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Notation (Standard and Otherwise). The function σ(n) is one of the basic number-

theoretic arithmetic functions. It is defined as:

σ(n) =
∑
d|n

d.

Some values of σ(n) for small n can be found in [2, sequence A000203]. (Note: It is known that σ(n)

is also multiplicative, i.e., if j and k have no factors in common other than 1, σ(jk) = σ(j)σ(k).)

The Dirichlet convolution of two arithmetic functions f(n) and g(n), itself a function of n, is defined

as:

f ∗ g =
∑
d|n

f(d)g(
n

d
).

And I will be using ⊥ to denote relative primality.

Sigma-Primes. I will call a number n sigma-prime if and only if n ⊥ σ(n). The sigma-prime

numbers below 100 can be found in [2, sequence A014567]. Two rather straightforward theorems

are:

Theorem 1. All powers of primes are sigma-prime.

Theorem 2. No perfect numbers are sigma-prime.

To build this theory, I shall, in the time-honored tradition of mathematics, start with the

simple examples and move up. If a number n is the product of two primes, say p and q, then

σ(n) = 1 + p+ q+ pq = σ(p)σ(q). Now, the only divisors of pq are p and q. Clearly, p ⊥ σ(p). Thus,

p ⊥ σ(pq) if and only if p ⊥ σ(q). Similarly, q ⊥ σ(pq) if and only if q ⊥ σ(p). Assuming p < q, we

can see that (unless p = 2 and q = 3), p+ 1 < q and from that p+ 1 ⊥ q. Note also that in the case

of the above exception, q + 1 6⊥ p. Thus, we can generalize and say that n = pq is sigma-prime if

and only if q + 1 ⊥ p. This easily extends to the following:

Theorem 3. If n = p1p2 · · · pk, where p1 < p2 < · · · < pk, , and each of p1, . . . , pk is a prime, then

n is sigma-prime if and only if pi ⊥ 1 + pj whenever i < j.

This also leads to:



Corollary 1. If k is odd and greater than 1, then 2k is not sigma-prime.

Proof. Since k is odd, it has (at least) one odd prime factor p; thus 2k has 2 and p for prime

factors. But, 2 6⊥ 1 + p.

Now we come to the cases where n has prime powers as factors. Thus, if n =
∏
i pi

ei , then

σ(n) =
∏
i σ(piei). Then if n is to be sigma-prime, each of the factors of the first product must be

relatively prime to each of the factors of the second product. Unfortunately, the trick we used in

the single-power case will not work here; pi < pj will not imply that piei < pj
ej .

Theorem 4. A number n =
∏
i pi

ei is sigma-prime if and only if for every i, j,

pi ⊥
ej∑
k=0

pj
k.

We close this section with a surprising theorem and a conjecture.

Theorem 5. The square of an even perfect number is sigma-prime.

Proof. According to a famous result of Euler, every even perfect number is of the form (2p−1(2p−

1)), where 2p−1 is prime. Thus the square of an even perfect number is of the form (22p−2(2p−1)2),

where 2 and 2p − 1 are its prime factors. Thus we have two things to check: (1) 2 ⊥ 1 + (2p − 1) +

(22p− 2p+1 + 1) = 22p− 2p+1 + 2p + 1. This is obvious, as the left-hand side is 2 and the right-hand

side is odd; and (2) 2p−1 ⊥ 1+2+22 + · · ·+22p−2 = 22p−1−1. We will prove this by contradiction.

Assume that, in fact, 2p − 1|22p−1 − 1. We know that 2p − 1|(2p − 1)2 = 22p − 2p+1 + 1. By our

assumption, we also know that 2p − 1|22p − 2 (by multiplying the right-hand side by 2, which is

relatively prime to the left-hand side). Then 2p − 1 must divide the (absolute) difference of these

two numbers, which is 2p+1 − 3. But this is 2(2p − 1)− 1, and this implies that 2p − 1|1. This is a

contradiction (as 2p − 1 ≥ 3), and the theorem is proved.

Conjecture. The natural density of the set of sigma-prime numbers is zero.

This seems a reasonable conjecture to make; the set of prime powers has density zero and the

set of sigma-prime numbers is not much larger. However, no proof has been forthcoming.



Dirichlet Inverse of σ(n). To discuss an inverse, we must first have an identity. Looking at the

definition of Dirichlet convolution, after a little thought we see that the value of the identity function

must be one at n = 1 and zero elsewhere. This tells us immediately that σ−1(1) = 1/σ(1) = 1. It

has been shown that the inverse of a multiplicative function is itself multiplicative (for a proof, see

[1, Theorem 2.16]), so we need only concern ourselves with the prime powers.

Theorem 6. σ−1(p) = −p− 1, where p is a prime.

Proof. Since p > 1, the identity value under Dirichlet convolution has the value 0 at p. Then,

0 = σ(p)σ−1(1) + σ(1)σ−1(p) = (p+ 1) + σ−1(p), and therefore σ−1(p) = −p− 1.

Theorem 7. σ−1(p2) = p, where p is a prime.

Proof. Again, the identity value is 0. Then,

0 = σ(p2)σ−1(1) + σ(p)σ−1(p) + σ(1)σ−1(p2)

= (1 + p+ p2) + (p+ 1)(−p− 1) + σ−1(p2)

= p2 + p+ 1− p2 − 2p− 1 + σ−1(p2)

= −p+ σ−1(p2)

p = σ−1(p2).

Theorem 8. σ−1(pk) = 0, where p is a prime, for all integer k ≥ 3.

Proof. We will prove this using induction, so let’s start with k = 3.

0 = σ(p3)σ−1(1) + σ(p2)σ−1(p) + σ(p)σ−1(p2) + σ(1)σ−1(p3)

= (1 + p+ p2 + p3) + (1 + p+ p2)(−p− 1) + (1 + p)(p) + σ−1(p3)

= (1 + p+ p2 + p3) + (−1− p− p2 − p3 − p− p2) + (p+ p2) + σ−1(p3)

= σ−1(p3).

That takes care of the base case; let’s assume that σ−1(pn) = 0 for all n, 3 ≤ n < k and see what



happens.

0 = σ(pk)σ−1(1) + σ(pk−1)σ−1(p) + σ(pk−2)σ−1(p2) + · · ·+ σ(1)σ−1(pk)

= (1 + p+ p2 + · · ·+ pk) + (1 + p+ p2 + · · ·+ pk−1)(−p− 1)+

(1 + p+ p2 + · · ·+ pk−2)(p) + σ−1(pk)

= (1 + p+ p2 + · · ·+ pk)− (1 + 2p+ 2p2 + · · ·+ 2pk−1 + pk)+

(p+ p2 + · · ·+ pk−1) + σ−1(pk)

= σ−1(pk).

These are all the cases; thus we can generate the sigma inverse function for all n. If we write n

in canonical prime factorization form, n =
∏
i pi

ei , and define the sequence {ai} as

ai =

{−p− 1, if e1 = 1;
p, if e1 = 2;
0, if ei > 2.

Then, σ−1(n) =
∏
i ai.

Note. This sequence, which starts 1, −3, −4, 2, −6, 12, . . . , has now been added to Sloane’s

Encyclopedia [3, sequence A046692].
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