length n. Let us fix the automaton M for Lup-side as
presented in Figure 9, with the states Q = {1, 2, 3}, where 1 is the
initial state and all the states are accepted states. Let A the transition matrix of M : For all i and
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j, 1 ≤ i, j ≤ 3, A(i, j) = 1 if and only if M can move from state i and state j in one step. Then

A =

⎡
⎣

1 1 1
1 1 0
1 0 1

⎤
⎦ .

Define sequences {fn}n≥1, {gn}n≥1, and {hn}n≥1 as follows: For all n ≥ 1,
⎡
⎣

fn

gn

hn

⎤
⎦ = An ·

⎡
⎣

1
1
1

⎤
⎦ .

Then it is easy to see that, for all integers n ≥ 1, fn (respectively, gn and hn) is equal to the number
of strings having length n that are accepted by M when it is forced start in state 1 (respectively,
2 and 3). Thus, fn is equal to the number of up-side SAWs having length n. To obtain a formula
for fn, observe that

⎡
⎣

1 1 1
1 1 0
1 0 1

⎤
⎦ ·

⎡
⎣

1
1
1

⎤
⎦ =

⎡
⎣

3
2
2

⎤
⎦

and that, for all n ≥ 1, if

An ·
⎡
⎣

1
1
1

⎤
⎦ =

⎡
⎣

an

bn

bn

⎤
⎦

then
⎡
⎣

an+1

bn+1

bn+1

⎤
⎦ = An+1 ·

⎡
⎣

1
1
1

⎤
⎦ =

⎡
⎣

1 1 1
1 1 0
1 0 1

⎤
⎦ ·

⎡
⎣

an

bn

bn

⎤
⎦ =

⎡
⎣

an + 2bn

2bn−1

2bn−1

⎤
⎦ .

It is easy to check that the integer sequences {an}n≥1 and {bn}n≥1 defined above satisfy for all
integer n ≥ 1

bn = 1
2
√

2

[
(1 +

√
2)n+1 − (1 −√

2)n+1
]

and

an = 1
2

[
(1 +

√
2)n+1 + (1 −√

2)n+1
]

(for a generating function of this sequence see e.g. [SP95]). Thus, the formula for an gives the
number of up-side SAWs having length n on the two-dimensional grid. This is an alternative
method for obtaining the formula by Williams [Wil96].
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